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Abstract

3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces
Determining how an autonomous Unmanned Aircraft System (UAS) should reach a goal
position amidst obstacles is a challenging and difficult problem. This thesis treats the
subject of path planning and trajectory generation for UAS, while utilizing the ability
to move in all three spatial dimensions. The primary contributions of this thesis are an
approximate path planner and a geodesic path planner. Both planners are model indepen-
dent and operate on the surface of the configuration space to identify a length minimizing
path.

The approximate planner determines an approximated shortest path by building and
searching a visibility graph. This planner maintains this visibility graph to enable fast
multi-query searches as well as replanning when changes occur in the work space. As
paths obtained from a visibility graph are not continuously differentiable, a trajectory
generation method is developed that uses the path to find a collision free trajectory that is
more appropriate for flight.

The geodesic planner relates to wavefront-type planning, and identifies continuously
differentiable geodesic paths as parametric equations determined by surface primitives
given from the configuration space. Consequently, this planner uses a more analytical
approach since it relies on combinations of optimal curves.

Both planners operate on an explicit description of the configuration space in a work
space containing 3D obstacles. A method was developed that generates convex configu-
ration space obstacles from any point clouds or geometric meshes in work space.

Two approaches are used for generating a trajectory from an existing path. The first
generator use Dubins curves to find a collision free continuously differentiable trajectory.
The second generator relies on formulating and solving an optimal control problem (OCP)
using a Legendre pseudospectral method. The main contributions of this approach are
the formulation of distance functions that constrains the trajectory. This allows finding
trajectories that follows minimal length paths while optimizing the trajectory according
to a performance index.

The methods and algorithms developed in this thesis are implemented in a planning
application and validated through simulated flight using a helicopter model.
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Synopsis

3D ruteplanlægning for autonome luftfartøjer i afgrænset rum
At afgøre hvordan et ubemandet luftfartøjs system (UAS) skal nå en ønsket position
blandt forhindringer er et vanskeligt, men kritisk, problem. Denne afhandling afdækker
ruteplanlægning og trajektoriegenerering for et UAS hvor dets evne til at bevæge sig i
alle tre rumlige dimensioner udnyttes. De primære bidrag fra denne afhandling er hhv. en
approksimativ og en geodætisk ruteplanlægger. Begge planlæggere er modeluafhængige
og opererer på overfladen af konfigurationsrummet for at finde den korteste rute.

Den approksimative planlægger bestemmer en tilnærmelsesvis korteste rute ved at
opbygge og søge i en synlighedsgraf. Planlæggeren vedligeholder denne synlighedsgraf
for at gøre efterfølgende forespørgsler samt genplanlægning efter ændringer i det fysiske
rum hurtigere. Metoder til trajektoriegenerering udvikles også da ruter fundet i en syn-
lighedsgraf ikke er kontinuerligt differentiable og derfor svre at flge prcist. Disse metoder
bruger eksisterende ruter til at finde kollisionsfri trajektorier, som er mere hensigtsmæs-
sige til flyvning.

Den geodætiske planlægger relaterer sig til bølgefront-planlægning, men den finder
parametriske ligninger for de kontinuerligt differentiable geodæter. Geodæterne bestem-
mes af geometriske primitiver givet ud fra konfigurationsrummet. Denne fremgangsmåde
er mere analytisk da den baserer sig på en kombination af optimal kurver.

Begge planlæggere opererer på en eksplicit beskrivelse af konfigurationsrummet, der
genereres efter et fysiske rum indeholdende 3D forhindringer. En metode blev udviklet,
som genererer konvekse forhindringer i konfigurationsrummet fra punktskyer og polyeder
i det fysiske rum.

To metoder anvendes til at generere et trajektorie fra en eksisterende rute. Den første
metode anvender Dubins kurver til at finde et kollisionsfri kontinuerligt differentiable tra-
jektorie. Den anden metode afhænger af at formulere og løse et optimalt kontrol problem
(OCP) gennem en Legendre pseudospectral metode. Det vigtigste bidrag i denne tilgang
er formuleringen af afstandsfunktioner, der begrænser trajektoriet. Dette gør det muligt
at finde trajektorier, som følger den korteste rute, samtidig med at trajektoriet optimeres
efter en omkostningsfunktion.

Metoder og algoritmer udviklet i denne afhandling er implementeret i software og
valideret gennem simuleret flyvning ved hjælp af en helikoptermodel.
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1 Introduction

1.1 Background and Motivation

UAS are unpiloted aircrafts that are either remotely controlled or autonomous. They are
considered an indispensable platform for many applications. Until recently, UAS were
primarily supporting military operations. This is changing rapidly. UAS promise new
ways to increase efficiency, decrease costs, enhance safety and even save lives.

Search and rescue operations can benefit from UAS that may assist in finding missing
or injured persons, see i.e. [1, 2]. The UAS provide aerial imagery of a search area with
the advantage of quick systematically coverage of large areas, access of hard-to-reach or
dangerous areas, and lower cost than manned aircrafts. Once the persons are located, the
UAS can guide rescue workers to the victims. This helps focus the efforts on the rescue
operation instead of the search operation, which can be substantial. Being unmanned they
can also operate in dangerous environments such as more strenuous weather conditions,
or environments contaminated by chemical, biological, or nuclear materials.

Aerial photography, mapping and inspection are other examples of tasks where a
small aircraft is beneficial, since it is able to operate much closer to surfaces and in smaller
and more constrained spaces than conventional aircrafts. This enables the UAS to build
high resolution elevation or 3D maps. UAS make a good alternative when installations
and buildings need to be inspected. UAS could also inspect high voltage electrical lines
in remote locations, or structures such as bridges, dams, wind turbines, offshore oil-rigs
or other structures that are not easily accessible.

Emergency assistance and law enforcement are amongst other potential civil uses.
An advantage is that a UAS equipped with cameras and other equipment can send back
information to assist in getting an overview, and such recorded data can subsequently be
used for evaluation. They are also not stopped by roads that are blocked from damage,
debris, or traffic which might occur after natural disaster such as a tsunami, earthquakes
or a hurricane. They can also assist in more frequently occurring situations, where a main
advantage is that small fast aircraft can take off instantly and arrive at the scene at initial
critical time before other vehicles. The can provide information critical to the manned
part of the operation as it is on route to, for instance, a building fire or a robbery. In
the former case it can help give an overview of amount of relief required, alert residents,
and look for people in need through windows. A UAS equipped with an infrared camera
can see through smoke. In the latter example it can be beneficial to at arrive at the scene
silently to get video evidence of perpetrators, and also follow them. Video can in both
examples be used for evidence as to whom or what started the fire or how the robbery was
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Introduction

carried out.

Figure 1.1: UAS used for remote sensing and search and rescue after a hurricane strike.
From U.S. Army Roadmap for Unmanned Aircraft Systems 2010-2035 [3].

The U.S. Army Roadmap for Unmanned Aircraft Systems 2010-2035 [3] includes
plans to use UAS for operations that address the consequences of natural disasters and
man-made accidents. Such a system must have various capabilities that enable it to han-
dle situations similar to that illustrated in Figure 1.1. A highway bridge and a biohazard
storage facility are damaged after a hurricane strike leaving people stranded in the af-
fected area. Because of the risks of a biohazard leak an unmanned operation is used in
favor of manned operations. An extended range multi purpose (ERMP) UAS is used for
providing incident awareness and assessment, for enabling search and rescue, and for
communications in the area. Its operation is managed by an emergency operations center
(EOC) that is established outside the area. The aircraft can transmit video back to the
operations center, as well as data from equipment that performs remote sensing of bio-
hazardious material. The UAS initially covers the affected area, allowing for immediate
action on 3 the biohazard and search and rescue efforts. It also performs communications
relay missions to facilitate command between maritime effort, the operations center, stag-
ing areas, and other UAS operations. After these operations, the UAS remains on station
to provide situational awareness.

Most current operational UAS are either remotely controlled by a human operator or
operating autonomously in an obstacle-free environment. There is a need of improving
the autonomy of UAS to facilitate future capabilities. Autonomy in robotics is commonly
defined as the ability to make decisions without human intervention. This discipline aims
at teaching robots intelligent behavior. However, the market for autonomy for UAS is still
undeveloped and remains a bottleneck for UAS developments.

1.2 Objective

There are many aspects to consider when developing a UAS. This covers mechanics,
electronics, software, operation procedures, contingency planning, safety, permits, mis-
sion planning and numerous other aspects. Some aspects are shown in the UAS block
in Figure 1.2. Improvements to future UAS could be largely driven by the advances

2



2 Objective

Mechanics and Electronics

Regulation and Permits

Vehicle Autonomy

Mission planning

Ground Station

Communication and Telemetry

Task Allocation

Obstacle Detection

Path Planning

Collision Avoidance

Trajectory Generation

Vehicle Control

UAS Vehicle Autonomy

Figure 1.2: A UAS consists of numerous components. Some of the more important ones
are shown above. One main component is vehicle autonomy. That is the ability of the
aircraft to operate without human intervention and continuous control.

made in autonomy [4]. Consequently, there is much focus on the improving planning
and control architecture [5], including task allocation, path planning, and vehicle con-
trol. However, dealing with all the aspects simultaneously is very complex, especially
since different parts of the planning process must react to changes happening at different
rates and times. A widely used strategy is to decouple the overall architecture into a hi-
erarchy of less complex problems [6–10]. Such decoupling can i.e. lead to a high level
task allocation layer [11–13] that decides on a goal, a path planning layer [14–16] that
determines waypoints to visited to reach the goal while avoiding obstacles, a trajectory
generating layer [16, 17] that interconnects waypoints with dynamically feasible paths,
and a low level vehicle control layer [18–20] that allows the UAS to track a path under
disturbances such as wind. This architecture should also have layers to handle collision
detection and avoidance during flight. This is split in an obstacle detection and collision
avoidance layer in the figure. Higher layers operates on data known in advance and that
are changing infrequently, and lower levels handles disturbances, collision detection and
avoidance of new obstacles, and operate on vehicle states such as positions and velocities.
In this thesis, the task allocation layer is reduced to a single or a list of sequential goal,
complete information about obstacles in the environment is assumed, and an aircraft with
an existing low level control layer is used. The contributions of this thesis are in the path
planning layer, the collision avoidance layer, and the trajectory generation layer. The col-
lision avoidance layer is used to do faster replanning. The trajectory generation layer is
used to verify the feasibility of paths. The aim is to develop algorithms that can be used
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Figure 1.3: The modified Bergen Industrial Twin.

to plan a feasible path for a small aircraft.

1.2.1 Vehicle Control

The baseline helicopter used for the research is the modified Bergen Industrial Twin seen
in Figure 1.3, which is an off-the-shelf radio controlled (RC) helicopter with a 52 cc, 8 HP
engine. It has a bounding sphere radius of 1.7 meters. The helicopter has no significant
nonholonomic constraints. Consequently, it has the ability to fly in any direction and this
is virtually unaffected by its orientation. A rigid body model and a vehicle control system
have been derived and implemented in Simulink by Bisgaard [21]. A feedback controller
has been designed using linear quadratic regulation (LQR) with the model linearized in
hover. The model is the AAU Helisim model[22], a first principles model of the Bergen
industrial twin helicopter. It includes second order actuator dynamics and second order
flapping dynamics for main rotor and stabilizer bar. The model is simplified to 12 rigid
body states with steady state solutions for flapping and actuator dynamics. The states
are position and Euler angles and body velocities and angular rates. The model has four
control signals, and has been verified against the actual helicopter.

1.2.2 Path Planning

Path planning is a fundamental challenge in robotics. The classical challenge can be for-
mulates as: Given a three-dimensional rigid body with a set of configuration parameters
and a known set of stationary obstacles, find a collision-free path from a start configura-
tion to a goal configuration. This formulation is known as the ”piano mover’s problem”
[23]. Path planning is relevant to a number of fields including control theory, compu-
tational and differential geometry, mechanics, and computer science, and has been the
subject of substantial research. Path planning and trajectory generation problems are two
distinct parts of robotics that are intimately related. A clear difference exists between a
path and a trajectory. A path is without time considerations and a trajectory is. In this
work, a path is an ordered set of 3D points, while a (state) trajectory is an set of state that
are associated with a time. Some methods, such as the solution to the optimal control
problem, also generate a control trajectory associated with the state trajectory.

4



2 Objective

The presented research deals with the subject of path planning for autonomous aerial
vehicles in constrained spaces. While the focus is on aerial vehicles, the developed meth-
ods are general for rigid bodies translating in a known constrained 3D space, and most
approaches are model-independent, although an agile vehicle capable of fast acceleration
and with no significant nonholonomic constraints is assumed. Other uses of such plan-
ning could include undersea vehicles. Constraints will mostly be due to fixed obstacles in
the form of polyhedrons of any shape and orientation, although in some approaches other
constraints are also considered in a dynamic environment.

The basic problem is to find a collision free path inside some space (denoted the
work space), so there is a need to identify the locations of the vehicle where no part of
it intersects the obstacles. These representations are known as the configurations, and
the configuration space is the space of all allowed configurations of the vehicle. The
dimension of the configuration space is equal to the number of independent variables in
the representation of the configuration, also known as the degrees of freedom (DOF). The
UAS has six degrees of freedom: three to represent the position and three to represent the
orientation. It is fair to exclude orientation by representing the shape of the vehicle with
its bounding sphere in mass-of-mass as there are no significant nonholonomic constraints.
The problem is now to find a curve in a 3D configuration space that connects the start and
goal points and avoids all configuration space obstacles that arise due to obstacles in the
work space.
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1.3 Previous Work

Path planning is an active research area, and there are many approaches and algorithms
to solve such problems. These are traditionally classified into classes of methods, such
as roadmap methods, potential field methods, approximate and exact cell decomposition
[24–26]. More recent approaches such as rapidly-exploring random trees (RRTs) and
wavefront planning methods are based on the classic approaches. The most appropri-
ate method for a given planning problem depends on several factors. This includes the
configuration space, its number of dimensions and how constraints are described. Many
methods are limited to two-dimensional spaces with the difficulty increasing rapidly as
the number of dimensions increase. A review follows of the classical path planning
paradigms and some more recent methods that offspring from the classical ideas. There
is a focus on methods that are suitable for the problem presented here.

1.3.1 Potential Fields

The potential field method [27], pictured in Figure 1.4, makes use of a potential field in
the configuration space to solve the path planning problem numerically. In the simplest
approach vehicle and obstacle are given positive repulsing potential and the goal a nega-
tive attracting potential. At each step the vehicle follows the negative gradient towards a
minimum, until it reaches a critical point where the gradient vanishes. While this happens
at any local minimum, maximum, or saddle point, the use of numerical methods gener-
ally means that local maxima and saddlepoints are unstable and only locally minima are
reached. The implication is that progression stops at the first reached local minimum,
weather or not this is the actual goal.

It is possible to define a potential function with only one minimum [28]. The idea is
to make the attracting potential at the goal overwhelm the repulsing potential at the obsta-
cles. This essentially makes the potential field take form towards a steep bowl centered
at the goal. As a result, critical points gravitate toward the goal, and local minima turn
into unstable saddle points. Unfortunately such potential function can reach arbitrarily
large values far from the goal, making it difficult to compute. Modifying the potential
field function to flatten such areas makes implementation of a gradient descent approach
quite difficult because of numerical errors [25]. Another problem with potential fields is
the lack of control of the exact motions of the vehicle, and it is difficult to guarantee that
the resulting path is optimal in any particular sense or even collision free path.

An analytical definition of the problem is possible[29], but difficult for general envi-
ronments. An example is shown in Figure 1.5.

The numerical potential field methods, also known as wavefront planning methods
[30, 31], partitions the configuration space into cells in a grid. A numerical potential field
with only one local minimum is built on the grid. The planner initializes the grid cells
with obstacles with ones and free cells with zero. The cell containing goal is initialized
with a two. In the first step, all zero-valued cells neighboring the goal are set to three.
Next, all zero-valued cells adjacent to threes are set to four. This procedure continues
and essentially grows a wavefront from the goal. The procedure terminates when the
wavefront reaches the cell containing start. The planner then uses gradient descent from
the start cell to find a path. For an example see Figure 1.6.

Randomized planning strategies [32–34] attempt to escape local minima by initiating
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3 Previous Work

Figure 1.4: The negative potential at the blue goal attracts the vehicle while the positive
potentials at the green start and red obstacles repel it. This results in the green path around
the obstacles and to the goal. The black nodes show position at each step of the method.

a series of random walks when stuck. This often escapes the local minimum. After an
escape the negative gradient is followed again. This randomization strategy is the basis
of probabilistic roadmaps [35].

1.3.2 Probabilistic Roadmaps

Roadmaps [36] are data structures that aim at capturing the connectivity of the configura-
tion space. The main idea is to first construct a map that can subsequently be searched for
a collision free path. With Probabilistic RoadMaps (PRM) [35] such a map is constructed
by sampling points in the configuration space. If a point is outside the configuration space
obstacles, they are added to the map (a graph) as nodes. Configurations near each other
are then linked by connecting their nodes with an edge if there is a collision free path
between them. Once the map is sufficiently dense, a graph search algorithm is used for
identifying a path in the graph. Classical methods include Dijkstra’s algorithm [37] or
A* [38], which achieves better time performance using heuristics. There are many vari-
ants on the basic PRM method that vary the sampling strategy and connection strategy to
achieve faster performance. See e.g. [39] for more details.

1.3.3 Rapidly-Exploring Random Trees

Path planning with kinematic constraints is PSPACE-Hard [40], but have relative fast
average-time performance. PRMs sample many points and then identify which samples
in proximity are reachable in order to create a connected graph for multi-query searches.
However it can be quite difficult to find connections between samples if significant dy-
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Figure 1.5: Potential function with unique minimum at the destination located in origin.
From ”The construction of analytic diffeomorphisms for exact robot navigation on star
worlds” [29].

namic constraints exist. In addition, the number of necessary samples increases expo-
nentially with dimensionality of the problem. One notable approach is using Rapidly-
exploring Random Trees (RRT) [41–43]. RRTs can be seen as an extension of PRM to
include vehicle dynamics. With RRTs, a tree is iteratively expanded by applying control
inputs that drive the system slightly toward randomly-selected points. Rapidly-exploring
Random Trees (RRTs) are single-query methods geared towards fast path planning. The
RRT approach creates a tree in the CS from nodes that represent reachable collision free
configurations, and links that represent feasible dynamical transitions between the near-
est nodes. The samples are usually found from a uniform distribution inside a bounded
area of the CS with some bias towards the goal, and Euclidean length is usually used as
metric. The root node of the tree is the initial configuration and it grows until the goal
configuration is reached. The RRT algorithm is efficient because it introduces a Voronoi
bias, that encourages it to explore unexplored regions.

1.3.4 Voronoi Diagrams

A path can be found with a Voronoi diagram that keeps equal distance to the nearest
obstacles at all times. This approach gives the maximum clearance roadmap [26].

The Voronoi diagram method partitions the free CS is into generalized Voronoi re-
gions, where points in the interior of a region are closer to a particular obstacle than to
any other obstacles. The regions are bounded by points that are equidistant to the nearest
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Figure 1.6: The wavefront planning method builds a roadmap while continuously propa-
gating a wavefront from the blue goal cell to zero-cells directly above, beneath, or on the
sides. A path can be found once the start cell is reached by following a green descending
gradient to a neighboring cell until the goal cell is reached. There can be multiple paths
that visit an equal number of cells.

CS obstacles. A generalized Voronoi region is the set of such equidistant points. In 2D,
the points are equidistant to two obstacles so the Voronoi regions are convex polygons
and the Generalized Voronoi Diagram (GVD) forms a ’two-equidistant surface’. In 3D,
the regions are bounded by points that are equidistant to the three nearest CS obstacles
and the Voronoi regions are polytopes (convex polyhedrons). Since a two-equidistant sur-
face pierces obstacles, it is restricted to the set of points that is both equidistant to two
particular obstacles and have them as their closest obstacles. This restricted structure is
the two-equidistant face.

In 2D the GVD is a one-dimensional union of edges with endpoints that are either
equidistant to three or more obstacles, or intersect the nearest obstacles. The GVD is
connected, meaning that there exist a path between any two points in the GVD if and
only if there exists a path between these two points in the CS. Path planning is achieved
by moving away from the closest obstacle until reaching the GVD, then along the double
equidistant GVD to the vicinity of the goal, and then from the GVD to the goal.

In 3D the GVD is two-dimensional and the path planning is still difficult. In 2D two
two-equidistant faces intersect and form a one-dimensional manifold. The union of these
one-dimensional structures is termed the Generalized Voronoi Graph (GVG) [44, 45]. The
GVG and the GVD coincide in 2D. The GVG edges in 3D are the set of points equidistant
to three obstacles with these three obstacles being closest. However in 3D the GVG is
not a roadmap because it is not always connected. However the two-dimensional GVD
is connected and this connectivity can be used to ”patch together” the GVG. Connect-
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Introduction

ing different components is tedious and challenging [25]. For algorithms that compute
Voronoi diagrams, see [46, 47].

1.3.5 Visibility Graph

The standard visibility graph (VG) is defined in a 2D polygonal CS [14, 48]. This graph
can be searched to yield a minimum length path. The nodes of the graph include the
start location, the goal location, and the vertices of the configuration space obstacles on
the convex hull. The graph edges are straight-line segments that connect pairs of nodes,
if they are in line-of-sight of each other. The reduced visibility graph [24] reduces the
size of such a graph, by generating it from only supporting and separating line segments.
For convex obstacles these are segments of lines that only touch obstacles at the node
vertices. Segments on the hull of an obstacle are also permitted. A reduced VG can
be seen in Figure 1.7. VGs can be used to determine the Euclidean shortest path of a
vehicle moving amongst polygons. Although the notion of Euclidean shortest path is
straightforward both in 2D and 3D space, exact algorithms exist only in the 2D case.
While it is clear that the shortest path is through the surface of the polytope in both cases,
these methods unfortunately do not extend nicely to 3D. The main problem in 3D is that
the shortest path does not in general traverse only vertices of the convex polytope, as in
the 2D case, but also points on the edges of the polytopes. It is usually not apparent where
on the edges the path should cross in order to achieve minimal length. In fact, since it
was shown by [49] that the 3D shortest-path problem in a multi-polyhedral environment
is NP-hard, the only practical approach is to use an approximative method, such as [50]
or [14] where no edge is longer than a specified maximum length.

A special variant is the problem of computing a shortest path between two points on
the surface of a single polytope. For this problem approximation algorithms exist [51–
53], and an exact method was presented by [54] that exploits the property that a shortest
path on a polyhedron unfolds into a straight line. Another approach was described by
[55] with an implementation made public available by [56]. This non-Dijkstra based
algorithm finds the shortest path from one source point to all vertices on a polyhedral
surface. Still, another approach is the fast marching method, which is an optimal time
numerical method for solving the Eikonal equation on a Cartesian grid [57, 58]. The
central idea is to advance a wavefront starting at an initial grid point though neighboring
grid points continuously until it first reaches the final grid point. It is related to Dijkstra’s
algorithm [37] used in finding shortest paths between nodes linked in a network. However,
the fast marching method is effective for surfaces because it is not limited to path planning
along links. In [59] the method is extended from Cartesian grids to triangulated manifolds.

1.3.6 Vertical Cell Decompositions

Vertical cell decomposition (or trapezoidal decomposition) reduces the path planning
problem to a graph search problem. It operates on CS obstacles that are polytopes by
partitioning the free CS into a set of regions called cells. The term k-cell refers refer to a
k-dimensional cell.

An example of how a roadmap and path is found using decomposition in 2D is shown
in Figure 1.8. The first step is the decomposition, where a ray is shot upwards and down-
wards at every vertex of every CS obstacle, until a CS obstacle or bound is hit. These
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Figure 1.7: The (reduced) visibility graph method uses supporting and separating line seg-
ments to construct a 2D roadmap, which is searched to find the shortest path. A roadmap
graph is build that avoids the red CS obstacles, although it touches their surface. It is
build by connecting graph nodes at vertices that are mutually in line-of-sight and located
on a supporting or separating line. The green arrows show the shortest path between the
green start and the blue goal. This is obtained by searching the roadmap graph.

subdivide the CS into a set of 2-cells and 1-cells. Each 2-cell is either a trapezoid that
has vertical sides or a triangle with one vertical side. Each 1-cell is a vertical segment
that serves as the border between two 2-cells. The roadmap graph is constructed from
each 2-cell and 1-cell by sampling a point inside each cell, such as the cell centroid, and
used as a graph node. The graph edges are obtained by connecting the sample point of
each 2-cell with the sample point of each neighboring 1-cell. The green start and blue
goal points can be connected to the graph by adding an edge between the points and the
sample points of their cells, or the start and goal points can be used directly as sample
points as shown in the Figure.

Vertical decomposition can be done in 3D by sweeping the yz plane along the x-axis,
which produces convex 3-cells, 2-cells, and 1-cells. A 3-cell is a polyhedron with up to
six facets. The cross section of a 3-cell for a fixed x value is a 2-cell, so the 2D vertical
decomposition at cross section plane indicates the 3-cells. The idea is to initially find
these 3-cells at one extrema of x, and then keep track of how the 3-cells change as the
plane is swept along the x-axis. The algorithm first sorts all x values of all vertices of
all CS obstacles, since the 3-cells can only change here. The center figure in Figure 1.9
shows a case where a vertex of a CS obstacle is met. The obstacle lies to right of the
sweep plane. The algorithm proceeds by first building the 2D vertical decomposition at
the first x-value. At each subsequent x-values the 2D vertical decomposition are updated
according to the changes.

11
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Figure 1.8: The vertical cell decomposition method uses the cells to construct a roadmap,
which is searched to yield a path. The CS is decomposed of the gray vertical segments
through the vertices of the CS obstacles. A roadmap graph is build that avoids the red CS
obstacles by connecting the black nodes of neighboring cells. The green arrows show a
path between the green start and the blue goal, found by searching the roadmap.

Figure 1.9: The sweeping idea can be applied in 3D. A cross section through the blue
vertex of a CS obstacle. The smaller rectangles show a slice of the CS before, at, and
after the cross section. From ”Principles of Robot Motion: Theory, Algorithms, and
Implementations” [25].
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In 3D, the roadmap graph is constructed from each 3-cell and 2-cell. Similar to the
2D case, a sample point such as the cell centroid is selected inside each cell and used
as a graph node. The graph edges are now obtained by connecting the sample point of
each 3-cell with the sample point of each neighboring 2-cell. Start and goal points can be
connected to the graph as before.

1.3.7 State of the Art

Because of the difficulty in representing the CS obstacles for more than two dimensions,
the focus in the field of path planning has shifted to methods that completely avoid an
explicit representation. This has led to a range of methods that are based on sampling,
such as the PRMs from Section 1.3.2 and RRTs from Section 1.3.3. These methods tend
to have trouble finding paths through narrow passages, but they have successively solved
challenging planning problems with in spaces with many dimensions. Sampling based
methods, especially RRTs, are now considered state-of-the-art in path planning.

Many recent improvements to RRTs focus on including dynamical constraints and
making the metric used to calculate distance dependent on dynamics. Some [60–62]
use time or energy as metric instead of Euclidean distance. Unfortunately, computing
such costs is impractical for most higher-order systems since it is equivalent to optimally
solving the original motion planning problem [26]. Instead there is a focus on using sub-
optimal heuristic functions that are tuned to a particular problem in combination with
linearized models to approximate dynamics [63]. The Reachability-Guided RRT [64]
improves rate of exploration by emphasizing reachable nodes that exhibit the greatest
contribution towards exploring the state space.

RRT algorithms have been developed that adaptively learns a suitable metric during
planning. This can be according to how well the nodes and their children are consist
with constraints from Cheng [65], or the history of failed expansion attempts on nodes
[63]. The dynamic-domain RRT [66, 67] learns about obstacles in the environment from
intersected samples and reduces the likelihood of sampling in areas near obstacles. The
RRT-Blossom algorithm from Kalisiak [68] expands a node from performing the set of
all possible actions, then prunes all expanded node that are closer to other nodes than the
parent.

This thesis focuses on path planning for a helicopter with fast dynamics and no sig-
nificant holonomic constraints. This means that it is reasonable to prioritize a faster path
planning and replanning method to a model-based approach. A method is desired where
the paths are near-optimal in terms of length, where the amount of spacing between obsta-
cles is insignificant to the difficulty of planning, and where it can be explicitly specified
how near to obstacles an aircraft will fly. Consequently, the approach of the original RRT
and the recent developments seem unfit for path planning for the Bergen helicopter.

The shortest path is a series of connected curves between two points. Each curve is
either on the surface of the CS obstacle or it is a straight line segment that extends between
a point and an obstacle, between two different obstacles, or between different parts of the
same obstacle. Since all curve end-points are located on the CS obstacle surface, the
PRM approach of sampling in the entire CS is inefficient. It is a more efficient strategy to
use the Visibility Graphs described in Section 1.3.5 that limit the solution space to these
surfaces. This means that the path planning problem does not become harder when the CS
is expanded unless the obstacle surface area is also increased. However it necessitates an
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explicit representation of the CS obstacles, and a proper extension to three-dimensional
space.

This thesis presents an approximative method and a geodesic method for path plan-
ning. The first method can be seen as an attempt to bridge visibility graphs and sampling
based methods by designing a method that builds a visibility graph based on vertices that
are carefully sampled on the CS surfaces to improve possibility of finding a nearly short-
est path with relative few vertices. The geodesic method combines sampling with the 2D
wavefront concept, to sample paths that are likely to be locally shortest. It then uses these
paths to find the global optimum.
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2 Contributions

Section 3 describes the developed planning application that implements all developed
methods on path planning and trajectory generation. Section 4 to Section 6 summarizes
the contributions on path planning and trajectory generation in the papers. Each section
briefly describes the method, results, and recommendations on future work for each paper.
Section 7 concludes the thesis and discusses future works.

Approximate Path Planning

Paper A: Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard, ”Configu-
ration Space and Visibility Graph Generation from Geometric Workspaces for
UAVs,” in Proc. of AIAA Guidance, Navigation, and Control Conference, 2011.

Paper B: Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard, ”Generating
Approximative Minimum Length Paths in 3D for UAVs,” submitted to the IEEE
Intelligent Vehicles Symposium, 2012. Originally accepted by CATEC Research,
Development and Education on Unmanned Aerial Systems, 2011.

Paper C: Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard, ”Generating
Configuration Spaces and Visibility Graphs from a Geometric Workspace for UAV
Path Planning,” in Journal of Autonomous Robots, 2012.

Geodesics Path Planning

Paper D: Flemming Schøler and Anders la Cour-Harbo, ”3D path planning with geodesics
on geometric work spaces,” submitted to Journal on Robotics and Autonomous
Systems, 2011.

Trajectory Generation

Paper E: Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard, ”Collision
free path generation in 3D with turning and pitch radius constraints for aerial ve-
hicles,” in Proc. of AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2009.

Paper F: Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard, ”State-Control
Trajectory Generation for Helicopter in Obstacle-Filled Environment using Opti-
mal Control” submitted to International Conference on Unmanned Aircraft Sys-
tems, 2012.
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3 Planning Application

The path planning and trajectory generation methods are implemented in a joint planner
application that allows setting up obstacle courses using the 3D interface seen in Fig-
ure 3.1. The course can be constrained by obstacles and limits on extreme positions, and

Figure 3.1: The planner GUI gives visual feedback from path planning and trajectory
generation methods and flight.

for some methods also constrained by surfaces and other vehicles. Obstacles can be im-
ported from point clouds or geometric meshes and given any position and orientation. The
optimal trajectory generation method can use dynamic obstacles, vehicles, and surfaces.
Trajectories for dynamic obstacles are generated with physics engine. Vehicle trajectories
are generated with the AAU Helisim model. Surfaces can be described by time varying
surface functions. They can also be represented by a digital elevation model (DEM).
The planner application interface the external modules that are shown in Figure 3.2 and
outlined below

• GLScene [69] is an open source set of founding classes for a generic 3D engine. It
is used for visual feedback, video and pictures.
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AAU Helisim AAU Bergen

Newton

GLScene

DIDO

SeDuMi

Qhull
Planner

Figure 3.2: Modules interfaced by the planner application

• DIDO [70] is a proprietary software package to solve optimal control problems. It
is used for optimal trajectory generation.

• SeDuMi [71] is an open source software package to solve optimization problems
over symmetric cones. It is used for building bounding ellipsoids for WS obstacle
with optimal trajectory generation method.

• Newton [72] is an open source dynamics engine for real-time simulation of physics
environments. It is used in the optimal trajectory generation method for generating
trajectories for dynamic obstacle.

• Qhull [73] is open source software for computing convex hulls. It is used for build-
ing WS obstacles for the path planners.

• AAU Helisim model [22] is an in-house helicopter model used for simulation and
control. A binary version is publicly available.

• AAU helicopter is a modified Bergen Industrial Twin [21]. An interface to the
planner has made, although no flight test have been done.

The application has a rich visualization module that provides visualization from all meth-
ods and flight. This visual interface improves understanding of the behavior of the path
planning problem and of vehicle during flight. The visual interface has the option to make
video and high resolution pictures. Such pictures are shown throughout the thesis.

The application is implemented in Object Pascal and runs both as a standalone appli-
cation and can be invoked as a library from another application such as Matlab. The latter
allows synchronization with the AAU Helisim model and controller in Matlab Simulink
and means that real-time flight can be shown as it is simulated. Real-time flight can also
be shown for the actual AAU Bergen helicopter. Flight can be replayed subsequently in
the standalone application. An interface to the DIDO optimal solver allows visual evalu-
ation during the trajectory optimization process.
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4 Approximated Path Planning

4.1 Paper A: Configuration Space and Visibility Graph Generation
from Geometric Workspaces for UAVs

In Paper A, an approximated shortest path is found in a 3D environment amongst obsta-
cles. The path is obtained by searching a visibility graph, which is generated in the con-
figuration space. The paper presents a method for constructing the configuration space
(CS) from an existing work space (WS), and for generating the visibility graph. The CS
obstacles are built from each WS obstacle and are composed of patches of primitive sur-
faces. These primitives are spheres, cylinders, and planar facets. The CS obstacles are
processed to generate a visibility graph for each obstacle. The visibility graph consists of
nodes and links. The nodes correspond to vertices that are lifted above the surface of each
configuration space obstacle to prevent links from intersecting the patches. The vertices
are obtained by sampling the patches in a particular manner to keep the number of ver-
tices at a minimum. The amount of necessary lift depends on a parameter that specifies
interpolation density and an upper bound is given in the paper. Links are added between
node pairs in the graph if their respective vertex counterparts have inter-visibility. Nodes
and links are removed if they represent intersected vertices and edges. The remaining
nodes and links are supplemented with addition links that interconnect different obstacles
or via points. This structure represents is a visibility graph that can be searched to find a
collision free path, as i.e. seen Figure 4.1.

The paper demonstrates that the presented method is able to give a path that is close
to optimal in length. It is found that presented method might find a path that takes dif-
ferent route than the optimal path, but that the approximated path should still be nearly
optimal. It is however seen that an approximated path tends to continue too far along
the surface before moving towards a via point or another obstacle. Additional nodes and
links could be added in place of some of the nodes and links that are removed due to
intersections. This is because the intersection between two obstacles forms a ridge where
a local minimum is likely. For a static configuration space, the visibility graph remains
largely constant when planning between different via points. This can be used to perform
faster planning on subsequent searches. An efficient implementation of this requires a
data structure where interpolated vertices are aware of their relation to other nodes and
obstacles.
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Figure 4.1: The red approximated path and the green geodesic path between two goal
locations. A part of the link set is shown in purple for each obstacle.

4.2 Paper B: Generating Approximative Minimum Length Paths in
3D for UAVs

Paper B continues the method in Paper A with more focus on performing fast planning
in the case of multiple via points and a single obstacle. The paper compares path length
of the optimal and approximated path for new examples. The data structure presented
in Paper A was implemented in the planner application to allow better pruning and faster
planning. An example of the generated VG and resulting path is shown in Figure 4.2. The
VG is composed of a single obstacle visibility graph and a supporting visibility graph.
The obstacle visibility graph links node-pairs near the obstacle surface. The supporting
visibility graph connects the via points to the CS obstacle by supporting lines. The ad-
vantage of separating the obstacle and via point graphs is that while both graphs must be
generated when creating the initial full VG, only the supporting visibility graph is created
when either the obstacle is moved or rotated or either via point is moved. The full VG is
generated such that it contains only links that are relevant when computing the Euclidean
shortest path between via points.

Figure 4.2: The red approximated path between two gray spheres. The path is found
around a single obstacle. The blue and orange segments represent the visibility graph.
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3 Paper C: Generating Configuration Spaces and Visibility Graphs from a
Geometric Workspace for UAV Path Planning

Paper B finds good performance in terms of accuracy versus computational time. Re-
sults also show a good consistency between optimal and approximated paths. The optimal
and approximated paths can differ in route, but have nearly same length. The distance
between interpolated vertices can be reduced to improve the solution, while it can be in-
creased to generate a smaller graph. However, there is a limit on how small the graph
can become for a given obstacle model. Since all points on the WS sphere are part of its
convex hull, a dome will add many smaller patches to the CS, which results in a higher
density of nodes. A polygon reduction algorithm can be applied on the model before
generating the workspace to improve performance.

4.3 Paper C: Generating Configuration Spaces and Visibility
Graphs from a Geometric Workspace for UAV Path Planning

Paper C extends the method in Paper B to enable fast planning for multiple obstacles and
via points in a changing environment. The paper considers how a visibility graph should
be maintained in a changing environment. An example of a VG for multiple obstacles
is shown in Figure 4.3. This was done by implementing intersection tests for multiple
obstacles from Paper A along with the data structure for faster planning used in Paper B.
The graph is now composed of the obstacle visibility graphs and two supporting visibility

Figure 4.3: The orange approximated path between two gray spheres. The path is found
amidst three obstacles. The red, purple, and green segments represent the visibility graph.

graphs. The new additional supporting graph links nodes of different CS obstacles. This
is the green graph in Figure 4.3.

Results show that generated paths are near optimal with respect to length and how
near intrinsically straight they are. The paths tend to optimal as node spacing is reduced,
but this also increases computational requirements rapidly. The method is not suitable for
a very high number of obstacles or when obstacles are overly detailed. Replanning and
planning with several via points can be done significantly faster by maintaining the VG
according to changes in the environment. This means building supporting graphs between
pairs of obstacles, and grouping obstacles that form rigid obstacles. A potentially better
path can be missed, where nodes at intersection between CS obstacles and bounds are
’missing’ due to intersections. Since shortest paths follow these ridges of intersection
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between CS obstacles, future works should consider how these could be added to the
visibility graph.
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5 Geodesic Path Planning

5.1 Paper D: 3D Path Planning with Geodesics on Geometric Work
Spaces

Paper D presents a method for finding the shortest path for a sphere moving around a
single polyhedron in a 3D work space. As in Paper A–C, a CS obstacle is build from the
Minkowski sum of a WS obstacle and a sphere. The CS obstacles have a continuously
differentiable surface that is composed of patches of spheres, cylinders, and planar facets.
Shortest paths around such obstacles consist of combinations of tangents and geodesics.
These paths will consequently be continuously differentiable. The paper introduces the
notion of ’horizons’ that are certain curves, which any potential shortest path will in-
tersect. Examples of such horizons can be seen in Figure 5.1. The horizons are used in
combination with certain properties of geodesics, which significantly reduces the solution
space in which a shortest path must be found. The method reduces the 3D path planning
problem to a one dimensional strictly quasiconvex optimization problem. If any continu-
ously differentiable and locally shortest path suffices then numerical optimization meth-
ods, such as steepest descend, will converge very quickly. If the shortest path is needed,
points in this dimension can be sampled to identify each convex region. The number of
regions is closely related to the number of locally shortest paths, and the one containing
the shortest path is identified from the sampling. Convex optimization is subsequently
used to find the shortest paths in this region.

Results show that the approach is very fast for a single obstacle. It also functions well
in combination with approximation based methods to produce piecewise optimal contin-
uously differentiable path. Future works consider better support for multiple obstacles.
It is expected that the method scales very well to environments with additional obsta-
cles. It is also expected that a similar could be applied on CS polyhedrons. The reduced
complexity of this problem would make it very well suited for multiple obstacles
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Figure 5.1: Traces between two goal locations around an obstacle. The blue lines are
horizons. The green line shows the shortest path.
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6 Trajectory Generation

6.1 Paper E: Collision Free Path Generation in 3D with Turning
and Pitch Radius Constraints for Aerial Vehicles

Paths generated from the methods described in Paper A–C consist of a continuous series
of line-segments that connect the waypoints. Since these waypoints are generally located
on CS obstacle surfaces, following good helmsman behavior or simple path smoothing
methods can lead to collisions. Paper E presents a method that makes such paths easier to
follow by generating a continuously differentiable collision-free trajectory using Dubins
curves. After a waypoint is reached, the aircraft changes direction of flight to target the
next waypoint. Although the vehicle moves in all three spatial dimensions, this change
can be seen as a rotation in the plane. This plane is defined from the path segment to and
from that waypoint. Three arcs are found in each plane that steers the vehicle around a
corner of an obstacle, as shown in Figure 6.1.

This gives a continuously differentiable curve around the obstacle through a waypoint.
A complete position trajectory is build by repeating these steps for all waypoints. The full
state trajectory is generated by determining velocities along the position trajectory. It is
used as reference to a full state linear-quadratic feedback controller that does asymptotic
trajectory tracking.

Figure 6.1: The blue trajectory is drawn on top the black dashed path.

Simulated flight shows that the method can be used to track a path very accurately
at low speeds. Flight speed is reduced when there is insufficient space for turning. This
can happen for waypoints that are located too near each other. Future works could con-
sider multiple waypoints at once. This would ensure better overall placement of arcs and
possible faster flight.
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6.2 Paper F: State-Control Trajectory Generation for Helicopter in
Obstacle-filled Environment using Optimal Control

Paper F presents a different approach to trajectory generation based on optimization. The
approach is based on formulating an optimal control problem (OCP). The solution to this
OCP is a state and control trajectory that is found using a Legendre pseudospectral method
implemented in the software package DIDO. The state trajectory is used as reference to
a feedback controller and the control trajectory for feedforward. The paper investigates
how different requirements to the state trajectory can be imposed through path constraints
using distance functions. Such functions measure distance to obstacles, surfaces, or a
path that should be followed. This gives the solver the ability to evaluate how well a
candidate trajectory conforms to constraints in the environment. This method can be
used to generate a trajectory for an existing path, such as one found using the approaches
described in Paper A–D. The altitude of the vehicle is also constrained relative to both
ground level and mean-sea level. Other path constraints enable the helicopter to fly inside
a pipe, between moving surfaces and obstacles, or amongst trees as seen in Figure 6.2.

Figure 6.2: The generated trajectory avoids trees and terrain while maintaining low alti-
tude.

The results show a range of different tasks completed satisfactory by introducing the
appropriate path constraints in the OCP. It was shown that a state reference can be tracked
quite well, although some stability issues could be seen with the tracking controller. This
approach gives trajectories that can be tracked more accurately than in Paper E at higher
speeds, but the trajectories cannot be generated in real time because of the computational
time requirement. Both this issue and the stability issues could be subject to future works.
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7 Conclusions and Future Work

7.1 Conclusions

The topic of this thesis has been the development of new methodology to enable more
autonomous UAS. Path planning and trajectory generation are two areas important to the
development of such autonomous systems. Path planning tries to obtain a sequence of
vehicle configurations (a path) between an initial configuration and a final configuration
(goal) that avoids collision. Trajectory generation aims at obtaining a temporal history
for the evolution of the configuration.

The focus in this thesis is mostly on the difficult challenge of three dimensional path
planning. In this work, the complexity of this problem is reduced using considerations on
shape and dynamics of the UAS, as well as properties of shortest paths.

In this thesis an algorithm was developed and implemented to build CS obstacles.
Based on this, two fast and supplementary methods were developed. The first is global
and use visibility graphs to find a near-shortest path. The second is based on geodesics
and implemented as a local method. To the best of the authors’ knowledge this is a new
approach to path planning.

Two methods for trajectory generation were also considered. One method used Du-
bins arcs to find a collision free trajectory where the radius of these arcs determined
velocity. While this approach was a significant improvement to just waypoint flight using
good helmsman behavior, which would not ensure a collision free trajectory, it worked
best for low speed flight. The second approach focused on improved speed. To do so, an
optimal control problem was formulated. This had minimum time as the primary opti-
mization parameter. Although this approach made it difficult to guarantee a collision free
flight, the trajectory would follow the collision free path quite well in practice.

Current UAS do not consider obstacles. They fly at altitudes or in areas where no
obstacles exist. The designed methodology could be part of the way to more autonomous
UAS. The next logical step would be to recreate the simulated results on the real system.

7.2 Future Work

During this thesis a number of issues that requires further investigation and consideration
has been brought to attention and the most important are summarized here as a suggestion
for future work. These suggestions range from specific improvements to the developed
methods to general suggestions for research that could be investigations.

27



Conclusions and Future Work

• The approximated path planner operates by combining visibility graphs that cover
different parts of the environment. When CS obstacles intersect each other or the
environment bounds, affected graphs are pruned and no graph is put in place al-
though it may contain a local minima.

• It remains an open problem to extend the geodesic path planning method to multiple
obstacles. It seems very likely that this should be possible and the main challenge
would be to identify horizons seen from a helix or arc path on another obstacle.
Such a horizon would be one dimensional and consists of two points at most.

• The geodesic path planning concept is applicable to polyhedral robots. In this case
a CS obstacle would be polyhedral and consist solely of planar patches. This makes
the challenge of extending the method to several obstacles less intricate, since the
one dimensional two point horizons would be seen from points on the edges of the
CS obstacles.
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Configuration Space and Visibility Graph Generation

from Geometric Workspaces for UAVs

Flemming Schøler∗ and Anders la Cour-Harbo† and Morten Bisgaard‡

Aalborg University, 9220 Aalborg East, Denmark

We address the challenge of generating a visibility graph for 3D path planning for a
small-scale helicopter through an environment with geometric obstacles. The visibility
graph is based on approximating a number of continuously differentiable configuration
space obstacles that are generated from the convex hull of their work space obstacles.
An approximation to the optimal path can subsequently be found using an existing graph
search algorithm. The presented approach is suitable for fully known environments with
a large number of truly 3D (not merely ”raised” 2D) obstacles. A test scenario for a
small-scale helicopter inspecting a wind turbine is shown.

I. Introduction

UAS have become a preferred, indispensable, and increasingly used platform for many applications where
manned operation is considered unnecessary, repetitive, or too dangerous.1,2 Path planning and trajectory
generation are fundamental area for UAS development3 and is used to find a path through an environment
under a set of constraints. Specifically, for tasks such as surveillance, inspection, search and rescue, aerial
mapping, cinematography, etc., small-scale autonomous helicopters are increasingly being used. In many such
tasks it is advantageous to operate in close proximity to the obstacles or to follow their surface. Methods
for describing these obstacles as geometric figures from real-world measurements have also been improved
recently4,5 with 3D environment mapping data getting increasingly detailed and readily available including
entire city maps. These recent advances now allow the use of 3D maps for high-level planning, including
tasks such as inspecting a stopped wind turbine.

A. Background

We consider methods for path planning that can be used to operating a small-scale helicopter near the surface
of obstacles. We distinguish the term ”trajectory” from ”path” in that a path is without time and trajectory
includes time. In this paper we are mainly concerned with the geometric problem of path planning. We
consider the general trajectory planning problem for a UAS as having two levels; 1) a path that avoids
larger static obstacles, such as buildings, mountains, etc., and 2) a trajectory along the path that also avoids
smaller, possibly mobile object and at the same time takes the dynamics of the vehicle into account by
generating a feasible state trajectory and possibly a related control trajectory. The present work is a method
for generating and optimal solution to the first level. And because that level is static the method presented
also prioritize the ability to easily do multi-query searches and replanning. We look at feasibility of the
path from a qualitative perspective by preferring path with higher order of differentiable. This means that
we do not consider the structural and dynamical capabilities of the vehicle in greater details at this level.
This and dynamic obstacles should be handled at a lower trajectory planning level, which generates full
state and control trajectories, and typically also does single query searches because of the dynamic obstacles.
Although we only look at top level path planning, we still employ a stepwise strategy that more efficiently
can handle isolated changes in the environment as well as re-planning where only changes to via points
change. This work is focused on path planning using visibility graphs that is based on the configuration
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space. The generalized visibility graph V G(N,L) contains a node set N and a link set L of links between node
pairs. The nodes are sampled from the edges of the configuration space, and will hence only approximate
an optimal solution. The link set is directed and produced according to a custom optimality criterion. This
means that other costs than Euclidean distance can be used and links can have two different costs according
to the direction of travel. To obtain a path, the visibility graph should be searched using a graph search
algorithm, for instance Dijkstra’s algorithm6 or A*.7 However this part is not the focus of this research, and
we will not go into details. Contrary to other popular methods such as the Rapidly-exploring random tree
method, searching the tree will also reveal if no solution exists. Path planning using visibility graphs has been
subject to much research. In comparison, the literature on how to practically, automatically and efficiently
generate configuration spaces from a known general 3D work space polyhedron seems limited to building
primitive solids or geometric representations and often an existing configuration space is assumed. The main
contribution of this paper lay in an algorithm that build geometric configuration spaces and a visibility graph
from a group of known workspace obstacles. Our algorithm works on a collection of meshes or point-cloud
representations of the obstacles, and exploits knowledge of the obstacles to efficiently determining links for
the graph. In order to meet that goal some generalizations must be made. The configuration space for a
helicopter has usually six degrees-of-freedom, with three dimensions to describe position and three to describe
attitude. However, by considering a bounding sphere for the helicopter that is centered in center-of-mass,
the attitude will be irrelevant when determining a collision free path and the configuration space can be
reduced to three degrees-of-freedom. Besides reducing the complexity of the problem (still a NP-complete),
the configuration space obstacles will also get a continuously differentiable surface and any geodesic path
will be continuously differentiable which will be easier to track. Generally the higher order of smoothness
our path has the easier it should be to track. Another advantage is that one issue criticized about the
visibility graph method can be easily avoided. This issue is that it is impractical to operate near obstacles
since errors will cause collisions, and is avoided by introducing a safety margin that increases the vehicle
bounding sphere.

The configuration space for a rotorcraft, or indeed any other airborne vehicle, usually has six degrees-of-
freedom, with three dimensions to describe position and three to describe orientation. However, by instead
planning a path for the bounding sphere of the helicopter, the attitude will be irrelevant for determining a
collision free path and the configuration space can be reduced to three degrees-of-freedom. The configuration
space obstacles are defined as the Minkowski sum of convex work space obstacles and the bounding sphere.
They have a continuously differentiable surface and any shortest path (geodesic) on their surface will be
continuously differentiable, which in turn will be easier to track for a vehicle with bounded dynamics. This
is because a path that is continuously differentiable does not require instantaneous changes in velocity
(although it does for acceleration, unless it is twice differentiable). Risks of collisions due to tracking errors
can be avoided by increasing the vehicle bounding sphere accordingly.

Previous work on how to practically, automatically, and efficiently generate a configuration space from a
3D point-cloud in WS seems limited to building primitive solids or geometric representations, and in many
path planning publications an existing configuration space is simply assumed. The main contribution of this
paper lies in an algorithm that builds geometric configuration space obstacles suitable for easy generation
of a VG from a group of workspace obstacles. Each workspace obstacle is made convex and is build from
vertices feed to the algorithm. These vertices do not need to be convex and could be from, for instance,
the mesh of geometric obstacle or a point-cloud from sampled data. The workspace obstacles are made
convex since non-convex parts are not relevant when searching the visibility graph for a solution. When the
path is non-trivial, meaning that there is no line-of-sight in configuration space between initial and desired
configuration, the shortest path will at times follow the surface of one or more obstacles in configuration
space. The shortest path lies on the convex hull of the surface.

B. Previous work

Visibility graphs for path planning has been used extensively even though finding an optimal solution to the
general path planning problem in 3D is NP-complete.8,9 The difficulty of the problem is that the shortest
path around a polyhedral obstacle does not in general traverse only vertices of the polyhedron but also points
its edges. The concept of adding additional vertices along these edges in configuration space, so that no
edge is longer than a specified maximum length, is introduced by.8 This method generally results in a good
approximation to the optimum path. In Lozano10 an algorithm is presented that generates a configuration
space obstacle in 2D from a convex polygonal obstacle and a convex polygonal vehicle. This is done by sliding
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the vehicle polygon around the obstacle in such a way that they are always in contact at one point. This
approach would be adapted to our case by approximating the vehicle by for instance a geodesic dome. While
the algorithm can be extended from 2D to 3D, this results in a sequence of algebraic equations that describe
the configuration space obstacles. Another used approach for polyhedron is based on convex hulls. For a
convex polyhedron vehicle and obstacle, a polyhedron describing the Minkowski sum can be calculated. This
is done through vector addition of all points of the vehicle and obstacle, and then computing the convex hull
of the resulting point set. Convex hulls can be computed using several algorithms. See e.g. O’Rourke11 for a
robust O(n2) three-dimensional implementation or the quickhull algorithm.12 We suggest a similar approach,
but substitute the convex polygonal of the vehicle with a sphere approximation. This leads to a 3 degrees of
freedom configuration space, and a configuration space that tends towards continuously differentiable as the
resolution of the approximation improves. A continuously differentiable work space allows finding paths that
are easier to track, than in discontinues cases, because it does not require instantaneous changes in velocity
(although it does for acceleration).

C. Present work

In this paper the focus is on inspection tasks where helicopter must stay close to obstacle surface with multi-
query searches must be done due to i.e. multiple via points or replanning. The focus is also on cases where
limited changes occur in the workspace. We consider the configuration space of an, at least conceptually,
spherical vehicle moving amongst polyhedral obstacles, i.e. obstacles described by patches of planar surfaces.
We generate the configuration space by translating or growing each surface patch by the radius of the sphere.
Our approach will generate a convex configuration space surface for each obstacle. This surface goes towards
continuously differentiable as resolution improves. We take an sequential approach by 1) construction a
visibility graph for each obstacle, 2) then prune nodes and links from intersecting obstacles, 3) combine
the visibility graphs, 4) finally include nodes and links from via points. The advantage of this sequential
approach is that while all steps must be completed when creating the initial visibility graph, only a partial
update of the visibility graph is required when obstacles are added or removed, even less when obstacles are
just moved or rotated, and even further less when just via points are changed.

II. METHOD

The general problem of finding a path for a helicopter is a 6 degrees-of-freedom problem. Our approach
generates a configuration space based on the Minkowski sum of the vehicle bounding sphere and the convex
hull of work space obstacles. This approach makes the configuration space invariant to vehicle orientation,
and thus reduces the problem to a 3 degrees-of-freedom problem. These obstacles are represented in config-
uration space as a set of primitives (planes, cylinders, and spheres) generated by the algorithm from the any
work space obstacles.

A. Configuration space

The space of all possible positions, denoted the configuration space, is constrained by the obstacles. For
each obstacle in work space, a configuration obstacle is created. The configuration space obstacle is the
Minkowski sum of the vehicle bounding sphere and the convex hull of a work space obstacle polyhedron.
From a geometric point of view, this Minkowski sum is obtained when vertices in the convex hull of the
workspace are replaced with sphere patches, edges with cylinders, and faces are translated along their
normal. An example of this is shown in Figure 1.

We decompose the configuration space obstacles by patches of primitive surfaces. These primitives are
sphere, cylinder, and planar facets. Any two neighboring patches intersect at one common edge. This
edge is either straight or an arc edges. It follows from the Minkowski sum operation that spherical patches
only has cylindrical patches as neighbors. Cylindrical patches have two opposing sphere patches and two
opposing facet patches as neighbors. Facet patches only have neighboring cylindrical patches. Because of
this composition, all nodes for the visibility graph can be determined from the sphere and cylinder patches.
These nodes origin from the interior of the sphere and cylinder patches, and from their common edge. Once
the node set is formed for a patch, the link set can be easily determined knowing that the obstacle is convex.
This means that links between nodes belonging to an obstacle are restricted to nodes of the same patch. The
Sections B and C explain how the node set is formed based on the sphere and cylinder patches and how the
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(a) Spheres at vertices (b) Facets are translated (c) Cylinders at edges (d) Full configuration space

Figure 1. Configuration space is formed by the Minkowski sum of a polyhedron workspace obstacle and a
vehicle bounding sphere.

link set is found on each of the three patch types. In Section 1 the visibility graph is extended to include
multiple obstacles.

B. Sphere patch

A sphere patch was added to the configuration space obstacle for each vertex in workspace obstacle. A
sphere patch C is a simple closed geometric figure on the surface of a unit hemisphere that is formed by
the arc segments on the great circles (the geodesics) between N cyclic ordered vertices vi, i = 0, ..., N − 1.
The last vertex vN is assumed to be the same as the first, i.e.: the patch is closed. The sphere patch is
convex so the geodesic between any two vertices in C lies entirely in C. Each vertex in the patch is obtained
by translating a workspace vertex along the neighboring facet normal in an ordered manner. So the patch
polygon has the same number of nodes as number of facets that use the workspace vertex. The subject of
ordering the vertices is fairly standard and will not be covered here. Each vertex is shared by two cylinder
patches, one sphere patch and one planar patch. Each segment of the patch neighbor a different cylinder
patch. The objective is now to determine where to add nodes and links for each patch, such that as few nodes
as possible are used in the visibility graph, while at the same time limiting the volume of the configuration
space obstacle. Since any two different points on the patch will not have line-of-sight, it is necessary to place
them above the surface.

We reduce the spherical polygon that outlines C to a set of connected spherical triangles to easier
determine where to add nodes. We let the spherical polygon be composed by N spherical triangles, where
each triangle shares a shares an interior central vertex denoted vc. Because of convexity, this interior vertex
is given by the weighted average in Eq. 1 of the vertex set q and some non-negative weights wi that sum to
1.

q =
N−1∑

i=0

wivi (1)

A central vertex candidate can be found simply by equating all weights to 1/N , but a better choice is
usually to find the central vertex that minimize spherical distance to the vertex set. This spherical weighted
average is equal to the point q on the unit sphere S which minimize f(q);

f(q) =
1

2

N−1∑

i=0

widistgeo(q, vi) (2)

where distgeo(q, vi) is the geodesic distance from q to vc on S. This problem is well-defined for vertices on a
hemisphere. A fast iterative algorithm with quadratic convergence rate exists, see.13

The visibility graph, that is, the node set and link set for the sphere patches, must be located above/outside
the patch, so that neighboring nodes will have line-of-sight (i.e. not intersecting the patch). In essence the
visibility graph takes shape of a triangle mesh approximating the sphere patch. How far above the nodes
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must be located are resolution dependent - the greater resolution, i.e. nodes, the less displacement is required.
Here we base the calculation of this displacement rn on the worst case:

rn =
rbs√

1
2 cos(amax)2 + 1

2

where

amax = min(lmax, rbsπ
√

2)/rn

is the angle between two neighboring nodes, lmax is the maximum allowed arc distance between neighboring
nodes, and rbs is the vehicle bounding sphere radius. Thus rn can be found as the solution to the following
minimization problem

argmin
rn∈(rbs,

√
2rbs)

∣∣∣∣∣∣
rn −

rbs√
1
2 cos

(
min(lmax, rbsπ

√
1/2)/rn

)2
+ 1

2

∣∣∣∣∣∣
(3)

1. Node Set

In order to construct the node set for the obstacle, we first interpolate the edge endpoints of the spherical
polygon to find a set of vertices va. We then interpolate the edges formed by these vertices and the central
vertex to get a vertex set, which can be scaled by rn to obtain the nodes. From the set of vertices v that
consecutively forms the edges of one spherical polygon. The number of nodes Ns(i) along an edge index i
required for a certain resolution, determined by lmax, is given by:

Nse(i) = drn arccos(vi · vi+1)/lmaxe

where lmax is the maximum allowed arc distance between neighboring nodes. The vertex set va(i, s) on the
arc between vi and vi+1, and where s = 0, ..., Ns(i)− 1 is:

va(i, s) =
sin
(

s
Ns(i)

arccos(vi · vi+1)
)
vi+1 + sin

((
1− s

Ns(i)

)
arccos(vi · vi+1)

)
vi

√
1− (vi · vi+1)

2
.

Nodes are added by spherical linear interpolation between the central vertex vc and the vertices in va for
each edge. The required number of nodes is given by Nt(i, s):

Nt(i, s) = drn arccos(va(i, s) · vc)/lmaxe

where lmax is the maximum allowed distance between neighboring nodes. The node set nsp(i, s, t) is then
given for integer values of t = 0, ..., Nt(i)− 1 as:

nsp(i, s, t) = rn
sin
(

t
Nt(i)

arccos(va(i, s) · vc)
)
vc + sin

((
1− t

Nt(i)

)
arccos(va(i, s) · vc)

)
va(i, s)

√
1− (va(i, s) · vc)2

.

The interpolation functions above have no singularities since consecutive vertices are always spaced less
than π for any obstacle that extend in three dimensions. No node is added at the central vertex vc by the
equations above. This node is given by nsp.p = rnvc.

2. Link Set

The link set is found from the set of edges defining the convex hull of the node set above the sphere patch.
The convex hull of a set of points S is the intersection of all convex sets containing S. For N nodes p1, ..., pN ,
the convex hull C is given by the expression:

C =

{
N∑

i=1

λipi : λi ≥ 0 ∀ i,
N∑

i=1

λi = 1

}
.
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Since a sphere patch is connected to its neighbors, it should be an open polygon, whereas the hull obtained
by the mentioned algorithms is closed. One way of handling this is to add a dummy node is on the opposite
hemisphere, e.g. −vc before calculating the hull. This node and connected edges can then be removed after
the hull is found, which result in an open polygon that can be patched with its link set from the neighboring
cylinder patches.

C. Cylinder patch

From the sphere patch a set of nodes was found at the arc edges of the cylinder patch. These arc edges are
located at the top and bottom of the cylinder. A link is now added for each opposing node pair viwi. We
then connect opposing and neighboring nodes into rectangular facets. Additional nodes are inserted along
opposing nodes, so that no nodes are spaced more than a maximum distance lmax in each facet of the path.
Because the height of the cylinder is constant, the number of vertices along this height must be

Nc(i) = d||vi − wi||/lmaxe .

Each interpolation point for pair i is given by

ncp(i, j) = vi + (vi − wi)j/Nc(i)

for j = 1, . . . , Nc − 1 and for i = 0, . . . , Nse(u), where u is the index of the corresponding sphere patch
polygon edge. The link set is generated by connecting nodes of the planar patches after the rule describe in
Figure 2, where the number of nodes added along an patch edge i is

Nv(i) = d||vi − vi+1||/lmaxe .

Figure 2. Each facet adds links to the visibility graph. Nodes are added at the vertices of the facet and along
its edges, so that two neighboring nodes on an edge are not spaced more than a given threshold. Links are
added between all pairs of nodes that are not located on the same edge unless the pair is the endpoints of that
edge. This pruning is done since such links will not be part of an optimal path. The left picture shows the
visibility graph constructed from the edges and vertices of the facet. The right picture shows where additional
nodes and links are added. Edges and vertices along the facets are generally shared by neighboring facets but
are only added to the graph once.

At this point all nodes for the obstacle visibility graph have been found, and only the links from of the
planar patches remain. These links are again found by connecting nodes after the rule describe in Figure 2.

1. Composing a Visibility Graph

Once visibility graphs are generated for each obstacle, the via points are added, and node pairs from different
obstacles are added to the graph if they have line-of-sight. To test line-of-sight, an intersection test is
performed that tests against all obstacles for intersection, until either an intersection is found or all obstacles
have been evaluated. Methods for collision testing are numerous. One method is to test the candidate link
edge for intersection against all facets of an obstacle, which can be done by first determining the point of the
segment/plane intersection and then determining if this point is inside the face polygon. Testing whether a
point is inside a polygon is a common operation in computer graphics and several methods are compared
by.14 For cases with less than 10 edges per face, algorithms which partition the polygon into triangles are
amongst the fastest. Not all triangles necessarily have to be tested. Creating a spatial search tree can
significantly reduce the number of tests required and hence the computational load. This works by using a
faster test to initially exclude groups of faces that do not intersect the segment.
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III. Results

The implemented method for construction visibility graphs will be demonstrated by finding a path around
a wind turbine. The path must visit a number of via points near the surface as shown in Figure 3. The
wind turbine is a Vestas V52 model. The helicopter model is a Bergen Industrial Twin helicopter that has
a bounding sphere radius of 1.7 m. This test case will take the helicopter through the six via points (vp)
listed in Table 1.

For each part of the vps the full graph is build and searched. On subsequent searches the VG remain
largely constant since no changes to the environment occur. The approximated shortest path pa is found
using a graph search algorithm on the full visibility graph, and is then compared to the optimal path pg. The
optimal path is composed of geodesics and tangents on the CS obstacle and is calculated using a minimization
algorithm.

Table 1. Position of the six via points.

Via point 1 2 3 4 5 6

X (m) -2.0 4.0 -3.5 8.5 -6.0 -3.5

Y (m) -4.0 1.0 2.0 -2.0 -32.5 -4.0

Z (m) 1.0 35.0 68.0 69.5 53.0 67.0

The helicopter starts off at the base of the turbine (vp 1) and moves towards the nacelle (vp 3). Halfway
up the tower a via point at the back of the tower is visited (vp 2). From the nacelle the path moves
underneath the nose cone between two rotor blades to a position on the base of one the rotors (vp 4). This
rotor is inspected by moving towards a point on its tip (vp 5) and then back to the base, this time one the
back of the rotor (vp 6). In the sections below the entire path is split into three parts: Moving along the
tower in vp 1-3, moving under the nose in vp 3-4, and moving around a rotor in vp 4-6. Instead of showing
the full visibility graph, which is more difficult to illustrate in 3D, we will usually only show the combination
of nodes and links that result in the approximated shortest path Pa.

The wind turbine model seen in Figure 3 is composed of six separate obstacles as indicated by the different
colors. These are the tower, the gearbox house, and three rotors attached to the nose. In the sections below
the entire path is split into three parts: Moving along the tower in vp 1-3, moving under the nose in vp 3-4,
and moving around a rotor in vp 4-6.

Vp 1-3 The path starts off from the base of the tower and moves upwards towards a point half way up the
tower before continuing to the gearbox house, see Figure 5. From the two plots in Figure 4 a good consistency
between the geodesic and approximated path can been seen. The largest discrepancy can be seen in the top
view near vp 3. Here, the geodesic path will leave the configuration space surface as soon as it ”sees” vp 3,
while the approximated path must stay near the surface until a node is met that has a visible link to the vp.
As a result, an approximated path tends to continue too far along the surface before moving towards a vp
or another obstacle. From the top view it can also be seen that the radius of the tower at the base is larger
than at the top, since both paths intersects the y-axis at -4.2 m near the base while intersecting 3.6 m near
the top. As a result, the geodesic path projected on the vertical plane is not a straight line, as it would, had
the tower had constant radius. The largest difference between the paths occurs between vp 2 and vp 3 the
side view. Figure 5(a) shows a close up of some of this path. Although nodes could have been picked that
seem nearer to the geodesic path, this does not result in a globally shorter path. The approximated path is
0.05 % longer for this part.

Vp 3-4 At vp 3, the path continues between the two downwards pointing rotor blades to a position in
front of the leftmost blade. The two plots in Figure 6 show a larger discrepancy between the paths, and
the approximated path is 2.1 % longer. Because of limitations in the minimization method, used to find the
optimal path, it can only operate on one obstacle at a time. The approximated path is used to add two
intermediate via points on the approximated path between via point 3 and via point 4, such that each part
of the geodesic path is only located on a single obstacle. Although this means that the geodesic path is only
optimal between the intermediate via points, we find this sufficient for comparison. The location of the two
added via points can be seen on Figure 7, as well as the relevant visibility graph link set for each obstacle.
The links set interconnecting different obstacles are too many to show here. Links and nodes in the obstacle
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Figure 3. Front view of wind turbine. The grid at the base is 1 x 1 m. The approximated path is drawn in
red. The geodesic path is drawn in green. Via points are indicated with a gray sphere.
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Figure 4. Side view (vertical plane) and top view (horisontal plane) of path between vp 1 and vp 3.

visibility graph that violates another configuration space are removed when combining the visibility graphs.
Ideally new nodes and links should be added where these obstacles intersect, since they form ridges where
local minima are likely. This should result in a better approximation of the shortest path, but is left as an
issue to be addressed in further work.

Vp 4-6 The path between vp 4 and 6 starts off in front of the rightmost rotor blade, proceeds to its tip
at vp 5, and continues to vp 6 behind the blade. The approximated and geodesic path can be seen both in
Figure 9 and Figure 8. Although the approximated path is somewhat different from the geodesic, they have
similar length. The approximated path is just 0.06 % longer than the geodesic path. Since there might be
several local minima for the path planning problem, the approximated path might be entirely different and
still be nearly as short at the geodesic path.

IV. Conclusion

The shortest path around polyhedral configuration space obstacles are a combination of paths on the
surface of the obstacles and supporting lines. Finding such a shortest path in 3D is NP-complete, since it
does not in general traverse only vertices of the polyhedron, as in the 2D case, but also points on its edges.
If one suffices with an approximately shortest path, a finite set of points can be selected near extremities of
the configuration space. From these points a visibility graph can be build that can be searched to give an
approximated shortest path.

A method for generating a 3D visibility graph that can be searched to provide a path in an environment
with multiple obstacles was presented. The generated VG is composed of obstacle and supporting lines
visibility graphs. The obstacle graphs are based on first constructing continuously differentiable configu-
ration space obstacles from geometric workspace obstacle, then generating a local visibility graph for each
configuration space obstacle that approximates their surface without intersecting it. The supporting lines
graphs add links between different obstacle VGs and via points. It was shown that a usable path can be
found by searching the visibility graph using a graph search algorithm and that the found solution is close
to the optimal for the given test scenario.

For a given resolution the presented method gives a path which length is close to optimal, and converges
towards optimal by increasing resolution. This means that the proposed method might find a path that takes
different route than the optimal path, but the approximated path will be almost as short as the optimal.
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(a) Section of path between vp 2 and vp 3. The visibility graph
nodes for the tower obstacle are drawn as blue diamonds.

(b) Tower and its patches. Rectangles with alternating colors
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Figure 5. Paths near tower. The approximated path is drawn in red. The geodesic path is drawn in green.
Via points are indicated with a gray sphere.
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Figure 6. Side and top plot of path between vp 3 and vp 4.

Figure 7. Path between vp 3 and vp 4. The approximated path is drawn in red and the geodesic path is drawn
in green. A section of the link set is drawn for each obstacle.

Figure 8. Path between vp 4 and vp 6. The approximated path is drawn in red and the geodesic path is drawn
in green. The rotor is drawn as wire frame to allow easier view of the path between vp 5 and 6.
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Generating Approximative Minimum Length Paths in 3D for UAVs

Flemming Schøler and Anders la Cour-Harbo and Morten Bisgaard

Abstract— We consider the challenge of planning a minimum
length path from an initial position to a final position for a
rotorcraft. The path is found in a 3-dimensional Euclidean
space containing a geometric obstacle. We base our approach
on visibility graphs which have been used extensively for
roadmap based path planning in 2-dimensional Euclidean
space. Generalizing to 3-dimensional space is not straight-
forward, unless a visibility graph is generated that, when
searched, will only provide an approximate minimum length
path. Our approach generates such a visibility graph that is
composed by an obstacle graph and two supporting graphs.
The obstacle graph is generated by approximating a mesh
around the configuration space obstacle, which is build from
the convex hull of its work space counterpart. The supporting
graphs are generated by finding the supporting lines between
the initial or final position and the mesh. An approximation to
the optimal path can subsequently be found using an existing
graph search algorithm. The presented approach is suitable
for fully known environments with a single truly 3-dimensional
(not merely "raised" 2-dimensional) obstacle. An example for
generating a nearly minimum length path for a small-scale
helicopter operating near a building is shown.

Path planning and trajectory generation are fundamental
areas for UAS development and both provide the ability to
figure out a way to efficiently and safely travel through an
environment under a set of constraints. Specifically, for tasks
such as surveillance, inspection, aerial mapping, etc., small-
scale autonomous helicopters are increasingly being used.
In many such tasks it is advantageous to operate in close
proximity to the obstacles or to follow their surface.

A. Background

The practical use of the presented work is to obtain
methods for path planning that can be used for operating
a small-scale helicopter in an environment constrained by
obstacles. The presented method is near-optimal, that is, able
to produce a path close to the Euclidean shortest path inside
a space. This space is constrained by a single obstacle such
that no parts of the vehicle may intersect the obstacle at any
time. In this space the vehicle is represented by its bounding
sphere, which is centered in center-of-mass. The presented
approach for path planning use visibility graphs (VG). Theses
VGs are based on describing the obstacles in a configuration
space (CS), which in turn are based on the work space (WS).
The generation of those CS obstacles and VGs are the main
contribution of this paper.
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The WS obstacle can be build from any set of vertices
such as a point-cloud from sampled data. The WS obstacle
is made convex since non-convex parts are not relevant when
searching the VG for a solution. In fact, when computing
the shortest path between two points in the CS, the shortest
path is a series of connected edges that are either on the
convex hull of the obstacle, or tangents from the points to
the obstacle.

B. Previous work

Previous work on how to practically, automatically, and
efficiently generate a configuration space from a 3D point-
cloud in WS seems limited to building primitive solids or
geometric representations, and in many path planning publi-
cations an existing configuration space is simply assumed.

Visibility graphs for 2D path planning have been used
extensively. However finding an optimal solution to the
general path planning problem in 3D is NP-complete, see
[1], [2]. The difficulty of the problem is that the shortest
path around a polyhedral obstacle does not in general traverse
only vertices of the polyhedron, but also points somewhere
on the edges of the polyhedron. The concept of adding
additional vertices along these edges in configuration space
so that no edge vertices are spaced more than a specified
maximum length is introduced by Lozano-Perez and Wesley
[1]. This approach generally results in a good approximation
to the optimal path.

Lozano-Perez [3] presents an algorithm for the 2D
case that use the Minkowski sum (see [4] for details on
Minkowski sum) to generate a CS obstacle from a polygonal
obstacle and a polygonal vehicle. While CS obstacles could
be generated by approximating the vehicle with a geodesic
dome, the obstacles are described by a sequence of algebraic
equations, which makes the optimization problem difficult to
solve without resorting to numerical methods. Also Bajaj and
Kim [5] describe algebraic algorithms for representing the
boundary of CS obstacles as patches of quadratic surfaces.

C. Present work

We propose a method for generating a VG from 1) a point-
cloud that represent the WS obstacle, 2) a vehicle bounding
sphere with radius rbs, and 3) an initial and final position
for the vehicle. The generalized visibility graph VG(N,L)
contains a node set N and a link set L of links between
node pairs. Each node in the graph is assigned a possible
configuration (or position), and each link represents a visible
(linear) connection between them. The VG is composed of
two parts; an obstacle visibility graph VGo that links node-
pairs near the obstacle surface, and a supporting visibility



graph VGvp that connects the initial and final position
(denoted "via points") to the CS obstacle by supporting lines:

VGf = VGo ∪ VGvp

An example of such a graph is shown in Figure 1. The
advantage of separating the obstacle and via point (VP)
graphs is that while both graphs must be generated when
creating the initial full VG, only VGvp is created when
either the obstacle is moved or rotated or either via point
is moved. The full VG is generated such that it contains
only links that are relevant when computing the Euclidean
shortest path between via points, and subsequent pruning is
not necessarily. The full VG can be searched to obtain the
shortest path using a graph search algorithm, e.g. Dijkstra’s
algorithm, see [6] or the A* algorithm, see [7]. This part
is not the focus of this research and will not be discussed
further.

I. METHOD

The full VG is used to find an approximative minimum
length path between two positions. It is composed of an ob-
stacle graph and supporting graphs. The subject of generating
the obstacle graph VGo is first treated in Section I-A. The
supporting graph VGvp is then treated in Section I-B.

A. Obstacle Visibility Graph

An obstacle visibility graph VGo is based on the configu-
ration space of a spherical vehicle moving amongst convex,
polyhedral obstacles, i.e. obstacles described by facets. Thus,
CS obstacles are grown as the Minkowski sum of a sphere
and convex WS polyhedra generated from the convex hull
(see e.g. [8] for a robust O(n2) algorithm for finding the
convex hull) of the point-cloud. An example is shown in
Figure 2 where this is done in two steps. The first step,
shown in Figure 2(a), is to generating the CS obstacle by
first translating each facet of the WS obstacle along its
outward pointing normal by the vehicle bounding sphere
radius rbs. The subsequent step, shown in Figure 2(b), is
to fill the occurring gaps between edges of translated facets
by cylindrical patches, and gaps at facet vertices by spherical
patches. Any such generated CS obstacle will have a surface
with G1 continuity. As shown in Figure 2(c) the VG of a
CS obstacle can be seen as a mesh wrapped around (and
fully enclosing) that obstacle. The mesh points act as nodes
in the graph, and the links are edges of a convex hull of
the obstacle. The mask size of the mesh is given by the
desired accuracy of the near-optimal path. To fully enclose
the obstacle, these nodes must be located slightly above the
obstacle surface. This distance is denoted re and increases
as the desired accuracy decreases.

The nodes (mesh points) are a combination of the points
from the edges of the patches and points internally to the
patches. Only cylindrical and spherical patches are used
when generating the nodes. Points in facets can be skipped
since interior points will not be part of an optimal solution,
and facet edges are shared with cylindrical patches. Once
the node set is generated for a patch, the link set can be

determined using the convex property of the CS obstacle.
Convexity means that links exist only between nodes of the
same patch. In the following, we describe how to find the
nodes for the two patch types.

1) Sphere patch vertices: The vertices on a sphere patch
has four separate origins as seen by the black, white, green,
and blue vertices in Figure 2(c). The black endpoint vertices
form the sphere patch polygon, the white vertices sit along
the polygon edges, and green or blue vertices are inside the
polygon. The black vertices are given by the neighboring
translated facets, while the other types are interpolated to
achieve a sufficiently high resolution of the VG. The blue
central vertex is used when interpolating the green vertices.

To obtain the interpolated nodes, let Nsn be the number
of neighboring cylindrical patches. The spherical polygon is
then composed of Nsn edges between Nsn vertices. The set of
these vertices is denoted {vi} for i = 0, . . . , Nsn−1. Using a
central vertex inside the polygon, the spherical patch polygon
can now be decomposed into Nsn spherical triangles. Each
triangle uses a different edge but all share the central vertex.

A central vertex that minimize spherical distance to the
vertex set is given as

argmin
vc

N−1∑

i=0

widistgeo(vc, vi)
2 ,

where distgeo(vc, vi) is the geodesic distance from vc to
vi, and wi are non-negative weights that sum to 1. This
problem is well-defined for vertices on a hemisphere and a
fast iterative algorithm with quadratic convergence rate exist,
see [9].

All remaining nodes in the patch are found by two
consecutive interpolations. The first interpolation is along the
edges of the sphere patch polygon to find a set of vertices
va. The second interpolation is along the edges formed by
each of these vertices and the central vertex.

The number of vertices generated by interpolation is con-
trolled by the parameter lmax that determines the maximum
allowed surface distance between two neighboring vertices.
Since the VG must fully enclose the obstacle, a lower
interpolation resolution requires a larger patch radius to
ensure no links intersect the obstacle. Both factors affect
the near-optimality of solution, since a smaller obstacle and
more nodes are more likely to result in a solution closer to
optimal.

The number of nodes Nse(i) along an exterior edge i of a
spherical polygon is

Nse(i) = d(rbs + re) arccos(vi · vi+1)/lmaxe ,

where {vi} is the set of consecutive endpoint vertices in the
spherical polygon. Using the following function for spherical
linear interpolation

p(v, w, k) =
(
1− (v · w)2

)− 1
2 (

sin (k arccos(v · w))w
+ sin ((1− k) arccos(v · w)) v

)
,



Fig. 1. The VGf for a helicopter flying between two via points around an obstacles. The blue segments are parts of the obstacle visibility graph VGo.
The orange segments are parts of the supporting graph VGvp. The red shortest found path connects the two via points at the gray spheres. The larger
sphere represents the vehicle bounding sphere. The CS obstacle is not shown.

(a) Cuboid in workspace and translated facets (b) Cuboid in configuration space (c) Cuboid visibility graph

Fig. 2. The configuration space and visibility graph generated from a cuboid. VG nodes are colored according to origin.

the vertices on the arc between vi and vi+1 are given by

va(i, s) = p
(
vi, vi+1, s/Nse(i)

)

and then (with a slight abuse of notation)

Va =

Nsn−1⋃

i=0

Nse(i)⋃

s=0

va(i, s) .

In Figure 2(c) the white and black nodes are the set Va.
Interior nodes are then added by spherical linear interpola-

tion between vc and the vertices in Va. The required number
of nodes for each edge is given by

Nsi(i, s) = d(rbs + re) arccos (va(i, s) · vc)/lmaxe .
The vertex for each interpolation is then

nsp(i, s, t) = p
(
va(i, s), vc, s/Nsi(i, s)

)
,

and the total set of vertices for the spherical patch is

Vs = vc ∪
Nsn−1⋃

i=0

Nse(i)⋃

s=0

Nsi(i,s)⋃

t=0

nsp(i, s, t) . (1)

The interior nodes in this set are shown in Figure 2(c)
as green nodes. The interpolation functions above have no
singularities since the angular spacing between consecutive
vertices is always less than π for any obstacle that extends
three dimensions.

2) Cylinder patch vertices: From the sphere patch a set
of vertices was found at the arc edges of the cylinder patch.
Both arc edges have the same number of vertices, since the
edges have the same length and are both interpolated using
lmax. Assume now that the vertices v at one end is paired
one-to-one with the vertices w at the other end, in an ordered
manner starting at the same facet edge. Since the height of
the cylinder is constant, the number of vertices along this
height must be

Nc = d||w0 − v0||/lmaxe .

Each interpolation point for pair i is given by

ncp(i, j) = vi + (wi − vi)j/Nc



VP no. 1 2 3 4 5
X (m) -1 0 10 -10 10
Y (m) 0 2 4 -1 1
Z (m) -11 10 -10 -1 4

TABLE I
POSITION OF THE 5 VPS

for j = 1, . . . , Nc − 1 and for i = 0, . . . , Nse(u), where u is
the index of the corresponding sphere patch polygon edge.
Now the set of all cylinder patch vertices is given as

Vc =

Nse(u)⋃

i=0

Nc−1⋃

j=1

ncp(i, j) (2)

3) Full obstacle visibility graph: The VG for the obstacle
is now given as the union of the sets Vs in (1) and Vc if
(2). The links of each patch is found by connecting all its
vertices. Links between vertices on the same facet edge can
be removed unless both are endpoint nodes, since such links
will not be part of the shortest path.

B. Via Points Visibility Graph

When generating a VG between a via point (initial or
final vehicle position) and the obstacle nodes, only links
on supporting lines are part of the shortest path and hence
included.

In order for a link Ln from a node ne to a node ns on
a polyhedron surface S to be on a supporting line, at least
one of the Nf facets of ns must be ’visible’ and at least one
facet must be non-’visible’. A facet k of ns is visible from
node ne if

fv(ne, ns, k) = (ne − ns) · g(k)
is ≥ 0. The function g(k) gives the outward-pointing normal
vector for a facet k of ns. This means that Ln is a on a
supporting line iff there exists j = 0, . . . , Nf − 1 such that
fv(·, ·, j) ≥ 0 and there exists k = 0, . . . , Nf − 1 such that
fv(·, ·, k) < 0.

We now define the full graph as

VGvp = tg(vp0,VGo) ∪ tg(vp1,VGo) ∪ int(vp0, vp1) ,

where tg(p,G) is a function that gives the supporting VG
from the supporting link set between p and G, and int(p0, p1)
is a function that returns the VG between p0 and p1, if its
link does not intersect the CS obstacle. Such a function can
be based on segment/triangle intersection, see e.g. [10].

II. RESULTS

A test case is created where a helicopter must fly between
the five via points in Table I, which are placed in a star
shaped pattern. The paths must be planned such that the
helicopter avoids a building, centered between the via points.
The setup and resulting paths can be seen in Figure II. A
small-scale helicopter with radius rbs of 1.70 m is used.
The interpolation parameter lmax is set to 0.75 m and re
to 0.076 m. The full path through all VPs is found by

solving the five path planning problems for connected VPs.
This approximated shortest path pa is then compared to
the optimal path pg . The optimal path is composed of
geodesics and tangents on the CS obstacle and is calculated
using a minimization algorithm. The building consists of 33
thousand vertices and 59 thousand triangles. The resulting
WS obstacle has 128 vertices and 182 facets. In CS this
obstacle consists of 182 facets, 128 sphere patches, and
308 cylinders patches. The first VG was generated in 553
milliseconds1 with 4 thousand nodes and 53 thousand links.
On subsequent planning, only the supporting graph needs to
be updated. Updating the supporting graph took less than 3
milliseconds in all subsequent cases. From each VG a path
was found in less than 500 milliseconds by searching the
VG with Dijkstra’s graph search algorithm.

Figure II shows overall good consistency between optimal
and approximated paths, except for the initial case. In this
case, it can be seen how a (local) minimum on one side
of the chimney has been found, whereas the optimal path
is located on the other side. Although different paths have
been chosen, both have nearly same length. The optimal path
is 27.4 meters while the approximated path is 27.9 meters,
giving an increase in distance of less than 2%. A similar
increase can be seen when comparing the full paths. The
full optimal path has a length of 126.9 meters, while the full
approximated path is 128.6 meters. To improve the solution,
the interpolation parameter lmax can be reduced. To generate
a smaller VG that is faster to search, lmax can be increased.
However, theres is a limit on how small the VG will become
for a given obstacle model. An example is the dome in the
left part of the building in Figure II. Since all points on the
sphere are part of its convex hull, a dome will add many
smaller patches to the CS, which results in a higher density
of nodes. To overcome this, a polygon reduction algorithm
can be applied to the model before generating the workspace.

III. CONCLUSIONS

Finding an optimal solution to the path planning problem
in 3D is NP-complete. The shortest path around a polyhedral
configuration space obstacle does not in general traverse only
vertices of the polyhedron, as in the 2D case, but also points
on its edges. For a given resolution the presented method
gives a path for which the length is close to optimal, and
converges towards optimal by increasing resolution. This
means that the proposed method might find a path that takes
different route than the optimal path, but the approximated
path should be almost as short as the optimal.

We proposed a method that generates a VG that is im-
proved for finding a shortest path in an environment with
a single obstacle. The applied method is based on first
constructing the CS obstacle from the WS obstacle described
by a point-cloud, then generating an obstacle VG for the CS
obstacle that approximates its surface. This VG is combined
with VGs that links the obstacle VG to the initial and final

1All tests were done on a single core of a 2.2GHz Intel Core 2 Duo
laptop



Fig. 3. Minimum length paths for a small-scale helicopter flying around a building through five VPs. These are indicated by the helicopter bounding
spheres. Both the optimal (green) and approximated (red) path are shown. Smaller spheres represent the nodes in the obstacle VG. The obstacle CS is
outlined by blue patches and facets.

configuration. If a path exists in the VG that connects the
initial to the final configuration, it can be found using a graph
search algorithm.

Results show that the method has good performance
in terms of accuracy versus computational time. Visibility
graphs for finding 5 paths amidst an obstacle with 600
patches were generated in less than 600 milliseconds. The
resulting paths had a length within 2% of optimal.

Extending the method to work with multiple obstacles is
possible, though this will require intersection testing of link
and node candidates in the VG.
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Abstract We consider the challenge of planning a min-

imum length path for a set of destinations for an au-
tonomous micro-UAV, that is, a sequence of positions
starting from some current position to a sequence of

goal positions. The path is found in a bounded 3D
Euclidean space containing geometric obstacles repre-
sented by point-clouds. We present an algorithm that
calculates the configuration space obstacles as patches

and subsequently a visibility graph for pairs of subse-
quent via points. We focus on the ability to do fast
replanning under limited changes to the environment.

Visibility graphs have been used extensively for path
planning in 2D Euclidean space. Since generalizing to
3D space is very difficult, we suffice with generating a

visibility graph that, when searched, can only provide
an approximate minimum length path. The generated
visibility graph is composed of obstacle graphs and sup-
porting graphs. The obstacle graphs can be thought of

as a mesh that approximates the configuration space
obstacle, which is build from the convex hull of its work
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space counterpart. The supporting graphs are gener-
ated by finding the supporting lines between 1) different
obstacles and 2) the via points and the obstacles. An ap-
proximation to the optimal path can be found using an

existing graph search algorithm. The performance and
accuracy of the algorithm is evaluated based on a worst
case scenario. We find that the generated path is near-

optimal in terms of length and intrinsic straightness.
Paths for a micro-UAV flying between several obstacles
and destinations are also found in acceptable time in
environments where existing obstacles transform and

new obstacles appear.

Keywords UAS · micro-UAV · path planning ·
configuration space · visibility graph

1 Introduction

Unmanned aerial systems (UAS) have become a pre-
ferred, indispensable, and increasingly used platform
for many applications where manned operation is con-

sidered unnecessary, repetitive, or too dangerous[1, 2].
Both path planning and trajectory generation are fun-
damental areas for UAS development[3] and both pro-
vide the ability to figure out a way to efficiently and

safely travel through an environment under a set of con-
straints. Specifically, for tasks such as surveillance, in-
spection, search and rescue, aerial mapping, cinematog-

raphy, etc., small-scale autonomous helicopters are in-
creasingly being used. In many such tasks it is advanta-
geous to operate in close proximity to the obstacles or to
cover their surface. Methods for describing these obsta-

cles as geometric figures from real-world measurements
have also been improved recently with 3D environment
mapping data getting increasingly detailed and readily

available including entire city maps. See i.e. [4, 5] for
algorithms that reconstruct 3D obstacles from pictures.
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Such recent advances allow better use of 3D maps for
high-level path planning.

1.1 Background

We focus on obtaining a method for path planning that
can be used for operating a small-scale UAV in an envi-

ronment with multiple obstacles. The presented method
is near-optimal for convex obstacles, that is, able to pro-
duce a path close to the Euclidean shortest path inside
some space. The method is also suitable when multi-

query searches must be done, for instance when a small
part of the environment changes and replanning is nec-
essary, or when multiple destinations exist.

We distinguish the term ”trajectory” from ”path”
in that a path is without time and trajectory includes
time. In this paper we are mainly concerned with the
geometric problem of path planning. We consider the

general trajectory planning problem for a UAS as hav-
ing two levels; 1) a path that avoids larger static obsta-
cles, such as buildings, mountains, etc., and 2) a trajec-

tory along the path that also avoids smaller, possibly
mobile object and at the same time takes the dynam-
ics of the vehicle into account by generating a feasible

state trajectory and possibly a related control trajec-
tory. The present work is a method for generating a
near-optimal solution to the first level. And because
that level is static the method presented also prioritize

the ability to easily do multi-query searches and replan-
ning.

The presented approach for path planning is based

on visibility graphs (VG). These VGs are build from the
obstacles in configuration space (CS) that in turn are
build on the obstacles in work space (WS). The aim of
this is to transform the more difficult geometric problem

of finding a path for a vehicle around the WS obstacles,
into the easier dual problem of finding a path for a point
around obstacles in CS. In CS the obstacles are gener-

ated by ’inflating’ the WS obstacles using the geometric
shape of the vehicle. The WS obstacle is build from any
set of vertices such as a point-cloud from sampled data.

The WS obstacle is made convex since non-convex parts
are not relevant when searching the VG for a solution.
In fact, when computing the Euclidean shortest path
between two points in the CS, the shortest path is a

series of connected edges that are either on the convex
hull of the obstacle, or supporting lines from the points
to the obstacle or between obstacles. An edge is called a

supporting line if the line passing through its endpoints
meets the respective obstacles only at its endpoints.

To obtain the actual path, the VG is searched using

a graph search algorithm, for instance Dijkstra’s algo-
rithm [6] or A* [7]. This part is not the focus of this

research, and will not be discussed in detail. Contrary

to other popular methods such as the Rapidly-exploring
random tree method, searching the graph will also re-
veal if no solution exists.

The configuration space for a micro-UAV, or in-
deed any other airborne vehicle, usually has six degrees-
of-freedom, with three dimensions to describe position
and three to describe orientation. However, by instead

planning a path for the bounding sphere of the vehi-
cle, the attitude will be irrelevant for determining a
collision free path and the configuration space can be

reduced to three degrees-of-freedom. The configuration
space obstacles are defined as the Minkowski sum of the
convex work space obstacles and the bounding sphere.

They have a continuously differentiable surface and any
shortest path (geodesic) on their surface will be contin-
uously differentiable, which in turn will be easier to
track for a vehicle with bounded dynamics. This is be-

cause a path that is continuously differentiable does not
require instantaneous changes in velocity (although it
does for acceleration, unless it is twice differentiable).

We avoid the problem of risking collisions due to track-
ing/position error by increasing the vehicle bounding
sphere accordingly.

1.2 Previous work

Previous work on how to practically, automatically, and

efficiently generate a CS from a 3D point-cloud and a
spherically shaped vehicle seems very limited, and in
many path planning publications an existing configura-
tion space is simply assumed.

The standard visibility graph is defined in a 2D
polygonal CS [8]. The nodes of the graph correspond
to the start location, the goal location, and the vertices

of the configuration space obstacles on the convex hull.
The graph edges are straight-line segments that con-
nect pairs of nodes, if they are in line-of-sight of each
other. The reduced visibility graph [9] reduces the size

of such a graph by only retaining edges that correspond
to supporting and separating line segments.

The classic three-step approach to path planning

with VGs was introduced by Lozano–Perez and Wes-
ley [10, 11], and consists of first calculating the CS,
then building a VG, and finally searching the VG for a

shortest path. The main difficulty lies in expressing the
CS obstacles, which unlike the WS obstacles are not
clearly defined. Lozano–Perez [11] generates a CS ob-
stacle representation from the contact conditions of a

polygonal obstacle and a polygonal vehicle in the 2D
case. This method basically builds each CS obstacle
from the Minkowski sum [12] of the work space ob-

stacle and vehicle polygons. The approach can be ex-
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panded to 3D by projecting the problem to 2D, but is
cumbersome when an obstacle or the vehicle is not a
polytope, or when obstacles are not axis-aligned. The
concept of adding additional vertices along these edges

in CS so that no edge is longer than a specified maxi-
mum length was mentioned by Lozano–Perez [10]. Their
method generally results in a good approximation to

the optimal path. Aronov and Sharir [13] presented a
randomized algorithm that constructs the 3D config-
uration space for a convex polyhedral amidst convex

polyhedral obstacles.
Finding an optimal solution to the general path

planning problem in 3D is NP-complete[14]. The dif-
ficulty of the problem is that the shortest path around

a polyhedral obstacle does not in general traverse only
vertices of the polyhedron, but also points on the edges
of the polyhedron. An optimal shortest path can be

found using numerical methods. Schwartz and Sharir
[15] used cylindrical algebraic decomposition for the
first complete general planning algorithm. Canny [16]
introduced a roadmap algorithm which improved this

approach, while Kim and Bajaj [17] used algebraic patches
of quadratic surfaces to representing the CS obstacles.
These methods employ techniques from computational

real algebraic geometry [18] that due to numerical con-
siderations are very difficult to implement correctly.
The running times of these algorithms also grow quickly

with the number of primitives in the obstacle and ve-
hicle representations. Many planning problems require
thousands of primitives, which is well beyond what can
be handled by algorithms that work directly with alge-

braic constraints on the obstacle region [19].
In more resent work, the CS obstacle representa-

tions are calculated as the convolution product between

a function representing the vehicle and functions rep-
resenting the obstacles [20]. Kavraki [21] computes this
with Fast Fourier Transform and Shu [22] with poly-
nomial transform. These approaches produce a bitmap

that can be searched for an approximate shortest path.
Because of the difficulty in representing the CS ob-

stacles for more than 2 dimensions, the focus has shifted

the last 20 years to methods that that completely avoid
such explicit representation. This focus has led to meth-
ods based on sampling such as the randomized path

planner, the probabilistic roadmap planners, and the
rapidly-exploring random trees that have successively
solved challenging planning problems with in spaces
with many dimensions.

1.3 Present work

This paper presents an algorithm that continues the

earlier ideas of Lozano–Perez and Wesley [10]. Contrary

to their approach, it builds explicit geometric CS ob-

stacles that are suitable for easy generation of a 3D VG
from a spherically shaped vehicle and a group of WS
obstacles. This VG is a roadmap that links vertices that
are mutually visible. This is done by test the link and

node candidates for intersection. While this is a com-
putational expensive operation, we show that our algo-
rithm also efficiently builds and maintain the CS and

VG under some changes in the WS. Each workspace ob-
stacle is made convex and is build from vertices feed to
the algorithm. These vertices do not need to be convex

and could be from, for instance, the mesh of geometric
obstacle or a point-cloud from sampled data.

Our method generates a VG inside the rectangu-
lar cuboid P with convex holes. The graph contains
all links relevant for calculating the Euclidean shortest

path between any two points in P . The graph is gener-
ated from 1) groups of point-clouds that each represents
a WS obstacle, 2) a vehicle bounding sphere with ra-
dius rbs, and 3) via points, that is, a set of the initial

and consecutive goal positions for the vehicle. Figure 1
shows an example of such a VG.

The generalized visibility graph VG(N,L) contains
a node set N and a link set L of links between node
pairs. Each node in the graph represents a possible con-

figuration, and each link represents a visible (linear)
connection between them. We split the task of gener-
ating such graph VGf into the union of three graphs;

an obstacle visibility graph VGos that links nodes near
each CS obstacle surface, a supporting line visibility
graph VGot that links nodes of different CS obstacles,

and a supporting line visibility graph VGvp that links
via points to each other and to the nodes of the CS
obstacles:

VGf = VGos ∪VGot ∪VGvp

The advantage of separating the graphs is lower cost
of maintaining VGf under various changes. The over-

all stepwise approach is shown in Figure 2. While all
graphs must be generated when creating the initial VG,
only a partial update of the VG is required when obsta-

cles are added or removed, even less when obstacles are
just moved or rotated, and even further less when just
via points change. The full VG is generated such that
it contains only links that are relevant when comput-

ing the Euclidean shortest path between via points, and
subsequent pruning is not necessarily. When generating
VGos, we first generate a surface graph VGo for all Nn
obstacles that contain only nodes and links required to
plan a path near its surface. These graphs are subse-
quently combined and intersecting parts of their VGs

are pruned. An obstacle visibility graph VGo is based
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Fig. 1 The VGf for a vehicle flying between two via points. The vehicle flies inside a cuboid with three obstacles. Obstacles
are the convex hull of a set of WS vertices. All graphs are a subset of the CS. The surface graph VGos is drawn in purple.
The supporting graph VGot is drawn in green. The supporting graph VGvp is drawn in red. The cuboid that is bounding
the solution space is outlined by green segments. The shortest path is orange and connects the two via points drawn as gray
spheres. The larger sphere represents the vehicle bounding sphere.

Find path

Obstacles
not in CS?

no
yes

Build VGo

Build and
prune VGos

Obstacles
transformed?

no
yes

Build VGot

VPs changed?

no
yes

Build VGvp

Search VGf

Last VP?
no

yes
Stop

Fig. 2 Representation of the update process for generating
the VG and finding a path.

on a spherical vehicle moving amongst convex, poly-
hedral obstacles, i.e. obstacles described by patches of

planar surfaces. Thus, CS obstacles are grown as the
Minkowski sum of a sphere and convex polyhedron.
This is equivalent to generating the CS by translating

each surface patch along its outward pointing normal
by an amount equal to the radius of the sphere, while

connecting pairs of translated patches by cylinders, and
their endpoints by spheres. The method works for any
WS obstacle shaped as polyhedron since these can be

grown using only three types of geometrical shapes;
spheres, cylinders, and planes. The obstacle VG forms a
closed mesh that contains the CS, such that only neigh-

boring nodes, i.e. nodes part of the same mesh polygon,
are linked. In cases where CS obstacles intersect each
other or the bounds of the CS, intersecting parts of
their respective graph must be removed. As shown in

Figure 1 the mesh of an obstacle graph will be open in
such cases. Another example of a VG can be seen in
Figure 11 and Figure 13.

2 METHOD

Section 2.1 explains how an obstacle visibility graph
VGo is generated from the surface of a configuration

space obstacle. This CS obstacle is build from a WS
polyhedron and is decomposed into patches of primi-
tives, which are used for constructing a local VG for
each obstacle. This obstacle VG is invariant under ro-

tation and translation which makes subsequent replan-
ning faster. In Section 2.2 all single graphs are com-
bined and intersecting obstacles handled to form VGos.

A procedure for generating the supporting line graph
VGot that links nodes of different obstacle VGs is de-
scribed in Section 2.3. Section 2.4 explains how VGvp

that links via points with obstacles and other via points
is generated. Finally, Section 2.5 briefly describes how
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an approximated optimal path is found using a graph
search algorithm.

2.1 Obstacle Visibility Graph

In this section the methods for the two main steps for
generating an obstacle VG are presented; generating
the configuration space obstacles, and then generating
the actual VG in configuration space. As previously

described it is assumed that the vehicle is given as a
sphere, and that the configuration space therefore has 3
dimensions, and that the configuration space obstacles

are given as the Minkowski sum of the vehicle bounding
sphere and the convex hull of work space obstacles. The
configuration space obstacles are represented as a set of
primitives (planes, cylinders, and spheres) generated by

the algorithm from the set of work space obstacles. The
second main step is generating a VG.

2.1.1 Configuration Space

The space of all allowed positions for the vehicle, de-
noted the configuration space, is constrained by the ob-
stacles. For each obstacle in work space, a CS obstacle

is created. The CS obstacle is the Minkowski sum of the
vehicle bounding sphere and the convex hull of the WS
obstacle polyhedron. Conceptually, this Minkowski sum
can be obtained by replacing vertices of the WS con-

vex hull with spheres, replacing edges with cylinders,
and replacing facets with translated facets (translated
along their normal). Both the amount of translation and

the radii of the spheres and cylinders are fixed, and are
equal to the vehicle bounding sphere radius. The result-
ing surface has G1 continuity, since the tangent of any
two intersecting curves on the surface are in the same

tangent plane at the intersection point. An example of
a configuration space obstacle grown from a workspace
obstacle is shown in Figure 3.

In further details, the surfaces of the configuration
space obstacles are composed of patches of primitive
surfaces. These primitive surfaces are spheres, cylin-

ders, and planes, and the patches are the ”visible” parts
of these primitives. A patch P is a simple, convex, closed
polygon on the surface of a primitive. The edges of the
polygon are formed by geodesic segments between N

cyclic ordered vertices vi, i = 0 to N−1. The last vertex
vN is assumed to be the same as the first, i.e. the poly-
gon is closed. Any two neighboring patches of the con-

figuration space obstacle intersect at one common edge.
Since a patch is convex the geodesic between any two
vertices in P lies entirely in P . For curved patches any
geodesic is less than π radians in length. Each vertex of

a patch is shared by two cylinder patches, one sphere

(a) Spheres at vertices (b) Facets are translated

(c) Cylinders at edges (d) Full configuration space

Fig. 3 Configuration space is formed by the Minkowski sum
of a polyhedron workspace obstacle and a vehicle bounding
sphere.

patch and one planar patch. Each edge is either straight
or on a great circle, in which case its curve is less than
π. It follows that spherical patches only has cylindrical

patches as neighbors. Cylindrical patches have two op-
posing sphere patches and two opposing facet patches
as neighbors. Planar patches (also called facets) have
only neighboring cylindrical patches.

The construction of the surface graph VGos starts
with the set of endpoint vertices of all patches. Each
vertex in a sphere patch is obtained by translating the

same workspace vertex along the neighboring facet nor-
mals, so the sphere patch has the same number of ver-
tices as number of neighboring workspace facets. The

four vertices in the cylinder patch are obtained by trans-
lating the endpoints of a workspace edge along the two
neighboring facet normals. The vertices in the facet are
obtained by translating the workspace facet along its

normal.

For the purpose of generating a surface VG for an
obstacle a number of nodes are added to this given set

of vertices. This addition is based on interpolation over
patches. This set of vertices form a mesh around this
obstacle that approximates its surface in CS. This mesh

is used in generating the visibility graph for a single
obstacle.
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2.1.2 Obstacle Graph Nodes

As shown in the example in Figure 4 the VG for each

CS obstacle can be seen as a mesh wrapped around
that obstacle. This mesh completely contains the ob-
stacle. The mesh points act as nodes in the graph, and

the links are edges of a convex hull of the obstacle. The
mask size of the mesh is given by the desired accuracy of
the near-optimal path. Numerous algorithms exist for
finding the facets that construct the convex hull, see

e.g. O’Rourke[23] for a robust O(n2) three-dimensional
implementation. The quickhull algorithm[24] is also ef-
ficient.

The mesh points originate from the surface of the
patches, and the VG nodes are added from points ob-

tained by interpolating both the edges and interior of
the patches. Interior points in facets can be skipped,
though, since they will not be part of an optimal so-

lution. Once the node set is formed for a patch, the
link set can be determined using the convex property of
both the configuration space and assembly of patches.
This means that links between nodes belonging to an

obstacle are restricted to nodes of the same patch.

The points of the visibility graph nodes should not

actually be located on the surface of the configura-
tion space obstacle, since any such points would not
have line-of-sight due to the curvature of the obsta-

cle. Instead they are ”lifted” above the surface, so that
the configuration space obstacle is completely contained
inside the hull spanned by these points. The needed
amount of lift (we call this distance rn) depends on the

density of points at cylindrical and spherical patches,
i.e. the more nodes the less lift is required. A desired
resolution is given by this spacing of nodes lmax, which

determines the maximum allowed surface distance be-
tween two neighboring nodes on a surface grown from
the work space obstacle by rn. An upper bound for the

necessary lift is calculated as the worst case scenario.
This case is a regular quadrilateral spanned by neigh-
boring nodes, spaced lmax on an arc with radius rn.
Here the center of the regular quadrilateral must have

a distance to the workspace obstacle of rbs. The maxi-
mum needed lift distance can be expressed as

rn =
rbs√

1
2 cos(amax)2 + 1

2

,

where

amax(rn) = min(lmax, rbsπ
√

2)/rn

is the angle between two neighboring nodes, lmax is

the maximum allowed arc distance between neighbor-
ing nodes, and rbs is the vehicle bounding sphere radius.

Thus rn can be found as the solution to the following
minimization problem

argmin
rn∈(rbs,

√
2rbs)

∣∣∣∣∣∣
rn −

rbs√
1
2 cos

(
amax(rn)

)2
+ 1

2

∣∣∣∣∣∣
. (1)

The objective is now to determine where to add nodes

and links for each patch, such that as few nodes as pos-
sible are used in the visibility graph, while also limiting
the volume of the configuration space obstacle.

2.1.3 Sphere patch vertices

The vertices on a sphere patch have four separate ori-
gins as seen by the black, white, green, and blue ver-

tices in Figure 4(c). The black endpoint vertices form
the sphere patch polygon, the white vertices lie along
the polygon edges, and green or blue vertices are in-

side the polygon. The black vertices are given by the
neighboring translated facets, while the other types are
interpolated to achieve a sufficiently high resolution of
the VG. The blue central vertex is used when interpo-

lating the green vertices.

To obtain the interpolated nodes, we let Nsn be the
number of neighboring cylindrical patches. The spher-
ical polygon is then composed by Nsn edges between

Nsn vertices. The set of these vertices is denoted {vi}
for i = 0, . . . , Nsn − 1. Using a central vertex inside
the polygon, the spherical patch polygon can now be

decomposed into Nsn spherical triangles. Each triangle
uses a different edge but all share the central vertex.

A central vertex that minimize spherical distance to
the vertex set is given as

argmin
vc

N−1∑

i=0

widistgeo(vc,vi)
2 ,

where distgeo(vc,vi) is the geodesic distance from vc to
vi, and wi are non-negative weights that sum to 1. This

problem is well-defined for vertices on a hemisphere and
a fast iterative algorithm with quadratic convergence
rate exists, see [25].

All remaining nodes in the patch are found by two
consecutive interpolations. The first is along the edges

of the sphere patch polygon to find a set of vertices va.
The second interpolation is along the edges formed by
each of these vertices and the central vertex.

The number of vertices generated by interpolation

is controlled by the parameter lmax that determines the
maximum allowed surface distance between two neigh-
boring vertices. Since the VG must fully enclose the ob-

stacle, a lower interpolation resolution requires a larger
patch radius to ensure no links intersect the obstacle.
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(a) Cuboid in workspace (b) Cuboid in configuration space (c) Cuboid visibility graph

Fig. 4 The steps that form the obstacle visibility graph for a cuboid. (a) shows a cuboid in workspace, its translated facets,
and outline for the cylindrical and spherical patches. (b) shows the surface of the resulting configuration space obstacle. (c)
shows nodes and links for a one choice of VG. Black nodes are endpoints of the translated workspace facets. White nodes are
interpolated on the sphere patch edges. Blue are the central vertices. Green nodes are interpolated spherical triangle nodes.
The yellow and cyan nodes are interpolated on the cylinder interior and straight edges, respectively.

Both factors affect the near-optimality of solution, since
a smaller obstacle and more nodes are more likely to re-
sult in a solution closer to optimal.

The number of nodes Nse(i) along an exterior edge
i of a spherical polygon is

Nse(i) = drn arccos(vi · vi+1)/lmaxe ,

where {vi} is the set of consecutive endpoint vertices
in the spherical polygon. Using the following function
for spherical linear interpolation between two vertices

v and w, and with k being the interpolation parameter

p(v,w, k) =
(

1− (v ·w)
2
)− 1

2 (
sin (k arccos(v ·w)) w

+ sin ((1− k) arccos(v ·w)) v
)
,

the vertices on the arc between vi and vi+1 are given
by

va(i, s) = p
(
vi,vi+1, s/Nse(i)

)
(2)

and then (with a slight abuse of notation)

Va =

Nsn−1⋃

i=0

Nse(i)⋃

s=0

va(i, s) . (3)

In Figure 4(c) the white and black nodes are the set
Va.

Interior nodes are then added by spherical linear
interpolation between vc and the vertices in Va. The
required number of nodes for each edge is given by

Nsi(i, s) = drn arccos (va(i, s) · vc)/lmaxe .

The vertex for each interpolation is then

nsp(i, s, t) = p
(
va(i, s),vc, Nsi(i, s)

)
, (4)

and the total set of vertices for the spherical patch is

Vs = vc ∪
Nsn−1⋃

i=0

Nse(i)⋃

s=0

Nsi(i,s)⋃

t=0

nsp(i, s, t) . (5)

The interior nodes in this set are shown in Figure 4(c)
as green nodes.

The interpolation functions above have no singular-
ities since the angular spacing between consecutive ver-
tices is always less than π for any obstacle that extends
three dimensions.

2.1.4 Cylinder patch vertices

From the sphere patch a set of vertices was found at the
arc edges of the cylinder patch. Both arc edges have the
same number of vertices, since the edges have the same

length and are both interpolated using lmax. Assume
now that the vertices vi at one end is paired one-to-one
with the vertices wi at the other end, in an ordered

manner starting at the same facet edge. Since the height
of the cylinder is constant, the number of vertices along
this height must be

Nc = d||w0 − v0||/lmaxe .
Each interpolation point for pair i is given by

ncp(i, j) = vi + (wi − vi)j/Nc

for j = 1, . . . , Nc− 1 and for i = 0, . . . , Nse(u), where u

is the index of the corresponding sphere patch polygon
edge. Now the set of all cylinder patch vertices is given
as

vc =

Nse(u)⋃

i=0

Nc−1⋃

j=1

ncp(i, j) (6)
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2.1.5 Full obstacle visibility graph

The VG for the obstacle is now given as the union of the
sets Vs in (5) and Vc in (6). The links of each patch

is found by connecting all its vertices. Links between
vertices on the same facet edge can be removed unless
both are endpoint nodes, since such links will not be
part of the shortest path. We let Vo(p, f, i) refer to

vertex i of facet f in patch p. The surface visibility
graph VGo for the obstacle is then given as the union
of the complete graphs for each facet in the convex hull

of the set of all vertices of all patches for this obstacle

VGo =

Np−1⋃

p=0

Nf (p)−1⋃

f=0

Nv(p,f)−1⋃

i=0
j=i+1

sg(Vo(p, f, i),Vo(p, f, j))

The function sg(va,vb) builds a surface graph between
vertices va and vb. The function returns the empty set

if two vertices are on the same facet edge unless both
are the endpoints.

2.2 Full obstacle surface visibility graph

We now build the VGos that combines all No obstacle
VGs. This can be calculated as the union of all ob-
stacle graphs. However, intersecting nodes and links in
graphs due to intersecting CS obstacles and nodes not

in P must be removed. Facets of different workspace ob-
stacles spaced less than 2rbs intersect in configuration
space. Furthermore, an obstacle VG might intersect the

CS of a different obstacle at an earlier point, i.e. when
their WS facets are spaced less than rn + rbs.

When removing intersecting parts of the VG using

ob(G) and intG(G,O), this pruned obstacle VG be-
comes

VGō(i) = VGoi −
NV −1⋃

j=0

ob(Voj ,VGoi , P )

−
No−1⋃

j=0

j 6=i

intG(VGoi ,Oj) .

The function ob(V,G, P ) calculates the subset of G /∈
P . For a node in the G, it determines if the associated
vertex is outside the bounding box of P . This function
is trivial in our case since P is an axis-aligned cuboid,
but any convex shape could be used without changing

(7). The other function intG(G,O) must give a subset
of G that intersects an obstacle O.

The union of all these graphs finally gives

VGos =

No−1⋃

i=0

VGō(i) . (7)

2.2.1 Intersecting links

The collision graphs between a graph and an obstacle
intG(G,O) is the compliment to the visibility graph. It
determines the links of G that intersects an obstacle O.

That is, the links of G that intersect the Minkowski sum
of the vehicle bounding sphere and the WS obstacle O.
This sum is only equal to the CS obstacle for convex

WS obstacles, but it is usually reasonable to base such
a function on the triangulated convex hull of Vo.

The collision graph between a graph and an obsta-
cle intG(G,O), and two vertices intL(va,vb) (used in

the following sections) are done as a segment/triangle
test by triangulating the hull of Vo. Since the obstacle
VG is a (slightly larger) superset of the CS obstacle a

link might intersect the VG hull without intersecting
the configuration space obstacle. Consequently, a link
might be subject to pruning even though it does not in-
tersect the obstacle. However, having a sufficient high

resolution on the obstacle visibility graphs will limit
these cases. When it occurs the effect of pruning the
intersecting link will usually only be a slightly longer

path. A more accurate approach would be to perform
intersection tests against sphere and cylinder solids lo-
cated at vertices and edges of the work space obsta-

cles, and the facets of the work space obstacles them-
selves. This approach should also work for non-convex
workspace obstacles.

The basic idea of the intersection test done here

is to test all links (segments) against all triangulated
facets in all obstacles. Although efficient implementa-
tions exists for such tests, see i.e. [26], this step can

be very expensive to perform even after reducing the
number of segments through pruning. In an effort to
reduce this cost octrees can be used. Octrees are also

used for node intersection test that determines when a
node from one obstacle is inside another obstacle. An
octree is a spatial search tree for the triangles on which
a form of bucket search can be applied. The tree is con-

structed by recursively subdividing the bounding box
of the obstacle visibility graph into eight octants until
a desired level is reached. Each octant at the final level

is then linked with those triangles it intersects. Empty
octants are also made aware if they are inside or outside
the hull.

2.3 Full obstacle supporting line visibility graph

When multiple obstacles exist a visibility graph must

be generated that links all obstacle pairs to allow travel
between obstacles. Links in this graph can be pruned
unless both vertices are on each others horizon ridge, i.e.

they form a supporting line link. Since a supporting line
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link between two different obstacles might still intersect
a third obstacle, all supporting line links must be also
tested for intersection.

We let the full supporting line graph be calculated

as

VGot =

No−1⋃

α,γ=0
β=α+1

γ 6=α,β

Nv̄(α)−1⋃

i=0

Nv̄(β)−1⋃

j=0

(
tg(Vō(i,α),Vō(j,β))

\ intL(Vō(i,α),Vō(j,β), Oγ)
)

(8)

that contains the links between pairs of non-pruned ver-

tices (indexed by i and j) on their respective different
obstacles (indexed by α and β). This is achieved using
the function tg(vα,vβ) that builds a supporting lines

graph between vertices vα and vβ of obstacle α and β,
and intL(vα,vβ, Oγ) that builds a collision graph. This
collision graph is the compliment of a visibility graph
and contains a link between vertices vα and vβ if it

intersects some other obstacle γ. A link is only added
if its two vertices are supporting lines to each other,
and the link does not intersect other obstacles. Only

supporting line links are included since only these are
can possible be parts of the shortest path. Whereas the
latter intersection function is calculated using a rela-

tively expensive segment/triangle test as described in
Section 2.2.1, the supporting line links can be deter-
mined more easily.

2.3.1 Supporting line links

When determining the shortest path, it is sufficient to
examine links connecting horizon ridges of obstacles. In

other words, when moving from a point in front of an
obstacle to a point on the obstacle, it is sufficient to
look at the obstacle outline in order to find the optimal

path around it. This concept can be used to remove
links in the visibility graph that might be accessible,
but are not part of any optimum solution.

In order for an link Ln from a vertex ve to a vertex

vs on a polyhedron surface S to be a supporting line,
at least one of the Nf facets of vs must be ’visible’ and
at least one facet must be non-’visible’. For a vertex vs

on a polyhedron surface S to be located at the horizon
ridge seen from another vertex ve, at least one of the
Nf facets of vs must be visible and at least one facet
must not be visible.

A facet k of vs is visible for vertex ve if

fv(ve,vs, k) = (ve − vs) · g(k)

is ≥ 0. The function g(k) gives the outward-pointing

normal vector for a facet k of vs. The case of equal-
ity occurs when ve is coplanar to the facet. In such

cases the facet is visible. This means that a vertex vs

seen from ve is on the horizon ridge if there exists
j = 0, . . . , Nf − 1 such that fv(·, ·, j) ≥ 0 and there
exists k = 0, . . . , Nf − 1 such that fv(·, ·, k) < 0.

Links in VGp are between a via point and an obsta-

cle node. Links are pruned if the obstacle node is not
on the horizon ridge seen from the via point.

2.4 Via points visibility graph

The via points vpi, i = 0 to Nvp − 1 are a consecutive

series of positions that the vehicle must visit. Ihe initial
position is given by vp0. Finding the full path through
all via points may be split into subtasks of findingNvp−
2 paths between segments vpivpi+1. The supporting
line VG that links a via point i to the pruned obstacle
vertices in Vō can be calculated as

VGovp(i) =

No−1⋃

α,γ=0

γ 6=α

Nv̄(α)−1⋃

j=0

(
tg(vpi,Vō(j,α))

\ intL(vpi,Vō(j,α), Oγ)
)
. (9)

The visibility graph between the two via points of
a path segment i is the compliment collision graph be-

tween the via points of this segment

VGvpvp(i) =

(
No−1⋃

γ=0

intL(vpi,vpi+1, Oγ)

)c
. (10)

We now define the full graph for a segment s be-
tween two consecutive via points as

VGvp(s) = VGovp(s) ∪VGovp(s+ 1) ∪VGvpvp(s) ,

that is, the union of the supporting line graphs at both
via points and the compliment collision graph between
the via points of this segment. Subsequent segments
beyond the first can be calculated faster if the envi-

ronment remains static. This is because VGovp(s) at
the initial via point for a segment s > 0 was already
calculated at the destination via point by the previous

segment s− 1.

2.5 Searching Visibility Graph

Now given a visibility graph we aim at finding the
shortest path. This path is found by searching through

the graph with a cost associated to each link in the
graph. The Euclidean distance is used for this cost,
which makes this approach independent of vehicle dy-
namics. Since the visibility graph is constructed in 3D

it is based on approximation through a finite number
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of points located on surfaces of the configuration space
obstacles. This in unlike the 2D case where (at least for
obstacles with non-differentiable edges) a finite set of
nodes is sufficient to guarantee an optimal path. Thus,

the line-of-sight path is only locally shortest among the
vertices in the visibility graph. It is not globally shortest
as it would be in the 2D case. However, when Euclidean

distance is used as metric then for the sampling den-
sity lmax tending to zero the shortest path tends to the
globally optimum. Consequently, for any given value ε

there exists a sampling density such that the difference
between the global shortest path and the shortest path
within the VG is smaller than ε.

Generally, a path with higher order of differentiabil-

ity is preferred, and we consider feasibility of the gener-
ated path from this qualitative perspective only. While
our method is based on approximations and does not

consider the structural and dynamical capabilities of
the vehicle, it does provide a closer-to-feasible path as
the resolution improves. When the resolution improves
the generated path becomes closer to continuously dif-

ferentiable.

3 Results

The test in Section 3.1 shows a limitation of the method.
It shows which effect the node spacing parameter lmax

has on the size of the visibility graph for a worst case
obstacle. This is used for evaluating the performance of
the method and accuracy of the resulting path. Results

are also provided from two scenarios to demonstrate
the behavior of the planning approach. The example in
Section 3.2 demonstrates planning in a cluttered envi-
ronment. It also shows how the VG is updated when a

new obstacle is found. The example in Section 3.3 is a
more practical example of planning near a large obsta-
cle. This example demonstrates how the VG is updated

when obstacles transform. All tests were done on a sin-
gle core of a 2.2 GHz Intel Core 2 Duo laptop. We use
a helicopter inside a sphere to represent the bounds
of the micro-uav with maximum allowed tracking error

included.

3.1 Performance and Accuracy Test

The test determines which effect the node spacing pa-
rameter lmax has on the size of the visibility graph. It

also shows how the size of the visibility graph, measured
in number of nodes and links for a single obstacle, re-
lates to the number of vertices in the convex hull of

the workspace. The test should also verify that lower-
ing the node spacing results in a path closer to optimal

Table 1 Node spacing.

lmax 0.250 0.375 0.500 0.675 1.000
rn 1.015 1.033 1.056 1.078 1.180
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Fig. 7 Node spacing lmax impacts the quality of the approx-
imated path. By quality we consider how much greater the
length of the approximated path is compared to the opti-
mal, and how large the average angle is between an incoming
path and outgoing path at the nodes. The optimal path is
composed of geodesics and tangents on the CS obstacle. It is
found using a minimization algorithm that has limited usage
for cases with multiple obstacles. A low node spacing lmax

gives more nodes in the visibility graph, which on average
also gives a shorter path and smaller changes in angle at the
nodes.

when searching the graph and a path where the angle
between incoming and outgoing path at the via points
are lower. This is preferred as it is easier to track. For

each vertex in the work space, several nodes are added
to the visibility graph. This number is generally larger
when a high number of facets that shares the vertex and

when the distance to other vertices is high. This also
means that if more vertices are added to the workspace
without increasing volume much, fewer nodes per ver-
tices should result. The test is done by generating a

workspace obstacle for a point cloud. An example for
one point cloud is shown in Figure 5. Each point cloud
consists of between 4 to 300 randomly distributed ver-

tices on a unit hemisphere. A vehicle radius rbs equal
to the grid size shown in Figure 5 is used when generat-
ing the configuration space. The length of the optimal

path between two points located on opposite sides of
the obstacle at (1.75, 0.5, 1.5) and (−1.75, 0.5,−1.5) is
calculated. A visibility graph is generated and searched
for each different pair of lmax and rn listed in Table 1.

This is repeated 6 thousand times and averaged to give
a better statistical confidence.

3.1.1 Graph size

The size of the visibility graph is important when the

VG is used to search for a shortest path, since the worst-
case running time for Dijkstra’s search algorithm on a
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(a) A dense point cloud randomly distributed on a unit hemi-
sphere. The geodesic between the two positions is drawn in
green. The approximated path is drawn in red.

(b) The solid polyhedron in the center is the workspace ob-
stacle formed by the convex hull of the point cloud. Outlines
of the CS patches are also drawn. Facet patches are drawn in
yellow, sphere patches in red, and cylinder patches in alternat-
ing red and yellow. Because the point cloud is located on the
surface of a sphere, all vertices are used by the convex hull,
and a high number of patches result.

(c) The configuration space obstacle and visibility graph
nodes. The nodes origin mostly from the endpoints of the
patches (black) and the central vertex of the sphere patches
(blue). Because of the small are of each patch, only a few in-
terpolated nodes are visible at the bottom where the surface
is more flat.

(d) The configuration space obstacle and visibility graph links
between neighboring nodes.

Fig. 5 Building an obstacle visibility graph from a point cloud located on the surface of a unit hemisphere.
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Fig. 6 These plots show the size of the generated visibility graph for point clouds on a unit hemisphere, for a node spacing
lmax ranging from 0.25 to 1. The black curves show an average for each case of lmax. The left plot shows the total number of
nodes, and the right plot shows the total number of links between these nodes. The gray area shows the lower bound.

graph with n nodes is O(n2). The size of the obstacle

visibility graph is affected by the node spacing lmax,
and the shape, size and number of the WS obstacles.
In this test a single unit hemispherical obstacle is used

and different workspaces are generated from a varying
number of vertices, sampled on its surface. This means
that its volume is nearly constant and that the size
of the visibility graph should depend primarily on the

node spacing.

Figure 6 shows the size of the generated visibility
graph for different values of the node spacing lmax. The
size initially increases rapidly when the node spacing is
low and many nodes are interpolated inside the patches.

As the vertex count increases fewer node are interpo-
lated and affine growth becomes dominating. The off-
set to the lower limit is because of the capped area

at the bottom, where no vertices are sampled and the
nodes are always interpolated. The two plots show sim-
ilar behavior and there is a nearly proportional relation

between number of CS nodes and links, as also sug-
gested by the minimum bounds for number of nodes
and links. A quite high number of patches are gener-
ated even when for workspace obstacles with few ver-

tices. These patches are build from the convex hull of
each workspace obstacle. The number of patches Np
generated from a hull is the sum of number of its facets

F , edges E, and vertices V and can be stated using
Euler’s formula as Np = 2E + 2.

3.1.2 Path quality

A path found in the visibility graph will be an ap-

proximation to the optimal path, since the number of
nodes sampled for the visibility graph is finite. How-
ever, a higher number of nodes and links in the visibil-
ity graph generally results in a path closer to optimal.

The geodesic path is the part of the non-approximated
optimal shortest path located on the surface of a closed
CS obstacle. Besides being the shortest path, this opti-

mal path is also intrinsically straight (that is, straight
from the perspective of an individual moving on the sur-
face) everywhere for a CS obstacle, which means that

it is continuously differentiable. This also means that
when the path crosses an edge between two patches,
the incoming velocity vector match the outgoing veloc-
ity vector at the edge. The same is true for paths be-

tween obstacles, since they are tangents to both obsta-
cles by definition. Obviously, this property is not pre-
served for approximated shortest paths generated by

our approach.

Since ’intrinsic straightness’ is a condition for the

optimal path, this can be used in combination with
length as a measure of ’quality’ of a given path. It is
likely that a path that is far from intrinsic straight is far

from shortest. Of cause a path that is intrinsic straight
is not necessarily the shortest (not even locally).

We measure intrinsic straightness as an angle error
Ωe at the nodes in the approximated path as shown in
Figure 8. We define the angle error at a path node to

be the angular difference between the supporting line
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Fig. 8 The angle error Ωe at a path node is the angular
difference between the supporting line ul pointing to the next
node in the approximated path, and the supporting line of the
geodesic path ug.

ul going to the next node in the approximated path,
and the supporting line of the geodesic path ug. Using

the property of intrinsic straightness, supporting line ug
can be found by rotating the supporting line vector of
the approximated path leading to the node ua around

the crossover edge we until this vector is aligned with
the facet of the leaving path. It can be calculated using
Rodrigues’ rotation formula [27] as

we =
na × nl
|na × nl|

λe = na · nl
ug = uaλe + we · (we · ua)(1− λe) + we × ua

√
1− λ2

e

Ωe = arccos(ugul) ,

where na is a unit normal from the facet of the arriving
path, and nl is a unit normal from the facet of the

leaving path.
The approximated path is measured relative to the

optimal path lgeo located on the surface of the patches.

The upper bound on the length of the approximated
path depends both on the node spacing lmax and its
number of nodes Np. The maximum length of the ap-
proximated path is lgeo +lmax(Np−1)/2, which is based

on crossing a series of closely spaced edges, with maxi-
mum distance between nodes on consecutive edges. This
suggests that lowering the node spacing lmax to obtain

a larger visibility graph could have the adverse effect
of increasing the number of nodes and hence the upper
bound on length of the approximated path.

Figure 7 shows how various values of node spacing
lmax affects the quality of the path. A lower lmax gives
a higher density of nodes in the visibility graph and
a path closer to optimal is found when the graph is

searched. As lmax tend to zero, the node density tend
towards infinity, and the approximated path tends to-
wards the optimal path. The performance in terms of

relative length versus computational time for different
values of node spacing is shown in Figure 9. Obtaining
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Fig. 9 The time spent on building the VG compared to the
relative length of the resulting path. The plot is generated for
a WS with up to 50 vertices, since this range has the largest
potential for interpolated nodes, that is, highest CS node to
WS node ratio in Figure 7.

better approximations comes at the price of computa-
tional time. While paths with length in the 100 to 102

range can be found at lmax is 0.125, it is often rea-
sonable to accept lengths in the 104 to 106 range (lmax

being 0.50 to 0.75), since such can be found significantly

faster.

3.1.3 Replanning

Generating a VG for finding a path through an environ-
ment consist of first generating a per-obstacle graph,
then combining these graphs while testing links and

nodes for intersections, and finally searching the graph
for the shortest path. The left plot in Figure 10 shows
a summation of the time spent on each part for a dif-

ferent number of nodes. The graph search algorithm
is shown for comparison. Once the visibility graph is
generated, subsequent updates of it can be done faster

depending on which changes occurred to the environ-
ment. The plots on the right show the time spent on
updating the visibility graph in the case of a static and
dynamic environment.

In the case of replanning in a static environment, a
change to initial or final via point has been made, and
a new path is found. This means that only affected via

point nodes and their links are updated. Although in-
tersection test must be performed on all affected links,
these links are also candidates for pruning and replan-
ning can be done fast, even though the computational

cost per node is higher that in the case of a dynamic
environment. Unfortunately, it is generally more expen-
sive to process a link to a via point than a link between

two nodes of the same obstacle.
Replanning in a dynamic environment happens if

a new obstacle is introduced or an existing obstacle

is transformed. It is cheaper to evaluate a candidate
link between two nodes of an obstacle, especially when
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Fig. 10 The time required for planning and replanning as number of nodes increase. The visibility graph is created with
a fixed lmax of 0.5. The left plot shows the initial time spend when finding a path. The plots on the right show the time
used for subsequent replanning in a 1) static environment and 2) dynamic environment. Replanning in a static environment
constitute a change to initial or final via point, while replanning in a dynamic environment occurs when an obstacle is rotated
or translated. Time spent on graph search is not included in the plots on the right.

most nodes belong to that obstacle. This is because

all candidate links between nodes in the same obstacle
is determined when generating the obstacle visibility
graph. Updating this step amounts to removing edges
and nodes that intersect other obstacles or are outside

some specified bounds. Links between nodes on differ-
ent obstacles must still be processed, although many
links are usually pruned.

3.2 Planning in a cluttered environment

The method is demonstrated on a UAV flying amidst
eight obstacles. The UAV must visit five VPs and all
five paths are initially planned. The initial setup and

resulting paths can be seen in Figure 11(a). A close-up
of some of the initial path can be seen in Figure 12. At
the third VP, a new obstacle is found and replanning is
required for the remaining two paths, see Figure 11(d).

The full initial and updated path between all five VPs
is found by solving six local path planning problems for
connected VPs. The parameters are set relative to the

size of the grid in the Figure. The UAV has radius rbs
of 1.70. The parameter lmax is set to 0.65.

The eight WS obstacles in Figure 11(a) consist of
60 vertices and 60 facets combined. Table 2 show these
details for WS obstacle. It also shows the size of the ob-

stacle VGs before and after pruning. After building the
CS in Figure 11(b), the initial full visibility graph seen

Fig. 12 Restrictions on the CS make the UAV take the
longer path on the right. Note that a shorter path that moves
up or left is not found because of the location of nodes.

in Figure 11(c) has 1.9 thousand nodes and 16.6 thou-
sand links. The updated graph in Figure 11(e) has 2.2
thousand nodes and 19.0 thousand links. In both cases
the number is relative low since the majority of nodes

and links stems from vertices and edges that intersect
obstacles in CS, which are pruned before building full
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(a) A path is found between five VPs inside the semi-transparent gray box with eight obstacles

(b) The initial CS with VG node candidates. The eight CS obstacles have 224 patches.

(c) The mesh around each CS obstacle and the initial VG. No supporting graphs for via points are shown.

(d) A new obstacle is found.

(e) The CS and updated VG.

Fig. 11 Path planning in a cluttered environment. A different path is found after a new obstacle is introduced in (c).
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Table 2 Size of each obstacle

Obstacle 1 2 3 4 5 6 7 8
WS Vertices 8 8 8 4 8 8 8 8
WS Facets 6 9 11 4 6 12 6 6
WS Edges 12 15 17 6 12 18 12 12
VGo time [ms] 17 19 19 13 22 21 36 19
VGo nodes 528 585 566 316 848 714 1136 776
VGo links 3129 3574 3667 1234 10574 5565 21934 6978
VGō nodes pruned [%] 45 52 68 70 65 36 90 71
VGō links pruned [%] 53 66 78 79 61 42 96 81

Table 3 Time spent building and maintaining the VG at
each path. The initial paths are annotated with ’a’. The up-
dated paths are annotated with ’b’.

Path a 1 a 2-4 b 3 b 4 All
VGo time [ms] 517 0 137 0 654
VGos time [ms] 573 0 268 0 841
VGot time [ms] 528 0 769 0 1297
VGvp time [ms] 4 11 4 4 23
Total time [s] 1622 11 1177 4 2815

graph. The obstacle visibility graph VGos that links
nodes near each CS obstacle surface contains 76-80%

of the links. The supporting line visibility graph VGot

that links nodes of different CS obstacles contains an-
other 20-23%, while the supporting line visibility graph

VGvp (that links via points to each other and to the
nodes of the CS obstacles) only accounts for 0.6% of
the links.

The full path was found in 3.1 seconds. Table 3 lists
the time spent on building each graph for each path.

While the initial VG for the first path is expensive to
calculate, updating a single node is inexpensive. This
means that the three subsequent paths are found in 11

milliseconds in total. Rebuilding the VG after a new ob-
stacle is introduced is also expensive, but still less than
for the initial path. This is because that VGos was built
incrementally per obstacle as detailed in Section 2.1.5.

This means that updated VGos can be calculated as
the union of the old VGos that is pruned in respect
to the new obstacles, and VGō for the new obstacles.

Building VGo takes 137 milliseconds, while updating
VGot is more expensive since it is recalculated entirely
and there are more nodes. A similar approach could be

implemented for this graph, since the supporting lines
between static obstacles would be retained unless inter-
sected by a transformed obstacle. This could be done
by updating the collision graph of VGot shown in (8).

In addition to the times spent on the VGs, another 270
milliseconds were spent in total on searching the graphs
for a path using an implementation of Dijkstra’s search

algorithm.

A limitation in the implemented method can be seen
in Figure 12. In order to reach the points at the lower

left of the yellow obstacle, the path starts by going

left. This is because the VG lacks nodes at the cylin-
der patches directly above and to the right. If one less
or one additional series of vertices had been interpo-
lated at the cylinder patch above, a shorter path would

likely have been found here. In fact, the actual shortest
path (geodesic) follows the intersection ridge between
the CS obstacle and bounding box. We suggest adding

an ’intersection VG’ in future works, where vertices
for graph nodes are added at the intersection points
between patches and bounding box. The intersection

graph forms a mesh that closes the holes between in-
tersecting obstacles.

3.3 Planning near a large structure

The implemented method for constructing VGs is de-

monstrated on WS obstacles with a higher resolution.
This test also demonstrates how only a part of the
graph is rebuild after obstacles are transformed. In this

scenario, the vehicle must visit a number of VPs located
near the surface of a wind turbine (Vestas V52). The
turbine model seen in Figure 13(a) and Figure 13(b)
is composed of six separate obstacles as indicated by

the different colors. These can be grouped into a stator
assembly that consists of the tower and nacelle, and a
rotor assembly that consists of three rotors attached to

the nose cone. The vehicle starts near the base of the
turbine and must visit the 8 numbered locations and
then return to the initial position. The vehicle hovers
at VP 5 (the start of path 6) where it is clear of the

rotor blades while they are rotated 30 degrees. This ro-
tation is clearly visible when comparing Figure 13(c)
with Figure 13(d). The vehicle has radius rbs of 1.70

meters. The lmax parameter is set to 0.65 meters.

The problem was solved as nine local path plan-
ning problems in 193 seconds. This covers both the
time spend on building and maintaining the VG, listed

in Table 4, and time spent searching the graphs. The
initial VG had 12.9 thousand nodes and 144 thousand
links until the transformations at VP 5. The updated

VG had 12.6 thousand nodes and 172 thousand links.
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(a) Front view of wind turbine and VPs. Graph is build inside
the semitransparent box.

(b) Back view of wind turbine and VPs.

(c) The vehicle at VP3. CS obstacles and VGos graphs are
shown. Note that individual obstacle graphs are not con-
nected.

(d) The vehicle at VP5. WS obstacles and obstacle graphs
VGos are shown. The turbine blades are rotated 30 degrees.

Fig. 13 The vehicle starts near base of turbine, and must visit all VPs in order while staying inside the semitransparent box.
After VP8 the vehicle returns to initial position
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Table 4 Time spent building and maintaining the VG at
each path

Path 1 2-5 6 7-9 All
VGo time [s] 1.36 0 0 0 1.36
VGos time [s] 57.5 0 44.2 0 102
VGot time [s] 23.7 0 24.2 0 47.9
VGvp time [s] 0.09 0.35 0.03 0.10 0.57
Total time [s] 82.7 0.35 68.4 0.10 152

The generated VGs are searched with an implementa-
tion of Dijkstra’s algorithm to obtain a path. This took
approximately 4.6 seconds per path.

From Table 4, it can be seen that much time is
spent on building VGos and VGot. In both cases most

is spent on collision tests. When building VGos the ver-
tices all nodes and edges of all links of each obstacle
are tested for intersection with other obstacles. When

building VGot link candidates between nodes of differ-
ent obstacles are tested for intersection. See Section 2.2
and Section 2.3 for details.

It is about 24 seconds faster to rebuild the graph
at VP 5 than at initial construction. This is mostly
because VGos does not have to be rebuild completely.

Since only the four obstacles in the rotor assembly are
transformed, the pruned graphs VGō for the remaining
two static obstacles are updated to reflect this. This is

done by performing intersection tests against the trans-
formed obstacles and adding the links that these had
had previously intersected.

We believe it is possible to further reduce the time
spent on rebuilding the graph when obstacles can be
grouped into assemblies. There are two assemblies in

the demonstrated case. In other cases all static obsta-
cles could be grouped into an assembly. We suggest first
building a graph for each assembly, and subsequently

combining these graphs. The difference is to first build
VGos and VGot for each assembly, since such graphs are
invariant under transformation of an assembly. In the
second step each assembly graph is pruned to remove

intersections, and the supporting graph between the as-
semblies is calculated. The advantage is that only the
latter step must be recalculated after a transformation.

This is left as an issue for future works.

The current implementation removes nodes of inter-
secting vertices between two intersecting CS obstacles.

It is unfortunately that these are simply removed, since
it appears that the actual shortest paths tend to follow
these ridges of intersection. An example of this is visible

in Figure 13(c). The vehicle at VP 3 arrived from VP 2
behind the leftmost rotor. The actual shortest path is
through the intersection point between the two down-

wards pointing rotors and nose cone. It then follows the
intersection ridge between the nose cone and rightmost

rotor, before leaving the surface to VP 3. The situa-

tion is similar to that in Figure 12, see Section 3.2, and
again we suggest building intersection graphs between
intersecting CS obstacles for future works.

4 Conclusions

We considered the problem of multi-query path plan-
ning for autonomous small- and micro-scale UAVs. We

formulate the problem as the shortest path problem
for a sphere that must cover both bounding radius and
all errors on position of the vehicle. The shortest path
for a sphere amidst polyhedral obstacles is a combi-

nation of paths on the surface of the obstacles and
supporting lines. Finding such a shortest path in 3D
is NP-complete, since it does not in general traverse

only vertices of the polyhedron, as in the 2D case, but
also points on its edges. If one suffices with an approx-
imately shortest path, a finite set of points can be se-

lected near extremities of the configuration space. From
these points a visibility graph can be build that can be
searched to give an approximated shortest path.

We presented a method for building and maintain-

ing a 3D visibility graph from a known space with ob-
stacles. We focus on the ability to maintain this graph
under changes, such as new or rotated obstacles, with-
out the need to recalculate the entire VG. This led to

a stepwise approach that composes the VG of obstacle
and supporting lines visibility graphs.

We found that the visibility graph can generally

be used to find a path that is near-optimal in terms
of length and angle (it is nearly intrinsically straight).
The near-optimality depends on a lmax parameter. The
path tends to optimal as this parameter is reduced but

also rapidly increasing demands to computational time,
and setting the parameter too low is not recommended.
A high number of CS nodes per WS node are gener-

ally produced even for a moderate choice of lmax. This
means that a very high number of obstacles or too de-
tailed obstacles are not recommended, since computa-

tional load increases rapidly with the number of convex
vertices. The use of a polygon reduction algorithm and
a high value for lmax can reduce the problem somewhat.

We give recommendations for improvements in both

accuracy and performance for future works. Two exam-
ples demonstrate planning in a cluttered environment
and near a large structure. We show how a potentially
better path can be missed in cases where CS obsta-

cles intersect each other or the bounds. This can hap-
pen because shortest paths tend to follow the surface of
the CS. Accuracy could possibly be improved in future

works by introducing intersection graphs that ensure
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surface coverage of intersecting obstacles and where ob-
stacles intersect the bounds. The examples also show
how replanning and planning between several VPs is
significantly faster because we keeping track of changes

in the environment and subsequently update the graph
accordingly. We suggest building supporting graphs be-
tween pairs of obstacles and grouping obstacles that

form rigid obstacles to assemblies to further reduce the
computation load when replanning. ´
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Abstract

Path planning problems are difficult in 3D. We address the problem of identifying a shortest path for a sphere moving around
a single polyhedron in a 3D work space (WS). Our method calculates the configuration space (CS) obstacle as a collection of
patches. Using properties of geodesics to compose a path on these patches, the 3D path planning problem can be reduced to a
one dimensional strictly quasiconvex optimization problem. The solution space can then be sampled to identify the convex region
containing the optimal solution. The problem converges to a solution very quickly when numerical optimization is applied. Results
show that the approach is very fast for a single obstacle. It is expected that the method scales very well to environments with
additional obstacles, and that it is applicable to polyhedral CS obstacles.

Keywords: path planning, helicopter, geodesics

1. Introduction

We present a method for finding the shortest path for a spherical vehicle around a convex polyhedron in 3D. The
method provides a position path in x, y, z coordinates, and does not take time or vehicle dynamic into account. How-
ever, under certain conditions the method guarantees that the path found is indeed the shortest possible in Euclidean
distance. Usually, the model of a rigid vehicle operating in 3D has six degrees-of-freedom, with three dimensions to
describe position and three to describe orientation. In this research we disregard orientation by planning a path for
the bounding sphere of the vehicle. That is, we plan a path in 3D that will not intersect an obstacle when traveled by
a sphere. This is done by describing the obstacles in a configuration space (CS) that in turn is based on the original
obstacles in work space (WS). The aim of this is to transform the more difficult problem of finding a path for a vehicle
around the WS obstacle into the easier dual problem of finding a path for a point around the CS obstacle. In CS the
obstacle is generated by ’inflating’ the WS obstacle according to sphere radius. The WS obstacle is build from the
convex hull of any set of vertices such as a point-cloud from sampled data. The presented method is limited to finding
solutions on convex obstacles.

1.1. Previous work
The notion of Euclidean shortest path for vehicle translating in a 2D or 3D space with multiple convex polytopes is

straightforward. Exact algorithms exist in the 2D case with methods such as such as Visibility Graphs for multi-query
searches, see [1, 2] and i.e. [3, 4] for improved algorithms, and continuous Dijkstra algorithms, see [5, 6] for single
query searches. Such 2D methods are described more generally in [3, 7, 8]. While it is clear that the shortest path is
on the surface of the polytope in both 2D and 3D, and that this means that the problem is fairly straight forward in 2D,
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these methods unfortunately do not extend nicely to 3D. The main problem in 3D is that the shortest path does not in
general traverse only vertices of the convex polytope, as in the 2D case, but also points on the edges of the polytope.
It is not generally clear where on the edges the path should cross in order to achieve minimal length. In fact, since it
was shown by [9] that the 3D shortest-path problem in a multi-polyhedral environment is NP-hard, the only practical
approach is to use an approximative method, such as [10, 11].

A special variant is the problem of computing a shortest path between two points along the surface of a single con-
vex polytope. Approximation algorithms exist for this problem, see [12, 13, 14], and an exact method was presented
by Sharir and Schorr [15] that exploits the property that a shortest path on a polyhedron unfolds into a straight line.
Another approach was described by Chen and Yijie [16] with an implementation made public available by Kaneva
and O’Rourke [17]. This non-Dijkstra based algorithm finds the shortest path from one source point to all vertices on
a polyhedral surface. Another approach is the fast marching method, which is an optimal time numerical method for
solving the Eikonal equation on a Cartesian grid [18, 19]. The central idea is to advance a wavefront starting at an
initial grid point though neighboring grid points continuously unit it first reaches the final grid point. It is related to
Dijkstra’s algorithm [20] used in finding shortest paths between nodes linked in a network. However, the fast march-
ing method is effective for surfaces because it is not limited to path planning along links. Kimmel and Sethian [21]
extended the method from points in Cartesian grids to points on triangulated manifolds.

1.2. Present work

The methods described above operate on polytope obstacles. In our case the CS obstacle has a continuously
differentiable surface since it is generated as the Minkowski sum of a convex WS obstacle and a sphere. We also seek
a method that is not limited to path planning between points on the obstacle surface. Hence we suggest a different
approach based on the wavefront idea. To do so, an extension is needed that allows finding paths between two points A
and B outside the obstacles. For each A and B a set of points are identified on the obstacle, which will be intersected by
the shortest path between them. The problem is now to find a path between these two sets. That is, instead of having a
single source and target point, the concept of wavefront planning is applied on point sets. Naturally, the shortest path
between these point sets does not necessarily represent a subset of the globally shortest. However certain end point
conditions can be introduced on the path subset that ensures that the full path is locally shortest. The globally shortest
path is then given from the set of these locally shortest paths.

1.2.1. Conditions
We note that when computing the shortest path between two points A and B in a Euclidean space containing

convex obstacles, the shortest path is a series of connected edges. Each edge is either on the hull of the CS obstacle or
it is a line segment that extends between a point and an obstacle or between obstacles. Such a line segment is called a
supporting line, and it is tangent to the obstacle(s). The set of points where the supporting lines of a point A meets the
obstacle surface is denoted the ’horizon’ of A. This means that the shortest path from point A to point B around some
obstacle will follow a supporting line to the horizon of A, the continue by following the obstacle surface to the horizon
of B, and then follow a supporting line to B. The part of the path on the obstacle is a geodesic. A geodesic is a locally
length-minimizing curve on a surface, and geodesics preserve their direction on this surface [22]. A locally shortest
path also preserves direction at the horizon. This has the effect that any candidates for a shortest path are uniquely
determined by their initial direction, and it is a locally shortest path if it intersects the target position. The direction
preserving property is not limited to the geodesic but apply to the full path. The shortest path will be located on the
surface formed by the CS obstacle and all supporting lines through A to B, that is, the convex hull of A, B and the CS
obstacle. In this dual problem the shortest path is a geodesic since it is on a surface, and hence preserves direction.
While we can consider the full path to be a geodesic, we use this term only for the path segment on the CS obstacle.
We use the terms supporting line or tangent to describe the path segment connecting the obstacle to A and B.

2. Method

Figure 1 shows the basic steps for finding the shortest path around an obstacle. We start by constructing the CS
obstacle in Figure 1(b) from the convex hull of the work space (WS) obstacle in Figure 1(a). The actual construction
of this CS obstacle is discussed in Section 2.1. Due to the way it is constructed, the CS obstacle will be continuously

2
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(a) WS obstacle and shortest path (b) CS from patches

(c) Horizons from VPs (d) Traces

Figure 1. Determining the shortest path.

differentiable and consist of patches of spheres, cylinders, and facets. Those patches are outlined in yellow and red in
Figure 1(b).

The shortest path between two points in CS consists of three parts; 1) a supporting line from the initial point to
the horizon of the initial point on obstacle surface, 2) a number of geodesics on the surface of the CS obstacle, and
3) another supporting line from the horizon of the target point to the target point. In Section 2.2 it is shown how to
find the horizon of a point. A horizon is a closed path composed of small-circle segments on sphere patches, and line
segments on the cylinder patches. Figure 1(c) shows the two horizons in blue, and the green path is composed of a
supporting line from the helicopter (initial point) to the blue horizon on the far side of the CS obstacle, then a geodesic
on the surface of the CS obstacle, and finally a supporting line from the horizon on the near side of the CS obstacle to
the target point (the grey sphere). Note that two horizons intersect if and only if the shortest path is trivial, that is the
initial and target points are in line-of-sight.

Because the surface is continuously differentiable the supporting lines are tangents to the surface, and therefore
the supporting line fully describes the initial state (point and direction) for the part of path that is on the surface of
the CS obstacle. Thus, we know the initial state for the first of the geodesics of the path. In Section 2.3 we define the

3
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parametric equations used to describe the geodesic for each type of patch, and the initial state is enough to uniquely
define the segment of the geodesic that is on the patch. A parametric equation for a particular type of patch is only
valid inside the patch, and therefore we must be able to determine when the geodesic intersects the edges of a patch
to proceed to a neighboring patch. The final state of one patch is used as initial state for the geodesic on the next
patch. To initially find a good approximation to the shortest path, we trace in a number of different directions from
the initial point, and compare the length to the target point for each direction. Figure 1(d) shows such traces. If a trace
intersects the target horizon before becoming too long, it is near a shortest path. In such case convex optimization
(such as steepest descend) can be used to find the locally shortest path. This is discussed in Section 2.4.

2.1. Configuration Space

The space of all allowed states of the vehicle is denoted the configuration space or CS. In this work vehicle states
are spatial position, and thus the CS is three dimensional and is constrained by a CS obstacle that originates in a
WS obstacle. The CS obstacle is the Minkowski sum of the vehicle bounding sphere and the convex hull of the WS
obstacle polyhedron. Conceptually, this Minkowski sum can be obtained by replacing vertices of the WS convex
hull with spheres, replacing edges with cylinders, and replacing facets with translated facets (translated along their
normal). The radius of the spheres and cylinders, and amount of translation is equal to the vehicle bounding sphere
radius. The resulting surface has G1 continuity and an example of a CS obstacle constructed in this way from a WS
obstacle is shown in Figure 2.

(a) Spheres at vertices (b) Cylinders at edges (c) Facets are translated (d) Complete CS obstacle

Figure 2. A CS obstacle is effectively constructed from patches of spheres, cylinders, and facets.

More accurately, the surface of a CS obstacle is composed of patches of the primitive surfaces spheres, cylinders,
and planes. The patches are the ’visible’ parts of these primitives. Each of these patches is a simple, convex, closed
polygon on a primitive surface. The edges of the polygon are formed by geodesic segments between N counter-
clockwise ordered vertices v0 to vN . The last vertex vN is assumed to be the same as the first, i.e. the polygon is
closed. Any two neighboring patches of the CS obstacle intersect at one common polygon edge. Since each patch
P is convex the geodesic between any two vertices in P lies entirely in P. For curved patches, the angular span of
any geodesic in P is less than π. Each vertex of a patch is shared by two cylinder patches, one sphere patch and one
planar patch. It follows that spherical patches only have cylindrical patches as neighbors. Cylindrical patches have
two opposing sphere patches and two opposing facet patches as neighbors. Planar patches (also called facets) have
only neighboring cylindrical patches. All sphere patches combined comprise exactly one full sphere. Each vertex in
a sphere patch polygon is obtained by translating the same WS vertex along the neighboring facet normals, so the
sphere patch has the same number of vertices as number of neighboring WS facets. The four vertices in the cylinder
patch are obtained by translating the endpoints of a WS edge along the two neighboring facet normals. The vertices
in the facet are obtained by translating the WS facet along its normal.

2.2. Horizon

The shortest path from a point in CS (which we will call a view point) around a CS obstacle necessarily ‘arrives’
at the obstacle in a point where the (supporting) line from the view point to the obstacle is tangent to the obstacle.

4
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The entire set of points on the CS obstacle where this is the case is called the horizon, and it is dependent on the view
point location and shape of the obstacle.

Definition 1 (View point). A view point is a point

w =


wx

wy

wz

 .

in configuration space such that w is not inside any of the CS obstacles. It may be on the surface of a CS obstacle.

Definition 2 (Horizon). For a differentiable manifold S and a view point w we define the horizon on the manifold as
the set {

x ∈ S | w ∈ TxS
}
,

where Tx is the tangent space to x for S . That is, the set of points x on S whose tangent space intersect w.

Definition 3 (Supporting line). A line segment extending from a view point w to a point on a horizon (on a CS
obstacle) associated with w is called a supporting line.

The surface of an obstacle is composed of patches of primitives, but only primitives with a curved surface can
have a horizon. These are the sphere and cylinder primitives. There are no horizons on a facet primitive. Although, it
is possible to find an intersection tangent space if the view point is in the same plane as the facet, such cases will also
intersect a cylinder patch. Two horizons belonging to two different view points intersect if and only if the view points
have mutual line-of-sight.

Definition 4 (Horizon map). The closed horizon path h(s) : [0; 1) 7→ R3 is defined as the map from the normalized
horizon parameter s to points on the horizon, and it is composed of N local horizon segments called hi(s), where
i = 0, . . . ,N − 1.

These segments are alternating sphere patch segments hs(s) and cylinder patch segments hc(s). That is, the para-
metric equation for the closed horizon path is

hi(s) =


Mihsi(sS N − S i−1) + Oi (i even)
Mihci(sS N − S i−1) + Oi (i odd) ,

(1)

where S i denotes the combined length of segments 0 through i. Then h(s) is equal to hi(s) whenever index i fulfills
S i−1 ≤ sS N < S i. Since h is defined in coordinates local to each primitive surface (in the following subsections) an
orthonormal rotation matrix Mi and a translation vector Oi transforms the local horizon segment to the world frame.
The formula for S i is

S i =

i∑

j=0

∫ s j,end

s j,start

‖h′j(s)‖ds

where the prime on h means derivative with respect to s. Note that the integrals can be computed quite easily since
each hs is simply a part of a circle and each hc is straight line.

The parametric equations horizon segments for cylinder patches hc(s) and sphere patches hs(s) are treated in the
following two sections.

2.2.1. Horizon on cylinder
On a cylinder primitive the horizon is composed of two straight line-segments on the surface of the cylinder

primitive along its height. These line-segments are calculated relative to a right hand reference frame. This frame
is centered at the base of the cylinder with the z axis coinciding with the center axis of the cylinder. Its y axis is

5
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perpendicular to the plane containing the z axis and the view point. The parametric equation for the two horizon
segments hc(s) is given as

Θ = arctan

√
dw − r2

r
(2)

hc(sc) =


r cos (±Θ)
r sin (±Θ)

sc

 , (3)

for sc ∈ [0, dh), where r is the vehicle radius, dh the height of the cylinder along its axis, and dw is the shortest distance
between z axis and the view point. None, either, or both horizon segments may be inside the patch. If either value of
±Θ is inside the limitations of the patch, it represents a horizon that continues on both neighboring sphere patches.

2.2.2. Horizon on sphere
On a sphere primitive, the horizon is a small circle. Its radius is determined by distance to view point. This circle

is calculated relative to a reference frame centered at the center of the sphere ps with the z axis pointing towards the
view point w. The parametric equation for a horizon circle hs(s) on the primitive is given as

dr =
r

|ps − w| (4)

hs(ss) = r



cos ss
√

1 − d2
r

sin ss
√

1 − d2
r

dr

 , (5)

for ss ∈ [0; 2π). Only those parts of the horizon circle that are inside the sphere patch are part of the CS obstacle
horizon. This means that a sphere patch will have at most Nc horizon arcs, with Nc being the number of neighboring
cylinder patches. Each arc is then defined by non-overlapping pairs of {sstart, send} ∈ [0; 2π). These are identified by
transforming cylinder horizon endpoints {hc(sstart),hc(send)} to the sphere horizon frame.

2.3. Geodesics

A geodesic is a locally length-minimizing curve that preserves a direction on a surface. It can be uniquely defined
by a position and direction at some point on it. In the following work, we will need to distinguish between a geodesic
local to a patch (we call this a geodesic) and a geodesic spanning multiple patches (we call this a geodesic path).
Our geodesic paths are defined by the view point and horizon point. The vector from a view point to a point on
its horizon, given by the horizon parameter s, gives the starting point and direction of the geodesic path. Since the
obstacle surface is composed of patches, this geodesic path becomes a piecewise function where the equation and
domain for each piece (geodesic) must be known.

Definition 5 (Geodesic path). A geodesic path is a parametric function g(t) : R 7→ R3 that is a piecewise function
composed of N successive geodesics gi(t) indexed by i = 0, . . . ,N.

A geodesic path is uniquely given by a point and a direction on surface of a CS obstacle, or, equivalently, by a
vector tangent to the CS obstacle. Such a vector is called a geodesic path tangent. Using this concept we can now also
define all possible geodesics associated with a view point.

Definition 6 (Geodesic set). For a CS obstacle and a view point w let hw(s) be the corresponding horizon. Then the
geodesic set for w is the set of geodesic paths given by the set of supporting of lines for hw(s). If w is on the surface
the geodesic set is the set of all geodesic paths starting at w.

With the horizon and geodesic paths defined we can now also give a formal definition of the trace.

Definition 7 (Trace). For a given CS obstacle and initial and target view points, winit and wtar, a trace is the piecewise,
connected curve consisting of

6
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1. the supporting line from winit to a point hinit(s) on the initial horizon,

2. the geodesic path g(t) defined by hinit(s) and the direction given by the supporting line,

3. the supporting line from the intersection between g(t) and the target horizon htar to wtar.

A trace is continuously differentiable except possibly at the intersection point on the target horizon. Any trace that
represent a locally shortest path will be continuously differentiable everywhere. A geodesic path continues through a
number of patches, and might or might not reach the target horizon. Its length is given by a geodesic parameter, and
since we are specifically interested in length in this work, the geodesic parameter is an important parameter (it will be
used to compute the length of the geodesic path and subsequently in practice for terminating unsuccessful traces).

Definition 8 (Geodesic parameter). The parameter ti ∈ (0, ti,end] is defined for each gi(t) such that distance traveled
Ti by g(t) after i segments is

Ti =

i∑

j=0

∫ t j,end

0
‖g′j(t)‖dt . (6)

Consequently, the point reached after traveling a distance t is

g(t) = Migi(t − Ti−1) + Oi , (7)

where i is the index for which Ti−1 ≤ t < Ti. The parametric equations in gi(t) each describe the path on a sphere,
facet, or cylinder patch. They are calculated for a unit bounding vehicle radius, and can be scaled accordingly. The
rotation matrix Mi and point Oi of each patch, transforms the geodesic path to the world frame. Below we describe
how these equations are identified in their respective patch frames and propose methods for finding the length tend of
each geodesic.

Since a geodesic preserves direction on the surface and our surfaces are differentiable, both gi−1(ti−1,end) = gi(0)
and g′i−1(ti−1,end) = g′i(0) are fulfilled at the transition point between patches. This condition is used for determining
the parameters of the individual parametric equations in g(t), and it is done by finding the entry point ep and entry
direction ed

ep =


ep,x

ep,y

ep,z

 , ed =


ed,x

ed,y

ed,z



local to a given patch based on the geodesic of the previous patch. Figure 3 shows an example for a WS tetrahedron.
Both the two horizons (shown in blue) and the shortest path (shown in green/red/orange) are shown in all 6 sub-figures.
This geodesic path consists of four geodesic segments on the CS obstacle and two supporting lines. Figure 3(a) shows
the CS obstacle drawn with all the patches. The primitive belonging to each of the four segment of the geodesic
is shown in Figure 3(b) through Figure 3(e). The facets of the primitives are outlined by edges between numbered
vertices. The figures also show the local frame of each path segment, and the WS obstacle where possible. Figure 3(f)
shows paths for six different traces.

Because all patches are convex, the geodesic path between any two points inside a patch stays inside the patch.
Any geodesic of a sphere patch is a great arc. For a cylinder patch it is a helix, and for a facet it is a line segment. This
makes it relatively easy to find the shortest path between two points on the same patch. For points on neighboring
patches we must cross the edge that separates these patches. Edges are line or arc segments located between two
different types of patches. Line segments are located between facet and cylinder patches, and arc segments are located
between cylinder and sphere patches. The endpoints of these segments represent the meeting point of two cylinder
patches, a facet patch, and a sphere patch.

2.3.1. Geodesic on Cylinder
When ’unrolling’ a cylinder to a planar surface the geodesic between two points becomes a straight line. When

rolling the surface back up this geodesic becomes a helix. Figure 3(b) and 3(d) shows examples of these helices. The
parametric equation for a helix starting at point ep and with unit direction vector ed also depends on the cylinder axis.
The cylinder patch has four vertices enumerated in counter clockwise order when viewed from outside the cylinder.

7
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(a) The shortest trace starts at the small grey sphere to the right (the
initial view point) and reaches the surface at the horizon shown in blue.
The four patches for the geodesic path are shown in Fig (b), (c), (d),
and (e).

(b) The cylinder primitive that contains the first part of the geodesic
(orange). The patch is outlined by the four numbered black vertices.
The local reference frame of the patch is also shown.

(c) The facet patch containing the second part of the geodesic path (yel-
low). The patch is outlined by the three numbered black vertices.

(d) The cylinder patch containing the third part of the geodesic path
(orange).

(e) The sphere patch containing the fourth part of the geodesic path
(red). Note that this figure has a somewhat different view angle than the
four preceding figures.

(f) Six different traces are shown. The locally shortest traces will sub-
sequently be found using numerical minimization. The shortest of those
is the globally shortest.

Figure 3. Example of shortest path consisting of 4 geodesics and 2 supporting lines.

8
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We let v0 and v1 be at the base of the cylinder patch (i.e. v0 and v1 are in the xy plane) . We now let nc (in the world
frame) be parallel to the local z axis and use this to defined a rotation matrix M for the cylinder patch that rotates
vectors from the cylinder frame to a frame with axis aligned with the world frame. The right hand cylinder frame with
z axis aligned with the cylinder axis is

nc =v0 × v1

Mc =
(
v0, n̂c × v0, n̂c

)
.

The parametric equation for the position gc(t) in the cylinder local frame is

gc(t) =


cos(δt + θ)
sin(δt + θ)

tα + z

 , (8)

for a helix that rises 2πα per turn. The matrix Mc is then used to rotate this position to the world frame orientation
as shown in (7). The angular offset θ and z are relative to ep, and δ ∈ {−1, 0, 1} determines the direction of rotation.
The case of δ = 0 happens when moving parallel to cylinder axis. These constants are all obtainable by solving the
parametric equations at t = 0, where gc(0) = ep and gc

′(0) = ed. It can be shown that these constants are

α =
ed,z√

ed,x
2 + e2

d,y

(9)

θ = atan2(ep,y, ep,x) (10)
z = ep,z (11)

δ =



ed,y/ep,x ep,x , 0
−ed,x/ep,y ep,y , 0, ep,x = 0
0 ep,x = 0, ep,x = 0 .

(12)

Edge and Horizon Crossover. We may leave the cylinder patch through one of its four edges or through one of two
horizon segments. To identify values of t in (8) where an edge or horizon is crossed, we distinguish between three
cases:

(A) Crossing to the neighboring sphere patches at the top or bottom edge. This then happens at
ts = ({0, |v2 − v1|} − z)/α.

(B) Crossing to the neighboring facet patches at the left or right edge. This then happens at
tc = δ ({0, arccos(v1 · v2)} − θ).

(C) Crossing a horizon. This then happens at (where Θ is the horizon angle relative to the view point defined in (2))
th = δ (atan2(wy,wx) − θ ± Θ).

The edge resulting in the lowest positive t value is the one first intersected

tend = min {te = {ts, tc, th}|te > 0} .
The exit position and direction is then given by gc(tend) and gc

′(tend).

2.3.2. Geodesic on Facet
The geodesic between two points on the facet is a straight line segment. Figure 3(c) shows such a line-segment on

a facet patch. The parametric equation for this geodesic can be found from the entry point ep and entry unit direction
vector ed

gf(t) = ep + t ed .

Obviously, the velocity vector at any point along the geodesic, including the exit point, equals the velocity vector at
entry.

9
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Edge Crossover. When leaving the facet an edge will be crossed that leads to a neighboring cylinder patch. Identifying
which edge is being crossed, and where, is essentially a problem of identifying the intersection between two lines in
R2. We use the ’perp dot’ product of Hill [23] to find values of t where the geodesic path intersects each the edges of
the polygon. When disregarding singularities where the ray and an edge of the polygon are parallel (the denominator
becomes zero), the value of the interpolation parameter at the intersection point can be expressed as

tend = min
{

ti =
(vi+1 − vi) ⊥ · (vi − ep)

(vi+1 − vi) ⊥ · ed

∣∣∣∣∣ i = 0, . . . ,N − 1 ∧ ti > 0
}
,

where all points are transformed to the same plane and calculated in R2.

2.3.3. Geodesic on Sphere
A geodesic on a sphere is a great arc. Figure 3(e) shows this geodesic between an edge of the sphere patch and

horizon. A geodesic gs(t) is parameterized by the arc length t from a starting point ep on a unit sphere where the path
has initial direction ed at unit velocity

gs(t) = cos(t)ep + sin(t)ed , t ∈ [0, π) . (13)

Edge Crossover. We must also determine where the geodesic gs(t) leaves the sphere patch, that is, which edge segment
of the patch is intersected and its intersection point. The geodesic path and all arc edges of the spherical polygon lay
on great circles of the same sphere and all arcs edges have an angular span of less than π. There are N arc edges of a
spherical polygon with N vertices vi, indexed by i. If we extend these edges and consider intersection between their
great circles, the geodesic path will intersect multiple great circles. However, because of convexity of the spherical
polygon, the forward geodesic path can only intersect one edge (a segment of a great circle) inside the angular span
of its arc.

Therefore, to determine where a particular edge intersects the forward geodesic path we first find the intersection
between two great half-circles of en edge and the forward geodesic path. We do this by finding the intersection of
two half-planes that each contains two great half-circles. These half-planes must intersect each other at a unique ray
starting at the center of the sphere. Such a unique intersection always exists for a pair of different half-planes, and the
cross product between the normals of the half-planes can be used to find a vector that represents this ray

ri = (ep × ed) × (vi × vi+1) , (14)

for a particular edge i. When disregarding cases where the half planes are equal (ri is the zero-vector), the arc distance
at the intersection point can be expressed as

tend = min
{

ti = arccos
(

ri

|ri| · ep

) ∣∣∣∣∣ i = 0, . . . ,N − 1 ∧ ti > 0
}
. (15)

Horizon Crossover. For some t ∈ (0, tend), the geodesic path might intersect the target horizon, at which point the
geodesic path is complete. A (locally) shortest path has been found if and only if gs

′(t) intersect the view point of the
target horizon. In this case, the geodesic path intersects the horizon at a right angle. That is, the two planes containing
the geodesic path and horizon must have perpendicular normals.

We seek the angle t in (13) where intersection between geodesic path and horizon occurs. We do this by combining
(5) with the plane equation that contains the geodesic path to get the intersection point relative to the frame containing
the horizon. This point is then rotated to the frame of the geodesic with a rotation matrix Mhs and the arc distance tend
is obtained as

tend = arccos
(
ep ·Mhsx

)
(16)

where

np =


np,x

np,y

np,z

 = ep × ed and x =
1

1 − n2
p,z



np,y

√
1 − n2

p,z − d2
r − drnp,znp,x

−np,x

√
1 − n2

p,z − d2
r − drnp,znp,y

dr(1 − n2
p,z)



and dr is given by (4).
10
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2.4. Finding the shortest path

Now the parts that go into finding the shortest path have been defined. These are the initial and target points,
the two supporting lines, two horizons, and a path on the surface of the CS obstacle. This path in turn consists of a
number of geodesics, which is why it is called geodesic path. All candidates for a shortest path will consist of these
components and is defined solely by the horizon parameter s that parameterize the initial horizon defined by (1). For
any point s ∈ [0; 1) on this close curve there is a unique trace (set of an initial supporting line, a geodesic path, and
a target support line). Thus the distance from the initial point to the target point around the CS obstacle is a function
L(s) of the horizon parameter. This function may be infinite in the cases where the geodesic path on the surface of the
obstacle continues indefinitely without ever intersecting the target horizon. Otherwise, this function is the distance
from the initial point to the initial horizon plus the geodesic distance (in the direction given by the supporting line)
along the surface to the target horizon plus the distance from the intersection point between geodesic path and target
horizon to the target point. Mathematically, this is given as

L(s) =
∣∣∣winit − hinit(s)

∣∣∣ + TN(s) +
∣∣∣wtar − g(tend)

∣∣∣ , (17)

where TN is the length of the geodesic path, winit and wtar are the initial and target view points, hinit is the initial
horizon, and g is the geodesic path (making g(tend) the point where the geodesic path intersects the target horizon).

One method of finding the globally shortest path is to go through the horizon parameter range computing the
distance and picking the smallest value. However, for this approach the initial horizon must be discretized and this
introduces the question of the how dense the discrete points must be in order to ensure that this approach will provide
the (close to) globally shortest path. Also, this approach can be computationally quite expensive even though for the
individual paths do not require much computation to find the distance. We will therefore present a somewhat more
subtle method for finding the globally shortest path.

2.4.1. Number of locally shortest paths
An important question is how many locally shortest paths exist around a given obstacle. To address this question

we initially consider the geodesic paths between two points p and q on a polyhedron. Here we can ’unfold’ the
polyhedron to a planar surface by aligning neighboring faces in the same plane and then draw a line between p and q.
If this line is inside the surface at all times it will be a representation of the geodesic path, which will in fact be the
only candidate for the locally shortest for that particular sequence of polyhedron faces. We may obtain a number of
different geodesic paths, depending on how the surface is unfolded. This number is bounded by Γ(N), where N is the
number of faces on the polyhedron. Often the actual number is much lower, since faces must be neighboring to allow
unfolding.

If we initially disregard sphere patches, a similar unfolding can be done with the cylinder and facet patches.
As before, we obtain different geodesic paths between p and q by traversing different sequences of patches (again
assuming that the straight line from p to q stays within the unfolded surface). And as before, any two geodesic
paths from an initial point p that traverse the same sequence of cylinder and facet patches diverge from the common
intersection point p. There can be at most one path that intersects both p and q. But when including sphere patches,
numerous geodesic paths may exist that traverse the same sequence of patches (now of any type) and converge towards
common intersection points p, since any two geodesics on a sphere patch start to converge towards an intersection
point after they have traveled a total angular span of at least π. This is also true for geodesics that do not share the
same sequence of patches. Consequently, we cannot use the previous upper bound on the number of locally shortest
paths. To develop an alternative we will need the concept of a full geodesic path.

Definition 9 (Full geodesic path). Let g(t) be a geodesic path starting (t = 0) at some point p. Then g(t) is said to be
full if it is defined for 0 ≤ t ≤ t0, where t0 is given such that

∫ t0

0

|g′(t) × g′′(t)|
|g′(t)| dt = π .

That is, the total curvature of the path equals π.

Definition 10 (Full geodesic set). A geodesic set consisting of only full geodesic paths is called a full geodesic set.
11
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We know that any locally shortest path is part of a full geodesic path, and due to the smoothness of the CS obstacle
we can also expect that there is a well-behaved correspondence between the length of the trace and the horizon
parameter around any locally shortest path. That is, L(s) is a function that needs only to be sampled in relatively few
places to determine its local minima. This is because small changes in the initial condition of the geodesic path will
have limited effect for the entire geodesic path, and as a consequence it seems reasonable to assume that finding the
locally shortest traces can be achieved through a rather sparse sampling of the horizon parameter. We will attempt in
the following to show the plausibility of this statement.

2.4.2. Envelope of geodesic paths
Observe first an example of a simple CS obstacle consisting of a few spheres, cylinders, and facets, shown in

Figure 4. It is the same example as the CS obstacle in Figure 3. But rather than showing a few traces Figure 4 shows
numerous ’consecutive’ traces starting at the initial view point (hidden from view behind the obstacle) and reaching
the blue target horizon at different points from where they all continue along supporting lines (with various green
colors) to the target view point. It is obvious that the large sphere path that most of the traces follow (the part of the
traces that is on the sphere patch is shown in red) deflects the traces such that they start to converge, and a number of
the traces actually do intersect each other prior to reaching the target horizon. Such intersecting curves will in some
circumstances generate an envelope, and part of such an envelope is indeed ’hidden’ in the figure where the orange/red
curves are intersecting. In fact, for any CS obstacle and any view point there is exactly one such envelope generated
by the full geodesic set.

Figure 4. The traces start from the top right and continue around a large sphere patch towards the blue target horizon. At the horizon a greenish
segment connects the trace to the view point. Its shade of green is lighter for traces that are closer to optimal determined by the angle error (see
Section 2.4.3.

Theorem 1 (Geodesic envelope I). Let p be a radiant point on the CS obstacle. Let G =
{
gp

}
be the full geodesic set

for p. Then the envelope of G is either the empty set (in which case all gp end in a common intersection point) or it is
a (diacaustic) continuous, closed curve. This curve is called the geodesic envelope for p.

Proof. Let d1 and d2 be two vectors tangent to the CS obstacle and both starting in p, let θ be the angle between
d1 and d2, and let gp,1, gp,2 ∈ G be the two full geodesic paths associated with the two directions. Then there exist
δ independent of d1 and d2 such that for all θ < δ there is at least one intersection (besides in the radiant point

12
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gp(0)) between gp,1 and gp,2. This follows directly from the differentiability of the surface of the CS obstacle and the
convergence towards each other of any two members of G.

Since any two geodesic paths will start to converge only after having traveled a combined angular span of more
than π, it follows that since the total curvature of gp is at most π any two members of G will intersect at most once
(beside p). It follows that the envelope of G is closed and continuous.

The geodesic envelope is now defined for a point on the surface of the CS obstacle, but we are actually interested
in a radiant point which is some distance from the obstacle (i.e. a view point). However, moving the radiant point
away from the surface does not change the fundamental properties of the envelope.

Theorem 2 (Geodesic envelope II). Let w be a radiant view point, let O be a CS obstacle, and let hw(s) be the
corresponding horizon. Let G =

{
gw

}
be the full geodesic set for w. Then the envelope of G is either the empty set (in

which case all gp ends in a common intersection point) or it is a (diacaustic) continuous, closed curve.

Proof. For s1, s2 ∈ [0; 1) let d1 and d2 be two vectors tangent to the CS obstacle and starting in hw(s1) and hw(s2),
respectively. Let θ be the angle between d1 and d2. There exist ε independent of s1 and s2 such that when |s1 − s2| < ε
then there is at least one intersection between gw,1 and d2. To see this imagine the CS obstacle augmented with the
surface consisting of all supporting lines for w. This new object is continuously differentiable except in w. The result
now follows from Theorem 1.

The following theorem, if true, provides a rather low upper limit on the number of locally shortest traces. We have
not been able to prove it, but in the following section we will discuss the background for believing that it is true.

Theorem 3 (Limit on number of locally shortest traces). Let winit and wtar be initial and target view points, respec-
tively, and let O be a CS obstacle. Let E be the geodesic envelope for winit on O and let htar(u) be the target horizon.
Further, let u0 < u1 < . . . < uN be the parameters of htar for which this horizon intersects E. Then the number of
locally shortest traces is bounded by

H(uN , u0) +

N−1∑

n=0

H(un, un+1) ,

where H(un, un+1) is the number of horizon segments hi (see Definition 4) completely or partly in the span [un, un+1).

To justify this theorem we will in the next section introduce a simple method for determining whether a trace is
locally shortest.

2.4.3. Shortest path
Any locally shortest trace must have the property that the entire trace is continuously differentiable as a conse-

quence of geodesics being direction preserving. This is by definition ensured for all points except for the intersection
point between the trace and the target horizon. At this point there is a potentially non-zero angle between the trace
before and after the point. We define this angle as the angle error of the trace.

Definition 11 (Angle error). We define the angle error of a trace as an angle between geodesic velocity direction
d(tend) at target horizon and vector towards target view point pt at intersection point on target horizon h(s). For any
locally shortest path the angle error

ε = arccos
(
d(tend) · pt − h(s)

|pt − h(s)|
)

is zero and the derivative of the length L′(s) is also zero.

An example of angle errors can be seen in Figure 4. Here all the shown traces intersect the target horizon, and the
value of the angle error is shown by the darkness of the green color of the supporting lines. Lighter means smaller,
and darker means larger angle error.

A more complete view of the traces are shown in Figure 5. Figure 5(a) shows the length of all traces as a function
of the initial horizon parameter, and Figure 5(b) shows the corresponding angle error. A 3D view of the traces can
be seen in Figure 6. The apparent discontinuity seen in both plots when the horizon parameter is 0.9 happens at the
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transition between patch sequences. This discontinuity can happen when two subsequent trace intersects different
horizon segments because the horizon is non-convex. Figure 6 shows this in details at the blue region. In a practical
implementation the horizon sweep will also be discontinuous for traces that are ended because they do not reach
the target horizon within some expected distance (they are too long even before they reach the target horizon). The
difficulty of reaching the target horizon depends on the size of target horizon and the obstacle. For large obstacles and
a small target horizon, it can be necessary to use a higher sweeping resolution to find the optimum.

Since a limited change in horizon parameter within a neighborhood of a local optimum results a limited change in
both angle error and path length the problem of determining the horizon parameter at which a local optima occurs is
a strictly quasiconvex problem, which can be solved with convex optimization after identifying each convex region.
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(a) Length of trace for entire initial horizon. Blue parts are between
view points and horizons. Facets are yellow, cylinders are orange, and
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(b) Angle error for entire initial horizon. Notice how the local minima
in the trace length plot to he left corresponds to the zero angle errors.

Figure 5. Traces for CS obstacle in Figure 4.

3. Results

We show a few examples of shortest paths created for a small-scale helicopter flying between different positions,
denoted via points or VPs, and obstacles. The helicopter bounding sphere has a radius r of 1.70 meter. To give some
idea of how much time is required to find a path, each test case is repeated several times and the maximum required
time recorded 1.

3.1. Teapot

Figure 7 shows trace results for the example in Figure 1 that has a high number of patches. Most traces newer
reach the target horizon. To reduce computations, a trace is terminated when its length is longer than a previous trace
or rπ, that is, half the circumference of a great arc of the obstacle bounding sphere. The trace shows that there are
three geodesics candidates for optimum. The geodesic of the shortest path is found close to the starting point. The
shortest path between the two VPs took less than 160 milliseconds in repeated tests at a trace resolution of 1440 prior
to minimization. They were found in less than 7 milliseconds when estimating trace resolution.

1All tests were done on a single core of a 2.2GHz Intel Core 2 Duo laptop
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Figure 6. Dense tracing for the obstacle in Figure 3(f). The six locally shortest paths can be clearly seen from the lighter green traces. At the blue
region the horizon parameter is 0.9.

(a) Length of trace path for different sweep angles. Blue parts are be-
tween view point and horizon. Facets are yellow, cylinders are orange,
and spheres are red. The top of the teapot can be recognized around
0.1 on the x-axis and the bottom at 0.6. The large red patch at 0.3 is
the spout. The handle can be seen at 0.8.
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(b) Angle error for different sweep angles. All geodesics must have
zero angle error

Figure 7. Trace results for example in Figure 1.
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3.2. Multiple obstacles
The presented method is only described here for single obstacles. A piecewise optimal path can found between

several obstacles, if an estimated shortest path exists. The problem is solved by adding intermediate VPs between
obstacles, and solving the path planning problem for consecutive VPs, see Figure 8. A good estimation on where
to place these can be obtained by initially finding an approximated shortest path, using the method from [11]. This
path consists of connected line segments, and intermediate VPs are placed midway on segments with endpoints on
different obstacles. This approach will only gives estimation on the globally optimal path, since optimality can only
be achieved between subsequent VPs. The shortest path between the four successive VPs took in repeated tests less
than 60 milliseconds at a trace resolution of 1440 prior to minimization. They were found in less than 5 milliseconds
when estimating trace resolution.

Figure 8. Obtaining the shortest path between the two end points using the described method is made difficult by the fact that there are four
obstacles, although none intersect in CS.

3.3. Flying around building
A test case is created where a helicopter must fly between the five via points that are placed in a star shaped pattern.

The setup is taken from [24]. The paths must be planned such that the helicopter avoids a building, centered between
the via points. The setup and resulting paths can be seen in Figure 9. The full path between all VPs is found by
solving the five path planning problems for connected VPs. Five shortest paths between five successive VPs around a
building were in repeated tests found in less than 500 milliseconds at a trace resolution of 1440 prior to minimization.
They were found in less than 50 milliseconds when estimating trace resolution. The approach in [24] spends 600
milliseconds obtaining a visibility graph that must subsequently be searched to obtain an approximated path.

3.4. Wind turbine
We use the test case from [25] with three additional VPs, where a helicopter must fly near the wind turbine between

VPs as seen in Figure 10. Since the method as presented can only handle one obstacle at a time, it can be problematic
to apply it to a compound model such as the V52. One approach is to build a single WS obstacle from the convex
hull of the compound model. However, this would cause some VPs to not be connected in CS. Instead, we use the
approximated path from [25] to add intermediate via points on the approximated path between, such that each part of
the geodesic path is only located on a single obstacle. This approach means that the optimal path will only be optimal
to, and between, the intermediate via points. Nine shortest paths between nine successive VPs near a Vestas V52
wind turbine were in repeated tests found in less than 600 milliseconds. A trace resolution of 1440 was used prior to
minimization.

4. Discussion

In this paper we solve the shortest path planning problem for a sphere moving amongst a single polyhedron in
work space. Finding such a shortest path is difficult, since a vehicle traveling along this path does not traverse only
vertices of the WS polyhedron, as in the 2D case, but also points on its edges.

16



/ Robots and Autonomous Systems 00 (2012) 1–19 17

Figure 9. Shortest paths for a small-scale helicopter flying around a building between five VPs.
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Figure 10. Shortest paths for a small-scale helicopter flying near a Vestas V52 wind turbine between nine VPs.

The CS obstacle from the Minkowski sum of a WS obstacle and a spherical vehicle will consist of patches of
spheres, cylinders and facets, and have a continuously differentiable surface. As results, the shortest path must also
be continuously differentiable, and consist of combination of tangents and geodesics. The tangents will connect the
initial and target point to the obstacle at the horizons of these points. The geodesic must connect the horizons to
complete the path, in such way that it is continuously differentiable. The problem now becomes that of finding a point
on one horizon, such that the full path will be continuously differentiable and shortest.

We present a problem formulation that makes this problem strictly quasiconvex inside some subsets. To initially
find a good approximation to the shortest path, we sample (or trace) geodesics in different directions and compare
length. For a sufficiently high sampling resolution the subset containing the optimal path will be found. We sub-
sequently use convex optimization to find the shortest path inside this subset. The presented approach is capable of
finding paths for several examples. This includes examples with several obstacles, although a suboptimal path is found
in such cases, since optimally can currently only be assured between single obstacles.

Our method works well in combination with approximation based methods that gives a continuous, but not con-
tinuously differentiable path. Often, such a path can be split into several pieces, where each covers no more than one
obstacle, and our method applied between these split points to give a piecewise optimal continuously differentiable
path.

5. Future Works

The method presented has not been implemented for multiple convex obstacles. While multiple obstacles would
increase the complexity, the method scales very well to more obstacles. When tracing a geodesic path there will be
at most two options per additional obstacle to continue on that instead of the current. This is because a geodesic path
can have at most two supporting lines to another obstacle that are tangents to a helices or arcs. This means that when
traveling on a geodesic path, an additional trace should be made just as an obstacle would appear on the horizon. If the
obstacles intersect in CS, the current geodesic could be blocked, and the new trace would be the only way to continue.
In other cases a new additional trace should be made just at the other obstacle leaves the horizon.

The method presented here could be used on polyhedron CS obstacles as well. Such obstacles would only consist
of planar patches and the horizon would coincide with edges on the obstacle. Consequently, obtaining shortest paths
would require a less complex approach, where multiple obstacles could more easily be supported. However resulting
paths would not be continuous differential.
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Collision Free Path Generation in 3D with Turning

and Pitch Radius Constraints for Aerial Vehicles

Flemming Schøler∗, Anders la Cour-Harbo†, and Morten Bisgaard‡

Aalborg University, Department of Electronic Systems, Section of Automation and Control, Denmark

In this paper we consider the problem of trajectory generation in 3D for uninhabited
aerial systems (UAS). The proposed algorithm for trajectory generation allows us to find a
feasible collision-free 3D trajectory through a number of waypoints in an environment con-
taining obstacles. Our approach assumes that most of the aircraft structural and dynamic
limitations can be formulated as a turn radius constraint and that any two consecutive
waypoints have line-of-sight. The generated trajectories are collision free and also satisfy
a constraint on the minimum admissible turning radius, while allowing faster flight if ap-
propriate. The work has been carried out with reference to the Bergen Industrial Twin
helicopter and the 3D path planner from the Autonomous Vehicle Group at Aalborg Uni-
versity. Simulation results for the trajectory generation are presented, which are obtained
using a detailed model of the Bergen Industrial Twin helicopter.

Nomenclature

W c Current waypoint
W p Previous waypoint
Wn Next waypoint
Pa Approach path
Pd Departure path
Ow Waypoint arc location
Oa Approach arc location
Od Departure arc location
R Turn and pitch radius
Aw Waypoint arc
Aa Approach arc
Ad Departure arc
Subscript
W Vector is located in R3

P Vector is located in waypoint plane frame
x X-component of vector
y Y-component of vector
z Z-component of vector

I. Introduction

UAS have become a preferred, indispensable, and increasingly used platform for many applications where
manned operation is considered unnecessary, repetitive, or too dangerous.1,2 Trajectory generation is a
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fundamental area for UAS development in general3 and is usually used to find a path through an environment
under a set of constraints. However, such paths usually consist of a number of waypoints, which are connected
by line-segments. This makes the paths difficult to follow considering the structural and dynamic capabilities
of many UAS. Instead, the waypoints should be interconnected through a feasible and collision-free trajectory.

Efforts have been made to use Dubins ideas4 for trajectory generation in 2D5,6 and 3D,7 where the
generated continuously differentiable trajectory satisfy initial and final conditions to position and heading
angle, and it is assumed that the UAS has constant turn radius. However, these approaches does not
account for trajectories being obstructed by obstacles, which makes the methods less suitable for flight in
environments with many obstacles.

This paper describes an algorithm for generating a collision-free 3D trajectory under the assumption that
most of the aircraft structural and dynamic limitations can be translated to a constant turn and pitch radius
constraint. It is also assumed that any two consecutive waypoints are within line-of-sight and have enough
spacing to allow the vehicle to return to this line before proceeding to make another turn.

A full state linear-quadratic feedback controller is used for trajectory tracking. It uses a guidance law
similar to the line-of-sight guidance algorithm,8 which relies on ’good helmsman’ behaviour to asymptotically
track the trajectory. This method performs well in simulation using a detailed model of the Bergen Industrial
Twin helicopter.9 The helicopter model is simplified to include 8 rigid body states; helicopter position and
yaw angle, and helicopter velocities and angular rate of yaw angle.

A. Background

The 3D path planner developed at AAU10 generates a configuration space based on triangulation of the
Minkowski addition of the UAS bounding sphere radius and the hull of work space obstacles, making it
possible to operate with obstacles of any shape. In Figure 1 a cross section of a configuration space is shown.
For one obstacle, it is shown how the bounding sphere radius expands the cross section of workspace obstacle
into that of a configuration space obstacle. The actual workspace obstacle is slightly larger in order to reduce
size of obstacle description.

zW yW

xW

zP

xP

yP

W p

W c

W n

Figure 1. Cross section of three configuration space obstacles, with workspace shown for one obstacle. Three
waypoints located in cross section are drawn in line-of-sight.

A visibility graph is constructed from this configuration space in which the shortest path can be con-
structed as a series of connected waypoints in line-of-sight. We aim at finding the shortest path, since this
approach is model independent, but other criteria for optimization are supported by the search algorithm.
Since the visibility graph is constructed in 3D, it is based on approximation through a finite number of
points located on surfaces of the configuration space obstacles. Thus, the line-of-sight trajectory is only
locally shortest among the vertices in the visibility graph and not globally shortest as it would be in the 2D
case.

The implementation of the path planner generates a path based on the convex hull. As a consequence,
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if non-convex regions of the configuration space should potentially be included in a solution, non-convex
obstacle must be described as several convex obstacles.

II. Method

A continuous but non-differential path is difficult for a UAS to track closely, since it would require instan-
taneous changes in velocity at waypoints where the path changes direction. A path will well approximate a
smooth curve by having a rather large bounding sphere radius, since configuration space obstacles will then
have rather small angles between any two adjacent surfaces. In an effort to generate an efficient path this
is not considered here. Instead, a differentiable curve is found for each separate waypoint, according to the
flight approach path Pa and departure path Pd at the waypoint, see Equation 1 and 2. While this reduces
the trajectory generation problem to two dimensions, it also results in an O(n) complex algorithm, with n
being the number of waypoints.

Pa = Wc −Wp (1)

Pd = Wn −Wc (2)

In Section A we first describe how a plane is aligned with the approach and departure path vectors at
the waypoint of interest. In Section B, we then describe a method that tries to place an arc that intersects
the waypoint but also avoids obstacles in this plane. This arc intersects lines formed by Pa and Pd, and can
subsequently be connected to them to give a continuously differentiable curve, consisting of three arcs, as
described in Section C. To generate a complete position trajectory, the procedure is repeated for all waypoints
and curves at each waypoint is connected by line-segments, as described in Section D. In section E we show
how a full state trajectory is generated by determining velocities along the trajectory.

A. Waypoint Plane

When determining the location of the waypoint plane, which will contain the three connected arcs at each
waypoint, a transformation matrix must be found that maps R3 to this plane, as seen in the Figure 1. The
figure shows such a plane based on three waypoints where the location of the plane can be determined from
Wc, Pa, and Pd. The transformation matrix that maps the plane frame to R3 is given by the affine mapping
AW

P :

RW
P =

[
xP yP zP

]

AW
P =

[
RW

P tP

0 1

]

A top view of the plane can be seen in Figure 2. In general, a transformation matrix mapping from R3

to the plane frame AP
W can be found by inverting AW

P . The vectors xP , yP and zP in the rotation matrix
RW

P are unit vectors and mutually orthogonal. This means that the transformation matrix mapping from
R3 to the plane frame can be found transposing the rotation matrix and negating the translation vector tP :

AP
W =

[ (
RW

P

)T −tP

0 1

]
(3)

The transformation matrix used to transform vertices from R3 to the plane frame can be calculated from
the following properties, also shown in Figure 1:

• The plane normal is aligned with zP . This means that any point on the plane will have a zero z-
component in the plane frame.

• The vector yP is aligned with the vector towards the next way-point. This means that any point on
the vector towards the next way point will only be non-zero in its y-component in the plane frame.
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• The vector xP is normal to vectors yP and zP .

• The plane frame origin tP is at Wc.

These properties result in the following equations, which allows for mapping between R3 and the plane
frame.

zP = PdW × PaW

yP = PdW

xP = yP × zP

tP = WcW

Once the plane frame has been found, the location of the waypoint arc in the frame can be specified as a
two-dimensional vector.

B. Waypoint Arc

The waypoint arc (Aw) takes care of most of the turn, and its location can vary to accommodate for obstacles
in the vicinity. It is located in the waypoint plane and intersects Wc. Its location is bounded by Pa, Pd and
possible obstacles located within twice the pitch and turning radius. The waypoint arc is located on arc Cp

in Figure 2, which shows bounds set by Pa, Pd. Figure 3 shows two different cases of intersecting obstacles.
In one case the arc location is limited by a vertex and in the other case by an edge. Each case is treated
separately.

Pa

Pd

R

W p

W c

W n

Cp

Figure 2. Waypoint plane with cross section of obstacles and waypoints in line-of-sight. The circles have pitch
and turning radius R. The two circles through Wc mark the extreme locations of Aw on Cp when bounded by
Pa, Pd.

In the former case, candidates for the bounded locations Ov of Aw based on a vertex Pv can be found
from Equation 4. The scalar Dv is negative when the vertex is out of range.

Dv = R2 −
∥∥Wc − Pv

∥∥2

4
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W p

W c

W n

Cr

Pv

Ov Os

Bs

As

Figure 3. Waypoint plane with cross section of obstacles and waypoints in line-of-sight. The circles have pitch
and turning radius R. The two circles through Wc mark the extreme locations of Aw on Cp when bounded by
obstacles. The circle on the left intersects a vertex, while the right-most circle intersects a segment.

Ov =
Wc + Pv

2
±

√
Dv

[
Wcy −Bvy

Bvx −Wcx

]
(4)

In the latter case, candidates for the bounded locations Os of Aw based on segment end-points As and
Bs can be found by solving the second order equation in Equation 5. In cases where end-points have same
x-component, Os can be found by interchanging the x and y-components of all vectors in Equation 5 to 8.

0 =
(
αs

2 + 1
)
Osx

2
+

(
2αs

(
βs −Wcy

)2 − 2Wcx

)
Osx +

(
βs −Wcy

)2
+Wcx

2 −R2 (5)

Osy = Osx αs + βs (6)

Where:

αs =
Asy −Bsy

Asx −Bsx

(7)

βs =
AsxBsy −BsxAsy ±R‖As −Bs‖

Asx −Bsx

(8)

When multiple obstacles exist within the plane, the set of obstacles limiting Cr most is used. The exact
location of the arc Ow is found by choosing the midpoint on Cr between the two most limiting locations of
Ov or Os. This ensures that a vehicle following the path is as far from all obstacles as possible. If obstacles
are too restricting on Cr and the waypoint cannot be passed, a solution might be found by reducing R by
reducing speed, which might not be an option for all types of vehicles.

C. Approach and Departure Arc

In the general case, two additional arcs must be added to the waypoint plane to form a continuously dif-
ferentiable path, as seen in Figure 4. In the figure, a vehicle must follow the approach vector Pa from Wp
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towards Wc. When it reaches the approach arc Aa, it follows this until the waypoint arc Aw is intersected.
The waypoint arc is followed onto the departure arc Ad leading the vehicle to the departure path Pd and on
towards the next waypoint Wn.

Aa

Od

Oa

Pa

Ow

Pd

R

W p

W c

W n

R
Ad

Vd
Dd

Aw

Figure 4. Approach, waypoint, and departure arcs for a waypoint. The thick curve shows the generated path.

Candidates for Od of the departure arc Ad can be found by solving the second order equation in Equa-
tion 9. The location of Vd is shown in Figure 4. In cases where end-points have same x-component, Od can
be found by interchanging the x and y-components of all vectors in Equation 9 to 12.

0 =
(
α2
c + 1

)
Odx

2
+

(
2αc

(
βc −Owy

)
− 2Owx

)
Odx + α2

c +Owx
2 − 4R2 (9)

Ody = Odx αc + βc (10)

Where:

αc =
Ddy

Ddx

(11)

βc = Vdy − αcVdx (12)

Candidates for Oa of the approach arc Aa can be found using similar approach. The approach and
departure arcs must also be tested for intersection with obstacles, but are likely to be collision free since the
combined trajectory remain close to Aw, and Pa or Pd, which are all collision free.

D. Connecting Paths

To generate a complete trajectory, the approach, waypoint, and departure arcs are found for each waypoint,
excluding the final and initial position. Consecutive waypoints are connected using line-segments that
connect a departure path from a waypoint to the approach departure path of the next waypoint. This forms
a continuously differentiable trajectory, since these vectors are aligned. If there is insufficient spacing between
the waypoints, the path cannot be connected since the pitch and turning radius R is too great. In worst
cases, such as if the vehicle is requested to fly to a waypoint and then proceed to the next waypoint in the
opposite direction at two consecutive waypoints, the minimum spacing required to perform this operation is
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(2 +
√
12)R ≈ 5.5R. A way around this is to reduce velocity, although this might not be an option for all

types of vehicles.

E. Full State Trajectory

The trajectory is made as a collection of paths describing the characteristics of each part of the trajectory. In
order to generate a state trajectory, containing x, y, z, and yaw position and derivatives, velocities must be
assigned along the trajectory. This is done by defining the desired functions for acceleration and deceleration
and maximum velocity along each path in the trajectory. These may be depending on the flight direction.

An algorithm is used to enumerate each path and assign entry and exit velocity, see Equation 13 with v
a functions of local time and path. The equation contains three functions: vacc, vmax, and vdec, which define
velocity when accelerating, flying at maximum velocity, and decelerating.

v(t, p) = min(vacc(t, p), vmax(p), vdec(t, p)) (13)

Where:

v(t0, pi) = v(tf , pi−1)

v(t0, p0) = vs

v(tf , pf ) = vs

In order to get a consistent trajectory, the exit velocity of any path must match entry velocity of next
path, and initial and final entry velocity at the trajectory is zero (helicopter is hovering). When a path with
inconsistent demands is met, the algorithm back propagates to decrease velocity as required. Inconsistent
demands could be an unreachable exit velocity, because the acceleration is too low to reach this velocity
in due time. In cases where there is insufficient spacing between waypoints, maximum velocity is reduced
accordingly in order to reduce required turn and pitch radius R. Yaw angle is set to flight direction, although
this is not a strict requirement for the helicopter.

III. Results

The capabilities of the trajectory generation algorithm will be demonstrated through two tests. The tests
also aim at determining how difficult it is for a tracking controller to track the trajectory. In the first test we
generate a trajectory that takes the vehicle through a number of predefined manoeuvres, such as climbing,
turning, and turning while descending. The second test brings the vehicle from one location to another
through a number of waypoints generated by the 3D path planner in an environment with obstacles. In both
tests a Bergen Industrial Twin helicopter model is used to simulate flight using the generated trajectory as
reference, while a LQR control and a helmsman control strategy is used to track the trajectory.

A. Generating Trajectory from Waypoints

In the manoeuvre test, the helicopter will be taken to four waypoints. It starts off by climbing two meters.
It then proceeds two meters forward, where it makes a 90◦ right turn, continues two meters, and makes an
approximately 56◦ left turn directed slightly downwards. It then lands approximately four meters from the
turn. Figure 5 shows a side view of the waypoints and the generated trajectory.

Results from tracking the trajectory can be seen in Figure 6 along with statistics in Table 1. The figure
shows that the tracker receives a reference that is tracked in satisfactory manner. The max deviance of
0.14 m in the Table 1 is the furthest distance to the trajectory the helicopter had throughout the flight.
This value should be added to the bounding sphere radius to avoid potential collisions with obstacles. The
average position error is 0.05 m.

B. Generating Trajectory from Path Plan

A test is made to verify that a system is able to track a trajectory generated based on a typical scenario with
data from the Path planner. The purpose is to test if a trajectory can be travelled by a helicopter model
controlled by a trajectory regulator. The helicopter must stay clear of obstacles in the area.
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Figure 5. The curve shows the trajectory. Waypoints are projected onto the surface and plotted in line-of-sight.
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Figure 6. Helicopter states and references. Negative z-values correspond to an increase in height.
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Mean [m]: 0.05

Max [m]: 0.14

Duration [s]: 36.26

Traj. Distance [m]: 10.49

Table 1. Mean and max values are the average and maximum distance of the helicopter to the trajectory, when
its position is projected onto the trajectory. The table also shows duration of flight and length of trajectory

A test course has been constructed using the path planner. A trail run is performed on a test course
containing several obstacles. A picture of the test course can be seen in Figure 7. There are three different
sections in the environment. The starting position is located in a tunnel, from where it moves out in an open
area and then into an s-shaped cave, that contains the target position. The cave requires tight manoeuvring
to access. The helicopter starts off from hovering and moves in a direction opposite to its heading. A
trajectory is generated using the described algorithm.

Figure 7. Side view of obstacle course. The curve shows the trajectory. Waypoints are projected onto the
surface and plotted in line-of-sight.

Results from the simulation in Figure 8 show similar performance to the previous scenario. Table 2 shows
that the vehicle has a maximum error of 0.12 m with an average trajectory error of 0.02 m. This shows
a slight improvement to the previous case since a sharp turn rarely occurs in paths generated by the path
planner. Also waypoints are often located on together near edges, results in lower speeds around obstacles.

IV. Conclusion

In this paper an approach for generating a trajectory for an aerial vehicle was described. The generated
trajectory is continuously differentiable and it is assumed that the vehicle has the ability to turn in any
direction with constant turning and pitch radius. A test showed that the trajectory generator was capable
of generating collision free trajectories. In cases where sufficient space is available for turning, flight speed

9 of 11

American Institute of Aeronautics and Astronautics



0 25 50 75 100 125 150 175 200 225
−50

0

50

100

150

200

P
os

iti
on

 [m
]

Position

 

 
Helicopter X
Helicopter Y
Helicopter Z
Reference X
Reference Y
Reference Z

0 25 50 75 100 125 150 175 200 225
−3

−2

−1

0

1

2

3

Time [s]

V
el

oc
ity

 [m
/s

]

Velocity

 

 

Figure 8. Helicopter states and references. Negative z-values correspond to an increase in height.

Mean [m]: 0.02

Max [m]: 0.12

Duration [s]: 213.02

Traj. Distance [m]: 318.32

Table 2. Mean and max values are the average and maximum distance of the helicopter to the trajectory, when
its position is projected onto the trajectory. The table also shows duration of flight and length of trajectory
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can be reduced. The approach used by the algorithm treats each waypoint separately. This ease the process
of generating a trajectory, but some optimization is possible by evaluating multiple waypoints at once. This
includes improvements to the location of the waypoint arc, and special handling of waypoints located on
same vertex or edge of the workspace obstacle. It might not be possible to generate a trajectory from a path
without reducing the turning radius and hence speed.

The generated trajectory was tested in a test environment, and flight was simulated using a helicopter
model and a trajectory tracking controller. The helicopter was able to travel the trajectory without inter-
secting obstacles.
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State-Control Trajectory Generation for Helicopter in
Obstacle-filled Environment using Optimal Control

Flemming Schøler and Anders la Cour-Harbo and Morten Bisgaard

Abstract— We address the challenge of flying a he-
licopter in a constrained 3D environment. Helicopter
state and control trajectories are generated for the
AAU Helisim model by formulating an optimal control
problem (OCP) which is solved through the pseudospec-
tral optimization tool, DIDO. We focus on achieving
different tasks such as obstacle and terrain avoidance,
flying through pipes and following existing paths through
path constraints. These path constraints are evaluated
through identified distance functions that can be used
with DIDO. The trajectories are used off-line in a state
feedback/feedforward control scheme to demonstrate
simulated flight.

I. INTRODUCTION

Small-scale autonomous helicopters are often
used to perform different forms of surveillance
and inspection tasks. This includes a recent interest
in the use of unmanned aerial systems (UAS) in
agriculture and forestry. Examples for agricultural
purposes include weeds and disease identification,
detection of water and nutrition shortages, and
crop and plant growth monitoring. Examples for
forestry purposes include timber cruising, disease
and pest monitoring, environmental monitoring
and compliance, nursery and tree planting growth
development, early forest fires detection, search
and rescue operations, accident investigation, etc.
Whereas some of these tasks can be accomplished
using a fixed-wing aircraft flying at a higher alti-
tude, the ability to stay at the same spot or operate
close to obstacles is often beneficial.

F. Schøler is with Institute of Electronic Systems, Aalborg
University, Fredrik Bajers Vej 7C, Denmark fls@es.aau.dk

A. la Cour-Harbo is with Institute of Electronic Systems, Aalborg
University, Fredrik Bajers Vej 7C, Denmark alc@es.aau.dk

M. Bisgaard is with Institute of Electronic Systems,
Aalborg University, Fredrik Bajers Vej 7C, Denmark
bisgaard@es.aau.dk

A. Previous work

The problem of generating trajectories for a
UAS has been the subject of substantial research
in the past years and a wide range of solutions
to waypoint tracking, path planning, and obstacle
avoidance have been presented. The wide range of
approaches arises from the associated variety of
design goals. A sparse sampling of methods for
trajectory planning includes approaches that focus
on constraints imposed by the environment such
as the terrain avoidance [1], and constrains from
the capabilities of the UAV such as turn radius
[2]. Many consider the need to plan trajectories
in an environment with obstacles and different
approaches to this have been suggested, ranging
from Lyapunov functions[3] to potential fields[4],
visibility graphs[5], evolutionary algorithms[6], or
Rapidly-exploring Random Trees[7]. In [8] the
planning problem of flying a helicopter with a
slung load through a known space with obstacles in
a combination of minimum time and control effort
and with a minimum of slung load oscillations
is addressed. This planning problem is cast as
a nonlinear optimal control problem (OCP) and
state and control trajectories are generated using a
pseudo-spectral method. The trajectories are used
as references to a state feedback controller. Good
results are obtained for different advanced maneu-
vers, but two preconditions are required 1) that a
rough outline of the position trajectory is available
as an initial guess, and 2) that state points along
the position trajectory where the system is capable
of achieving a trim condition are available. In this
research we follow a similar setup where state and
control trajectories are generated by formulating
a nonlinear OCP that is solved using the pseudo-
spectral method. However our individual tasks are
all solved (with one exception) without initial



guesses, and since we fly without slung load, it
is less complex to obtain trim conditions.

B. Present work
It is not straight-forward to generate an efficient

and feasible trajectory when flying over varying
terrain and amongst multiple obstacles. However,
using the proposed method it is possible to de-
sign state and control trajectories specifically to
the AAU Helisim model using the optimal solver
DIDO. The subject of this paper is these trajec-
tories on which a set of constraints are imposed.
This will allow the helicopter to perform both basic
and more challenging tasks while flying between
different locations in a constrained environment.

An example of the basic task include tracking
a pre-determined path, or keeping the altitude of
the vehicle between certain minimum and maxi-
mum values measured relative to both ground level
and mean-sea level. Other constraints that enable
perhaps challenging tasks include flying inside a
pipe, amongst trees, or amongst moving surfaces
and obstacles.

Our aim is hence to enable the helicopter to fly
to a sequence of goals while obeying a number
of constraints imposed by the dynamic capabilities
of the helicopter, the boundary conditions given
by the goals, and path constraints imposed by the
environment. In this paper we focus on identifying
path constraints that are imposed on the helicopter
position to avoid different types of obstacles in
the environment. This includes time varying con-
straints.

In section II-A we briefly describe the helicopter
model. The formulation of the OCP and the prin-
ciples of solving it is presented in Section II-B.
We present in Section II-C a means to decompose
the trajectory into shorter parts with different path
constraints. In Section II-D the general constraints
are formulated in the OCP framework. Amongst
the constraints we specifically focus on the path
constraints in Section II-E. That is, for each task a
set of distance functions indicate how well a spe-
cific task is performed. The final part of the OCP
is the performance index presented in Section II-
F. The generated state and control trajectories are
used as reference to the feedback controller and
for feedforward, respectively. The implementation
of the controller is discussed in Section II-G.

Simulation results are shown in Section III. This
includes solutions to the OCP for a simulated
flight through a test scenario for each task, and
evaluation on how well tasks are handled at a given
time.

II. METHOD

A. Helicopter Model

The process model is the AAU Helisim model1,
a first principles model of the Bergen industrial
twin helicopter. It includes second order actuator
dynamics and second order flapping dynamics for
main rotor and stabilizer bar. Flapping is derived
using blade element analysis and solved as steady
state. Forces and torques for the main and tail rotor
are also derived using blade element analysis. A
uniform inflow model is used which is derived
using momentum theory and it is solved using an
analytical solution scheme. The rigid body model
is derived using a redundant coordinate formu-
lation based on Gauss’ Principle of Least Con-
straint using the Udwadia-Kalaba equation. For
the optimization process the model is simplified
to 12 rigid body states (position and Euler angles
and body velocities and angular rates) with steady
state solutions for flapping and actuator dynamics.
This is due to the fact that actuator dynamics,
inflow dynamics, and flapping dynamics are of
little interest from a control point of view and
furthermore these states are faster than what is
feasible to include in the controller considering the
available computational resources. Included in the
model is the capability to trim and linearize the
helicopter model in any flight condition given by
a speed, a sideslip angle, a yaw rotation rate, and
an angle of attack to the flight plane. The model
has four control signals. For a complete description
of the model see Bisgaard [9].

B. Optimal Control Problem

The general idea of optimal control is to gen-
erate a control trajectory that takes the system
from an initial condition to a final state while
minimizing a performance index subject to a set
of constraint. The challenge of finding a feasible
trajectory for the helicopter can be formulated as

1The AAU Helisim model can be freely downloaded at
www.UAVLab.org



such an OCP, where the performance index is
dependent on the specific type of maneuvers.

In this paper a direct spectral algorithm known
as DIDO is used for solving the optimization
problem outlined below. It is not strictly dependent
on an initial guess and has the distinct advantage
over the majority of direct methods that a gen-
erated solution will satisfy necessary optimality
conditions. This method discretizes the problem
and approximates the states and control variables
using Lagrange interpolating polynomials [10]. A
presentation of the theory can be found in Bollino
et al.[11].

The general optimal control problem is formu-
lated as follows. Let x(t) and u(t) be state and
control functions, respectively, and let

J(x,u, t) = E(x0,xf, t0, tf )

+

∫ tf

t0

F (x(τ),u(τ), τ)dτ

be the performance index, where E is the boundary
cost depending only on the first and last state x0

and xf, and F is the running cost. The OCP is
then to find that state-control pair that minimizes
J subject to

dynamic constraint ẋ(t) = f(x,u, t) (1)
boundary conditions el ≤ e(x0,xf) ≤ eu (2)

path constraint gl ≤ g(x,u, t) ≤ gu (3)

where f is the nonlinear helicopter model, e is
the boundary condition function, and g is the
path constraint function depending on the state
and control functions as well as time. Both f , e,
and g should be twice continuously differentiable,
i.e. in C2, for better performance from DIDO. It
should also be noted that the constraints (1) – (3)
may only be satisfied at the collocation points.
Even if all collocation points are inside accepted
values a trajectory might still exceed constraints
in-between collocation points. That is because a
trajectory needs only fulfill constraints at the col-
location points to be deemed optimal by the OCP
formulation. While it is difficult to ensure that any
generated trajectory is feasible everywhere, there
are two approaches that seem to solve most issues
1) increasing the number of collocation points and
2) restricting constraints beyond strict necessity.

In this research we use a combination of both,
although the former approach tends to drastically
increase computation time.

C. Completing tasks

We compose the flight of a series of shorter
trajectories stitched together such as to create
a seamless longer trajectory. To do so, we will
assume that a general flight plan in the shape of a
set of consecutive desired positions is available and
that we are able to determine a set of state points
along the flight plan in which the helicopter system
is capable of achieving a trim condition, that is,
zero-acceleration condition. We will denote these
points ‘trim points’ (TP). We will also assume that
consecutive TPs are chosen in such way that there
exists a feasible trajectory between them. The op-
timal control problem is then solved between pairs
of successive TPs, and we will denote such a state-
control trajectory (TTT). This basically means that
the overall flight trajectory will be fixed through
a number of points, and that we will compute the
optimal state and control trajectory that takes the
helicopter from one TP to the next.

D. Constraints

The dynamic constraint in (1) is given by the
helicopter model, but to determine the individual
TTTs it is also necessary to identify the constraint
functions e and g in (2) and (3), as well as the
constraining constants el, eu and gl,gu. All TTTs
will be constrained by the boundary condition that
the system must be in a predefined trim. That is,
the trajectory must start and end at the designated
TPs.

E. Path Constraints

We focus mainly on identifying a number of
task-dependent path constraint functions. These
functions ensure that a TTT will fulfill certain
tasks, such as, avoiding the obstacles, or staying
near some path. The functions should be C2 which
should give the best performance with DIDO.
They should also be scaled properly and preferably
monotone. However, not all properties will fit on
all the distance functions described below. We
identify functions that give distance to obstacles,
terrain, pipes and paths.



In some cases, we will need to consider the
physical size of the helicopter. A rough, but safe
way to do this is to introduce a bounding sphere
around the vehicle and ensure that this sphere
avoids obstacles. The Bergen industrial twin heli-
copter has a bounding sphere radius of 1.7 meters.

1) Obstacle distances: The distance function
for obstacles must not only determine if the vehicle
is inside the obstacle, but also be a function
with preferable a higher order differentiability that
determines how close to intersection the vehicle is.
It is difficult to identify such a function that can
operate on obstacles shaped as polyhedrons. It can
more easily be done if we represent each geometric
obstacle by a bounding ellipsoid superset. We
distinguish between work space (WS) ellipsoids
and configuration space (CS) ellipsoids, where the
latter are based on the Minkowski sum of the WS
ellipsoid and the vehicle bounding sphere. This is
done to transform the more difficult problem of
finding a distance function that ensures that some
vehicle shape does not intersect a WS obstacle,
into the easier problem of ensuring that a point
does not intersect the CS ellipsoid. The problems
are not exactly dual, since the Minkowski sum of
an ellipsoid and a sphere does not in general give
an ellipsoid. Therefore the CS ellipsoid is chosen
as the minimum volume tight ellipsoid containing
this Minkowski sum. Thus, a solution found in CS
will be valid in WS. The WS obstacle can be build
from any set of vertices such as a point-cloud from
sampled data. The described method works in N -
dimensions spaces for N greater than one.

a) Work space ellipsoid: The WS bounding
ellipsoid is the minimum volume ellipsoid that
contains all points in a given cloud of vertices
vi ∈ Rn. The bounding ellipsoid in 3D is uniquely
defined by 9 extreme points. Determining which
points to use analytically is an unsolved problem.
However, finding the minimum volume bounding
ellipsoid can be posed as a convex linear matrix
inequalities problem. We let ε be an ellipsoid

εws ≡ vi | (vi − a)TQ(vi − a) ≤ 1, (4)

where Q ∈ RN×N is its symmetric shape matrix
and a ∈ RN is the origin, such that εws ⊇ conv(v).
Since collision with any point of an obstacle must
be avoided, all vertices of an obstacle must be

within the ellipsoid. That is, all vertices of an
obstacle in WS must be within the unit sphere
after being translated by a, and rotated and scaled
by a symmetric matrix Q, denoted the shape
matrix. Since the volume of εws is proportional to
(det Q)−1/2, minimizing log det Q−1 is equivalent
to minimizing the volume of εws. Hence by solving
(4), the minimum volume ellipsoid is obtained,
centered at the origin, that contains the points
v1, ...,vL. This convex problem can be solved in
polynomial-time in theory, and in practice very
efficiently using interior-point algorithms, see [12]
for details.

b) Configuration space ellipsoid: A CS ob-
stacle Ocs can be generated from the Minkowski
sum of its WS ellipsoid εws and the vehicle
bounding sphere εv. Though this geometric sum is
generally not an ellipsoid, it can be tightly approx-
imated by the parameterized families of external
ellipsoids ε+cs such that ε+cs ⊇ Ocs = εws ⊕ εv.
If fact, this family of external ellipsoids inherits
both center and principal axes from the workspace
ellipsoid εws. In principle any ellipsoid from this
family of external ellipsoids could be used for
the CS ellipsoid, but identifying the minimum-
volume ellipsoid would give us the largest free
configuration space.

In order to find the minimum-volume tight el-
lipsoid in CS we first need to decompose the
shape matrix into a rotation matrix, containing
the principal axes, and a diagonal scale matrix,
containing its equatorial radii. This decomposition
is performed because the volume of an ellipsoid is
a function of its equatorial radii. We also need an
expression for the shape matrix of ε+cs. This can be
found as a linear combination of the shape matrix
of each ellipsoid in the sum. It is known from
[13] that the shape matrix of the external ellipsoid
along some direction l ∈ Rn, where the geometric
sum and tight ellipsoid touch, is generated by the
geometric sum of two ellipsoids with shape matrix
Q1 and Q2, and is



Q+
l =


√〈l,Q1l〉︸ ︷︷ ︸

k

+
√
〈l,Q2l〉




×
[

Q1√
〈l,Q1l〉

+
Q2√
〈l,Q2l〉

]

where k gives the radius of an ellipsoid with shape
matrix Q1 along some direction l.

Using εws for Q1 and the sphere εv for Q2

the shape matrix of the external ellipsoid of an
obstacle and vehicle can be simplified to

Q+
l = (k + r)(Q1/k + r I) (5)

since the vehicle has radius r in any direction. It
can be shown from (5) that the external ellipsoid
will take the same semi-axes and center as the
obstacle ellipsoid εws. There exist a tight ellipsoid
for any direction of vector l, but we are only con-
cerned with a direction that results in a minimum
volume. Because the semi-axes of the external
ellipsoid match that of the obstacle ellipsoid, this
translates to finding the radius k where minimum
volume occurs. Separating the rotation and scaling
components of the shape matrix makes this easier.
Eigendecomposition can be used to transform the
shape matrix Q1 into the product of an orthonor-
mal rotation matrix R composed by eigenvectors,
and a diagonal matrix Λ with eigenvalues along
the diagonal, such that Q1 = R Λ RT .

By this alignment of the CS ellipsoid with the
semi-axis of the WS ellipsoid, (5) is rewritten, so
we must find a diagonal scale matrix

R Q+
l = (1 + r/k)(I k r + Λ) (6)

that minimizes volume. The volume of an ellipsoid
is proportional to the product of its eigenvalues. In
our case this is the diagonal elements of Q+

l .
The volume V reaches an optimum when its

derivative with respect to k is zero

V ′(k) =
2πN/2

NΓ(N/2)︸ ︷︷ ︸
a

r
( r
k

+ 1
)N

︸ ︷︷ ︸
b

N∏

i=1

(k r + λi)

︸ ︷︷ ︸
c

×
[

N∑

i=1

1

k r + λi
− N

k r + k2

]

︸ ︷︷ ︸
d

,

where Γ is the Gamma function.
The first term a is a positive constant with

regards to k and can be disregarded. It is also
apparent from b that V ′ is zero when r is zero
or r = −k. Obviously, none of these solutions
are feasible since both r and k must be positive,
so these terms are also disregarded. The product-
term c is always positive, since also eigenvalues
are positive and this term is also disregarded. The
remaining terms in d is a polynomial fraction
that has a numerator polynomial with exactly one
positive root (at least for values of N up to 4).
One may assert this by applying Descartes’ rule
of signs. The positive root can be substituted into
(6) to finally obtain a volume minimizing shape
matrix.

c) Distance function: Once a minimum vol-
ume shape matrix is found, the distance function
becomes

dε(w) = ‖R Q+
l
T

(w − q)‖ (7)

for N -dimensional obstacles (N > 1) that are in
C2. Because of the non-uniform scaling of Q+

l

this distance is not Euclidean, but any boundary
point will still satisfy dε(w) = 1 while a point
outside satisfies dε(w) > 1, which is exactly what
is needed for solving the OCP.

2) Terrain distance: A requirement exist that
the vehicle position w must stay within a defined
distance d above ground level (AGL) Let p be a
function that gives the height of the surface over
the point w. Then

d(w) = wz − p(wx,wy, t) . (8)

Typically, a 2D regular grid digital elevation model
(DEM) is used to represent the heights at discrete
samples of a continuous surface. While such a
model only contain elevation information at each
grid point, an elevation at any point can be es-
timated through grid-interpolation. We seek a C2

function p that gives an estimate of the surface
height at w using vertices in the grid near w. We
choose a 16-point bicubic interpolation function
for p as this method well-approximates a wide
range of surfaces [14], while being fast to calculate
and produces a C2 surface. Bicubic interpolation
is the lowest order 2D interpolation procedure that
maintains the continuity of the function and its first



derivatives (both normal and tangential) across cell
boundaries [15].

Suppose the function values p and the deriva-
tives px, py, and pxy are known at the four corner
vertices (0, 0), (1, 0), (0, 1), and (1, 1) of the unit
square in a 2D Cartesian grid. In a 2D Cartesian
grid the elements are unit squares, and the vertices
are integer points. The interpolated surface at the
square can then be found using bicubic interpola-
tion

p(x, y) =
3∑

i=0

3∑

j=0

cijx
iyj ,

where c ∈ Rn×n is some constant.
Bicubic interpolation can be done by subsequent

interpolation on each axis. For a single axis, inter-
polation is done on the unit interval (0,1), between
a starting point a0 at t = 0 and an ending point
a1 at t = 1 with starting tangent m0 at t = 0 and
ending tangent m1 at t = 1, the polynomial can be
defined by

ps(t) = (2t3 − 3t2 + 1)a0 + (t3 − 2t2 + t)m0

+ (−2t3 + 3t2)a1 + (t3 − t2)m1

where tangents are found by centered differences
(instead of exact derivatives) using neighboring
grid points

m0 = (a1 − a−1)/2
m1 = (a2 − a0)/2

such that interpolation on one axis is done with the
four grid points nearest the vehicle. Extending to
bicubic interpolation, the 16 surrounding grid ver-
tices a are needed. These can be found in the set of
all grid vertices g in a Cartesian grid by truncating
the vehicle position. For i, j = −1, 0, . . . , 2

a(i,j)(w) = g(trunc(wx)+i,trunc(wy)+j) .

The interpolation is first applied four times in
the x direction to obtain each of the four points
needed for the final interpolation in the y direction.
The interpolation parameters t are given by the
fractional part of the vehicle position. The surface
height at position w then becomes

p(w) = ps


frac(wy),




ps
(
frac(wx), a(·,−1)

)

ps
(
frac(wx), a(·,0)

)

ps
(
frac(wx), a(·,1)

)

ps
(
frac(wx), a(·,2)

)







3) Path/pipe distance: The distance from the
vehicle to a path or pipe, consisting of n segments
between consecutive vertices si, i = 0, 1, ...n, is
given as the minimum distance to any point on
any segment is the C1 function

d(w) = min
i∈(0,n−2)

‖si + (si+1 − si)t(i)−w‖
r(i, t(i))

,

where the closest point to one segment is

t(i) = max

[
0,min

(
1,

(w − si) · (si+1 − si)

(si+1 − si) · (si+1 − si)

)]

and r(i, t(i)) gives the radius at a particular seg-
ment i at time t(i). The function r(i, t(i)) is 1
when finding distance to paths, such that d(w)
express Euclidean distance. For pipes we might
want the vehicle to stay inside the pipe (d(w) < 1)
or outside (d(w) > 1).

4) Geodesic path distance: A geodesic path is
here a C1 path composed by segments of differ-
ent types. The path segments alternates between
straight line segments and curved segments, where
curved segments might be arcs or helices with an
angular span of less than π. Schøler et al. [16]
present a method that finds such optimal paths.

Section II-E.3 describes a distance function for
the straight segments. On curved segments, convex
optimization is used for identifying the point on the
segment closest to w. Finding the global minimum
amongst all segments can be done as

d(w) = min
i∈(0,n−1)

‖pi(w)−w‖

F. Performance index
Determining a performance index is a compro-

mise between time-optimality and how aggres-
sively the helicopter is driven. We use the complete
flight time as the boundary cost. The running cost
is a combination of changes in control input and
yaw offset xyaw (from flight direction). The running
costs are weighted by a scalar k and a diagonal
matrix M

E(x0,xf, t0, tf ) = tf

F (x(τ),u(τ), τ) =
d

dτ
u(τ)TM

d

dτ
u(τ)

+ kxyaw(τ)2

The reason for this is that while a pure time
optimization might produce unnecessary large and



rapidly changing control signals, the other extreme
might produce unreasonable slow movement. We
also try to enforce that helicopter orientation
should be in direction of flight. The reason we need
to do this is because flying sideways or backwards
have virtually no influence on the time it takes to
fly a trajectory.

G. Closed-loop trajectory tracking

Once a state and control trajectory has been
computed we want the helicopter system to ac-
tually follow these references. Since the OCP
presented is too complex to be solved in real time,
it is at present not possible to run the optimization
in real time such as to facilitate a model predictive
controller implementation. The major drawback of
the off-line computation is the inability to adapt
on the fly to changes in the flight conditions.
Instead, we rely on the pre-computed control-state
trajectory pair and use the feedforward/feedback
control strategy shown in Fig. 1 to keep the system
close to the state trajectory at all times. Although
feedforward of the control trajectory will cause the
helicopter to diverge from the state trajectory, the
pre-computed control trajectory will be fairly close
to the actual control signal, and the feedback con-
troller will only have to make small corrections.
This results in smaller state errors and, hence,
better trajectory tracking. The feedback controller

Helicopter Helicopter states
feedback
controller

State

system

Control trajectory

State trajectory +

++ −

Fig. 1. Closed-loop trajectory tracking. The state and control
trajectories are respectively used as reference to the feedback
controller and for feedforward.

is designed using linear quadratic regulation (LQR)
on the helicopter system in hover. This is treated
in more detail in Bisgaard [9].

III. RESULTS

The application of the OCP formulation to the
challenge of designing an optimal state-control
trajectory pair will be demonstrated through simu-
lated flight. The example mission plans a trajectory
that takes the helicopter through 9 TPs by stitching

together 8 TTTs as discussed in Section II-C.
The sideslip angles, angles of attack, and yaw
rates are zero in all TPs. Different combinations
of path constraints are used for the TTTs, while
no changes are made to the performance index.
The actual trajectory are found with the controller
described in Section II-G. Results from the full
planned and actual trajectory is discussed in Sec-
tion III-I. Before this, each TTT is treated in
details in Section III-A – Fig. III-H. Each section
has picture that show a 3D view of each TTT.
Here the gray spheres represent TPs interconnected
by the calculated trajectory, with arrows showing
the collocation points. According to type of path
constraints used we also show one of three types of
plots; altitude, obstacle, or distance plots. The alti-
tude plots show surface height below the helicopter
as a function of time. In all plots blue curves show
results of distance functions from simulated flights.
These usually cover red curves that show results of
distance functions from calculated trajectories, but
values at collocation points can still be seen as red
dots. The collocation points have constraints that
place them inside the green area. As discussed in
Section II-B, distance functions might give values
outside this range in-between collocation points.
This does not necessarily mean that a trajectory is
infeasible, since constraints can be inflated to avoid
such issues. For altitude plots, a curve below the
green area shows the location of the actual surface
which obviously must not be intersected by either
trajectory. All TTTs except TTT 3 are calculated
without an initial guess.

A. TTT 1: avoiding a hill

The objective is to keep a safe distance to the
terrain and staying inside a certain altitude AGL
range. The path constraint is given from (8). The
path is between two via points on opposite sides
of a hill. The distance is ≈500 meter in bee-
line. Fig. 2 shows the setup and results of path
constraints. The helicopter starts off from hover
and must reach the target TP with a forward
velocity of 3.5 m/s. The solution is a compromise
between going directly above the hill and going
completely around it. As the helicopter passes the
hill, it stays near the surface. The helicopter slows
down to make a final sharp turn to meet the target
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Fig. 2. Setup and altitude for actual state trajectory at TTT 1

TP. This is done because of the performance index
that penalizes an orientation different from the
direction of flight. All collocation points are inside
accepted values, the both calculated and simulated
trajectories are above ground.

B. TTT 2: avoiding trees
The helicopter must reach its TP while avoiding

the 9 trees and staying above the ground. We use a
procedural method to generate realistically looking
trees of different shape and size. When calculating
distance to the trees, each tree is split into two
bounding volumes. We find good consistency in
approximating the crown of the tree by a bounding
ellipsoid and the trunk by a bounding capsule. The
bounding ellipsoid is generated from the vertices
of the crown, using the method described in Sec-
tion II-E.1. In order to not include points that are
already inside the crown WS bounding ellipsoid,
we only add vertices that have at least one edge
with an end-point outside this ellipsoid. The radius
of the capsule is determined by the maximum
horizontal distance to the center of the capsule. We
use the distance function from Section II-E.3 with
r being the sum of the capsule radius and vehicle
bounding sphere radius. The setup and result of
path constraints on trees can be seen in Fig. 3. A
low maximum allowed altitude removes the pos-
sibility of simple solutions, such as simply flying
above all obstacles. We use (8) to include surface
constraints. The result of the distance function is

shown in the plot. As the helicopter approaches
and departs from a bounding volume, each curve
takes appearance as a second degree polynomial.
The helicopter reaches a volume surface every time
a distance curve reaches 1. There is some minor
constraint violations in-between some collocation
points. If necessary, these could be avoided by
slightly increasing the vehicle bounding sphere
radius.

C. TTT 3: fly through pipe
The helicopter must fly through a pipe. The pipe

is shaped by a cubic spline from 9 control points
that are points intersected by the spline. The first
and last control point match the location of the
TPs, and the pipe has the vehicle bounding sphere
radius at these points. The remaining control points
are chosen to give a challenging path. For these
points, radius is twice the vehicle bounding sphere
radius. Each section between a pair of control
points of the spline consists of 15 line-segments,
such that we can use the distance function in
Section II-E.3. The results of this distance function
and overall setup can be seen in Fig. 4. At this TTT
the solver tends to come up with solutions that
violate the pipe, although all collocation points are
valid. The solution was to provide an initial guess
to the solver. An initial guess was constructed
by first placing a TP at each control point and
generating a trajectory for each subsequent TP-
pair. At each TP the velocity was set to zero,
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Fig. 3. Setup and output of distance function for actual state trajectory at TTT 2
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Fig. 4. Setup and output of distance function for actual state trajectory at TTT 3

which requires the helicopter to pass through each
control point and hover there. These trajectories
were then stitched together to form an initial guess.
Although all collocation points are in green area,
we would have further restrict the upper limit or
increase the number to collocation points, to keep
the helicopter at a safe distance from the pipe
surface. The small fluctuations visible around 100
seconds might suggest increasing the number of
segments per division.

D. TTT 4: rotate 360 deg

The helicopter must perform a full yaw rotation
and descend 10 meters, while staying inside an
altitude span of 5 meters. The setup and devel-
opment in altitude can be seen in Fig. 5. The
path constraint is given from (8). The increase of
altitude and decrease x-velocity after 125 seconds
seen in Fig. 10 is an effect of the performance
index. It shows a compromise between flying as
fast as possible and facing direction of flight.
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Fig. 5. Setup and altitude for actual state trajectory at TTT 4
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Fig. 6. Setup and altitude for actual state trajectory at TTT 5

E. TTT 5: fly above a dynamic surface

The helicopter starts from hover and must fly
to its target TP, while above a dynamic surface.
Both initial and target TP are collision free during
a full periodic cycle, but there is no collision free
feasible path between the TPs at any single time
instance. The surface is smooth with a periodic
movement that is generated by a cosine function.
It is shown in Fig. 6 along with the result of
the distance function. We use (8) for distance
function but instead of a DEM, we use an explicit
function to determine surface at a given (x, y)-
position and time. Effective use of velocity makes

it possible for the helicopter to fly nearly in bee-
line between TPs. We see that although the green
area is separated at 145 seconds, all collocation
points are still inside, and the helicopter does not
intersect the lower surface curve.

F. TTT 6: avoid moving obstacles

The helicopter must fly through a chaotic envi-
ronment with moving obstacles. Realistic obsta-
cle trajectories are generated using the Newton
Dynamics engine. Obstacles bounce against each
other and the surface. The obstacles are shown
in Fig. 7 along with the result of the distance
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Fig. 7. Setup and output of distance function for actual state trajectory at TTT 6

function. A high number of collocation points are
needed because of the obstacles move fast relative
to the helicopter. We use (7) for the distance func-
tion, which gives an output that is quite different
from the case with static obstacles. Curves for
rotating non-spherical bounding volumes have a
superimposed sinusoidal function, and are not con-
tinuously differentiable at points where obstacles
collide. Despite this, all collocation points are still
inside the green area, and the helicopter does not
intersect any obstacles.

G. TTT 7: rotate 180
The helicopter must perform a half yaw rotation

and descend 19 meters. The setup and development
in altitude can be seen in Fig. 5. The path con-
straint is given from (8). The path takes shape as
a half circle. It is less expensive to fly with a high
velocity and facing the direction of flight, than the
bee-line that would have two sharp turns.

H. TTT 8: follow an existing path
The helicopter must follow an existing geodesic

path around a building. The path is generated using
the method described in Section II-E.4 that also
specifies the distance function. The results of this
distance function and overall setup can be seen
in Fig. 9. Here we wish each collocation point
to be located close to the geodesic path. This
allows following a minimum-length path, while
optimizing the route according to the performance

index. The discrepancy between the calculated and
simulated trajectory and seems much larger than
previous cases, though quite small considering
the scale of y-axis. Both trajectories follow the
geodesic path quite well, as the maximum distance
between trajectory and path is ≈ 0.25 meters.

I. Full trajectory

The full planned and actual state trajectories
through all 9 TPs are shown in Fig. 10. While the
position and attitude plots show good tracking, the
derived states show some difficulties a few places.
Most notably are the oscillations on pitch after
50 and 180 seconds, that both occur while the
helicopter is descending rapidly. These are seen
more clearly on Fig. 11. This suggests the need
for more focus on dampening pitch oscillation in
the future control design and does not constitute
an issue with the planned trajectory. There are
also some tracking errors when the helicopter is
exposed to high accelerations. This is i.e. visible
from the drift on y-axis at the high initial forward
acceleration.

IV. DISCUSSION

We have presented an approach to generat-
ing optimal state and control trajectories for the
Bergen industrial twin helicopter. The applied
method is based on a formulation of an optimal
control problem (OCP) with time and control effort
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Fig. 8. Setup and altitude for actual state trajectory at TTT 7
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Fig. 9. Setup and output of distance function for actual state trajectory at TTT 8

as the primary components in the performance in-
dex. The AAU Helisim helicopter model was used
and constraints in the environment were added as
boundary and path constraints. The optimal solver
DIDO was used to obtain a solution to the OCP.
The solution was found in form of a state-control
trajectory pair. The state trajectory was used as
reference to a feedback controller and control
trajectory for feedforward. Unfortunately the OCP
presented is too complex to be solved in real
time with DIDO, and runs off-line. It was shown
that a range of different tasks could be completed
satisfactory by introducing the appropriate path

constraints in the OCP.
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