

Aalborg Universitet

3XL

An Efficient DBMS-based Triple-store

Xiufeng, Liu; Thomsen, Christian; Pedersen, Torben Bach

Published in:
The 23rd International Workshop on Database and Expert Systems Applications

DOI (link to publication from Publisher):
10.1109/dexa.2012.7

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Xiufeng, L., Thomsen, C., & Pedersen, T. B. (2012). 3XL: An Efficient DBMS-based Triple-store. In The 23rd
International Workshop on Database and Expert Systems Applications (pp. 284-288). IEEE Computer Society
Press. https://doi.org/10.1109/dexa.2012.7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60500308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/dexa.2012.7
https://vbn.aau.dk/en/publications/f24bb205-9c6a-431f-ae26-9255eebbf6c6
https://doi.org/10.1109/dexa.2012.7

3XL: An Efficient DBMS-Based Triple-Store
Xiufeng Liu

Department of Computer Science
Aalborg University

Email: xiliu@cs.aau.dk

Christian Thomsen
Department of Computer Science

Aalborg University
Email: chr@cs.aau.dk

Torben Bach Pedersen
Department of Computer Science

Aalborg University
Email: tbp@cs.aau.dk

Abstract—This paper demonstrates the use of 3XL, a DBMS-
based triple-store for OWL Lite data. 3XL is characterized by
its use of a database schema specialized for the data to represent.
The specialized database schema uses object-relational features
– particularly inheritance – and partitions the data such that it
is fast to locate the needed data when it is queried. Further, the
generated database schema is very intuitive and it is thus easy
to integrate the OWL data with other kinds of data. 3XL offers
performance comparable to the leading file-based triple-stores.

We will demonstrate 1) how a specialized database schema is
generated by 3XL based on an OWL ontology; 2) how triples
are loaded, including how they pass through the 3XL system
and how 3XL can be configured to fine-tune performance; and
3) how (simple and complex) queries can be expressed and how
they are executed by 3XL.

I. INTRODUCTION

In recent years, the Web Ontology Language1 (OWL), a
semantic markup language recommended by W3C for pub-
lishing and sharing ontologies, has gained popularity. OWL
is layered on top of the Resource Description Framework1

(RDF). OWL (and RDF) data takes the form of (subject,
predicate, object) triples. These triples are typically stored
in specialized storage engines called triple-stores. We have
seen that in some projects, the triple-stores are used mainly as
specialized bulk data stores, i.e., for inserting and retrieving
large amounts of triples (bulk operations). More advanced
features such as logical inference, etc., are often not used in
such projects. Additionally, for basic representation of OWL
instances, we found that even a subset of the least expressive
OWL layer (OWL Lite) was enough. A well-known example
of such instances is the data generated by the data generator
for the de-facto industry standard OWL benchmark Lehigh
University Benchmark (LUBM) [7].

This paper demonstrates 3XL [11], a triple-store offering
highly efficient loading and retrieval for OWL Lite data with
a known ontology using a subset of OWL Lite. 3XL has a
number of unique characteristics:

• 3XL is DMBS-based which makes it flexible and easy to
integrate the OWL data with other data.

• Based on an OWL ontology, 3XL generates a specialized
and intuitive database schema which intelligently parti-
tions the data.

• 3XL uses object-relational features of the DBMS.

1www.w3.org/TR

• Caching and bulk loading are intensively used in the
implementation such that 3XL offers performance com-
parable to state-of-the-art file-based triple-stores.

This combination of efficiency and flexibility positions 3XL
in a unique spot.

Fig. 1 shows the major components of 3XL and their
interactions. 3XL consists of GUI and command line (CLI)
interfaces, an API, a database schema generator, a data loader,
a query engine, and an underlying DBMS (PostgreSQL). The
database schema generator is responsible for parsing an OWL
Lite ontology to create a hierarchical object-relational database
schema according to a number of mapping rules. The data
loader parses OWL data and inserts the data into the database.
To speed up the data loading, it uses several cache and bulk
schemes, including an embedded instance of BerkeleyDB. The
query engine has a query parser and an executor which are
used to generate SQL and run the SQL in the underlying
database, respectively. In the paper, we show the GUI, but
we note that a client application also could use the API.

Fig. 1: 3XL Architecture

II. SPECIALIZED SCHEMA GENERATION

Fig. 2 shows the interface for database schema generation.
In this interface, the user can load and/or edit an OWL
ontology. Further, the connection to PostgreSQL can be set up
and the support for “multiproperty values” (to be explained
later) can be configured. Based on the ontology (shown to
the right in Fig. 2), a specialized database schema with an
inheritance layout is generated once and for all by 3XL. We
show how this is done by means of a running example.

Fig. 3 shows our small OWL Lite ontology which for
ease and space reasons is inspired by the well-known LUBM

ontology. For brevity, it is shown as a graph. The ontology
defines classes (shown as ellipses), properties (shown as rect-
angles), and their relationships (shown as labelled edges). In
our example, each student has exactly one email address and
one name, and each course has exactly one name. A student
can take several courses.

When creating a database schema, 3XL creates a class table
for each class in the ontology. Class tables have columns
for those properties that have owl:maxCardinality 1. Fig. 4
shows the resulting database schema for our example and it
can, e.g., be seen that a class table is generated for Student.
The Student class table has columns (name and email, both of
type varchar) to represent the literal values of Student’s data
properties. When storing data, each Student instance results in
a row in the Student class table.

Fig. 2: GUI for database schema generation

Fig. 3: OWL Lite schema

The class table for a given class inherits the class table
for the parent of the represented class. In Fig. 4 it can
be seen that the class tables for UndergraduateStudent and
GraduateStudent inherit from the class table for Student. When
reading from the Student class table, PostgreSQL also includes
the data from the inheriting class tables. In OWL, every class is
(explicitly or implicitly) a subclass of owl:Thing. Therefore,

a class table representing owl:Thing is always present in a
generated database schema. The class table for owl:Thing has
two columns: ID (of type int) and URI (of type varchar) such
that each of its descendants (i.e., each class table) at least has
these two columns. The column URI represents the URI of the
represented instance while ID represents a unique numerical
identifier assigned by 3XL.

Data properties in the ontology result in columns of an
appropriate type in the database schema (e.g., varchar for
literal values as previously shown). For object properties, 3XL
creates a column of type int. This column holds the IDs of
the referenced objects and acts like a foreign key. However,
the foreign key is not declared in the database schema and we
thus denote the column as a loose foreign key. The reason for
not declaring the foreign key is that it can reference IDs in
more than one table if the referenced class has any subclasses.

Fig. 4: 3XL database schema

In OWL Lite, some properties do not have maxCardinality
1. We refer to such properties as multiproperties. In the
database schema, a multiproperty can be represented in two
ways: By a column of an array type in the class table or by a
special table called a multiproperty table. When an array type
is used, it is possible to represent several values in a single
column of a row. As can be seen in Fig. 2, it is possible to
choose from the GUI how to represent multiproperties. In this
example, we use multiproperty tables. As a student can take
several courses, the takesCourse property is represented by
means of a multiproperty table in Fig. 4. This multiproperty
table holds a row for each value the multiproperty takes for
a given instance. ID in the table for takesCourse is a loose
foreign key to Student to represent which instance the value
belongs to. As takesCourse also is an object property, a value
of the property is represented by a loose foreign key to the
class table for Course. If it had been a data property, a column
of the appropriate type would have been used.

Based on the mapping rules [11] summarized in Table 1,
3XL generates DDL as shown in the bottom of Fig. 2. We
emphasize how easy it is to understand and use a generated
schema as the one in Fig. 4 with plain SQL (although queries
by means of triples also are supported as demonstrated next).

This makes it very easy to integrate OWL data with other data.

TABLE I: Transformation rules
OWL constructs Results in database schema
owl:Class a class table
rdfs:subClassOf inheritance between two class tables
owl:ObjectProperty
or
owl:DatatypeProperty

a column in a class table if owl:max-
Cardinality is 1, and in a multiproperty
table or array column otherwise

rdfs:domain a column in the class table if the max-
Cardinality is 1, and a loose foreign key
from a multiproperty table to a class
table otherwise

rdfs:range a type for the column representing the
property

Besides class tables and multiproperty tables, 3XL creates
the table map(URI, ID, ct) which makes it fast to find
the ID and/or class table representing an instance with a given
URI. Although 3XL is specialized for the data with known
ontologies, it can also store the triples that are not described by
the ontology. It does so by creating the table overflow(ID,
sub, pre, obj) which holds those triples.

III. TRIPLE LOADING

We demonstrate how data is loaded into 3XL and consider
the following triples:

(http://www.univ0.edu/s0, rdf:type, Student)
(http://www.univ0.edu/s0, name, "s0")
(http://www.univ0.edu/s0, email, "s0@univ0.edu")
(http://www.univ0.edu/s0, takesCourse,

http://www.univ0.edu/course0)
(http://www.univ0.edu/course0, rdf:type, Course)
(http://www.univ0.edu/course0, name, "course0")

Data from triples with a common subject is first gathered in
a value holder that maps from predicates to values. A value
holder holds all known data about a specific individual. In
the shown triples, there are two unique subjects. Thus, 3XL
creates the two value holders shown in Fig. 5.

Fig. 5: Value holders

Each value holder also represents a unique ID assigned by
3XL. Further, the rdf:type is represented. In OWL Lite, the
rdf:type must be explicitly given, but in many cases 3XL can
also deduce the rdf:type based on the seen predicates. For
example, only students have email addresses in our scenario.
Multiproperty values, such as takesCourse, are represented as

lists in value holders. Since takesCourse is an object property,
the IDs of the referenced instances are held in the list instead
of the (longer) URIs.

A value holder eventually results in a row in a class
table and possibly some rows in multiproperty tables. The
upper value holder in Fig. 5 results in a row in the class
table for Student and a row in the multiproperty table for
takesCourse. For efficiency reasons, 3XL only updates the
underlying database in bulks. Thus, many value holders are
held in a data buffer. When the data buffer is full, the value
holders are transferred to the database in a bulk operation.
This is shown in the upper part of Fig. 6.

Fig. 6: Data flow in triple loading

When a value holder’s data is inserted into the database,
the value holder is deleted from the data buffer. When another
triple is added, it can, however, happen that its corresponding
value holder was just loaded into the database such that 3XL
has to re-generate this value holder from the database. To avoid
this, only the least-recently-used value holders are loaded into
the database. We call this partial commit. This exploits that
the data can have locality such that triples describing the same
instance appear close to each other.

When the first triple in our example is seen by 3XL,
there is no value holder for http://www.univ0.edu/s0.
If a corresponding value holder for a new triple is not
found in the data buffer, 3XL tries to look it up in the
database. In our example, there is also no information about
http://www.univ0.edu/s0 in the database when 3XL
sees the first triple. This is, however, difficult to determine as
3XL after seeing the first triple still does not know what type
the instance has (and thus the appropriate class table is not
known). Instead of searching all class tables, which would be
very expensive, the map table is used. This table maps from
a URI to the ID assigned by 3XL and the class table holding
the data about the instance (i.e, from http://www.univ0.edu/s0
to the ID 1 and the class table Student in our case). For better
performance, this table is loaded into BerkeleyDB which can
keep a configurable amount of data in main memory. It is
then very fast to determine which class table to look into or
to decide that a new empty value holder should be created and
no database lookup is necessary.

The full paper [11] details how bulk loading, partial commit,

and use of BerkeleyDB for map influence the performance.
3XL can also load the triples that are not described by the

OWL Lite ontology used for the schema generation. If we,
e.g., load the triple (http://www.univ0.edu/s0, supervisor,
http://www.univ0.edu/prof0), the data will be represented in
the overflow table.

Fig. 7 shows the interface for configuring the loading of
triples into 3XL. Triples in the N3-format can be loaded
from a file using this interface. It is possible to configure the
amount of memory used by BerkeleyDB. Further, the size of
the data buffer can be set as well as the percentage of least-
recently-used value holders to insert into the database when
the data buffer is full. It is thus possible to fine-tune 3XL’s
performance. Details about the configuration parameters are
available in [11] and will be discussed during the demon-
stration. With proper configuration, 3XL achieves load-speeds
of up to ∼25,000 triples/second on a normal notebook [11]
which is comparable to the leading file-based triple-stores
BigOWLIM [2] and RDF-3X [12] as explained in Section V.

Fig. 7: 3XL’s GUI for triple loading

IV. TRIPLE QUERIES

We now demonstrate how the data can be queried. Fig. 8
shows the interface for querying. A query can be entered in the
upper part of the window and the result can either be written to
a file or shown in the lower part of the window. 3XL supports
two classes of queries: point-wise and composite queries. They
are described in the following.

Point-wise Queries: A point-wise query is a sin-
gle triple, i.e., Q = (s, p, o). The result includes all
triples that have identical values for s, p, and o. Each
part of the query triple may, however, be a wildcard
“*” which is considered to be identical to everything.
If we issue the query (http://www.univ0.edu/s0,
takesCourse, *) on the previously loaded triples, the re-
sult is (http://www.univ0.edu/s0, takesCourse, http://www.
univ0.edu/course0).

To answer such queries, 3XL first identifies the relevant
class tables and the IDs of the instances by means of the
map table. In our example, 3XL thus finds the ID 1 for the
instance. The class table for Student does, however, not hold

Fig. 8: 3XL’s GUI for triple querying

Fig. 9: The result of the composite query

the information needed to answer the query. The reason is
that takesCourse is a multiproperty and we use multiproperty
tables. As takesCourse also is an object property, 3XL has to
join with the class table of takesCourse’s range (i.e., Course) to
find the URIs of the courses taken by the represented student:

SELECT Course.URI FROM TakesCourse, Course
WHERE TakesCourse.courseId = Course.ID AND

TakesCourse.studentID = 1

From the result of this SQL query, 3XL generates the triple
result set – which in this case consists of a single triple. For
the query (http://www.univ0.edu/s0, email, *)
it is enough to identify the relevant class table (by means of
the map table) and then select the email address from that
class table. The reason is that email has maxCardinality 1
and is a data property. These examples illustrate how 3XL
efficiently answers the important category of (s, p, ∗) queries.
For details about these and other point-wise queries, see [11].

It should be noted that when a query is made on a table
with inheriting tables, the inheriting tables are queried as
well. If, for example, a query is made on the Student table,
the UndergraduateStudent and GraduateStudent tables are also
queried due to PostgreSQL’s object-relational features.

Composite Queries: 3XL also supports composite queries.
Composite queries consist of several query triples and are more
expressive than point-wise queries. Unknown variables used
for linking triples together are specified using a string starting
with a question mark while known constants are expressed
using their full URIs or in an abbreviated form where prefixes
can be replaced with shorter predefined values. The upper part
of Fig. 8 shows an example of a composite query to find the
courses taken by a student with a certain name. Fig. 9 shows
the result as a graph. The result consists of all triples as those
in the query, but with variable names replaced by actual values.

To answer a composite query, 3XL generates more complex
SQL than for the point-wise queries. For the shown example,
the following SQL is generated. 3XL can then generate the
triples of the result.

SELECT GraduateStudent.uri AS x, Course.uri AS y
FROM GraduateStudent, TakesCourse, Course
WHERE GraduateStudent.ID = TakesCourse.ID AND

TakesCourse.takesCourse = Course.id AND
GraduateStudent.name = ’s0’

V. PERFORMANCE

We study the performance of 3XL by comparing with the
two leading file-based triple-stores BigOWLIM [2] and RDF-
3X [12] and use a synthetic data set (LUBM [7]) and a real-
world data set (EIAO [14]), both with 100 million triples.
With proper configuration on a normal notebook, 3XL loads
18,519 triples/s (EIAO) and 24,765 triples/s (LUBM) and
outperforms RDF-3X which loads 10,502 triples/s (EIAO) and
10,704 triples/s (LUBM). BigOWLIM loads 19,267 triples/s
(EIAO) and 30,030 triples/s (LUBM). The query performance
of 3XL is also comparable to BigOWLIM and RDF-3X on the
EIAO data set (3XL is best for 4 of 10 queries) as well as the
LUBM data set (3XL is best for 6 of 14 queries). Generally,
file-based triple-stores are considered to be faster than DBMS-
based ones. It is thus remarkable that 3XL offers the both
of best worlds: performance and flexibility. For more details
about the performance study, see [11].

VI. RELATED WORK

There are many different RDF storage systems available.
Haslhofer et al. conduct a survey of the existing RDF stores
and categorize and compare the existing solutions [10]. As
RDF data consists of (subject, predicate, object) triples, many
early systems, including 3store [8] and GridVine [5], use a
giant and narrow triple table to represent all the triples. This
approach is different from the approach taken by 3XL where
the data to store is held in many class tables. Hexastore
[15] and RDF-3X [12] optimizes RDF query processing by
building indices according to the permutation of the columns
of the triple table. They both do not use a DBMS, but their
own database engines. Das et al. [6] compare file-based and
DBMS-based triple-stores and show that the file-based ones
are generally faster. Various approaches are proposed to speed
up query processing by considering clustering RDF data based
on properties, including [1], [4], and [16]. They are orthogonal
to 3XL. 3XL, however, is specifically designed to be fast
for queries where the subject and/or predicate is known and
where many/all properties should be retrieved. In addition, a
number of industry-oriented solutions exist, such as [2], [3],
[6], and [9]. They use system files or a DBMS as the back-
ends for storing data. 3XL uses an object-relational DBMS as
the back-end, but takes advantage of advanced features such as
inheritance. This is is an intuitive way to represent RDF/OWL
data in the ORDBMS and is both easy and fast to use.

VII. DEMONSTRATION

In the demonstration of 3XL, we use a LUBM-inspired
ontology to generate a specialized database schema. The
ontology covers all classes and properties used by the LUBM
data generator. First, we show how the ontology is mapped into
a database schema including how multiproperties are handled
and how to handle triples describing unknown classes. Second,
we demonstrate data loading by using the LUBM data set.
We demonstrate how triples are inserted and how the 3XL
system processes them on their way into the system. We
further show the performance effects of the sizes of the cache
and partial commits. Third, we show querying on the loaded
data, including both point-wise and composite queries. Finally,
we demonstrate how the data can be integrated with other
(non-triple) data. The audience will see how one can interact
with 3XL through the GUI client and interactively generate
database schemas, load data, and execute queries.

REFERENCES

[1] D.J. Abadi, A. Marcus, S.R. Madden, and K. Hollenbach.
Scalable Semantic Web Data Management Using Vertical Parti-
tioning. In Proc. of VLDB, pp. 411–422, 2007.

[2] BigOWLIM - Semantic Repository for RDF(S) and OWL.
owlim.ontotext.com/display/OWLIMv35 as of 2012-05-01.

[3] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema. In Proc. of ISWC, pp. 54–68, 2002.

[4] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An Ecient
SQL-based RDF Querying Scheme. In Proc. of VLDB, pp 1216–
1227, 2005.

[5] P. Cudre-Mauroux, S. Agarwal, and K. Aberer. GridVine:
An Infrastructure for Peer Information Management. Internet
Computing, IEEE, 11(5):36–44, 2007.

[6] S. Das, E. Chong, W. Zhe, M. Annamalai, and J. Srinivasan.
A Scalable Scheme for Bulk Loading Large RDF Graphs into
Oracle. In Proc. of ICDE, pp. 1297–1306, 2008.

[7] Y. Guo, J. Heflin, and Z. Pan. LUBM: A Benchmark for OWL
Knowledge Base Systems. Web Sem., 3(2):158-182, 2005

[8] S. Harris and N. Gibbins. 3Store: Efficient Bulk RDF Storage.
In Proc. of PSSS, pp. 1–15, 2003.

[9] S. Harris, N. Lamb, and N. Shadbolt. 4store: The Design and
Implementation of a Clustered RDF Store. In Proc. of SSWS,
2009.

[10] B. Haslhofer, E. M. Roochi, B. Schandl, and S. Zander. Eu-
ropeana RDF Store Report. In University of Vienna, Techni-
cal Report, 2011. eprints.cs.univie.ac.at/2833/1/europeana ts
report.pdf as of 2012-05-01.

[11] X. Liu, C. Thomsen, and T. B. Pedersen 3XL: Supporting
Efficient Operations on Very Large OWL Lite Triple-stores. Inf.
Sys., 36(4):765–781, 2011

[12] T. Neumann and G. Weikum. RDF-3X: A RISC-style Engine
for RDF. PVLDB, 1(1):647–659, 2008

[13] OWL Web Ontology Language Guide. www.w3.org/TR/
owl-guide as of 2012-05-01

[14] C. Thomsen and T.B. Pedersen. Building a Web Warehouse for
Accessibility Data. In Proc. of DOLAP, pp. 43–50, 2006.

[15] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextu-
ple Indexing for Semantic Web Data Management. PVLDB,
1(1):1008-1019, 2008.

[16] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient
RDF Storage and Retrieval in Jena2. In Proc. of SWDB, pp.
131–150, 2003.

