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Abstract

This thesis is about data warehousing technologies for large-scale and right-time data.
Today, due to the exponential growth of data, it has become a common practice
for many enterprises to process hundreds of gigabytes of data per day. Tradition-
ally, data warehousing populates data from heterogeneous sources into a central data
warehouse (DW) by Extract-Transform-Load (ETL) at regular time intervals, e.g.,
monthly, weekly, or daily. But now, it becomes challenging for large-scale data, and
hard to meet the near real-time/right-time business decisions. This thesis considers
some of these challenges and makes the following contributions:

First, this thesis presents a new and efficient way to store triples from an OWL
Lite ontology known from the Semantic Web field. In contrast to classic triple-stores
where the data with the triple format of (subject, predicate, object) is stored in few,
but big, tables with few columns, the presented triple-store spreads the data over more
tables that may have many columns. The triple-store is optimized by an extensive
use of bulk techniques, which makes it very efficient to insert and extract data. The
DBMS-based solution makes it very flexible to integrate with other non-triple data.

Second, this thesis presents a middle-ware system for live DW data. Processing
live DW data is one of the most tricky problems in data warehousing. An innovative
method is proposed for processing live DW data, which accumulates the data in an
intermediate data store, and does data modifications on-the-fly when the data is ma-
terialized or queried. The data is made available in the DW exactly when needed and
users can get bulk-load speeds, but INSERT-like data availability.

Third, this thesis presents the first dimensional ETL programming framework
using MapReduce. Parallel ETL is needed for large-scale data, but it is not easy to
implement. This presented framework makes this very easy by offering high-level
ETL-specific constructs, including those for star schema, snowflake schema, slowly
changing dimensions (SCDs) and very large dimensions. The framework can achieve
high programming efficiency, i.e., only a few statements needed for implementing a
parallel ETL program, and good scalability for processing different DW schemas.

Finally, this thesis presents scalable dimensional ETL for cloud warehouse. To-
day, organizations gain growing interest in moving data warehousing systems towards
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the cloud, however, the current data warehousing systems are not yet particularly
suited for the cloud. The presented framework exploits Hadoop to parallelize ETL
execution and Hive as the warehouse system. It has a shared-nothing architecture,
and supports scalable ETL operations on clustered commodity machines. To imple-
ment dimensional ETL, this framework can achieve higher programmer productivity
than Hive, and its performance is also better.

In summary, this thesis discusses several aspects of the current challenges and
problems of data warehousing, including integrating Web data, near real-time/right-
time data warehousing, handling the exponential growth of data and cloud data ware-
housing. This thesis proposes a variety of technologies to deal with these specific
issues.
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Chapter 1

Introduction

In this rapidly changing age, decision makers need to utilize a wide range of informa-
tion systems to improve their business decisions. One of the most used information
systems is business intelligence (BI), which takes decision makers to a high level by
providing them with a thorough understanding of an organization’s operations. The
term of BI was first proposed by Howard Dresner (later a Gartner Group analyst)
in 1989 to describe “concepts and methods to improve business decision making by
using fact-based support systems” [52]. Another term closely related to BI is data
warehouse (DW), which is the information source and the base of business intel-
ligence. According to Kimball and Inmon, DW is defined as a “subject-oriented,
non-volatile, time-variant data repository in support of management decisions” [43].
Data warehousing is a collection of technologies for integrating data from heteroge-
neous sources into a central DW. Typically the data integration proceeds in three
steps: the data of interest is first extracted from the sources, subsequently trans-
formed and cleansed, and finally loaded into the DW. This is what we refer to as
Extract-Transform-Load (ETL). Today, BI is now widely used to describe analytical
applications [93]. The BI market has become one of the fastest growing software
markets. According to Gartner [32], the worldwide BI market revenue is predicted
to grow 8.7 percent to approximately $12.7 billion in 2012. This growth reflects the
increasing importance and interest in the BI technologies.

1.1 Background and Motivation

The work that led to this thesis is in relation to the eGovMon project [27] which de-
velops open source software, methodologies for quality evaluation of eGovernment
services. The eGovMon project is to help governments deliver services to citizens in
better, improve interactions with business and industry, and better government man-
agement. The eGovernment services are evaluated using four indicators, including
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2 Introduction

accessibility, transparency, efficiency and impact (ATEI). The project requires a DW
system with good scalable capability, and with high performance for the analysis of
the four indicators. For example, to evaluate the accessibility which people with dis-
abilities can perceive, understand, navigate, and interact with the web, a large num-
ber of web pages are crawled and evaluated automatically by the developed tools.
The evaluation produces large amounts of RDF/OWL data. The data warehousing
technologies proposed in this thesis are able to make the evaluation results quickly
available to analysis. Since the requirements of the eGovMon DW also reflect the re-
cent major concerns of DW community, including open source, support for web data,
right-time and near real-time, and handling large-scale data sets, the proposed DW
technologies in this thesis are designed to be general, and thus can also be applied
to the other projects with these concerns. More specifically, this thesis is motivated
by several aspects of the current challenges and issues, which are discussed in the
following.

1.1.1 Motivation for Open Source

Today, the BI tools are available under both commercial and open source licenses.
In the commercial world, business intelligence tools and technologies have come to
their maturity in the last decades. Many BI vendors, such as IBM, SAP, Business Ob-
jects, Cognos, etc., provide both individual BI tools and integrated solutions. In the
open source world, however, the use of business intelligence tools is still very limited,
e.g., most tools are only used standalone, or have to be customized or tailored in com-
pliance to the distinctive needs and requirements of businesses. Nevertheless, using
open source BI shows very promising benefits, e.g., low-cost, manageable size, flex-
ibility and reducing the dependence on software vendors. Remarkably, an increasing
number of researchers and companies have developed open source BI tools and pro-
posed different solutions in recent years. Thomsen and Pedersen conducted surveys
of open source BI tools and the development status in 2005 and 2008 [80, 81], re-
spectively. The surveys investigated the tools that can make a complete BI solution,
including Extract–Transform–Load (ETL) tools, DBMS, On-Line Analytical Pro-
cessing (OLAP) Servers and OLAP Clients. The surveys found that many new BI
tools were developed between the two surveys, and there exists mature and powerful
tools in all categories (but the functionalities are still short of that found in com-
mercial tools). The surveys also found that the open source DBMSs have the highest
maturity, e.g., some can be compared with commercial DBMSs, but the ETL tools are
the least mature compared with the tools in other categories. Thus, it is worthwhile
to pay our attention and effort to the open source tools for ETL.
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1.1.2 Support for Web Data

Today, the Web has become the major platform for publishing information. Nearly
all the corporations, organizations, and authorities have their own web sites. People
use the Web to study, search and share information, and now the Web is an insepara-
ble part of people’s life. The Web has become one of the most important information
resources. Resource Description Framework (RDF) and its extension Web Ontology
Language (OWL) are used for modeling the Web data by making statements about
resources [67]. In recent years, they becomes popular due to the increasing need for
an effective underlying data model for the growing Semantic Web. Unfortunately, it
remains a challenge to store and query RDF/OWL data in an efficient manner. For
the existing DBMS-based stores, they have difficulty in offering high scalability and
low latency querying. For the existing file-based stores, they have better performance
than DBMS-based stores in general [20], however, they lack the flexibility offered
by the DBMS. Thus, it is interesting develop the storage engine that supports sav-
ing RDF/OWL data in DBMS, but extensively optimizes the engine to achieve the
performance that is comparable to the file-based triple-stores.

1.1.3 Real-time and Right-time

Today, business time is increasingly moving toward real time. As enterprises look to
grow their competitive advantage, they are trying to uncover opportunities to capture
and respond to business events faster and more rigorously than ever. The duration
between the event and its consequent action needs to be minimized. Therefore, one
of the emerging trends for data warehousing is the increasing demand for “real-time”
or “near real-time” data integration, i.e., the refreshment of DW happens very quickly
after a triggering business event [10, 17].

A recent and more sophisticated requirement is to make the data in the DW avail-
able when users need it, but not necessarily before. This is referred to as “right-time”
data warehousing [85]. A user can then specify a certain required freshness for the
data. For example, (s)he can specify that (s)he wants a freshness of five minutes.
Thus, the system can ensure the user to read the data committed five minutes ago.

Real-time and right-time both collect and integrate information about actionable
operational events, and emphasize a lower latency between the events and the deci-
sion makings. These events may originate from the sources– operational applications,
web click streams and so forth. However, traditionally DWs are refreshed in a pe-
riodic manner, usually on a daily basis. The DW refreshment is typically scheduled
for off-peak hours where the operational sources and the DW both experience low
load conditions, e.g., at night-time. However, today’s business users have an increas-
ing demand for up-to-date data analysis to support their decision makings. The DW
refreshment can no longer be postponed to off-peak hours, which necessitates in-
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vestigating the novel data warehousing technologies that support near real-time and
right-time data integration.

1.1.4 Support for Large-scale Data

With the evolution of information technologies, the volume of data we attempt to
manage in data warehousing is exploding, especially processing the data generated
by machines, such as online activities, mobile communications, or social media, etc.
It has become common for an enterprise to process hundreds of gigabytes of data per
day. Traditional data warehousing technologies face the challenge on how to process
large-scale data efficiently as normally the data is processed in a regular interval, and
within a certain time window, e.g., at night in every day. To meet this challenge,
the architecture of the data warehousing must be carefully reconsidered. Paralleliza-
tion is the technology that has long been studied, and widely used for improving data
processing scalability, such as using powerful symmetric multiprocessing (SMP) ma-
chines, or using grid computing and in combination with software. However, these
technologies have the limitations that they only have limited scalability, e.g., multi-
threading is not scaled out to many machines. In recent years, with the appearance
of so-called “cloud computing” technology, a revolution of computing paradigm,
MapReduce [22], becomes popular, which entails harnessing large numbers of (low-
end) processors working in parallel to solve a computing problem. MapReduce has
been proved applicable and effective for a wide range of applications, and has be-
come the de-facto standard for large-scale data. Thus, it would be very interesting
to introduce MapReduce to data warehousing. For example, we can split the pro-
cessing of dimensions and facts into smaller computation units, and merge the partial
results from these computation units, and constitute the final results in a DW. The
data warehousing can benefit from the off-the-shelf MapReduce system mechanisms
for communication, load balance, task scheduling and fault tolerance.

1.1.5 Motivation for Cloud Computing

Traditionally, data warehouse systems have a shared-everything or shared-storage
architecture with high-end machines. Nevertheless, this architecture limits the scal-
ability when dealing with large-scale data today. The recent emerged cloud com-
puting infrastructure differs dramatically from the infrastructure that most in-house
data warehouse systems used today. Instead of using high-end machines, the infras-
tructure is composed of thousands of commodity servers. The computing resource
in the cloud is thus very cheap, and provided as pay-as-you-go service. For exam-
ple, Amazon EC2 [6] provides powerful on-demand computing resources that can be
scaled up or down as needed, while paying per hour for the use of virtual machine
instances. Cloud computing enables enterprises to analyze large-scale data faster and
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more economically than before. In addition, the data warehousing solutions can also
be provided as a service to enterprises. Enterprises can make use of the solutions on a
subscription basis such that the enterprises can reduce their operation cost. However,
the current data warehousing systems are not yet particularly suitable for moving
towards the cloud, e.g., typically, the ETL processes do not spread across multiple
machine, and the system uses a central DW for storing data. Thus, we need to recon-
sider the existing data warehousing systems, and propose new DW technologies that
are suitable for the cloud.

1.2 Thesis Overview

This section gives an overview of each chapter and the appendix in this thesis.
Chapter 2 introduces an efficient RDBMS-based OWL Lite triple-store. This

work is motivated by the eGovMon project [27]. In this project, a large number
of web pages are crawled to evaluate their accessibility regularly, which produces a
large amount of RDF data sets for the evaluation results. A classical RDF data store,
such as 3Store [37], stores RDF data sets in a narrow triple table, which has three
columns, subject, predicate and object. However, when large amounts of data have
been loaded, the size of the triple table becomes very large. This deteriorates query
performance because querying a RDF graph has to do multiple self-joins of the gi-
ant triple table. In this chapter, we present an OWL Lite triple-store, 3XL, which
supports efficient triple loading and query. 3XL uses a specialized database schema
to store the triples. The database schema is derived from the ontology of describing
triple data, and makes use of the object-relational features of PostgreSQL, such as
inheritance. The triples are partitioned, and stored in many class tables. This chapter
introduces a number of optimization techniques to speed up the loading of triples into
the class tables, including in-memory value holders, partial-commit of the value hold-
ers, and bulk-loading the triples from the value holders to the underlying RDBMS.
3XL supports very efficient retrieval for point-wise queries where the subject and/or
the predicate is known, as we have found such queries to be the most important for
most bulk data management applications. 3XL also supports efficient retrieval for the
composite queries which are composed of several point-wise queries for retrieving a
complex RDF graph. We evaluate the loading and query performance using both
real-world and synthetic data sets, and compare with the DBMS-based solutions and
the two state-of-the-art file-based solutions, BigOWLIM and RDF-3X. The results
show that the loading performance of 3XL outperforms RDF-3X, and is compara-
ble to BigOWLIM (the current most efficient RDF/OWL store), e.g., when loading
100 million LUBM triples, the loading speed of 3XL is up to 25,000 triples/second
on a normal notebook. When doing the 14 LUBM (the Lehigh University Bench-
mark for OWL knowledge base systems) queries [51] , 3XL shows the best perfor-
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mance for 6 out of the 14 queries while BigOWLIM has the best performance for 7
queries and RDF-3X has the best performance for the remaining query. Thus, 3XL
has the comparable performance to the file-based solutions, but offers the flexibility
of RDBMS-based solutions.

Chapter 3 presents a right-time ETL middleware for live DW data. Tradition-
ally, data warehousing populates data from heterogeneous source systems into a DW
by an ETL process periodically, e.g., daily or monthly. This, in many cases, is not
acceptable as the time delay can make decision making lack far behind in time com-
pared to the external business environments. Further, traditional ETL technologies
appear incapable of handling so-called live DW data, in which data insertions are in-
terleaved with updates and deletions. A typical example is the accumulating facts of
which the fact records can be added with the incomplete information of dimensions.
For instance, in online shopping a user places an order only with the information of
the number of articles, prices, order date, etc. A sale fact record is created in the
system, but this record still lacks the other information such as the delivery date and
fee, which are accumulated gradually by the later updates. We found that most of
the data modifications for live DW data happen shortly after the insertions, while up-
dates are seldom seen for the data inserted long time ago, such as the history data.
In the conventional approach, the updates are conducted in a regular interval and in
off-line fashion, which is now regarded as not efficient enough. This chapter presents
an ETL middleware, called All-RiTE, for handling live DW data. All-RiTE supports
all the operations for processing live DW data, including the operations INSERT,
UPDATE, DELETE and SELECT, on-the-fly data modifications, the support of pro-
cessing multiple tables, and processing data in online fashion. All-RiTE exploits a
novel memory-based data buffer, catalyst, between the sources and the DW. The live
DW data is first accumulated in the catalyst, and modified on-the-fly when the data is
queried or populated to the DW. The data in the catalyst is also available for read to
users. Users can specify the time accuracy of the data to be read from the catalyst, and
specify the flush policy when to move the data into the DW. This chapter compares
All-RiTE with bulk-loading and JDBC. The experimental results show that All-RiTE
achieves very good performance in processing live DW data. All-RiTE works 4, 3.9,
8.9 and 3.9 times faster than bulk-loading, RiTE, JDBC insert and JDBC batch load-
ing, respectively when loading data with the on-the-fly modifications. When reading
the data from the catalyst, the performance is comparable to reading data from the
DW. All-RiTE, thus, can be used as a middleware to integrate with ETL programs
that require processing live DW data in a near real-time/right-time fashion.

Chapter 4 describes a dimensional ETL programming framework using MapRe-
duce [22]. With the ever-growing data today, data warehousing technologies face
the challenges on how to process data efficiently. Parallelization is one of the key
technologies to improve the scalability. Traditional parallelization technologies, such
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as Parallel Virtual Machine (PVM) [77] and Message Passing Interface (MPI) [30],
provide the parallelization ability by using extensive messaging mechanisms. They
are mostly designed for tackling processor-intensive problems, and complicated to
use. The MapReduce paradigm, however, becomes popular for its high scalability,
ease of use, fault-tolerance and cost-effectiveness. It is thus interesting to see how
MapReduce can be applied to the parallelization of ETL. Nevertheless, MapReduce
is only a generic framework, which lacks the support of the high-level ETL-specific
constructs for different DW schemas, including star schema, snowflake schema and
slowly changing dimensions (SCDs). This leads to low ETL programmer productiv-
ity. The presented framework, ETLMR, provides the direct support of the high-level
ETL constructs. This makes it easy to implement a parallel ETL program, e.g., only
a few code-lines are needed. The framework processes a DW schema using two
sequential steps, i.e., dimension processing following by fact processing. This chap-
ter first presents a number of parallelization methods for the dimension processing,
including using one MapReduce task to process one dimension table exclusively,
called one dimension, one task (ODOT), using all the tasks to process one dimension
table, called one dimension, all tasks (ODAT), and using level-wise and hierarchy-
wise approaches to process snowflaked dimensions. In addition, in order to achieve
good efficiency, this chapter proposes an offline dimension scheme to process big
dimension tables. For fact processing, this chapter proposes the method of using a
map-only job to process fact data, which does dimension key value lookups and data
transformations in mappers. In each mapper, the processed fact data is first cached
in a task-specific buffer in run-time. When the buffer is full, the fact data is loaded
into the DW using bulk-loader. The experiments of this chapter first study the scal-
ability of each processing method, then compare the performance with the related
work, Pentaho Data Integration (PDI) [62], and finally compare the programming ef-
fort with Hive [86] and Pig [57]. The results show that using ETLMR can achieve
good scalability to process different dimensional DW schemas, and the performance
outperforms PDI. ETLMR has good programming efficiency to implement a paral-
lel ETL program, e.g., To process a partial snowflake dimension schema, ETLMR
only needs 14 statements while HiveQL and Pig-Latin need 23 and 40 statements,
respectively. ETLMR provides the built-in support for SCDs, which is not trivial for
HiveQL and Pig-Latin since they both do not support updates.

Chapter 5 introduces a scalable dimensional ETL framework for cloud ware-
house. Due to the rapid growth of data today, there is an increasing demand for the
new data warehousing architectures that support scalable operations. However, most
existing DW systems are the in-house systems, which are implemented for high-end
machines, and store data in a relational DBMS. This architecture becomes insuffi-
cient to use for many enterprises when dealing with large-scale data. This chapter
introduces a novel scalable dimensional ETL framework, CloudETL. Unlike the con-
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ventional data warehousing systems, CloudETL uses Hadoop to parallelize ETL ex-
ecution and Hive as the warehouse system. This enables the data warehousing in
cloud environments. In CloudETL, the source data in Hadoop distributed file system
(HDFS) is processed into the dimension and fact tables in Hive through user-defined
transformers (the components with ETL capabilities). When processing SCDs, we
apply updates on both the incremental and existing dimension data that has already
been loaded into Hive, i.e., update the effective dates and the version numbers of
SCDs. This chapter first introduces the reduce-side updates for SCDs, which the di-
mension values with an identical business key value are shuffled to a single reducer,
sorted and updated according to the changing order of SCDs. Since shuffling data
from mappers to reducers is a relatively expensive operation on Hadoop, we opti-
mize CloudETL by doing the pre-updates in mappers such that the size of shuffled
data is minimized. CloudETL also provides the built-in support for data co-location
in HDFS. When the data is co-located, only mappers are needed, e.g., when process-
ing a big dimension table, such that the performance can be improved significantly.
CloudETL processes snowflaked dimension tables through a number of dependent
jobs which are planned based on the foreign-key dependencies of the tables. To
process fact data, we introduce the lookup index, a sequence file containing the map-
pings of lookup attribute values to a dimension key value. When processing fact
data, CloudETL first reads the lookup indices into the main memory, then retrieves
dimension key values through multi-way lookups from the in-memory lookup in-
dices. In addition, this chapter also introduces how to manage the input and output of
CloudETL, and how to maintain the data consistency in case of job failures. The se-
quential number generation for dimension key values and the mechanism of planning
jobs are introduced as well. The experimental results show that CloudETL achieves
better performance than ETLMR when processing different DW schemas. It also out-
performs the dimensional ETL capabilities of Hive, i.e., CloudETL has higher pro-
gramming efficiency to implement parallel ETL programs for different DW schemas,
e.g., only needs 6 statements for SCDs while Hive requires 112 statements, and the
performance is also much better.

Appendix A demonstrates how to interact with 3XL system through a graphic
user interface (GUI). We show how to generate data dependent database schema by
a given OWL Lite ontology, show how to set different parameters to tune the perfor-
mance of loading, and show how to query the OWL/RDF graphs by using point-wise
and composite queries. Appendix B demonstrates the details on how to use ETLMR
to implement parallel ETL programs for different DW schemas. We illustrate how
easy it is to use ETLMR, e.g., only a few code lines are needed.

The thesis is organized as a collection of individual papers. Each chapter/ap-
pendix is self-contained and can be read in isolation. The chapters have been slightly
modified during the integration such that, for example, their bibliographies have been
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combined to one, and references to “this paper” have been changed to references to
“this chapter”. Appendix A and B are the demonstrations of the systems presented
in Chapter 4 and 5, respectively. The content of each has some overlap to its corre-
sponding chapter.

The papers included in this thesis are listed in the following. Chapter 2 is based
on Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on Paper 4 which is
the complete version of Paper 3, Chapter 5 is based on Paper 5, Appendix A is based
on Paper 6 and supplement to Chapter 2, and Appendix B is based on Paper 7 and
supplement to Chapter 4.
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Chapter 2

3XL: Supporting Efficient
Operations on Very Large OWL
Lite Triple-Stores

An increasing number of (semantic) web applications store a very large number of
(subject, predicate, object) triples in specialized storage engines called triple-stores.
Often, triple-stores are used mainly as plain data stores, i.e., for inserting and retriev-
ing large amounts of triples, but not using more advanced features such as logical
inference, etc. However, current triple-stores are not optimized for such bulk opera-
tions and/or do not support OWL Lite. Further, triple-stores can be inflexible when
the data has to be integrated with other kinds of data in non-triple form, e.g., standard
relational data.

This chapter presents 3XL, a triple-store that efficiently supports operations on
very large amounts of OWL Lite triples. 3XL also provides the user with high flexi-
bility as it stores data in an object-relational database in a schema that is easy to use
and understand. It is, thus, easy to integrate 3XL data with data from other sources.
The distinguishing features of 3XL include a) flexibility as the data is stored in a
database, allowing easy integration with other data, and can be queried by means of
both triple queries and SQL, b) using a specialized data-dependent schema (with in-
telligent partitioning) which is intuitive and efficient to use, c) using object-relational
DBMS features such as inheritance, d) efficient loading through extensive use of bulk
loading and caching, and e) efficient triple query operations, especially in the impor-
tant case when the subject and/or predicate is known. Extensive experiments with a
PostgreSQL-based implementation show that 3XL performs very well for such oper-
ations and that the performance is comparable to state-of-the-art triplestores.

11
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2.1 Introduction

The increasing popularity of (semantic) web applications means that very large amou-
nts of semantic web data, e.g., from ontologies, need to be managed. Most semantic
web data is somehow based on the Resource Description Framework (RDF) [46], a
family of World Wide Web Consortium (W3C) specifications for conceptual descrip-
tion/modeling of web resource information. Recently, the Web Ontology Language
(OWL), a semantic markup language recommended by W3C for publishing and shar-
ing ontologies on the WWW has gained popularity [11]. OWL is layered on top of
RDF. Even the least expressive of the three OWL layers (OWL Lite) offers class hier-
archies and constraints features, and is very useful for thesauri and other taxonomies.
OWL (and RDF) data takes the form of (subject, predicate, object) triples. These
triples are typically stored in specialized storage engines called triple-stores.

Our initial motivation for this work was the European Internet Accessibility Ob-
servatory (EIAO) project [82] where tens of millions of triples describing test results
about the accessibility of web pages for people with various kinds of disabilities, e.g.,
blind people using a screen reader, were generated in the W3C standard EARL RDF
language. Here, and in other projects, we have seen that the triple-stores are used
mainly as specialized bulk data stores, i.e., for inserting and retrieving large amounts
of triples (bulk operations). More advanced features such as logical inference etc., are
often not used. Additionally, for the basic storage of data about OWL instances, we
found that even a subset of the OWL Lite features was enough, namely classes, sub-
classes, object properties, data properties, domains, ranges, restrictions, onProperty,
and maxCardinality. A well-known example of such data is the data generated by the
data generator for the de-facto industry standard OWL data management benchmark
Lehigh University Benchmark (LUBM) [34].

Similarly to many other projects, the EIAO project involved later integration of
the collected EARL RDF data with other non-RDF data when a data warehouse (DW)
was built to enable easy analysis of the accessibility results. To integrate data from
triples with other kinds of data from relational databases, flat files, XML, etc. can be
difficult. In the EIAO case, an extract-transform-load (ETL) application was hand-
coded to execute triple queries, interprete triple results and do the many needed trans-
formations to integrate the data into a relational DW. Thus, it was a design criteria
for 3XL to allows easy integration with non-triple data.

In this chapter, we present the 3XL triple-store that, unlike most current OWL
Lite triple-stores, is specifically designed to support bulk data management opera-
tions (load and retrieval) on very large OWL Lite triple-stores and provide the user
with flexibility in retrieving the data. The “3” refers to triples, and the “XL” part
to “eXtra Large” and “fLeXible” (“3XL” is also the largest standard t-shirt size in
Europe). 3XL’s approach has a number of unique characteristics. First, 3XL stores
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data in a relational database meaning that the user has flexibility as queries can be
expressed either in triples or in SQL. Second, for the database schema, 3XL uses a
specialized data-dependent schema derived from the OWL ontology for the data to
store, meaning that the schema is easy to navigate and understand and that an “intel-
ligent partitioning” of data is performed. Third, 3XL uses advanced object-relational
features of the underlying ORDBMS, namely table inheritance and the possibility to
have arrays as in-lined attribute values. Fourth, 3XL makes extensive use of a num-
ber of bulk-loading techniques and caching to speed up bulk insertions significantly.
Finally, 3XL is specifically designed to support efficient bulk retrieval for queries
where the subject and/or the predicate is known, as such queries are the most impor-
tant for most bulk data management applications. 3XL is implemented on top of the
PostgreSQL ORDBMS.

Extensive performance experiments with both real-world and synthetic data shows
that 3XL has load and query performance comparable to the best (file-based) triple-
stores, and that 3XL outperforms other DBMS-based triplestores. We believe this
positions 3XL in a unique spot: performance comparable to the best file-based triple-
stores combined with the high degree of flexibility in accessing and integrating non-
triple data offered by a DBMS-based triple-store.

The rest of the chapter is structured as follows. Section 2.2 introduces the 3XL
system in general, explains how to generate a 3XL database schema from an input
OWL ontology, and finally describes triple addition and queries. Section 2.3 presents
the performance study. Section 2.4 presents related work. The last section concludes
and provides ideas for future work.

2.2 The 3XL System

2.2.1 Overview

First, we informally describe the general idea about generating a specialized database
schema for an OWL ontology in PostgreSQL. The descriptions give an intuition about
how 3XL works before this is described in details.

To build the database to store the data in, an OWL ontology is read. This ontology
should define all classes, their parent-child relationships and their properties (includ-
ing domains and ranges). In the database, a class table is created for each class. The
class table for the class C directly inherits from any class tables for the parent classes
of C. This means that if the class table for C’s parent P has the attributes a, b, c then
the class table for C has at least the attributes a, b, c.

Two attributes are needed for each instance of any class: An ID and a URI. To
have these available in all tables, all class tables – directly or indirectly – inherit from
a single root class table that represents the OWL class owl:Thing that all other
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OWL classes inherit from. The class table for owl:Thing has the columns ID and
URI. All the ID values are for convenience unique integers drawn from the same
database sequence (this is explained later).

If the class C has a DataProperty d with maxCardinality 1, the ta-
ble for C has a column d with a proper datatype. For a multiproperty without a
maxCardinality,1 there is a special multiproperty table. This multiproperty ta-
ble has a column that holds the attribute values and a column that holds the IDs for
the instances the property values apply to. The ID attribute acts like a foreign key, but
it is not declared (this is explained below). We here denote this as a loose foreign key.
Note that a multiproperty table does not inherit from the class table for owl:Thing
since multiproperty tables are not intended to represent instances, but only values for
instances. A multiproperty has only one multiproperty table for a class C and not one
for each subclass of C.

Instead of using multiproperty tables, the class tables can have columns that hold
arrays. In this way it is possible to represent several property values for an instance
in the single row that represents the instance in question.

An owl:ObjectProperty is handled similarly to how an owl:DataProp-
erty is handled. If the object property has owl:maxCardinality 1, a column
for the property is created in the appropriate class table. This column holds IDs for
the referenced objects. If the property is a multiproperty, the value column in the
multiproperty table holds ID values.

Example 1 We now introduce the running example used in the rest of the chapter. To
save space we do not use URIs but intuitive names for classes and properties.

Assume that there are three classes: Document, HTMLVersion, and HTML-
Document, where HTMLDocument is a subclass of Document. Document has
the properties title and keyword. The property keyword is the only multiproperty in
this example. HTMLVersion has the properties version and approvalDate. Apart
from the inherited properties, HTMLDocument has the property usedVersion. The
property usedVersion is an owl:ObjectProperty with owl:range HTM-
LVersion. The remaining properties are all of kind owl:DataProperty.

This results in the database schema drawn in Figure 2.1. Inheritance is shown
with arrows as in UML. A loose foreign key is shown as a dotted arrow. For now,
please ignore the map and overflow tables which are explained later.

Note how easy the schema from Example 1 is to use in SQL queries. This makes
it easy to integrate the data with other data. Further, the user can exploit all the
advanced functionality that the underlying DBMS (PostgreSQL) provides. The user
can, however, also choose to query the data by means of (single or “chained”) triples
as will be explained later.

1OWL Lite only allows maxCardinality to be 0, 1, or unspecified.
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Figure 2.1: A database schema generated by 3XL

When triples are being inserted, 3XL has to find out which class the subject be-
longs to. This decides which class table to insert the data into. If the property name
of the triple is unique among classes, it is easy to decide. Otherwise, 3XL tries to
deduce the most specific class that the instance for sure belongs to. The subject may,
however, be an instance of a class that is not described by the ontology used for the
schema generation. In that case, the triple is placed in the overflow table.

To be efficient, 3XL does not insert data from a triple into the underlying database
as soon the triple is added. Instead, the data is held in a buffer until larger amounts
of data can be inserted quickly into the underlying database using bulk load mech-
anisms. To keep data in a buffer for a while also has the advantage that the type
detection described above can make a more precise guess. It is a requirement in
OWL Lite that there is a triple giving the rdf:type for each individual. Thus, a
triple revealing the type should appear sooner or later and has often appeared when
the actual insertion into the database takes place.

In Example 1 it may, however, happen that an instance i of the class Document
that has been written to the class table for Document later turns out to actually be
an instance of the class HTMLDocument. In that case, it is easy to move the row
representing i from the class table for Document to the class table for HTMLDocu-
ment. Here it is convenient only to have one multiproperty table for keyword since
no rows have to moved from the multiproperty table. This also shows why the foreign
key from multiproperty tables has to be loose: It is unknown which class table the
referenced ID value is located in. However, when querying for a specific ID value
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for an instance of Document in Example 1, it is enough to use the SQL expression
SELECT ID FROM Document WHERE . . .. PostgreSQL then automatically also
looks in descendant tables. This also shows why all IDs should be unique across
tables and therefore are drawn from the same sequence.

A drawback of the approach where a row representing an instance is moved from
one class table T to a class table for a subclass S, is that the subclass may put a
maxCardinality 1 restriction on a property p that in the superclass is a multi-
property. In this case, the multiproperty table for p is not needed to represent data for
S instances. It is then possible to let p be represented by a column in S and not by
the multiproperty table that has a loose foreign key to T . However, for simplicity we
keep using the multiproperty table for p if it already exists and do not add an extra
column for p to the class table for S.

When the triple-store is queried, it is done by issuing one or several combined
(subject, predicate, object) triples, called point-wise queries and composite queries,
respectively (in addition, the user has the possibility to use SQL queries as the data
is stored in a relational database). If a property is given in a point-wise query, this
can reveal which class table(s) to look into. If only a subject or object is given, it
is possible to look up the URI in the owl:Thing class table. This is, however,
potentially very expensive, so 3XL, in addition to the previously mentioned class
tables, also has a map table that maps from a URI to the class table that holds the
instance with that URI. For each query triple, the overflow table is also searched
by 3XL. In comparison to point-wise queries, composite queries are more expressive,
as they are conjunctive combinations of several point-wise query triples.

In summary, the idea is to have the data spread over many tables (with many
columns). It is fast to find data when the table to look in can be identified easily (“in-
telligent partitioning”). The tables also have very good potential for being indexed.
Indexes may be added on attributes that are often used in queries. We are now ready
to give a detailed description of how the specialized database schema of 3XL is gen-
erated. After that, we describe how additions to the triple-store are handled. This is
followed by a description of how queries are handled.

2.2.2 Schema Generation

In the following, we describe the handling of the supported OWL constructs when
the specialized database schema is generated. To generate the database schema, 3XL
reads an ontology and builds a model of the classes including their properties and
subclass relationships. Based on the built model, SQL DDL statements to create
tables are generated and executed. Note that this SQL is not conforming to the SQL
standard since it uses PostgreSQL’s object-oriented extensions (see more below). In
the following, we focus on the resulting schema.
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Note that a database schema generated by 3XL always has the table map(ID,
URI, ct). As explained later, this table is used to make it fast to find the table that
represents a given instance and the ID of the instance. The table overflow(ID,
sub, pre, obj) is also created in each generated schema. This table holds
triples that do not fit in the other tables.

We are now ready to describe how the constructs of OWL Lite are handled in the
generation of a specialized database schema. We assume that a database schema D
is being generated for the OWL ontology O.

owl:Class An owl:Class in O results in a table, called a class table, in D. In
the following, we denote by CX the class table in D for the class X in O. CX is used
such that for each instance of X that is not an instance of a subclass of X and for
which data must be stored in the triple-store, there is exactly one row in CX . Each
represented instance has a URI and is given a unique ID by 3XL.

The special class table Cowl:Thing for owl:Thing is always created in D. This
special class table does not inherit from any other table and has two columns named
ID (of type INTEGER) and URI (of type VARCHAR). Any other class table created
in D always inherits from one or more other class tables (see below) and always
inherits – directly or indirectly – from Cowl:Thing. This implies that the columns ID
and URI are available in each class table.

For other class tables than Cowl:Thing, other columns may also be present: A
class table for a class that is in the rdfs:domain of some property P and is a
subclass of a restriction saying the owl:maxCardinality of the property is 1,
also has a column for P . This column is only explicitly declared in the class table for
the most general class that is the domain of the property. But class tables inheriting
from that class table automatically also have the column. For an example of this, refer
to Example 1 where a column for title is declared in the class table for Document.

rdfs:subClassOf For classes X and Y in O where Y is a subclass of X (i.e.,
the triple (Y, rdfs:subClassOf, X) exists in O), there exist class tables CX and
CY in D as explained above. But CY is declared to inherit from CX and thus has at
least the same columns as CX . This resembles the fact that any instance of Y is also
an instance of X . So when rows are read from CX to find data about X instances,
PostgreSQL also reads data from CY since the rows there represent data about Y
instances (and thus also X instances). In Example 1, CHTMLDocument inherits from
CDocument since HTMLDocument is a subclass of Document.

Any class X defined in O that is not a subclass of another class implicitly be-
comes a subclass of owl:Thing. Thus, if no other parent is specified for X , CX
inherits from Cowl:Thing as do CDocument and CHTMLVersion in the running example.

owl:ObjectProperty and owl:DataProperty A property (no matter if it is an
owl:
ObjectProperty or owl:DataProperty) results in a column in a table. If
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the property is an owl:ObjectProperty, the column is of type INTEGER such
that it can hold the ID for the referenced instance. If the property on the other hand
is an owl:DataProperty, the column is of a type that can represent the range of
the property, e.g., VARCHAR or INTEGER.

If the owl:maxCardinality is 1, the column is placed in the class table for
the most general class in the rdfs:domain of the property. Since there is at most
one value for each instance, this makes it efficient to find the data since no joining is
needed and one look-up in the relevant class table can find many property values for
one instance.

If no owl:maxCardinality is specified, there may be an unknown number
of property values to store for each instance and the idea about storing one property
value in a column in the class table breaks. Instead, a column with an array type
can be used. Another solution is to create a multiproperty table. Each row in the
multiproperty table represents one value for the property for a specific instance. In
a multiproperty table there are two columns: One to hold the ID of the instance that
the represented property value applies to and one for the property value itself. This
approach is illustrated for the keyword property in Example 1. In 3XL, it is left as
a configuration choice if multiproperty tables or array columns should be used for
multiproperties.

rdfs:domain The rdfs:domain for a property decides which class table to
place the column for the property in in case it has a owl:maxCardinality of 1
or in case that array columns are used instead of multiproperty tables. In either case,
the column to hold the property values is placed in CT where T is the domain.

If multiproperty tables are used and no owl:maxCardinality is given, the
rdfs:domain decides which class table holds (directly or indirectly in a descen-
dant table) the instances for which the property values are given. In other words, this
decides where one of the IDs referenced by the multiproperty table exists. Note that
no foreign key is declared in D. To understand this, recall that since there is only one
multiproperty table for the given property, the most specific type of an instance that
has this property may be different from the most general. So although the property
has domain X , another class Y may be a subclass of X , and Y instances can be
referenced by a property with range X . An example of this is seen in the running
example, where keyword is defined to have the domain Document, but an HTML-
Document can also have keyword values. So in general there is not only one class
table representing the range. Therefore we use a loose foreign key. A loose foreign
key LFK` from CX to CY is a column `X in CX and a column `Y in CY with the
constraint that if a row in CX has the value v for `X , then at least one row in CY or
a descendant table of CY has the value v in the column `Y . The crucial point here
compared to a normal foreign key, is that the referenced value does not have to be in
CY , but can instead be in one of CY ’s descendants. Note that a loose foreign key is
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not enforced by the DBMS; this is left to 3XL to do. If no domain is given in O for
the property, it is implicitly assumed to be owl:Thing.

rdfs:range The rdfs:range is used to decide where to find referenced in-
stances for an owl:ObjectProperty and to decide the data type of the column
holding values for an owl:DataProperty. So, similarly to the case explained
above, the range decides which table the other ID of a multiproperty table for an ob-
ject property references by a loose foreign key. Further, when the range of a property
p is known, the object of a triple where the predicate is p, can have its rdf:type
inferred (although in OWL Lite, it also has to be given explicitly).

owl:Restriction (including owl:onProperty and owl:maxCardinality) In OWL,
the way to say that a class C satisfies a certain condition, is to say that C is a sub-
class of C ′ where C ′ is the class of all objects that satisfy the condition [7]. The
C ′ class can be an anonymous class. To construct an anonymous class for which
conditions can be specified, the owl:Restriction construct is used. For an
owl:Restriction, a number of things such as owl:maxCardinality can
be specified.

Following the previous explanations about classes and subclasses this would
lead to generating class tables for anonymous restrictions when 3XL generates the
database schema. But since all instances of C ′ (which is actually anonymous) would
also be instances of the non-anonymous class C and CC′ would thus be empty, this
is more complex than needed. Instead, when 3XL generates the database schema,
supported restrictions are “pulled down” to the non-anonymous subclass. So if the
restriction C ′ of which C is a subclass, defines the owl:maxCardinality to be
1 for the property P by means of owl:onProperty, this means that P can be
represented by a column in CC and that no class table is generated for C ′.

Currently, 3XL’s restriction support is limited as only cardinality constraints are
handled. As previously described, an owl:maxCardinality of 1 results in a
column in a class table. Thus we assume that a property with max:Cardinality
1 only occurs once for a given subject. This deviates from the OWL semantics where
it for a property p with owl:maxCardinality 1 can be deduced that o1 and o2

are equivalent if the both the triples (s, p, o1) and (s, p, o2) are present.
The following table summarizes how OWL constructs from the ontology O are

mapped into the database schema D.
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The construct ... results in ...
owl:Class a class table
rdfs:subClass the class table for the subclass inherits from the class

table for the superclass
owl:ObjectProperty or
owl:DataProperty

a column in a class table if the owl:maxCardinality is 1
and in a multiproperty table otherwise

rdfs:domain a column for the property in the class table for the do-
main if the owl:maxCardinality is 1 and a loose foreign
key from a multiproperty table to a class table other-
wise.

rdfs:range a type for the column representing the property.

3XL thus supports a subset of OWL Lite. This subset is enough to represent the
real-life semantic data from the EIAO project which served as our initial motivation
for 3XL. Later, support for more OWL Lite constructs can be added. For example,
we envision that support for owl:sameAs could be implemented by representing
sameAs-relationships explicitly in a table (not a class table, but a table managed by
3XL similarly to the map table). Queries would, however, then have to be rewritten
if they involve an instance which is the sameAs another instance. Also, the construct
owl:equivalentClass could be supported by letting 3XL maintain a mapping
(likely in memory for efficiency) between classes and the classes that are physcially
represented by a class table.

2.2.3 Addition of Triples

We now describe how 3XL handles triples that are inserted into a specific model M
which is a database. M has the database schema D which has been generated as de-
scribed above from the ontology OS with schematic data. We assume that the triples
to insert are taken from an ontology OI which only contains data about instances,
and not schematic data about classes etc. Note that OI can be split up into several
smaller sets such thatOI = OI1∪· · ·∪OIn where eachOIi , i = 1, . . . , n, is added at
a different time. In other words, unlike schema generation which happens only once,
addition of triples can happen many times.

First, we focus on the state of M after the addition of the triples in OI to give
an intuition for the algorithms that handle this. Then, we present pseudocode in
Algorithms 1–3 and explain the handling of triple additions in more details.

If the subject of a triple is an instance of a class that is not described by OS ,
the triple is represented in the overflow table. Assume in the following that the
subjects of the triples to insert are instances of classes described by OS .

When a triple (s, p, o) is added to M , 3XL has to decide in which class table
and/or multiproperty table to put the data from the triple. Typically, the data in a



2.2 The 3XL System 21

triple becomes part of a row to be inserted into M . For each different s for which a
triple (s,rdf:type, t) exists2 in OI , the row Rs that is made from the triples with
the common s is inserted into Ct.

We now consider the effects of adding a triple (s, p, o) where p is a property
defined in OS . First, assume that p is declared to have owl:maxCardinality
1. Then Rs’s column for p in Ct gets the value ν(p, o) which equals o if p is
an owl:DataProperty or equals the value of the ID attribute in Ro if p is an
owl:ObjectProperty. In other words, the value of a data property is stored di-
rectly whereas the value of an object property is not stored as a URI but as the (more
efficient) integer ID of the referenced object.

Now assume that no owl:maxCardinality is given for p. As previously
mentioned, such properties can be handled in two ways. If array columns are used,
the situation resembles that of a property with a maximal cardinality of 1. The only
difference is that the column for p in Rs does not get its value set to ν(p, o). Instead
the value of ν(p, o) is added to the array in the column for p in Rs. If multiproperty
tables are used, the row

(
ι, ν(p, o)

)
where ι is the value of the ID attribute in Rs

is added to the multiproperty table for p. In other words, the row that is inserted
into the multiproperty table has a reference (by means of a loose foreign key) to the
row Rs. Further, it has a reference to the row for the referenced object if p is an
owl:ObjectProperty and otherwise the value of the property.

So for properties defined in OS , the values they take in OI are stored explicitly in
columns in class tables and multiproperty tables. For other triples, information is not
stored explicitly by adding a row. If the predicate p of a triple (s, p, o) is rdf:type,
this information is stored implicitly since this triple does not result in a row being
added to M , but decides in which class tableRs is put.

The pseudocode listed in Algorithms 1–3 shows how addition of triples is han-
dled. For a so-called value holder vh (we will explain it next), we denote by vh[x]
the value that vh holds for x. We let the value holders hold lists for multiproperties
and denote by ◦ the concatenation operator for a list.

When triples are being added to M , 3XL may not immediately be able to figure
out which table to place the data of the triple in. For this reason, and to exploit the
speed of bulk loading, data to add is temporarily held in a data buffer. Data from
the data buffer is then, when needed, flushed into the database. This is illustrated in
Figure 2.2.

The data buffer does not hold triples. Instead it holds value holders (see Algo-
rithm 1, line 1 and Algorithm 2). So for each subject s of triples that have data in
the data buffer, there is a value holder associated with it. In this value holder, an
associative array maps between property names and values for these properties. In
other words, the associative array for s reflects the mapping p 7→ ν(p, o). Note that

2Recall that the type must be explicitly given.
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Algorithm 1 AddTriple
Input: A triple (s, p, o)

1: vh← GetValueHolder(s)
2: if p is defined in OS then . OS is the ontology describing triple data
3: if domain(p) is more specific than vh[rdf:type] then
4: vh[rdf:type]← domain(p)
5: if maxCardinality(p) = 1 then
6: vh[p]← Value(p, o)
7: else
8: vh[p]← vh[p] ◦ Value(p, o)
9: else if p = rdf:type and o is more specific than vh[rdf:type] and o is described

by OS then
10: vh[rdf:type]← o
11: else
12: Insert the triple into overflow

if the predicate p of a triple (s, p, o) is rdf:type, p 7→ o is also inserted into the
associative array in the value holder for s unless the associative array already maps
rdf:type to a more specific type than o. Actually, 3XL infers triples of the form
(s,rdf:type, o) based on predicate names, but only the most specialized type is
stored (Algorithm 1 lines 3–4). This type information is later used to determine where
to place the values held by the value holder. For a multiproperty p, the associative
array maps p to a list of values (Algorithm 1, line 8) but for a property q with a max-
imal cardinality of 1, the associative array maps q to a scalar value (Algorithm 1,
line 6). Further, 3XL assigns a unique ID to each subject which is also held by the
value holder (Algorithm 2, line 19 when the value holder is created).

Example 2 (Data buffer) Assume that the following triples are added to an empty
3XL model M for the running example:
- (http://example.org/HTML-4.0, version, ”4.0”)
- (http://example.org/HTML-4.0, approvalDate, ”1997-12-18”)
- (http://example.org/programming.html, title, ”How to Code?”)
- (http://example.org/programming.html, keyword, ”Java”)
- (http://example.org/programming.html, keyword, ”programming”)
Before the triples are inserted into the underlying database by 3XL, the data buffer
has the following state.

http://example.org/HTML-4.0
ID 7→ 1
rdf:type 7→ HTMLVersion
version 7→ 4.0
approvalDate 7→ 1997-12-18

http://example.org/programming.html
ID 7→ 2
rdf:type 7→ Document
title 7→ How to Code?
keyword 7→ [programming, Java]
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Algorithm 2 GetValueHolder
Input: A URI u for an instance

1: if the data buffer holds a value holder vh for u then
2: return vh
3: else
4: table← The class table holding u (found from map)
5: if table is not NULL then
6: /* Read values from the database */
7: vh← new ValueHolder()
8: Read all values for u from table and assign them to vh.
9: Delete the row with URI u from table

10: for all multiproperty tables mp referencing table do
11: Read all property values in rows referencing the row for u in table and assign

these values to vh
12: Delete from mp the rows referencing the row with URI u in table
13: Add vh to the data buffer
14: return vh
15: else
16: /* Create a new value holder */
17: vh← new ValueHolder()
18: vh[URI]← u
19: vh[ID]← a unique ID
20: vh[rdf:type]← owl:Thing
21: Add vh to the data buffer
22: return vh

Algorithm 3 Value
Input: A property p and an object o

1: if p is an owl:ObjectProperty then
2: res← the ID of the instance with URI o (found from map)
3: if res is NULL then
4: res← (GetValueHolder(o))[ID]
5: return res
6: else
7: /* It is an owl:DataProperty */
8: return o

Here the top row of a table shows which subject, the value holder holds values for.
The following rows show the associative array. Note that the type for http://example.org
/programming.html is assumed to be Document since this is the most general class
in the domains of title and keyword.

Now assume that the triple (http://example.org/programming.html, usedVersion,
http://example.org/HTML-4.0) is added to M . Then the type detection finds that
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Figure 2.2: Data flow in 3XL

http://example.org/programming.html must be of type HTMLDocument, so its value
holder gets the following state.

http://example.org/programming.html
ID 7→ 2
rdf:type 7→ HTMLDocument
title 7→ How to Code?
keyword 7→ [programming, Java]
usedVersion 7→ 1

Note how the value holder maps usedVersion to the ID value for http://example.org
/HTML-4.0, not to the URI directly. If the required rdf:type triples now are in-
serted, this does not change anything since the type detection has already deduced
the types.

Due to the definition of ν described above, the value holders and eventually the
columns in the database hold IDs of the referenced instances for object properties.
But when triples are added, the instances are referred to by URIs. So on the addition
of the triple (s, p, o) where p is an object property, 3XL has to find an ID for o, i.e.,
ν(p, o). If o is not already represented in M , a new value holder for o is created
(Algorithm 3, line 4). Depending on the range of p, type information about o may be
inferred. If o on the other hand is already represented in M , its existing ID should
of course be used. It is possible to search for the ID by using the query SELECT
id FROM Cowl:Thing WHERE uri = o. However, for a large model with many
class tables and many rows (i.e., data about many instances) this can be an expensive
query. To make this faster, 3XL maintains a table map(uri, id, ct) where
uri and id are self-descriptive and ct is a reference to the class table where the
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instance is represented. Whenever an instance is inserted into a class table CX , the
instance’s URI and ID and a reference to CX are inserted into map. By searching the
data buffer and the map table, it is fast to look up if an instance is already represented
and to get its ID if it is. The map table exists in the PostgreSQL database, but for
performance reasons 3XL does not query/update the map table in the database while
adding triples. Instead, 3XL only extracts all rows in the table once when starting a
load of triples and places them in a temporary BerkeleyDB database [12] which acts
like a cache. With BerkeleyDB it is possible to keep a configurable amount of the
data in memory and efficiently and transparently write the rest to disk-based storage.

Similarly, 3XL also needs to determine if the instance s is already represented
when adding a triple (s, p, o). Again the map table is used. If s is not already repre-
sented, a new value holder is created and added to the data buffer. If s on the other
hand is represented, a value holder is created in the data buffer and given the values
that can be read from the class table referenced from map and then Rs and all rows
referencing it from multiproperty tables are deleted. In this way, it is easy to get the
new and old data for swritten to the database as data for s is just written as if it was all
newly inserted. This also helps, if due to newly added data it becomes evident that s
has a more specialized type than known before. In our implementation, the deletions
are not done immediately as shown in the pseudocode. For a better performance, we
invoke one operation deleting several rows before inserting new data.

When the data buffer gets full, a part of data in the data buffer is inserted into the
database. This is done in a bulk operation where PostgreSQL’s very efficient COPY
mechanism is used instead of INSERT SQL statements. So the data gets dumped
from the data buffer to temporary files in comma-separated values (CSV) format and
the temporary files are then read by PostgreSQL. The rdf:types read from the
value holders are used to decide which tables to insert the data into. In case, no type
is known, owl:Thing is assumed. For unknown property values, NULL is inserted.
If multiproperty tables are used, values from a multiproperty are inserted into these
instead of a class table.

To exploit that the data might have locality such that triples describing the same
instance appear close to each other, a partial-commit mechanism is employed, in
which the least recently usedm% of the data buffer’s content is moved to the database
when the data buffer gets full (the percentage m is user-configurable). This is illus-
trated in Figure 2.3. In this way, the system can in many cases avoid reading in the
data just written out to the database.

2.2.4 Triple Queries

In this section, we describe the two types of queries, point-wise queries and compos-
ite queries, which are implemented in 3XL.
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Figure 2.3: The data buffer

2.2.4.1 Point-wise Queries

A point-wise query is a triple, i.e., Q = (s, p, o). Any of the elements in the query
triple can take the special value ∗ to match anything. We consider how 3XL handles
point-wise queries on the triples in a model M . Since schematic information given
in OS (for which the specialized schema was generated) is fixed, we do not consider
queries for schematic information here. Instead we focus on queries for instance data
inserted into M , i.e., queries for data in OI . The result of a query consists of those
triples in M where all elements match their corresponding elements in the query
triple. The special ∗ value matches anything, but for all elements in Q different from
∗, all corresponding elements in a triple T ∈M must be identical for T to be included
in the result.

Example 3 (Point-wise query) Consider again the triples that were inserted in Ex-
ample 2 and assume that only those (and the required triples explicitly giving the
rdf:type) were inserted into M . The result of the query (∗, keyword, ∗) is the set
holding the following triples:
- (http://example.org/programming.html, keyword, Java)
- (http://example.org/programming.html, keyword, programming)
The result of the query (http://example.org/HTML-4.0, ∗, ∗) is the set holding the fol-
lowing triples:
- (http://example.org/HTML-4.0, rdf:type, owl:Thing)
- (http://example.org/HTML-4.0, rdf:type, HTMLVersion)
- (http://example.org/HTML-4.0, approvalDate, 1997-12-18)
- (http://example.org/HTML-4.0, version, 4.0)
i.e., the set containing all the knowledge about http://example.org/HTML-4.0, includ-
ing all its known types.

For each query, the overflow table is searched and the result set of this is
unioned with the results of searching the class and multiproperty tables. The overflow
table is considered with a single SQL statement where all overflow triples with match-
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ing values are found. In the remaining descriptions, we focus on how the class and
multiproperty tables are used to find the remaining triples of the result set.

As there are three elements in the query triple Q and each of these can take an
ordinary value or the special value ∗, there are 23 = 8 generic cases to consider. We
go through each of them in the following. s, p, and o are all values different from ∗.
When we for a subject s say that the class table that holds s is found, it is implicitly
assumed that some class table actually holds s. If this is not the case, the result is of
course just the empty set. Further, we assume that all data (including map’s data) is
inserted into the database before the queries are executed.

Case (s, p, o) In this case, the query is for the query triple itself, i.e., the result
set is either empty or consists exactly of the query triple. If p equals rdf:type,
the result is found by looking in the map table to see if the class table holding s is
Co or a descendant of Co. This is done by using the single SQL query SELECT ct
FROM map WHERE uri = s which can be performed fast if there is an index
on map(uri, ct). If s is held by Co or a descendant of Co, Q is returned and
otherwise an empty result is returned.

If p is different from rdf:type, the result is found by finding the ID for s
(from now called sid) and the class table where s is inserted (by means of map).
If that class table has a column or a multiproperty table for p, it is determined if the
property p takes the value o for s. To determine this, it is necessary to look for ν(p, o)
in the database as an ID is stored instead of a URI for an owl:ObjectProperty.
If p takes the value o for s, Q is returned, otherwise the empty result is returned.
So this requires an SQL query selecting the class table (if p is represented by a
column) or the ID (if p is represented by a multiproperty table) from map and ei-
ther the query SELECT true FROM classtable WHERE id = sid AND
pcolumn = ν(p, o) (if p is not a multiproperty), the query SELECT true FROM
classtable where id = sid AND ν(p, o) = ANY(pcolumn) (if p is a
multiproperty represented by an array column), or the query SELECT true FROM
ptable WHERE id = sid AND value = ν(p, o) (if p is a multiproperty rep-
resented by a multiproperty table). In any case, only 2 SQL SELECT queries are
needed and – except when p is represented by an array column – indexes on the ID
and p columns can help to speed up these queries.

Example 4 (Finding a specific triple) LetQ =(http://example.org/programming.html,
keyword, programming) be a query given in the running example. To answer this
query, 3XL executes the following SQL queries since keyword is represented by a
multiproperty table.

SELECT id FROM map
WHERE uri = ’http://example.org/programming.html’
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SELECT true FROM keywordTable
WHERE id = $id AND value = ’programming’

The result from the database is true so the triple exists in the model and 3XL returns
Q itself as the result.

Case (s, p, ∗) Also in this case, there is special handling of the situation where
p = rdf:type. Then, the map table is used to determine the class table CX where
s is located. The result set consists of all triples (s, p, C) where C is the class X
or an ancestor class of X . So the only needed SQL query is SELECT ct FROM
map WHERE uri = s. Based on the result of this and its knowledge about class
inheritance, 3XL generates the triples for the result.

If p is an owl:DataProperty, the class table holding s is found. From this,
the row representing s is found and each value for p is read. If p is a multiproperty and
multiproperty tables are used, the values for p are found in the multiproperty table
instead by using the ID for s as a search criterion. The result set consists of all triples
(s, p, V ) where V is a p value for s. Again, only 2 SQL SELECTs are needed: One
querying map and one querying for the value(s) for p from either the class table or
the multiproperty table for p. Indexes on (uri, ct) and (uri, id) in map and
on the ids in the class table/multiproperty table will help to speed up these queries.

If p is an owl:ObjectProperty, special care has to be taken as the URIs
of the referenced objects should be found, not their IDs. The first step is to find
the class table CX holding s and the ID of s by means of single SELECT on the
map table. Assume WLOG that the range of p is R. If p is represented by the
column pcolumn in CX , the query SELECT CR.uri FROM CX, CR WHERE
CX.pcolumn = CR.id AND CX.id = sid is used. If p is represented by a
multiproperty table mp, CR is joined with mp instead of CX . If p is a multiproperty
represented by an array column, CX and CR are still joined, but the condition to use
is WHERE CR.id = ANY(CX.pcolumn) AND CX.id = sid. The result set
holds all triples (s, p, U) where U ranges over the selected URIs.

Case (s, ∗, o) In this case, the class table holding s is found. Then all prop-
erty values (including values in multiproperty tables) are searched. The result set
consists of all triples (s, P, o) where P is a property that takes the value o for s.
So by iterating over the properties defined for the class that s belongs to, the pre-
vious (s, p, o) case can be used to find the triples to include. Note that also the
special case (s,rdf:type, o) should be considered for inclusion in the result set.
So for this query type, an SQL query selecting the class table and the ID from
map is needed. Further, the SQL query SELECT true FROM mp WHERE ID
= sid AND value = ν(p, o) is needed for each multiproperty table mp repre-
senting a property p defined for s’s class as is the SQL query SELECT true FROM
classtable WHERE id = sid AND pc = ν(p, o) for each column pc rep-
resenting a property p for s in the class table holding s.
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Case (s, ∗, ∗) In this case, the class table holding s is found by using map. For
each property P defined in OS , each of its values V for s is found. The result set
consists of all triples (s, P, V ) unioned with the triples in the result set of the query
(s,rdf:type, ∗).

In this case the following SQL queries are needed: One selecting the class table
and ID from map, the query SELECT p1column, ... , pncolumn FROM
classtable WHERE id= sid if there are columns representing data properties
p1, . . . , pn in the class table holding s, and a query SELECT value FROM mp
WHERE id = sid for each multiproperty table mp representing a data property
defined for s’s class. Again, indexes on the id attributes in the class tables and mul-
tiproperty tables speed up the queries. Further, SQL to find the URIs for the values
of object properties is needed. So for each object property q defined for the class that
s belongs to and which is not represented by an array column, the following query is
used: SELECT CR.uri FROM CR, Φ WHERE CR.id = Φ.qcolumn AND
Φ.id = sid. Here Φ is a multiproperty table for q or the class table holding s and
R is the range of q. Indexes on the id attributes will again speed up the queries.
If q is represented by an array column, CR.id = ANY(Φ.qcolumn) should hold
instead of CR.id = Φ.qcolumn.

Case (∗, p, o) If p equals rdf:type, the class table Co is found and all URIs
are selected from it (including those in descendant tables). The result set consists of
all triples (U, p, o) where U ranges over the found URIs. This requires only 1 SQL
query: SELECT uri FROM Co.

If p is different from rdf:type, 3XL must find the most general class G for
which p is defined. If p is represented by a multiproperty table X , the tables X
and CG are joined and restricted to consider the rows where the column for p takes
the value ν(p, o) and the URIs for these rows are selected by the query SELECT
uri FROM X, CG WHERE X.id = CG.id AND value = ν(p, o). If p is
represented in a column in CG, all URIs for rows that have the value ν(p, o) in the
column for p (either as an element in case p is a multiproperty represented by an array
column or as the only value in case p is not a multiproperty) are selected. This is done
by using either the query SELECT uri FROM CG WHERE pcolumn = ν(p, o)
or the query SELECT uri FROM CG WHERE ν(p, o) = ANY(pcolumn). The
result set consists of all triples (U, p, o) where U ranges over the selected URIs. The
first of these queries benefits from an index on the column holding data for p, but
for the latter a scan is needed as we are only looking for a particular value inside an
array.

Example 5 (Find subjects from a (∗, p, o) query) Consider the running example and
assume that 3XL is given the query Q = (∗, keyword, programming). The most gen-
eral class for which keyword is specified is Document so the SQL query SELECT
uri FROM keywordTable, CDocument WHERE keywordTable.id =
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CDocument.id AND value = ’programming’ is executed. One URI is found
by the query, so the triple (http://example.org/programming.html, keyword, program-
ming) is returned by 3XL.

Case (∗, p, ∗) If p in this case equals rdf:type, the result set contains all triples
describing types for all subjects in the model. So for each class table CX , all its URIs
(including those in subtables) are found with the SQL query SELECT uri FROM
CX which performs a scan of CX and its descendants. The result set consists of all
triples (U, p,X) where U ranges over the URIs selected from CX .

If p is a data property, 3XL handles this similarly to the (∗, p, o) case described
above with the exception that no restrictions are made for the object (i.e., the parts
concerning ν(p, o) are not included in the SQL) and the values in the column rep-
resenting p are also selected. Again special care has to be taken if p is an object
property. It is then needed to join the class table or multiproperty table holding p
values to the class table for the range R of p. Further, the column CR.uri should be
selected instead of the column representing p (this is similar to the already described
(s, p, ∗) case). For each row (U,O) in the SQL query’s result, a triple (U, p,O) is
included in 3XL’s result set.

Case (∗, ∗, o) In this case, all triples with the given o as object should be re-
turned. Consider that o could be the name of a class in which case type infor-
mation must be returned (note that we can ignore the possibility that o is, e.g.,
owl:ObjectProperty as we have assumed that there are no queries for schematic
data given in OS). We handle this part as in the (∗, p, o) case (with p = rdf:type).
But o could also be any other kind of value that some property defined in OS takes
for some instance. To detect if o is another instance, we use the query SELECT
ID FROM map WHERE URI = o. If the result is empty, we execute the query
q =SELECT * FROM CX WHERE dp1 = o OR ... OR dpn = o for each
class X (the dpj’s are the columns holding X’s data properties). If the result of the
query towards the map table, on the other hand, found an ID i, we append OR op =
i for each column op representing an object property in CX .

Case (∗, ∗, ∗) In this case, all triples in M should be returned. This can also be
done by reusing some of the previously described cases. More concretely the result
set for this query consists of a union of all type information triples and the union of
all result sets for the queries (∗, p, ∗) where p is a property defined in OS . Formally,
the result set is given by the following where Ω(a, b, c) denotes the result set for the
query (a, b, c) and P is the set of properties defined in OS : Ω(∗,rdf:type, ∗) ∪(⋃

p∈P Ω(∗, p, ∗)
)

. In other words, this is handled similarly to how the (∗, ∗, o) case
is handled.
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2.2.4.2 Composite Queries

Composite queries are composed of a conjunction of several query triples, each of the
form (subject, predicate, object). Unknown variables used for linking triples together,
are specified using a string starting with a question mark, while known constants
are expressed using their full URIs or in an abbreviated form where prefixes can be
replaced with shorter predefined values. There are three different patterns for linked
query triples:

The first pattern is query triples ordered in a “chain” in which the object of a triple
is the subject of the next triple (see Figure 2.4). The second pattern is query triples in
a “star” which share a common subject (see Figure 2.5). The third is the combination
of the two others. Each query pattern is characterized by paths which connect query
triples together. A node in the paths is a subject or an object, and an edge connecting
two nodes is a predicate. When the query engine constructs SQL statements needed
to answer a composite query, a table join is produced for two adjacent nodes if the
property linking them is an object property (if the property is a multiproperty, the
multiproperty table is also included in the join). If the property is a data property, it
can be processed similarly to the ways we have discussed above for the point-wise
queries whose predicates are known.

Figure 2.4: “Chain” pattern Figure 2.5: “Star” pattern

After the SQL statement is generated, it is directly issued to the underlying
DMBS. The advantage of this approach is that, by exploiting the DBMS, we can
take advantage of its sophisticated query evaluation and optimization mechanisms
for free. Note that there are table joins between different class tables and between
class tables and multiproperty tables. As all class tables and multiproperty tables are
indexed – typically, there are indices on all the ID columns and loose foreign key
columns – the joins are not expensive.

In the following, we give an example to illustrate how a composite query is con-
verted into SQL by the 3XL query engine. The query is used to find all HTML
documents with the keyword Java and their corresponding versions.

Example 6 (Composite query) Consider the composite query (?x, rdf:type, HTML-
Document) (?y, rdf:type, HTMLVersion) (?x, keyword, Java) (?x, usedVersion, ?y) in which
keyword is a multiproperty of owl:DataProperty type, and usedVersion is of owl:-
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ObjectProperty type. When the multiproperty is implemented as an array, the com-
posite query gets translated into:
SELECT CHTMLDocument.uri AS x, CHTMLVersion.uri AS y FROM CHTMLDocument,

CHTMLVersion WHERE CHTMLDocument.usedVersion = CHTMLVersion.ID AND ’Java’

= ANY(CHTMLDocument.keyword).
When the multiproperty is implemented as a multiproperty table, the composite

query gets translated into:
SELECT CHTMLDocument.uri AS x, CHTMLVersion.uri AS y FROM CHTMLDocument,

CHTMLVersion, keywordTable WHERE CHTMLDocument.usedVersion = CHTMLVersion

.ID AND CDocument.id = keywordTable.id AND keywordTable.keyword

= ’Java’.
Figure 2.6 shows the result of this composite query.

Figure 2.6: The result of the composite query

2.3 Performance Study

2.3.1 Experiment Settings

We first conduct an experimental study to analyze the effectiveness of the various op-
timizations we made in the implementation. Then, we evaluate the loading and query
performance of 3XL in comparison with the two state-of-the-art high-performance
triple-stores BigOWLIM [13] and RDF-3X [55]. BigOWLIM is a commercial tool
which is implemented in Java as a Storage and Inference Layer (SAIL) for the Sesame
RDF database. It supports full RDFS, different OWL variants including most of OWL
Lite. RDF-3X is an open source RISC-style engine with streamlined indexing and
query processing which provides schema-free RDF data storage and retrieval. Unlike
3XL, the reference systems both use file-based storage. We note that it is not our
goal to necessarily be striclty faster than the reference systems, but instead to pro-
vide comparable performance in combination with the flexibility of a DBMS-based
solution. Finally, we compare the performance of 3XL to that of other DBMS-based
triple-stores.

In the experiments, the following two datasets are used:
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• EIAO dataset: This is a real-world dataset from the European Internet Acces-
sibility Observatory (EIAO) project [82] which developed a tool for perform-
ing automatic evaluation of accessibility of web sites. This project serves as
the design inspiration for the 3XL triple-store. The EIAO dataset conforms
to an OWL Lite ontology [28] which contains 16 classes and 75 properties.
Among the properties, 18 are of type OWL:ObjectProperty, 57 are of
type OWL:DataProperty, and 29 are multiproperties.

• LUBM dataset: This is a synthetic dataset describing fictitious universities
from the Lehigh University Benchmark (LUBM) [34] which is the de-facto
industry benchmark for OWL repository scalability. For 3XL, we use an ontol-
ogy which is based on a subset of the published LUBM ontology, but only uses
the 3XL-supported constructs and makes implicit subclass relationships ex-
plicit. Our ontology covers 20 classes and 20 properties. Among the properties,
13 are of type OWL:ObjectProperty, 7 are of type OWL:DataProperty,
and 4 are multiproperties. The ontology allows datasets generated by the
(unmodified) LUBM generator to be loaded into 3XL. It is available from
people.cs.aau.dk/˜xiliu/3xlsystem/.

We benchmark the performance when loading up to 100 million triples from each
dataset (corresponding to 724 universities in the generated LUBM dataset). Before
the loading, the original datasets are converted to N-triples format by the Redland
RDF parser. All compared systems read input data from the N-triples format. The
time spent on parsing is included in the overall loading time. In the query perfor-
mance study, 14 queries are studied on the LUBM dataset, and 10 queries on the
EIAO dataset. Both datasets contain 25 million triples. To reduce caching effects, a
query is run 10 times with randomly generated query condition values and the aver-
age time is calculated. For example, in the performance study of the query (s, p, ∗),
10 different values of s are used.

All experiments are conducted on a DELL D630 notebook with a 2.2 GHz In-
tel(R) Core(TM)2 Duo processor, 3 GB main memory, Ubuntu 10.04 with 32-bit
Linux 2.6.32-22 kernel and java-6-sun-1.6.0.20. All the experiment are done under
console mode, which all the unnecessary services are disabled including Linux X
server. The JVM options “-Xms1024m -Xmx2500m -XX:-UseGCOverheadLimit -
XX:+UseParallelGC” are used for both 3XL and BigOWLIM. PostgreSQL 8.3.5 is
used as the RDBMS for 3XL with the settings “shared buffers=512MB, temp buffers-
=128MB, work mem=56MB, checkpoint segments=20” and default values for other
configuration parameters. BigOWLIM 3.3 is configured with Sesame 2.3.2 as its
database, and with the following runtime settings: “owlim:ruleset empty; owlim:entity-
index-size 5000000; owlim:cache-memory 200M”. This means that no reasoning is
done during data loading. The cache memory is calculated by using a configuration

people.cs.aau.dk/~xiliu/3xlsystem/


34 3XL: Supporting Efficient Operations on Large OWL Lite Triple-Stores

spreadsheet included with the BIGOWLIM distribution, and the other settings are as
referenced in [13]. For RDF-3X, we follow the setup from [55].

The source code for 3XL, the used datasets and queries, instructions, etc. are
available from people.cs.aau.dk/˜xiliu/3xlsystem/.

2.3.2 Loading Time

We first study the effect of the various optimizations in our implementation. To find
the performance contribution of each optimization, we measure the loading time of
each by using the LUBM dataset and compare with the non-optimized result. We
focus on four aspects: 1) bulk-loading, 2) partial-commit, 3) using BDB to cache
the map table, and 4) their combination. Figure 2.7 shows the results. First, we
see that the loading times grow linearly (with the slight exception of the two middle
ones) with increasing dataset size, but at very different rates. When loading without
any optimization, data is inserted into the map and class tables using SQL INSERTs
through JDBC. Before INSERTing, triples with the same subject already existing in
the database are removed using DELETEs. Here, it takes a staggering 252 hours to
load 100M triples (average speed = 65 triples/sec).Using BDB (next line) has little
effect. Switching to buffering triples (by means of value holders) and using JDBC
batch INSERTs (next line, in the lower part of the figure) is almost 30 times faster,
showing the effectiveness of the 3XL buffering. Adding the partial commit (PC)
optimization (line Insert, VH, PC.) is about 13% faster (8.95 versus 10.24 hours)
than using normal “full” commit. This is because partial commit takes advantage of
data locality to improve the buffer hit rate and thus reduces the number of database
accesses when generating value holders (see Section 2.2).
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Figure 2.7: Effect of optimizations
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Figure 2.8: Bulkload optimizations

The next big jump in performance comes from using bulkload rather than batch
INSERTs (line Bulkload, VH), yielding a further 4-5 fold performance improvement.

people.cs.aau.dk/~xiliu/3xlsystem/
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Table 2.1: The comparision on loading 100 M triples
EIAO LUBM

Load time, min DB size, GB Load time, min DB size, GB
3XL-Array 94.3 6.2 67.3 6.1
3XL-MP 90.0 6.2 75.9 6.1
BigOWLIM 86.5 13.0 55.5 13.0
RDF-3X 158.7 5.3 155.7 5.1

The bulkload results are also shown in Figure 2.8 for better readability. Combin-
ing bulkload with a Berkeley DB cache for the map table further contributes about
50% performance improvement (line Bulkload, VH, BDB). This is due to two rea-
sons: first, the BDB map accelerates the identification of the class table during value
holder generation, and second, 3XL saves the load time of map table data. In our ini-
tial implementation, we maintained the map table in the database like the class tables:
buffer→CSV→copy to database. In this scheme, loading 100M triples required 16
commit operations and used 200 minutes to load the map table alone. In comparison,
the current scheme only needs 10 minutes to load the map table, so the optimized
scheme of maintaining separate map tables for loading and querying is obviously
better. Finally, adding partial commit (line All opt.) yields another 15.5% improve-
ment. In summary, the optimization yielded a 202-fold performance improvement,
from 255 hours to 1.26 hours, thus demonstrating the effectiveness of the 3XL design
and implementation choices.

We have performed experiments to find the optimal configuration parameters,
including a) using two different buffer schemes: caching class instances in class-
specific buffers versus caching all instances in one common buffer, b) varying the
value holder buffer size, c) varying the Berkeley DB buffer size, d) varying the par-
tial commit value, and e) using different cache algorithms including first in, first out
(FIFO), least recently used (LRU) and least frequently used (LFU). We found that
using one common buffer and the LRU cache algorithm is best for loading perfor-
mance. The partial commit value depends on the data locality of the dataset, i.e., a
lower partial-commit value should be set for a higher data locality, and vice versa.
The best sizes for the value holder buffer and BDB cache also depends on the char-
acteristics of the data and the hardware configuration. In addition, using a memory-
based file system (tmpfs) [73] to cache the CSV files was tested, but the built-in OS
file caching works so well that explicitly using tmpfs did not improve performance.

Using the full set of the optimizations, we now compare 3XL with the reference
systems by loading 100 M triples from each dataset. The sizes of EIAO and LUBM
datasets in N-Triples format are 18.5 GB, and 16.6 GB respectively. However, a
characteristic of the two datasets is that EIAO contains many duplicated triples while
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LUBM contains only distinct triples. Therefore, based on the above optimization
study, we set the partial-commit value to be 0.4 for the EIAO dataset and 0.8 for the
LUBM dataset. The value holder buffer size is set to 150,000 and 300,000, respec-
tively. The BDB cache size is 300 MB for both datasets.

The loading results are shown in Table 2.1. For both datasets, 3XL with mul-
tiproperties represented in arrays (“3XL-Array”) and 3XL with multiproperty ta-
bles (“3XL-MP”) rank between BigOWLIM and RDF-3X. For the real-world EIAO
dataset, 3XL-MP only uses 4% more time than the state-of-the-art triple-store Big-
OWLIM while 3XL-Array only uses 9% more time. For the synthetic LUBM datasets,
3XL-MP uses 36% more time than BigOWLIM and 3XL-Array uses 21% more time.
However, BigOWLIM is using a file-based data store, which is reported [20] to have
higher loading performance than relational database-based stores in general. RDF-3X
has the slowest load performance, using 83% and 180% more time than BIGOWLIM
for the EIAO and LUBM datasets, respectively. For both datasets, the 3XL variants
consume less than half of the disk space BigOWLIM requires. The RDF-3X DB
size is the smallest, about 15% smaller than the 3XL DB size. Further, 3XL offers
a high degree of flexibility in integrating the data with other (non-triple) datasets as
3XL stores data in an intuitive relational database. With this design goal in mind,
it is thus very satisfying to achieve a load-performance which is comparable to the
state-of-the-art triple-store BigOWLIM.

3XL takes longer time to load the EIAO dataset than the LUBM dataset, although
the datasets occupy nearly the same amount of space when loaded. There are two
reasons for this. First, as the EIAO ontology has more classes and properties, the
loading process needs to operate on more class tables and attributes in the database
which takes more time. Second, when processing the duplicated EIAO data, there is
a higher possibility that 3XL needs to fetch already inserted data from the database.
However, this possibility has been reduced by using a least recently used (LRU) cache
algorithm and a lower partial-commit value. With the current settings, loading 100
M EIAO triples still involves 207,183 database visits compared to zero when loading
the LUBM triples.

In addition to the comparisons with BigOWLIM and RDF-3X, we have also com-
pared with the popular Jena2 systems (filed-based and DBMS-based) [94] by using
the LUBM dataset. However, the loading performance of Jena2 systems was slow,
and it took 32.6 and 20.4 hours to import 100 M triples to Jena2(DBMS-based) and
Jena2(file-based), respectively. In an earlier experiment, we also tried this testing on
3store, which uses a traditional giant triple table, but it was not able to scale to load
100 M triples as it did not finish in a reasonable amount of time.

RDF-3X does not exploit an OWL schema for loading the data (as it it is based
on RDF, not OWL). Unlike 3XL, RDF-3X does not support repeated loads. If data is
loaded into an existing database, the previous data will be overwritten. BigOWLIM
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Table 2.2: Load Performance Comparison (Repositories) [13, 20]
RDF data
(#Triples)

RATE
Triples/second

Configuration Tool, year

Native
2,023,606

400
db-based

Sun dual UltraSPARC-II
450MHz 1G RAM

RSSDB
2001

Native
279,337

418
db-based

Apple Powerbook G4 1.125GHz
1G RAM

Jena(Mysql)
2004

Native
279,337

4170
file-based

Apple Powerbook G4 1.25GHz
1G RAM

Jena(file)
2004

LUBM
6,890,933

151
db-based

P4 1.80GHz
256M RAM

DLDB
2005

LUBM
1.06 Bill.

12389
db-based

2xXeon 5130 2GHz, 8GB RAM,
RAID 4xSATA

OpenLink Virtu-
oso 2006

LUBM
1.06 Bill.

13100
file-based

AMD 64 2GHz
16G RAM

AllegroGraph
2007

LUBM
100 Mill.

10750
db-based

P4 3.0GHz
2G RAM

Oracle bulk-load
scheme 2008

Synthetic RDF
235 Mill.

3840
file-based

AMD Opteron 1GHz, 64-bit
JDK, no other info.

KOWARI 2006

LUBM
70 Mill.

6481
file-based

P4 2.8GHz, 1GB, Xmx800, JDK
1.5

Sesame’s Native
Store 2008

Uniprot
262 Mill.

758
db-based

no info. RDF Gateway

requires a known schema when doing reasoning during the load. However, no schema
is used in this experiment as no reasoning is done. 3XL, on the other hand, exploits
the schema for creating a specialized and intuitive database schema. It is, however,
still possible to load data that is not described by the OWL schema by means of 3XL’s
overflow table, so 3XL supports the standard open world assumption.

2.3.3 Comparison with Other Bulk-loading Systems

In order to compare with DBMS-based triplestores, we refer to a bulk-loading study
published by [13, 20]. Table 2.2 (reproduced from [13, 20]) summarizes the bulk-
loading speed rates of a number of tools.

It is of course difficult to compare the results exactly as the datasets as well as
the hardware configurations used vary significantly. However, certain things can be
deduced. First of all, all the most recent results (2005 and onwards) are based on
the LUBM benchmark which is also used for 3XL. There are both file-based and
DBMS-based (called “db-based”) triple-stores in the table. As far as the perfor-
mance of db-based triple-stores is concerned, the Virtuoso triple-store and the Or-
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acle bulk-loading scheme (described in detail in [20]) have the best performance,
with loading speeds of 12,692 and 10,750 triples/second, respectively. However, the
Virtuoso scheme is run on much more powerful hardware, meaning that the Oracle
scheme is in fact the fastest of the two. The file-based AllegroGraph stores 13,100
triples/second. Virtuoso’s implementation has employed parallel loading techniques
and storage optimization like bitmap indexes, etc., while the Oracle scheme has used
the high-performance commercial DBMS Oracle and made use of its bulk-loading
utility SQL*Loader. The paper [20] thus establishes the Oracle scheme as the lead-
ing DBMS-based bulk-loading scheme. It is thus natural to compare it with 3XL.
However, the Oracle license explicitly disallows us to publish performance figures
without the consent of Oracle, meaning that open and transparent comparisons are
impossible.

We can see that the hardware used for the two setups is almost identical: our CPU
is slower, but we have a little more main memory. However, on this almost identical
hardware, we can see that 3XL is significantly faster than the Oracle scheme. When
loading the LUBM data, 3XL-Array and 3XL-MP handle 24,765 triples/second and
21,959 triples/second, respectively. The difference is so profound that we think we
can safely claim that 3XL outperforms the Oracle scheme (which handles 10,750
triples/sec) for bulk-loading.

2.3.4 Query Response Time

We conduct the query testing on the EIAO dataset using 10 queries (Q1–Q10), and on
the LUBM dataset using its standard 14 queries3 (LQ1–LQ14). Each dataset contains
25 M triples. The queries are expressed in the form (subject, predicate, object) (with
possible “*”-values) for 3XL, and in SPARQL [65] for BigOWLIM and RDF-3X4.
For example, a point-wise query (s, p, ∗) with a given subject s and predicate p, can
be converted into SPARQL: select ?o where {〈s〉 〈p〉 ?o .}.

In 3XL, we have a specialized database schema for classes, properties and dif-
ferent kinds of restrictions. It is thus interesting to study the query performance for:
a) different properties, i.e., owl:ObjectProperty and owl:DataProperty,
b) storing multiproperties in arrays versus in tables, and c) the difference between
3XL and the reference systems. We study these by doing the queries on the EIAO
dataset, and present the results in Table 2.3. The queries Q1–Q4 are all of the form
(s, p, ∗), but with different types of the predicates, namely single-valued object prop-
erty, single-valued data property, multi-valued object property, and multi-valued data
property, respectively. Overall, in 3XL the queries on data properties are faster than
queries on object properties, e.g., Q2 vs. Q1 and queries on single-valued properties

3The LUBM queries are available from swat.cse.lehigh.edu/projects/lubm/query.
htm

4The SPARQL queries are available from people.cs.aau.dk/˜xiliu/3xlsystem

swat.cse.lehigh.edu/projects/lubm/query.htm
swat.cse.lehigh.edu/projects/lubm/query.htm
people.cs.aau.dk/~xiliu/3xlsystem
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Table 2.3: Query response time for the EIAO dataset with 25 M triples (ms)
Q1(s, p1, ∗)Q2(s, p2, ∗)Q3(s, p3, ∗)Q4(s, p4, ∗) Q5(∗, p, ∗)

3XL-Array 53 48 216 48 16943
3XL-MP 69 26 78 58 17255
BigOWLIM 87 85 321 85 2002
RDF-3X 59 81 591 91 99369

Q6(∗, p, o) Q7(s, ∗, ∗) Q8(s, ∗, o) Q9(∗, ∗, o) Q10(Comp.)
3XL-Array 8984 23 38 6333 38243
3XL-MP 8934 68 75 3227 29022
BigOWLIM 898 121 146 104 7398
RDF-3X 33466 46 38 225 139951

are faster than on multiproperties, e.g., Q1 vs. Q3 and Q2 vs. Q4. No significant
difference is observed between 3XL-Array and 3XL-MP except for Q3. We use the
queries Q5–Q9 to study the performance of point-wise queries different from the
(s, p, ∗) form. Q10 is used to study the performance of a composite query. As shown
in the results, 3XL outperforms the two reference systems for Q1–Q4 and Q7–Q8
where the subjects s are given. This is mainly due to 3XL’s “intelligent partition-
ing”, where, given a particular subject s, 3XL can very quickly locate the class table
holding the relevant data. For the composite query Q10, and the point-wise queries
Q5–Q6 with wildcard “*” in the subject but with a given predicate p, all the systems
take a longer time than for the other queries as more results are returned. For these
three queries, 3XL ranks in the middle. In the case of Q9 with only a given object
o and with the subject and the predicate using “*” to match anything, 3XL takes a
longer time as this query has to traverse all predicates pi. Here, we note that 3XL is
in fact specifically designed to be efficient for queries with a subject.

We now proceed to make an evaluation by using the LUBM dataset and its queries
(LQ1–LQ14). These queries are all composite queries which are more expressive and
complex than the point-wise queries we discussed above. Table 2.4 describes the test
results of 3XL and the reference systems. Overall, BigOWLIM has the highest com-
pleteness and supports all 14 queries, while RDF-3X only supports 4 queries which
is due to its lack of OWL inference. 3XL supports 10 of the LUBM queries. Be-
cause of its use of an inheritance database schema, 3XL has some semantic abilities
and can reason on the instances of a class and its subclasses. When querying on a
class table, all of its subclass tables are queried as well. Therefore, 3XL does support
queries that, e.q., query a class and its subclasses. With regard to the query perfor-
mance, 3XL-MP, in general, outperforms 3XL-Array since the multiproperty table is
indexed. Neither of the systems is able to outperform all other systems for all queries.
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Table 2.4: Query response time for the LUBM dataset with 25 M triples (ms)
LQ1 LQ2 LQ3 LQ4 LQ5 LQ6 LQ7

3XL-Array 531 627 1376 127 N/A (11526) 2623
3XL-MP 139 576 661 114 N/A (11459) 126
BigOWLIM 185 75219 130 183 90 29830 179
RDF-3X 35 36096 74 N/A N/A N/A N/A

LQ8 LQ9 LQ10 LQ11 LQ12 LQ13 LQ14
3XL-Array 1675 56835 (1390) N/A N/A N/A 8764
3XL-MP 1612 15083 (137) N/A N/A N/A 8745
BigOWLIM 676 100037 2 154 674 11796 46625
RDF-3X N/A N/A N/A N/A N/A N/A 17006

For LQ1, which selects instances of a given class which reference a certain instance
of another class, RDF-3X has the fastest query response time while the times used
by BigOWLIM and 3XL-MP are quite similar. For LQ2, which selects instances of 3
classes with a triangular pattern of relationships between the involved instances, both
the 3XL variants are more than 2 orders of magnitude faster than the two reference
systems. LQ3 is similar to LQ1 in both query characteristics and results. LQ4 selects
instances and 3 property values from a class (with many subclasses) based on an ob-
ject property linking to another class and is highly selective. 3XL-MP takes the least
time for this query closely followed by 3XL-Array. RDF-3X does not support this
query. LQ5 depends on rdfs:subPropertyOf which is not supported by 3XL.
LQ6 selects all instances from a given class and its subclasses (an implicit subclass
relationship was made explicit in the modified LUBM ontology and the timings for
3XL are therefore shown in parentheses). All the systems take a longer time on this
query, but the 3XL variants both outperform BigOWLIM. LQ7 involves more classes
and properties, and is more selective than LQ6. 3XL-MP is the fastest followed by
BigOWLIM. LQ8 is based on LQ7 but adds one more property to increase the query
complexity. The 3XL variants almost have equal performance which is lower than
BigOWLIM’s. LQ9 involves a triangular pattern of relationships between 3 classes.
This query takes much longer time than all the other queries in all systems, but 3XL-
MP has considerably better performance. LQ10 selects instances from a class but
depends on the same implicit subclass relationship as does LQ6. The numbers shown
in parentheses show the time spent by 3XL when the implicit relationship is given
explicitly. LQ11, LQ12, and LQ13 depend on inference not supported by 3XL or
RDF-3X. The last query LQ14 selects all instances of a given class (without sub-
classes). This query is similar to LQ6, but uses a subclass of the class used by LQ6.
The 3XL variants are both faster than the two reference systems.
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In summary of the performance results on the EIAO dataset, 3XL-Array and
BigOWLIM both show the best performance in 4 out of the 10 queries, 3XL-MP
shows the best performance in 2 queries, and RDF-3X shows the best performance
(actually a tie) for a single query. For the LUBM dataset, 3XL-MP shows the best
performance for 6 out of the 14 queries while BigOWLIM has the best performance
for 7 queries and RDF-3X has the best performance for the remaining query.

In particular when querying triples with a shared subject, 3XL shows very good
performance. 3XL has inference capabilities on instances with an inheritance re-
lationship by means of its database schema. RDF-3X cannot answer many of the
considered LUBM queries as it has no schema support and cannot do any inference.

In summary, the performance of 3XL is comparable to that of the state-of-the-art
file-based triple-stores. This holds both for loading and query times. The perfor-
mance of 3XL exceeds that of other DBMS-based triplestores. 3XL is designed to
use a database schema which is flexible and easy to use, and it is thus very satisfying
that the solution achieves a very good performance, while offering the flexibility of
the DBMS-based triple-store.

2.4 Related Work

Different RDF and OWL stores have been described before. In this section we de-
scribe the most relevant ones. Note that terminology is used with different meanings
in different solutions. For example, “class table” is not meaning the same in RDF-
Suite described below and in 3XL.

An early example of an RDF store can be found in RDFSuite [4,5]. In the part of
the work focusing on storing RDF data, two different representations are considered:
GenRepr which is a generic representation that uses the same database schema for all
RDF schemas and SpecRepr which creates a specialized database schema for each
RDF schema. It is found that the specialized representation performs better than the
generic representation.

In the generic representation, two tables are used. One for resources and one for
triples. In a specialized representation, RDFSuite represents the core RDFS model by
means of four tables. Further, a specialized representation has a so-called class table
for each class defined in the RDFS. In contrast to the class tables used by 3XL, RDF-
Suite’s class tables only store the URIs of individuals belonging to the represented
class. Both RDFSuite and 3XL use the table inheritance features of PostgreSQL for
class tables. RDFSuite’s specialized representation also has a so-called property ta-
ble for each property. This is different from 3XL’s approach where multiproperty
tables only are used if the cardinality for the represented property is greater than 1.
In RDFSuite, property tables store URIs for the source and target of each represented
property value. Alexaki et al. [4] also suggest (but do not implement) a represen-
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tation where single-valued properties with literal types as ranges are represented as
attributes in the relevant class tables. This is similar to the approach taken by 3XL.
In 3XL this is taken a step further and also done for attributes with object values.

In Broekstra et al.’s solution for storing RDF and RDFS, Sesame [16], different
schemas can be used. Sesame is implemented such that code for data handling is
isolated in a so-called Storage and Inference Layer (SAIL). It is then possible to
plug-in new SAILs. A generic SAIL for SQL92 compatible DBMSes only uses a
single table with columns for the subjects, predicates and objects. In a SAIL for
PostgreSQL, the schema is inspired by the schema for RDFSuite and is dynamically
generated. Again, a table is created for each class to represent. Such a table has one
column for the URI. A table created for a class inherits from the tables created for
the parents of the class. Likewise, a table is created for each property. Such a table
for a property inherits from the tables that represent the parents of the property if it
is a subproperty. This SAIL is reported [16] to have a good query performance but
disappointing insert performance when tables are created.

In Wilkinson et al.’s [94] tool for RDF storage, Jena2, all statements can be stored
in a single table. In the statement table, both URIs and literal values are stored di-
rectly. Further, Jena2 allows so-called property tables that store pairs of subjects and
values. It is possible to cluster multiple properties that have maximum cardinality 1
together in one property table such that a given row in the table stores many prop-
erty values for a single subject. These can be compared to 3XL’s class tables. An
important difference is, however, 3XL’s use of table inheritance to reflect the class
hierarchy.

Harris and Gibbins [37] suggest a schema with fixed tables for their RDF triple-
store, 3store. One table with columns for subject, predicate and object holds all
triples. To normalize the schema, there are also tables for representing models, re-
sources, and literals. Each of these has two columns: one for holding an integer hash
value and one for holding a text string. The triple table then references the integer
values in these three tables. This approach where all triples are stored in one table
is different from the approach taken by 3XL where the data to store is held in many
different tables.

Pan and Heflin [59] suggest the tool DLDB. The schema for DLDB’s underlying
database is similar to RDFSuite’s. DLDB also defines views over classes. A class’s
view contains data from the class’s table as well as data from the views of any sub-
classes. Instead of views, 3XL uses table-inheritance. A DLDB version for OWL
also exists.

Neumann and Weikum [55,56] suggest a scalable and general solution for storing
and querying RDF triples. The system, called RDF-3X, does not use a DBMS, but a
specialized storage system which applies intensive indexing to enable fast querying.
A major difference between RDF-3X and 3XL is that 3XL uses (a subset of) OWL
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Lite and supports OWL classes, object and data properties, etc. and thus, unlike
RDF-3X, can answer OWL queries as most of those in the LUBM benchmark.

Abadi et al. [1] propose to to use a two-column table property(subject,
object) for each unique property in an RDF data set. This is implemented in both a
column-store which stores data by columns and in a more traditional row-store which
stores data by rows. The proposed schema is reported to be about three times faster
than a traditional triple-store in a row-store while it is around 30 times faster in a
column-store. In a later evaluation paper, Sidirourgos et al. [71], however, find that
in a row-store, the simple triple-store performs as well as the two-column approach
if the right indexes are in place. They also find that a column-store provides good
performance but that scalability becomes a problem when there are many properties
(leading to many tables). 3XL is designed to be fast for queries where the subject
and/or predicate is known and where many/all properties should be retrieved. Fur-
ther, it exploits the object-relational capabilities of the row-store PostgreSQL. We
therefore believe that the best choice is to group the single-valued properties of a
class together in a class table and allow multi-valued properties in special property
tables or arrays in the class table.

Zhou et al. [95] implement the Minerva OWL semantic repository integrated with
a DL reasoner and a rule inference engine. The imported data is inferred based on a
set of rules, and the results are materialized to a DB2 database which has an inference-
based schema containing atomic tables, TBox axiom tables, ABox fact tables and
class constructor tables.

IBM SHER [26] is a reasoner that allows for efficient retrieval of ABoxes stored
in databases. It achieves the efficiency by grouping the instances of a same class into
a dramatically simplified summary ABox, and doing queries upon this ABox.

Storage of RDF data has also found its way into commercial database products.
Oracle 10g and 11g manage storage of RDF in a central, fixed schema [58]. This
schema has a number of tables, including one that has an entry for each unique part
of all the triples (i.e., up to three entries are made for one triple) and a table with
one entry for each triple to link between the parts in the mentioned table. In a recent
paper [20], it is described how Oracle supports efficient bulk loading by extensive
use of SQL and a hash-based scheme for mapping between values and IDs.

Unlike Minerva’s inference-based schema, SHER’s summary ABox, and Ora-
cle’s use of a variant generic schema representation, 3XL uses PostgreSQL’s object-
oriented fuctionalities to support its specialized data-dependent schema.

Other repositories designed for OWL also exist. DBOWL [53] creates a special-
ized schema based on the ontology like 3XL does. There is a single table with three
attributes to store triples. For each class and property in the OWL ontology, a view is
created. 3XL differs from this, as data is partitioned over several physical tables that
may have many attributes. OWLIM [44] is another solution. It is implemented as a
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SAIL for Sesame. Two versions of OWLIM exist: 1) The free SwiftOWLIM which
is the fastest but performs querying and reasoning in-memory and 2) the commer-
cial BigOWLIM which is file-based and scales to billions of triples. This is different
from 3XL that has its data in an underlying PostgreSQL and exploits the results of
decades of research and development in the database community such as atomicity,
concurrency control, and abstraction.

2.5 Conclusion and Future Work

In this chapter, we present the 3XL triple-store. Unlike most current triple-stores,
3XL is specifically designed to support easy integration with non-RDF data and at
the same time support efficient data management operations (load and retrieval) on
very large OWL Lite triple-stores. 3XL’s approach has a number of notable charac-
teristics. First, 3XL is DBMS-based and uses a specialized data-dependent schema
derived from an OWL Lite ontology. In other words, 3XL performs an “intelligent
partitioning” of the data which is efficiently used by the system when answering
triple queries and at the same time intuitive to use when the user queries the data
directly in SQL. Second, 3XL uses advanced object-relational features of the under-
lying ORDBMS (in this case PostgreSQL), such as table inheritance and arrays as
“in-lined” attribute values. The table inheritance represents subclass relationships in
a natural way to a user. Third, 3XL is designed to be efficient for bulk insertions.
It makes extensive use of a number of bulk loading techniques that speed up bulk
operations significantly and is designed to use the available main memory very effi-
ciently, using specialized caching schemes for triples and the map table. Fourth, 3XL
supports very efficient bulk retrieval for point-wise queries where the subject and/or
the predicate is known, as we have found such queries to be the most important for
most bulk data management applications. 3XL also supports efficient retrieval for
composite queries. 3XL is motivated by our own experiences from a project using
very large amounts of triples. Extensive experiments based on the real-world EIAO
dataset and the industry standard LUBM benchmark show that 3XL has loading and
query performance comparable to the best file-based solutions, and outperforms other
DBMS-based solutions. At the same time, 3XL provides flexibility as it is DBMS-
based and uses a specialized and intuitive schema to represent the data. 3XL thus
bridges the gap between efficient representations and flexible and intuitive represen-
tations of the data. 3XL thus places itself in a unique spot in the design space for
triple-stores.

The overall lessons learnt can be summarized as follows: 1) Using a specialized
schema generated from an OWL ontology is very effective. With this schema, it is
fast to find the relevant data which is intelligently partitioned into class tables (and
possibly also multiproperty tables). This results in very good query performance.
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2) An ORDBMS is a very strong foundation for building such a specialized schema
for an OWL ontology. It provides the needed functionality (i.e., table inheritance) to
represent class relationships and efficient storage of multi-valued variables in arrays.
It also provides a query optimizer, index support, etc. for free. Finally, it provides
the user flexibility as it is easy to combine the data with non-RDF data. 3) The right
choice of caching mechanisms is very important for the performance. In particular,
the often used map table should be cached outside the DBMS. For a map table too
big to fit in memory, an external caching system based on BerkeleyDB is better than
using the DBMS. 4) When loading OWL data, using bulk-loading in clever ways has
a huge effect. In particular, instead of bulk-loading all available data, only the oldest
parts should be loaded keeping the freshest data in memory.

There are a number of interesting directions for future work. First of all, op-
timization will be continued, focusing on performance improvement of data trans-
ferred from memory to database, and supporting queries of form (∗, ∗, o) better. Fur-
ther, 3XL will be extended to support more of the OWL features, in the first case
all of OWL Lite. Finally, 3XL will be integrated with a reasoner running on top of
3XL to allow more reasoning than the class-subclass reasoning on instances currently
supported.





Chapter 3

All-RiTE: Right-Time ETL for
Live DW Data

Data warehousing traditionally extracts, transforms, and loads (ETL) the data from
different source systems into a central data warehouse (DW) in at regular interval,
e.g., daily. Data warehousing technologies face the challenge on how to deal with the
so-called live DW data, such as accumulating facts and early-arriving facts, which
eventually will be updated but also queried in online fashion. For this type of data,
traditional SQL INSERTs are used, then typically followed by the updates and possi-
ble deletions. This is, however, not efficient to modify the data in the DW. This chap-
ter presents the ETL middleware system All-RiTE which enables efficient processing
of live DW data with support for SELECTs, INSERTs, UPDATEs and DELETEs.
All-RiTE makes use of a novel main memory-based intermediate data store between
data producer and the DW to accumulate the live DW data, and does on-the-fly data
modifications when the data is materialized to the DW or queried. A number of poli-
cies are proposed to control when to move data from source systems towards the DW.
The data in the intermediate data store can be read by data consumers with specified
time accuracies. Our experimental studies show that All-RiTE provides a new “sweet
spot” combining the best of standard JDBC and bulk load: data availability as with
INSERTs, loading speeds even faster than bulk load for short transactions, and very
efficient UPDATEs, DELETEs and SELECTs of live DW data.

47
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3.1 Introduction

In data warehousing, the data from various source systems is extracted, transformed,
and loaded into the DW. The data is typically refreshed at a regular time interval,
e.g., daily. In recent years, there has been an increasing demand for fresher data,
i.e., a shorter refreshment period. In some cases, it is even required to have DWs
refreshed with the data within minutes or seconds after the triggering event in the
real world (e.g., the placement of an order). This is often referred to as “real-time” or
“near real-time” data warehousing [10,17]. Besides, a recent and more sophisticated
requirement is to make the data available in the DW when the users need it, but not
necessarily before. This is referred to as “right-time” data warehousing [85]. Users
can specify a certain freshness for the data they see. For example, a user specifies
to read the data with a freshness of at least five minutes. Then, the data committed
five minutes ago should be available in the DW, but not necessary after that, e.g., one
minute ago. The short intervals lead to relatively few insertions in each refreshment
compared to, e.g., daily refreshments.

As shorter refresh intervals are used, it is also more likely that the just-inserted
data needs to be updated. That is, the data will be updated if some information is
not available when the data is inserted. In this chapter, we use the term live DW
data for the DW data that can be updated and available for reads in online fashion
before loaded into the DW. A typical scenario illustrating this involves accumulating
facts [42] which are updated when events in the modeled world happen. A fact is,
e.g., inserted when (or shortly after) an order is placed. This fact gets updated in the
DW whenever the order becomes accepted, packed, sent, and paid. Another example
involving live DW data is early-arriving facts [42] where some of the referenced
dimension values are unknown at load time. The inserted data then gets updated later
when more information is available. For both of the scenarios, it is not efficient to
insert data into the DW and then update it shortly after. Better performance can be
achieved if the data is updated before it physically gets into the DW. We believe this
will often be possible assuming that most updates to live DW data happen within in
a short time after the data was created, e.g., within minutes or hours, while changes
are rarely made for the data created a long time ago. To support such a scenario
efficiently has traditionally involved a complex setup of the ETL program with much
hand-coding, though.

Thus, a solution that enables efficient near real-time and/or right-time ETL for
live DW data is thus strongly needed. This chapter presents exactly such a solution:
The middleware All-RiTE. This chapter extends the previous solution, RiTE [85],
which only supported insertions, but not updates and deletions. The current solution
is named All-RiTE because it supports all the traditional operations and provides
Right Time ETL. With All-RiTE, the user uses JDBC INSERTs to add data to the
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DW and gets the usual immediate availability, but with much higher efficiency. For
long transactions, the performance of All-RiTE is nearly as good as when using bulk
loading. For short transactions (the typical case), the performance is much better. In
addition, UPDATEs and DELETEs on live DW data are much more efficient when
All-RiTE is used. From the user’s point of view, it is very easy to start using All-
RiTE: only the JDBC drivers have to be changed, and the solution is thus transparent
for the involved applications.

The rest of the chapter is structured as follows. In Section 3.2, we give an
overview of All-RiTE and its components. In Section 3.3, we consider the supported
data processing operations, including INSERT, UPDATE, DELETE, SELECT and
“materialization”. In Section 3.4, we present optimizations of the All-RiTE imple-
mentation. In Section 3.5, we study the performance of All-RiTE. In Section 3.6, we
present related work. Finally, in Section 3.7, we conclude the chapter with a summary
and pointers to future work.

3.2 The All-RiTE System

In this section, we give an overview of All-RiTE’s architecture which is shown in
Figure 3.1. The producer is an ETL program that loads data from the operational
source systems into the DW. The producer is allowed to read, insert, update, and
delete DW data. A consumer is a DW client that only queries the DW. All-RiTE sup-
ports many producers loading different tables in parallel and many consumers reading
data in parallel, but for simplicity we only show one producer and one consumer in
Figure 3.1.

Figure 3.1: System architecture using All-RiTE

The arrows illustrate the data flows. The producer and consumer use All-RiTE
through the All-RiTE JDBC drivers (shown as grey boxes in Figure 3.1) which ex-
tend the standard JDBC interface [79]. Thus, only few and simple changes (explained
later) are needed to start using All-RiTE, otherwise the use is transparent. When the
consumer inserts data, the data moves from the producer to the consumer through
a special component called the catalyst. We borrow the chemistry term catalyst to
represent that the processing of the data that goes through it can get a significant
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speed-up. Producers, consumers, and the catalyst can be deployed on the same ma-
chine or on different machines. In the following, we describe the purpose of the
different drivers and the catalyst.

All-RiTE JDBC Producer Driver All-RiTE’s ProducerConnection is used by
producers. Its interface is very similar to the standard JDBC Connection interface
but adds two methods (to be described later). From the programmer’s point of view,
it can thus be used as a normal JDBC Connection. When data is inserted, the producer
connection will, however, keep the new data locally at least until a commit operation
is invoked. It may even keep the data locally after the commit operation. When the
data should be made available in the DW, a bulk of data is moved towards the DW
which is more efficient than moving a single row at the time. The producer connection
does not insert the locally held data directly into the DW. Instead, the data is given
to the catalyst (described below) and we say the data is flushed. When the data is
physically in the catalyst, it can be seen from the DW. The producer may also decide
that the data should be stored physically in the DW (through a customized commit
method discussed later). We then say the data is materialized.

The first method ProducerConnection adds to the JDBC Connection interface (or
more precisely overloads) is commit(boolean materializeFlag)which ta-
kes an argument that decides if the data to be committed should be materialized
immediately or not (the default). The second added method is setFlushPolicy-
(Policy policy) which is used for setting a policy that decides when to flush
data from the producer local storage to the catalyst. Different kinds of policies can be
applied. With instant flushing (the default), data is flushed instantly when a commit
operation takes place. With lazy flushing, the committed data is not flushed until it
becomes necessary (i.e., when a consumer requests to read it or the policy decides
that it is time to do it). Apart from these methods, ProducerConnection looks like a
normal JDBC Connection. It can, however, handle insertions, deletions, and updates
specially to obtain high efficiency.

All-RiTE Catalyst The catalyst is the component that temporarily holds data.
The held data can be seen from the DW and will eventually be materialized, i.e., phys-
ically inserted into the DW and removed from the catalyst. When a loading starts, the
catalyst creates a tuple store for each table. The tuple store contains a memory table
for keeping the data (shown as mem. table), the objects that represents the updates
and deletions (shown as “u/d operations”), and indexes for quickly retrieving the data
from the memory table (we will discuss more details later). Recall that we assume
that most changes of live DW data happen shortly after the data is inserted. All-RiTE
does on-the-fly updates and deletions by applying the u/d operations in the catalyst
when the data is queried or materialized to the DW.

All-RiTE JDBC Consumer Driver All-RiTE’s ConsumerConnection is used by
consumers. Its interface is identical to that of JDBC’s standard Connection. When
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prepared statements are created, ConsumerConnection creates specialized prepared
statements. These will automatically register the query with the catalyst to ensure
consistency (details to be given later). Further, they offer the method ensureAccu-
racy(long freshness) which can be used to define the needed freshness of
the queried data. If this method is not called, a default accuracy of 0 is assumed,
meaning that all committed data should be seen. If, e.g., a freshness of five minutes
is specified, data committed five minutes ago (or before) will be seen by the query,
but not necessarily data committed three minutes ago. The consumer driver does not
read data directly from the catalyst, but read through the table function (shown as
table func.), which is a stored procedure that reads data from the catalyst and returns
it as rows when invoked. To hide the complexity to users, a view is created, by which
the data from the catalyst is merged with the data from a DW table through the SQL
UNION operator. Thus the end user can use this view as any other relation and not
pay attention to whether the data is physically stored in the catalyst or in the DW.
It is automatically ensured that a query only sees a given row once, even if it gets
materialized while the query is running.

3.3 Optimizing Operations

In this section, we describe the details of the operations that All-RiTE supports,
namely INSERT, UPDATE, DELETE and SELECT. To start using All-RiTE from
an existing Java program, only the lines creating the database connection need to be
changed. The connection is used to create prepared statements that enable All-RiTE’s
functionalities.

3.3.1 Running Example

To illustrate the proposed concepts, we use a running example in the rest of the chap-
ter. We consider insertion of rows into the DW table X(A,B). In the example, we
consider five rows, ri = (i, i) for i = 0, . . . , 4, i.e., the rows (0, 0), (1, 1), (2, 2), (3, 3),
(4, 4).

Figure 3.2: The initial state when a load starts

When a load ofX is started, the producer driver creates a local buffer called a row
holder and a memory table in the catalyst for data (to be) inserted into X . These are
denoted byXrow andXmem, respectively. Figure 3.2 shows the initial states ofXrow,
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Xmem, and X . A double line in the bottom of a table shows that there are no rows
in the table. During the loading, the rows read from the data source are temporarily
kept in Xrow, then flushed to Xmem, and finally loaded into X in the DW.

3.3.2 Insert

In the producer, when the prepared statement for INSERT is executed, a row is cre-
ated from the scalar values set in the prepared statement (currently only explicitly
given scalar values are supported). The producer driver assigns a unique identifier,
called the row ID (the surrogate key), to the row and inserts it into the row holder.
The rows in the row holder are flushed to the catalyst based on a policy. The policy
can, e.g., do an instant flush or a lazy flush.

Instant Flush When the producer does an instant flush, the rows in the row
holder are flushed to the catalyst immediately when the producer issues a commit.
This is done through the method commit() (as in standard JDBC) or the method
commit(boolean materializeFlag) (added by All-RiTE) to which a ma-
terialization flag is given as the argument. If the argument to the latter is true, the
flushed rows (and those that were already in the catalyst) are materialized to the DW
directly after the flush. If the argument is false or commit() is used, the rows are
flushed to the catalyst, but not materialized. The following example illustrates instant
flush:

Example 7 (Instant Flush) Consider inserting the rows of the running example into
the table X . The producer has (by means of the prepared statement INSERT INTO
X VALUES
(...)) inserted the three rows, r0, r1, and r2. The producer connection has not
sent these two insertions to the DW, but instead holds the rows locally in Xrow. At
time t0 there is thus only data in Xrow as shown in Figure 3.3. At time t1, when the
producer has done a commit, the rows have been flushed to the catalyst and are now
stored in the memory table Xmem.

Later, the producer starts a new transaction and inserts the two rows r3 and r4

into Xrow. At time t2 there is thus committed data in the catalyst and uncommitted
data in the row holder. At time t3 after the producer has invoked the commit method
with the materialization flag set to true, all the rows from the row holder and the
catalyst have been materialized and are physically stored in the DW table X .

Lazy Flush When the producer does a lazy flush, the producer connection stores
newly committed rows locally in a so-called archive instead of flushing them to the
catalyst. However, if a consumer wants to query fresh data, the rows in the archive
will automatically be flushed to the catalyst. We show an example of lazy flush below.
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Figure 3.3: Instant flush

Example 8 (Lazy Flush) At time t0, the state is as in the previous example, i.e., the
producer has inserted the three rows, r0, r1, and r2 which are stored locally in Xrow.
At time t1, after the producer has done a commit, the three committed rows are stored
locally in the archive Xar (and not flushed to the catalyst).

Figure 3.4: Lazy flush

Later, the producer continues to insert the two rows r3 and r4. At time t2, the pro-
ducer thus holds both committed data (in Xar) and uncommitted data (in Xrow). At
time t3 after a materialization has taken place by means of commit(materiali-
zeFlag=true), all the rows are stored physically in the DW table X .

When a producer wants to materialize rows, the rows in the producer side are first
flushed to the catalyst by the producer connection and then physically inserted into
the DW by the catalyst. If the rows are not yet materialized to the DW, the consumer
can specify the time accuracy of the rows to be read from the producer side and/or
the catalyst. Depending on the time accuracy, e.g., with the accuracy set to 0, the
consumer can get the latest committed data, i.e., of near real-time availability.

Note that if a consumer in the previous example had needed fresh data at time
t2, (the needed parts of) the committed data would have been flushed to the catalyst.
Thus committed, but not flushed, data is made available in the catalyst on demand.



54 All-RiTE: Right-Time ETL for Live DW Data

This happens when a consumer requests a given accuracy from the catalyst (if no
accuracy is explicitly requested, an accuracy of 0 is assumed, meaning that all com-
mitted data should be made available to the consumer). If the catalyst does not have
data that is fresh enough (judge by using the time index, see Example 9), it will re-
quest the producer to flush data fulfilling the requested accuracy. To be able to satisfy
such a request, the producer connection has an index mapping commit times to rows
in Xar. When it receives a request, it checks the index according to the requested
freshness, reads the rows from the archive, and flushes them to the catalyst.

Example 9 (Flush on demand) Consider that the producer connection stores the
committed rows in the archive Xar. Suppose that the rows r0, r1, and r2 are com-
mitted at time 1 and the two rows r3 and r4 are committed at time 2. The producer
connection then maintains two entries in the time index for the rows inserted in the
two transactions as shown in Figure 3.5.

Figure 3.5: Flush rows on demand

Assume that at time 3, the consumer requests to read the data with an accuracy
of 2 time units. When the producer driver receives this request, it checks the time
index and flushes the three rows r0, r1, and r2 to the catalyst while the other two
rows (r3 and r4) are left in the archive as their freshness is less than 2 time units.

When the producer flushes rows in the archive, we consider the following two
special cases: 1) Suppose that the desired freshness is n time units, the current system
time is t, and the commit time of the first row in the archive is t′, i.e., the minimal
time in the time index. If the requested time satisfies (t − n) < t′, no rows will be
flushed to the catalyst. 2) If the desired freshness is 0 time units, it means that the
consumer wishes to read the most recently committed data. Thus, the producer will
flush all the rows in the archive to the catalyst.

Flush Policies As previously stated, a policy decides exactly when to flush data.
A policy is simply a function returning a boolean value. This function is called by
the producer connection. If policy returns true, the producer connection will flush
rows from the row holder and row archives to the catalyst immediately; otherwise, it
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will not flush. The default policy always returns true resulting in instant flushing.
To use other flush policies, users can set them through the producer connection. The
following policies are implemented in All-RiTE:

– Flush on Demand. This policy only flushes the rows in the archive on demand.
Thus the policy always returns false such that a flush only is done after a request
from the catalyst.

– Flush on CPU Workload. The producer connection can flush rows based on
the producer CPU workload. This policy regularly checks the CPU workload. If the
CPU load is below a configured value, the policy returns true such that the rows
are flushed to the catalyst. This policy can make the producer less intrusive on a busy
system.

– Flush at Regular Intervals. This policy allows the producer driver to flush the
rows at regular time intervals, such as every five minutes or every hour. If the time
passed since the last flush is longer than the user-specified duration, the policy returns
true such that a flush is done.

However, users can also implement their own policies easily according to their
needs. To create a new policy, only requires implementing an interface (with a
boolean value returned). To use a given policy, users can simply enable it by call-
ing setFlushPolicy(policy) on the All-RiTE ProducerConnection class.

Add Rows in Tuple Store Recall that when a prepared statement for INSERT
is created using the producer connection, All-RiTE creates tuple stores for the DW
tables in the catalyst. Each tuple store is corresponding to a single source and a DW
table, which contains a single memory table, indices related to the memory table, and
other relevant data. The memory table has the same schema as the DW table it is
created for. The rows in the memory table are saved in a number of data segments,
each of which is a fixed-size main memory buffer. The data segments are backed by
disk files such that data amounts larger than the available memory can be stored. A
data segment is assigned a unique number, called segment ID (denoted by sid), when
it is created. Recall that each row is assigned a row ID when it is inserted (we denote
the row ID by rid). Both segment IDs and row IDs are indexed to speed up queries.
A time index is also created by using the commit times of the rows. We show this in
the following example.

Example 10 (Indices) Consider the five rows in Example 9 which are committed at
time 1 and 2. If all the rows are flushed to the catalyst, and suppose (for the sake of
the example) that a data segment can only store two rows, there are then three data
segments created to hold the rows (shown in the leftmost part of Figure 3.6). In the
segment index, each segment ID sid maps to a segment. In the data segments, each
row is stored with an rid assigned to it.

In All-RiTE, the consumer can read the rows with specified row IDs (as discussed
later). The row ID index is then used for finding the data segments that store the
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Figure 3.6: Data segments and indices

requested rows. The row ID index is mapping the rid of the first row in a data
segment to the sid of the segment (see the middle part in Figure 3.6). The first rid is
also the minimal row ID in a data segment, denoted by ridmin. The time index (see
the rightmost part in Figure 3.6) is mapping commit times to row IDs. The row ID
mapped to by a given commit time, is the row ID of the last row in the commit (i.e.,
the maximal row ID for the transaction).

The row ID index and the time index make it fast to locate rows which then can
be read by consumers as explained in Section 3.3.4.

Materialize Data We now describe how the rows in the catalyst are materialized
to the DW. As we have discussed earlier, the rows are materialized if the producer
commits with the materialization flag set to true. In the tuple store, all rows are
marked as materialized or not yet materialized (by a boolean flag). If the catalyst re-
ceives a materialization instruction from the producer, it first exports all the rows that
are not yet materialized into a temporary file and then loads the data in the temporary
file into the DW using the DBMS bulk loader.

3.3.3 Update and Delete

In All-RiTE, we conduct the updates and deletions for live DW data in the catalyst
after the data for the updates and deletions has been flushed to the catalyst. This
section will introduce the process in the following.

In the producer, a prepared statement is created for an UPDATE or DELETE
operation. When the prepared statement is executed, the affected rows are not up-
dated/deleted immediately on the producer side. Instead, the producer driver keeps
the data about update/delete (“u/d”) operations in a so-called UD holder. The pro-
ducer connection assigns each u/d operation an ID, a unique number taken from the
same sequence as row IDs. The ID is used to identify the execution order for every
operation. Besides the ID, the scalar values set in the prepared statement, the table
name, the commit time, and the expression in the WHERE clause of an UPDATE
or DELETE SQL statement are also stored. The data in the UD holder is flushed
to the catalyst immediately whenever the producer issues a commit (also when lazy
flushing is used). In Section 3.3.2, we described that rows may exist in three places
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during a loading, i.e., in the producer (Xrow and Xar), in the catalyst (Xmem), and in
the DW (X). If the data about u/d operations is flushed to the catalyst immediately,
the rows in the catalyst, but not yet materialized can also be affected by the u/d oper-
ations. The rows that are still in the producer side will eventually be affected by the
u/d operations as they will be flushed to the catalyst sooner or later. The rows that
have already been materialized into the DW are updated and deleted through normal
SQL after the u/d operations are stored in the catalyst.

In the catalyst, we save the insertions, updates and deletions of a row as multiple
row versions (see Figure 3.7). The primary key values of a row are used to identify
the row and its row versions for updates and deletions. To identify the execution
order of insertions, updates and deletions, we assign a sequential number to rid of
each row. Besides, we add two additional attribute values of ts and te to each row.
The value ts tells from which transaction the row started to exist and the value te tells
from which transaction the row got replaced by a new version. A missing value for
te in a row means that the row is still valid. This is called version-based storage, and
we illustrate it using the following example.

Figure 3.7: Row versions in data segment

Example 11 (Version-based storage) Consider Example 9 again. Suppose that in
the first commit at time 1 we insert the three rows, r0, r1 and r2, then issue an update
U0 = UPDATE X SET B=1 WHERE A=0. In the second commit at time 2 we
insert the two rows r3 and r4, then issue a deletion and an update: D0 = DELETE
FROM X WHERE A=1 and U1 = UPDATE X SET B=2 WHERE A=0. The two
transactions result in the rows and the row versions shown in T1 and T2 of Figure 3.7,
respectively.

We assign a sequence number to each transaction, denoted by tid. In the first
transaction (tid = 1), the three rows r0, r1 and r2 are inserted with ts set to 1 (see
the table T1 in Figure 3.7). In this transaction, the row r0 is updated by U0 and
therefore a new row is generated and added (see the row with rid = 3). At the same
time, the value of te of r0 is updated to the current transaction ID, 1 (see the row with
rid = 0).

In the second transaction (tid = 2), the rows r3 and r4 are inserted (see the table
T2 in Figure 3.7). For the deletion D0 (with rid = 6), we just need to update the
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te value of the affected row (with rid = 1) to 2. This means that this row is not
available in or after the transaction with tid = 2. Thus, no new row version is stored
for the deletion, D0. For the update, U1, however, a new row version with the current
transaction ID (set in ts) is added (see the row with rid = 7) and the value of te in
the previous row version is updated, (the te of the row with rid = 3 is updated to 2).

The version based storage saves the records representing the updates or deletions
with the primary key condition in the WHERE clause (column A is the primary key
in this example, denoted by the underline). The catalyst keeps the mappings of the
primary key value of the latest row version to its row ID rid in memory. Thus, when
a delete or update arrives, the catalyst can quickly locate the position of the older
version in data segment in order to update the te value.

To support the updates and deletions on non-primary key conditions, we propose
the approach of storing the u/d operations in a dictionary-based storage. The struc-
ture of this storage is shown in Figure 3.8, which stores the mappings of a commit
time to the list of u/d operations within this commit. The rows in the tuple store
are updated or deleted on-the-fly by the u/d operations when the rows are read or
materialized. We illustrate it using the following example.

Example 12 (Dictionary-based Storage) Consider Example 9 again. Suppose that
we do the updates and deletions with the condition on column B. The transaction
at time 1 besides the three insertions of the rows, r0, r1 and r2 also commits the
update U0 = UPDATE X SET B=1 WHERE B=0 which was executed after the
insertions. The transaction at time 2 besides the two insertions of the rows r3 and
r4 also commits a deletion and an update: D0 = DELETE FROM X WHERE B=1
and U1 = UPDATE X SET B=0 WHERE B=2. The two transactions result in the
state shown in Figure 3.8.

Figure 3.8: Store u/d operations
The upper part of Figure 3.8 shows the snapshot of the rows in the tuple store

at the commit times 1 and 2, respectively. Suppose that at time t > 2 the rows are
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Figure 3.9: Apply u/d operations on-the-fly

queried or materialized. The result of applying u/d operations to each row is shown
in Figure 3.9 (⊥ represents a row has been deleted). The rows, r0, r1 and r2, are
applied with U0, D0 and U1, respectively, while r3 and r4 are applied with D0 and
U1. A row is affected if it meets the update or deletion conditions, otherwise, it is
unchanged. To apply u/d operations to a row is conducted on-the-fly, and the final
result is sent to the table function, while the original row in the tuple store is not
modified.

As the original rows in the tuple store are not physically updated or deleted, it
is easy to roll back updates and deletions, i.e., by simply deleting an entry from the
dictionary storage.

In All-RiTE, we store the u/d operations where the WHERE condition only uses
the primary key in the version-based storage, while others are saved in the dictionary-
based storage. In the following, we show how to do the on-the-fly updates and dele-
tions when the consumer queries the rows. Algorithm 4 shows the pseudo code.

Suppose that the consumer starts a query at time t. Before rows are read from the
tuple store, the consumer connection acquires the current transaction ID tid and uses
it throughout the query transaction. All the rows which started to exist in or before
the current transaction and have not been replaced before the transaction started will
be processed and returned to the consumer (see line 6-19). If we do updates and
deletions based on a condition on the primary key, multiple row versions have been
created. Lines 7-17, on the other hand, process rows by applying the u/d operations
generated by other conditions. First, the entries of (commit time t′, a list of u/d
operations) are read from the dictionaryM . The entries inM are sorted in ascending
order based on the values of t′ and the value of an entry is a list of u/d operations,
which are also sorted in ascending order based on the ID values of the u/d operations.
Then, we can do the updates and deletions in the right order corresponding to how
the prepared statements were executed. Only those u/d operations committed before
the query started are applied to rows (see line 8). The u/d operations are applied to a
row in sequential order (see line 9-17). To ensure that a u/d operation is applied only
to the rows that existed before the u/d operation’s prepared statement was executed,
we compare the rid of the row and the ID of a u/d operation (note that both IDs are
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Algorithm 4 Updates and deletes on-the-fly
Input: Query start time t, u/d dictionary M and current transaction ID, tid

1: rows← Get tuples from the tuple store
2: for row ∈ rows do
3: rid← row[ID]
4: ts← row[ts]
5: te← row[te] or∞; //∞ if te is undefined
6: if ts ≤ tid < te then
7: for (t′, u/d operations) ∈M do
8: if t′ ≤ t then
9: for ud ∈ u/d operations do

10: if rid < ud.ID then
11: type← ud.type
12: filter ← ud.filter
13: if type =‘DELETE’ and filter.eval(row) = true then
14: row ← ⊥
15: if type =‘UPDATE’ and filter.eval(row) = true then
16: row ← ud.update(row)
17: else
18: break
19: if row 6= ⊥ then
20: Send row to the consumer



3.3 Optimizing Operations 61

drawn from the same sequence). Before a u/d operation is applied to a row, we also
need to check if the row matches the update or deletion condition. This is evaluated
by the filter in lines 13 and 15 (a filter is created from the expression in the WHERE
clause in an UPDATE or DELETE SQL statement). If the filter returns a true value,
the row is updated or deleted.

Algorithm 4 supports REPEATABLE READ transaction isolation level for a query.
Consider Example 12 again. Assume that the consumer begins to query rows in a
transaction starting between the two commits. If the consumer runs the same query
for many times in the query transaction, it will each time only see the u/d operations
committed at time 1, i.e., the update U0. This is because the commit time of D0 and
U1 is after the start time of the query transaction. Therefore, they are not selected (see
line 8 in Algorithm 4). As the transaction ID tid is used to screen the rows throughout
the query transaction (see line 6), REPEATABLE READ transaction isolation is also
ensured for the rows.

3.3.4 Select

We now discuss how the consumer queries are processed. As we mentioned in Sec-
tion 3.2, rows can be returned both from the catalyst and the DW tables. Behind the
scenes, the consumer connection is using the REPEATABLE READ isolation level
such that the same set of rows from the two places can be read many times. In the
following, we first discuss how the rows are read from the catalyst and then discuss
how the rows from both places are merged.

The consumer connection can use two approaches for reading the rows from the
catalyst: reading rows with IDs in a certain interval and reading rows with specified
freshness (or time accuracy). They are used for reading data when the producer
is using instant and lazy flush policies, respectively. We present the details in the
following.

Read with MinMax Row IDs For a query, the materialized rows are read directly
from the DW, while the rows that are not materialized are read from the tuple store in
the catalyst. If the rows have been materialized, they can be purged from the catalyst
to free space. Care should thus be taken to avoid that when a query starts but before
it reads data from the catalyst, some rows become materialized and deleted from the
tuple store. To avoid this, we make use of the metadata table minmax to register rows
as “used” before the query starts. The rows that are registered as used will not be
deleted even if they have been materialized.

The minmax table has the three columns tablename, min, max which repre-
sent the name of a tuple store and the minimal and the maximal row IDs of the rows
that should be read from the tuple store. A row in the minmax table thus tells which
rows have been committed, but not materialized, in a given tuple store. Note that the
materialized rows can be read from the DW and should not be read from the catalyst.
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When the rows from the producer are committed, the catalyst updates the value of
max to the row ID of the last row in the flush (the maximal row ID). When the rows
in the tuple store have been materialized to the DW, the catalyst updates the value of
min to the row ID of the first un-materialized row (the minimal row ID).

We describe the query process by Algorithm 5. When the consumer (driver)
starts a query, it starts a new transaction and registers the rows with the row IDs read
from the minmax table (see line 2-4). The registration process, however, might fail
if a materialization is done between the time when the consumer reads the minmax
row IDs and the time when the minmax row IDs are given to the catalyst. In this
case, the consumer connection automatically ends the query transaction (recall that a
consumer only reads data), starts a new transaction, reads the new minmax row IDs,
and registers the rows again. The catalyst gives priority to a consumer going through
registration again in order to avoid starvation. If the consumer registers the rows
successfully, it can read the rows, and read the same rows for many times in the same
query transaction. When the consumer exits the query transaction, the consumer
needs to un-register the rows (see line 6).

Algorithm 5 Read the rows with the minmax row IDs
Input: The name of table, name

1: repeat
2: Start a transaction
3: min,max ← ExecuteDBQuery(SELECT min, max FROM minMax

WHERE tablename=name)
4: success← Register the rows with min ≤ row[ID] ≤ max
5: until success = true
6: Read the registered rows (allow repeatedly reads)
7: End the transaction and un-register the rows

We now describe how the rows are registered and un-registered in the tuple store.
All-RiTE allows many consumers to register rows as used at the same time. In the
tuple store, a registration counter is used to count the number of the consumers who
have registered the rows. (A single counter is used for the registration of all the rows
in a data segment, not a counter for each row.) The counter ensures that the registered
rows are available to the consumer all the time during a query transaction. The rows
that are not registered, but materialized to the DW, can be removed safely from the
tuple store. The removal is performed automatically when more space is needed.

Example 13 (Registration) Assume the producer uses the instant flush, and flushes
the three rows r0, r1, and r2 to the catalyst. Again, we assume that a segment can hold
no more than two rows. When the rows have been saved in the catalyst, the minmax
table is updated to hold the row (X, 0, 2). Further, the registration counters for the
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rows are added (see the first sub-figure in Figure 3.10). Note how, each counter is
associated with the lowest row ID in a segment. The first segment holds the rows r0

and r1 and thus the minimal row ID is 0. The second segment only holds the row r2

with row ID 2.
Suppose that a consumer (Cons. 1) now registers the rows with rowIDs in [0; 2]

as used. The registration counters for 0 and 2 are therefore updated (see the second
sub-figure). The producer continues its work and now flushes the two rows r3 and r4.
The row r3 fits in an already existing segment, while a new segment is made for r4.
A new registration counter is added for the new segment (see the third sub-figure).
The minmax table is also updated to hold the row (X, 0, 4). Suppose that another
consumer (Cons. 2) now starts a query, and registers the rows with rowIDs in [0; 4]
as used. Then all registration counters are updated (see the fourth sub-figure). The
rows r0, r1, and r2, are now registered as used by two consumers.

Figure 3.10: Rows registration and un-registration

The process of un-registration is a reverse process of the registration, which is
shown in the lower part of Figure 3.10.

Read with Time Accuracy The consumer connection supports reading of data
with a specified time accuracy. This is relevant when the producer is using a lazy
flush policy (otherwise all committed data is anyway available to the consumer, and
using a specified time accuracy becomes not necessary, but not harmful either). The
consumer can set the time accuracy (or the freshness of rows) by using the function
ensureAccuracy(freshness), an extension to the standard JDBC prepared
statement interface. For example, if the prepared statement for a SELECT is set to
have a required accuracy of five minutes, at least the rows committed five minutes
ago will be available. It may, however, also see newer data, for example if another
consumer shortly before had asked for an accuracy of one minute. This extension can
thus reduce the amounts of flush operations if the consumers do not need to see the
very fresh data.

When given a required accuracy, the consumer connection checks if all rows
committed at or before the current time minus the required freshness are available in
tuple store. If the tuple store holds all those rows, the catalyst can simply give the
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rows to the consumer. If the tuple store does not hold some of the rows, the catalyst
forwards the request to the producer. Algorithms 6 and 7 define the process. Suppose
the consumer asks for the rows with the freshness of n time units. In line 1, the
catalyst finds the time t for which all previously committed rows should be available.
The catalyst compares t and the latest commit time tm of the rows in the tuple store
(line 2). If tm < t, it means that the archive on the producer side might still hold some
needed rows committed between tm and t. The catalyst thus requests the producer
to flush the rows. The catalyst also creates a locker with the associated time t (see
line 4-5) to suspend the execution of the read thread (see line 8). The locker will
resume execution once the requested rows have been flushed to the catalyst, and then
the read thread can read the rows and send them to the consumer. The catalyst allows
many concurrent consumers, each of which can make the catalyst request data from
producers. The created lockers are added to a priority queue, Qlocker, in which the
lockers are sorted in ascending order based on the time t (see line 6). On the producer

Algorithm 6 Read the rows with specified time accuracy
Input: The data freshness, n time unit

1: t← Current system time − n
2: tm ← Get the latest commit time from the time index
3: if t > tm then
4: locker ← Create a read locker
5: locker.time = t
6: Add lock to a priority queue, Qlocker

7: Request the producer to flush the rows committed no later than t
8: locker.await(timeout) . Wait until it is unlocked by another thread or timeout

9: Send the consumer the rows with commit time ≤ t

side, the rows in the archives are flushed on demand as previously discussed. The
rows with commit times no later than the requested time t are flushed to the catalyst.
They are flushed in the same order as they were committed. If the producer does not
have any data committed at time t, it is required to send an empty update telling that
no rows were committed at time t.

Recall that a read thread in the catalyst is suspended while the catalyst requests
data from the producer. When the data is flushed to the catalyst, the catalyst there-
fore compares the commit time of the flushed data to the commit times that sleeping
threads are waiting for. If the needed rows have been flushed, the read thread is re-
sumed. The empty update can ensure that all the read threads will be resumed if the
producer does not hold the data with the requested commit time. Algorithm 7 shows
the steps.
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Algorithm 7 Add flushed rows and wake-up read threads
Input: A set of rows R and their commit time t′

1: Update the tuple store with R and the time index with t′

2: while Qlocker 6= ∅ do
3: locker ← Get the first element from Qlocker

4: if locker.time ≤ t′ then
5: locker.signal()
6: Delete locker from Qlocker

7: else
8: break

Union with the Rows Read from the DW The consumer does not read the rows
from the catalyst directly. Instead, it reads the rows through the table function as
mentioned in Section 3.2. Recall that the consumer connection executes queries to-
wards the DW in the REPEATABLE READ isolation level. The consumer first reads
the minmax row IDs and registers the rows as used. It is then ensured to be able to
read the rows that existed in the catalyst when it started. The query will only see
the rows that have already existed in the DW before the query began, while the rows
materialized after the query started are invisible to the query. Therefore, even if the
registered rows are materialized to the DW during the query transaction, the query is
still sure to only see the rows once.

When the consumer driver reads the rows from the catalyst, it sends the minmax
row IDs and the user-specified time accuracy to the catalyst. If the time accuracy is
not set, the consumer driver sends the default value 0 which means that all committed
data should be seen.

To hide all complexity from users, the administrator can create a view that unions
the (materialized) rows read from the DW table and the rows read from the catalyst
through the table function.

Program 1 Create the view to union the rows
CREATE VIEW v AS SELECT * FROM dwtable UNION ALL
SELECT * FROM tablefunction(’dwtable’,

(SELECT min FROM minmax WHERE tablename=’dwtable’,
SELECT max FROM minmax WHERE tablename=’dwtable’);

If the view v is used instead of the dwtable, end users do not have to think about
where the rows come from. As the consumer connection is using REPEATABLE
READ isolation level, a single query on the view can be executed many times and
each time gets the same results. However, if the transaction for the query ends, and
the query is executed again in a new transaction, the latest updated rows can be seen.
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3.4 Tuple Store Optimization

In the catalyst, the data in a tuple store is typically written by one producer and read
by many consumers. Lock-based approaches for managing the shared data are not
optimal for read and write performance, e.g., when the producer flushes rows into the
catalyst and consumers read them, there is a contention between the write thread and
read threads. To cope with this conflict, the tuple store maintains dual maps, namely
a writeable map and a readable map, as shown in Figure 3.11. The writeable map
is only for the write thread to write data into, while the readable map is only for the
read threads to read data from.

Figure 3.11: Dual data stores

Figure 3.11 describes a scenario where rows are added. Before the rows from the
producer are stored in the tuple store, the writeable map is cleared and the data in the
readable map is copied into the writeable map. The copy is a shallow copy of the
objects stored in the maps, i.e., only the references to the objects are copied and thus
it is not expensive. Before the data is added to the writeable map, the unused data is
purged from the map. This includes rows that are materialized and not registered as
used. Once all the data flushed by the producer has been stored, the writeable map is
swapped with the readable map after an exclusive write lock is acquired.

The tuple store maintains separate writeable and readable maps for data segments,
row IDs, indices, and u/d operations. The swapping of the these maps from writeable
ones to readable ones are done together. This makes it very easy to roll back simply
by discarding the data in the writeable maps, i.e., not swap the maps from writeable to
readable at the final step. Among the maps, the one that consumes the most memory
is the map storing data segments. To allow the system to claim back memory, we use
“soft references” [74] to the data segment objects such that infrequently used data
segments can be flushed out to files if needed. The data in the files will be read back
into the main memory when a consumer queries the data.
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3.5 Performance Study

3.5.1 Environment Settings and Test Data

We now present the performance study of All-RiTE. All experiments are carried out
on a Dell OptiPlex 960 workstation equipped with a 2.66GHz Intel(R) Core(TM)2
Quad processor, a 320GB SATA hard drive (7200rpm, 16MB Cache and 3.0Gb/s),
and 3.0GB RAM running with Fedora 14.0 Linux with kernel 2.6.35. The cata-
lyst, producer, and consumer all run on java-6-sun-1.6.0.25 JVM with the options:
-Xms1024m -Xmx2048m. PostgreSQL 8.3.5 is installed on the same workstation and
used as the DW DBMS. The DBMS has the following settings, “shared buffers=512MB,
temp buffers=128MB, work mem=56MB, maintenance work mem=256MB, check-
point segments=20” and default values for other configuration parameters.

We use source data from the TPC-H benchmark [88] but with the schema modi-
fied to be a star schema (see Figure 3.12). The data generator for this star schema and
the All-RiTE sources are available at people.cs.aau.dk/˜xiliu/rite. We
assume that the orders are created in the data source and that some will be changed by
updates and deletions. In the experiments, we first study inserts, on-the-fly updates
and deletes, and selects from a table. Then, we study the optimization for the on-the-
fly updates and deletions for the tuple store. Finally, we study loading of data into
multiple tables. We will compare All-RiTE with the standard JDBC driver, DBMS
bulk loader and the system RiTE [85].

Figure 3.12: Star schema

3.5.2 Insert Only

We consider inserting rows into the order dimension table. When using the stan-
dard JDBC driver, we insert the data by means of both traditional prepared statements
and JDBC batches where values from several executions of a prepared statement are
grouped together to reduce communication costs. When using bulk loading, we first

people.cs.aau.dk/~xiliu/rite
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write the data to a comma separated file and then let PostgreSQL bulk load the file’s
content to the table. When using RiTE and All-RiTE, we both load data with and
without materialization. All-RiTE uses lazy flushing, but the data is always flushed
to the catalyst before the producer finishes. In all experiments, prepared statements
are used whenever possible.

Figure 3.13: Long transaction Figure 3.14: Short transaction

We first consider long transactions where all data is inserted before the sin-
gle commit operation. The results are shown in Figure 3.13. The loading times
scale linearly in the number of rows. We compute the throughputs from the slopes
of the lines: 10,206 rows/s (JDBC insert), 22,397 rows/s (JDBC batch), 51,376
rows/s (All-RiTE with materialization), 58,342 rows/s (RiTE with materialization),
146,422 rows/s (bulk loading), 188,733 rows/s (All-RiTE without materialization)
and 196,576 rows/s (RiTE without materialization).

To better simulate the processing of real-world live DW data, we now load data
in short transactions with a commit for every inserted 100 rows. Figure 3.14 shows
the test results (note that the y-scale is different to Figure 3.13). We get the follow-
ing throughputs: 5,522 rows/s (JDBC insert), 10,733 rows/s (bulk loading), 11,376
rows/s (RiTE with materialization), 14,887 rows/s (RiTE without materialization),
21,405 rows/s (JDBC batch), 50,651 rows/s (All-RiTE with materialization) and
187,057 rows/s (All-RiTE without materialization).

In the long transaction, the throughput of RiTE is slightly higher than that of All-
RiTE (the lines almost overlap in Figure 3.13) since the implementation of All-RiTE
needs to consider handling the updates and deletions. Thus, the system becomes more
complex. In the short transaction, the throughput of All-RiTE, however, is much
higher than that of RiTE (4.4 and 12.5 times higher for loading with and without
materialization, respectively). It is because All-RiTE is designed for processing live
DW data (for which short transactions are typically used). All-RiTE can accumulate
live DW data in the producer side, and move the data from the producer to the catalyst,
and finally to the DW together. In contrast, RiTE does data movement for each
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commit, and its performance thus degrades dramatically for the short transactions. If
we consider the case where the rows are physically stored in the DW, bulk loading
has the highest throughput in the long transactions, but the throughput decreases
greatly in the short transactions (decreasing up to 92%) since bulk loading is only
efficient for big data set. All-RiTE, however, maintains its high performance for
short transactions, which is 4.7, 4.4, 9.2, and 2.4 times faster than bulk loading, RiTE,
JDBC insert and JDBC batches, respectively. When the burst mode is considered, in
which the data is continuously flushed to the catalyst, but not materialized to the DW,
the throughput of All-RiTE is 12.6 times higher than that of RiTE. Therefore, All-
RiTE can process data quickly for the short transactions, and the advantages for live
DW data are clearly seen.

3.5.3 Update/Delete On-the-fly

We now test on-the-fly updates and deletions. For All-RiTE, we load, modify on-the-
fly, and finally materialize the rows into the DW. For the alternatives (JDBC, RiTE
and bulk loading), we first load the rows into the DW and then modify the rows in
the DW through a JDBC connection. Again, we use short transactions to simulate the
processing of live DW data. In the experiment, we add a fixed number of rows (10
million) by insertions, but vary the total number of updates and deletions. Further,
in each test run –across the transactions– we perform the same number of updates
and deletions. For example, 2 million u/d operations consist of 1 million updates and
1 million deletes. The following SQL statements are used: UPDATE order SET
orderstatus=?, totalprice=?, orderdate=?, shippriority=?
WHERE orderkey=? and DELETE FROM order WHERE orderkey=?. The
question marks are replaced by scalar values when the prepared statement is executed.
As the SQL statements both use an equals condition on the primary key, a single ex-
ecution of one of the statements only affects one row. Figure 3.15 shows the results.
We compute the average loading throughputs which are: 3,642 rows/s (JDBC insert),
8,015 rows/s (bulk loading), 8,245 rows/s (RiTE), 8,916 rows/s (JDBC batch) and
32,542 rows/s (All-RiTE).

We now specifically test on-the-fly updates and on-the-fly deletions. We consider
the previous SQL statements again, but now use a range condition. Thus we change
the WHERE clause to orderkey < ?. In each run, we set a different scalar value
to use in the range condition. For example, setting it to 2 million makes 2 million
rows be updated or deleted. Figure 3.16 and 3.17 show the results for updates and
deletions, respectively. We compute the average loading throughputs. For the up-
dates on-the-fly, the throughputs are 6,675 rows/s (JDBC insert), 12,224 rows/s (bulk
loading), 16,197 rows/s (RiTE), 22,340 rows/s (JDBC batch) and 63,591 rows/s (All-
RiTE). For the on-the-fly deletions, the throughputs are 6,883 rows/s (JDBC insert),
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12,954 rows/s (bulk loading), 16,996 rows/s (RiTE), 24,681 rows/s (JDBC batch) and
94,036 rows/s (All-RiTE).

In the above experiments, All-RiTE again achieves the highest throughputs. This
is due to the implementation for performing the on-the-fly updates and deletions in
which the u/d operations lead to different row versions stored in the data segments.
The version-based storage achieves very efficient updates and deletions. When do-
ing updates and deletions with range conditions, All-RiTE can also achieve efficient
updates and deletions because it can quickly retrieve a u/d operation from the hash
dictionary and apply it to a row. The other methods using standard JDBC, RiTE
and bulk loading, however, do not provide built-in support for on-the-fly updates and
deletions. We, thus, modify the data through the underlying DW DBMS after the
data is loaded. This takes more time and the underlying DBMS also causes some
overhead such as the time used for writing the transaction logs. For the other ap-
proaches, their times are more or less the same since they modify the rows through
the DW DBMS. The time difference is mainly resulting from the loading. In our
experiment for insert, we have already seen that the performance of bulk loading is
between JDBC insert and JDBC batch, and slightly better than RiTE for short trans-
actions. This also applies for on-the-fly updates and deletions. All-RiTE again has
the highest efficiency, 4, 3.9, 8.9, and 3.6 times faster than bulk loading, RiTE, JDBC
insert and JDBC batch, respectively.

3.5.4 Select

We now study the performance of select operation. We compare All-RiTE with the
select from the table in DW, and the select of RiTE. In each test, the rows are first
loaded into the memory table or the table in the DW. We select all the rows into the
Linux null device, /dev/null and measure the average time for five repeated tests.
The results are plotted in Figure 3.18. For All-RiTE, the following two methods for
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reading rows from the memory table are evaluated: M1) We read raw bytes from data
segments, convert the bytes into rows of Java types (in order to apply filters/where
conditions to the rows), and convert the selected rows back into sequences of bytes
to be transferred to the table function (see the line Read mem. table by M1). M2) We
directly transfer the bytes from data segments to the table function and then select
the rows in the table function (see the line Read mem. table by M2). Figure 3.18
shows that the time scales nearly linearly in the number of rows selected for each.
From the slopes of the lines, we compute the following throughputs: 63,692 rows/s
(from mem. table by M1), 82,608 rows/s (RiTE), 99,955 rows/s (from mem. table by
M2), and 107,655 rows/s (from ordinary table). The results show that the throughput
of M2 is 57% and 21% higher than M1 and RiTE, respectively. This is because M1
has to do two data conversions from and to byte sequences. However, when we use
M2, the throughput is close to the throughput of selecting the rows directly from an
ordinary table in the DW.

Figure 3.18: Select all rows Figure 3.19: Select 50k rows

Instead of selecting all rows, we now compare the selects on a fixed-number of
rows using the condition WHERE orderkey between 1 and 50000. We use
the select approach M2 for All-RiTE, and compare with RiTE and the selects of the
rows from the ordinary order table (with and without index on orderkey column,
respectively). Figure 3.19 shows the test results when the number of the rows is scaled
from 1 to 5 million. As seen, the select from an ordinary table with the condition on
an indexed column maintains the constant throughput, 99,581 rows/s. For RiTE and
All-RiTE, since the reading of the rows from catalyst is through the table function
with minmax row IDs (see Program 1 in Section 3.3.4), it requires to scan all the
rows between the minmax row IDs. Thus, it is neutral to compare with the selects
on an ordinary table without index. In this case, All-RiTE has the best throughput,
which is 45,284 – 78,864 rows/s. The ranges of the throughput for RiTE and the
ordinary table are 12,025 – 34,843 rows/s and 30,376 – 70,224 rows/s respectively.
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Thus, All-RiTE shows the advantage over an ordinary table for the selects with the
condition non-indexed columns.

3.5.5 Concurrent Read and Write

In the tuple store, we use dual maps, one for writing and one for reading. We now
compare this scheme with a simple scheme storing data in a single map. The single
map was used in our original design with synchronization to control the concurrency
of producers and consumers accessing the common data. Reads were given a higher
priority than writes.

We study the influence on write performance by concurrent reads for the above
two designs. We load five million rows into the order table in short transactions.
We execute the SQL statement SELECT count(*) FROM order continuously
to simulate concurrent reads. We measure the times to insert data with and without
the concurrent reads for the two designs (see Figure 3.20). We can see that: 1) When
a single map is used, the concurrent reads drastically degrade the write performance.
The time to insert the data is five times higher than without concurrent reads. This is
because the priority of read threads is higher than the priority of the write thread in
this design. 2) When the dual maps are used, the concurrent reads have very limited
impact on the write performance. The time it takes to write with concurrent reads is
only slightly higher than the time it takes to write without concurrent reads.
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Figure 3.20: Tuple store designs Figure 3.21: Concurrent read/write

We now use the data store design with dual maps in All-RiTE, and compare
its loading performance with the standard JDBC driver, RiTE and bulk loading by
scaling the amount of rows from one to five millions (see Figure 3.21). We com-
pute the write throughputs from the slopes of the lines: 5,333 rows/s (JDBC insert),
7,621 rows/s (RiTE), 10,417 rows/s (bulk loading), 21,142 rows/s (JDBC batch),
and 48,954 rows/s (All-RiTE). The performance advantage of All-RiTE thus remains
when loading concurrently with reads. We now compare with the results without
concurrent reads (see Figure 3.14). The throughput of RiTE drops most, 33% lower,
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while the others drop slightly, between 1% and 4% lower. Compared with RiTE, the
design of the data store in All-RiTE achieves good effect. The influence on write per-
formance is only 3.3%, which is mainly due to the impact on the resource competition
among the reads.

In addition, we have also studied the influence on read performance by concurrent
writes in All-RiTE for the two data store designs. We find that the impacts on both
are insignificant, i.e., the read throughput remains around 99,900 rows/s (using the
reading method M2). The concurrent writes also have little impact to the reads of
RiTE (about 82,600 rows/s) since the reads prioritizes the writes.

3.5.6 Loading Multiple Tables

We now study All-RiTE’s support for processing multiple tables and how it affects
the performance. In this experiment, we use multiple threads to load the star schema.
Each thread loads data into a separate table. The number of rows for the lineitem fact
table is scaled from two to ten millions. We use a fixed number of rows for the four
dimension tables: one million rows for the order table, and 10,000 rows for each of
the other three. Each thread uses short transactions. Figure 3.22 shows the results
(RiTE is not tested for it does not support loading multiple tables together). We use
the number of lineitem facts as the X coordinates since the thread that loads the facts
determines the overall time. The results show that All-RiTE outperforms the standard
JDBC driver and bulk loading, also when processing multiple tables.

Figure 3.22: Load for star schema Figure 3.23: Load for multiple tables, 1 CPU

To further study the support for loading of multiple tables, we design the fol-
lowing test cases: T1) We use a single thread to load facts into lineitem table scaled
from two to ten million. T2) We create a new fact table in the DW, but with the
same schema as lineitem. We partition the facts into two equal data sets, and use
two threads to load the two tables. The data from both threads goes through a sin-
gle catalyst into the target tables. T3) We use the same scenario as T2, but use two



74 All-RiTE: Right-Time ETL for Live DW Data

separate catalysts. We do the loading on one CPU core (the others are disabled by
starting up system with the Linux kernel parameter, maxcpus=1) to be able to see
if the multiple tuple stores/catalysts affect the performance. The results are shown in
Figure 3.23 in which the lines for the three tests almost overlap. We find the through-
put to be 122,324 rows/s. Thus, using All-RiTE to load the same number of rows but
into different tables introduces no extra overhead.

3.5.7 Summary of Performance Study

We have performed experiments to evaluate All-RiTE by comparing with the stan-
dard JDBC driver, RiTE and DBMS bulk loading. All-RiTE provides a new “sweet
spot” for processing live DW data in short transactions. For short transactions, All-
RiTE’s performance is 4.7, 4.4, 9.2, and 2.4 times better than bulk loading, RiTE,
JDBC insert, and JDBC insert with batches, respectively. This is an important con-
tribution since short transactions are typically used for live DW data. Thus, with
All-RiTE it is possible to insert data quickly and also make it available to consumers
quickly.

For long transactions, All-RiTE has the comparable performance to RiTE, and
outperforms traditional JDBC insert and batch. Compared with bulk loading, All-
RiTE has better performance for the burst mode, while bulk loading is better for
materializing the data into DW. And while the performance of bulk loading degrades
dramatically as transaction sizes are reduced, All-RiTE is nearly not affected by this.

Unlike bulk loading, RiTE and the standard JDBC driver, All-RiTE has built-in
support for on-the-fly updates and deletions. Thus All-RiTE can process live DW
data very efficiently. Our experiments show that All-RiTE works 4, 3.9, 8.9 and 3.6
times faster than bulk loading, RiTE, JDBC insert, and JDBC batch, respectively.

We have also evaluated the select operation. All-RiTE has the comparable per-
formance to the selection on the ordinary table in DW. When using the select with the
condition on a non-index column, All-RiTE is faster than the select on an ordinary
table and RiTE.

3.6 Related Work

In recent years, real-time data warehousing has received much attention. The pa-
pers [10, 41, 91] review state-of-the-art, analyze the problems, and discuss the chal-
lenges for the real-time data warehousing. [15,72,92] introduce ETL modeling tech-
niques for real-time refreshment. All-RiTE extends a previous solution, RiTE [85].
RiTE only supports INSERTs and only from a single producer. All-RiTE supports
several producers and does also support modifications of the inserted data (i.e., live
DW data) which requires more advanced techniques. Further, All-RiTE can support
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larger data amounts due to its use of data segments and offers several implemen-
tation optimization. [68] uses replicated tables to hold near-real-time data, and the
data is updated into the original tables when the DW is offline. All-RiTE, on the
other hand, uses the catalyst to accumulate near-real-time data before materializing
it to the DW, and also supports SELECT, UPDATE and DELETE operations. Users
can control the movement of data between producers and the catalyst (i.e., when to
flush) and between the catalyst and the DW (i.e., when to materialize). Bruckner
et al. [17, 69] present a container-based ETL architecture which allows ETL tasks
to do near-real-time data integration in a J2EE container. The container-based ETL,
however, lacks flexibility and causes performance loss due to the container. In com-
parison, All-RiTE is middleware which easily can be integrated with other ETL pro-
grams just by switching the database drivers. [54] summarizes the continuous loading
of state-of-art. All-RiTE gives the producer full control over units of work to commit
together and is more flexible with respect to the freshness of the data to read. Other
works [33, 47, 63] for online data warehouse updates are orthogonal to All-RiTE.

To store the results of updates and deletions as different row versions in All-
RiTE is similar to type-2 slowly changing dimensions which traces the changes of a
dimension by multiple versions and MVCC (multiversion concurrency control). The
latter is widely used in DBMSs, including PostgreSQL, Berkeley DB, MySQL, etc.
Regarding the tuple store design, a piece of related work is C-store [75] which has a
hybrid architecture with a writable store component optimized for inserts and updates
as well as a readable store component optimized for query performance. C-store is
a column-oriented DBMS used for read-mostly systems such as customer relation-
ship management systems (CRM). Unlike C-store, All-RiTE is a (non-proprietary)
middleware system used by ETL programs that process live DW data.

3.7 Conclusion and Future Work

In this chapter, we have presented All-RiTE, a right-time ETL middleware system
for live DW data. It supports multiple data processing operations, including INSERT,
UPDATE, DELETE and SELECT. All-RiTE consists of a main-memory based cat-
alyst and database drivers for producers and consumers. The drivers are extended
from the standard JDBC interfaces which makes it easy and transparent to integrate
All-RiTE with other ETL programs. All-RiTE provides built-in support for on-the-
fly updates and deletions which are particularly suitable for processing live DW data
such as accumulating facts and early-arriving facts. We have presented the innova-
tive storage structure for implementing on-the-fly updates and deletions and the data
storage for managing read/write concurrency and optimizing their performance. We
have evaluated All-RiTE through extensive experiments and compared with the stan-
dard JDBC driver, RiTE and bulk loading. The results show that All-RiTE’s loading
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performance in short transactions is 4.7, 4.4, 9.2 and 2.4 times faster than bulk load-
ing, RiTE, JDBC insert and JDBC batch, respectively. When performing on-the-fly
updates and deletions, All-RiTE works 4, 3.9, 8.9 and 3.6 times faster than bulk load-
ing, RiTE, JDBC insert and JDBC batch, respectively. This provides a new “sweet
spot” providing the best of both worlds: JDBC-like data availability with bulk load
speed.

There are some interesting improvements left for future work. First, supporting
parallel processing of data for a table could be an interesting direction, e.g., several
processes process data chunks partitioned from the source data simultaneously. Sec-
ond, the catalyst could also be implemented as a module in the underlying DBMS
for a better performance. Third, it would be also interesting to allow indexes and
constraints to be declared on the memory table.



Chapter 4

ETLMR: A Scalable Dimensional
ETL Framework based on
MapReduce

Extract-Transform-Load (ETL) flows periodically populate data warehouses (DWs)
with data from different source systems. An increasing challenge for ETL flows is
to process huge volumes of data quickly. MapReduce is establishing itself as the de-
facto standard for large-scale data-intensive processing. However, MapReduce lacks
support for high-level ETL specific constructs, resulting in low ETL programmer
productivity. This chapter presents a scalable dimensional ETL framework, ETLMR,
based on MapReduce. ETLMR has built-in native support for operations on DW-
specific constructs such as star schemas, snowflake schemas and slowly changing
dimensions (SCDs). This enables ETL developers to construct scalable MapReduce-
based ETL flows with very few code lines. To achieve good performance and load
balancing, a number of dimension and fact processing schemes are presented, includ-
ing techniques for efficiently processing different types of dimensions. This chapter
describes the integration of ETLMR with a MapReduce framework and evaluates its
performance on large realistic data sets. The experimental results show that ETLMR
achieves very good scalability and compares favourably with other MapReduce data
warehousing tools.

77
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4.1 Introduction

In data warehousing, ETL flows are responsible for collecting data from different
data sources, transformation, and cleansing to comply with user-defined business
rules and requirements. Traditional ETL technologies face new challenges as the
growth of information explodes nowadays, e.g., it becomes common for an enterprise
to collect hundreds of gigabytes of data for processing and analysis each day. The
vast amount of data makes ETL extremely time-consuming, but the time window
assigned for processing data typically remains short. Moreover, to adapt to rapidly
changing business environments, users have an increasing demand of getting data as
soon as possible. The use of parallelization is the key to achieve better performance
and scalability for those challenges.

In recent years, a novel “cloud computing” technology, MapReduce [22], has
been widely used for parallel computing in data-intensive areas. A MapReduce pro-
gram implements the map and reduce functions, which process key/value pairs and
are executed in many parallel instances. MapReduce provides programming flexi-
bility, cost-effective scalability and capacity on commodity machines. A MapRe-
duce framework provides off-the-shelf functionality for inter-process communica-
tion, fault-tolerance, load balancing and task scheduling to a parallel program. Now
MapReduce is becoming increasingly popular and is establishing itself as the de-
facto standard for large-scale data-intensive processing. It is thus interesting to see
how MapReduce can be applied to the field of ETL programming.

The data processing in ETL exhibits the composable property. For example, the
processing of dimensions and facts can be split into smaller computation units and
the partial results from these computation units can be merged to constitute the fi-
nal results in a DW. This complies well with the MapReduce paradigm in term of
map and reduce. Thus, MapReduce is a good foundation for the ETL paralleliza-
tion. However, MapReduce is only a generic programming model. It lacks support
for high-level DW/ETL specific constructs, such as the dimensional constructs of
star schemas, snowflake schemas, and SCDs. An ETL program is inherently com-
plex, which is due to the ETL-specific activities, such as transformation, cleansing,
filtering, aggregating and loading. To implement a parallel ETL program is costy,
error-prone, and thus leads to low programmer productivity.

In this chapter, we present a parallel dimensional ETL framework based on MapR-
educe, named ETLMR, which directly supports high-level ETL-specific dimensional
constructs such as star schemas, snowflake schemas, and SCDs. This chapter makes
several contributions: We leverage the functionality of MapReduce to the ETL par-
allelization and provide a scalable, fault-tolerable, and very lightweight ETL frame-
work which hides the complexity of MapReduce. We present a number of novel
methods which are used to process the dimensions of a star schema, snowflaked di-
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Figure 4.1: Star schema of the running example

mensions, SCDs and data-intensive dimensions. In addition, we introduce the offline
dimension scheme which scales better than the online dimension scheme when han-
dling massive workloads. The evaluations show that ETLMR achieves very good
scalability and compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example
throughout this chapter. This example is inspired by a project that evaluates the
accessibility of web pages. We apply different tests to each of the web pages, and the
tests output the number of detected errors to tab-separated files. These files serve as
the data sources. We then use ETLMR to process the source data into a star schema
in the DW shown in Figure 4.1 (through the necessary data transformations). This
schema comprises a fact table and three dimension tables. Note that pagedim is a
slowly changing dimension table. Later, we will consider a partly snowflaked (i.e.,
normalized) schema.

The remainder of this chapter is structured as follows: Section 4.2 gives a brief
review of the MapReduce programming model. Section 4.3 gives an overview of
ETLMR. Sections 4.4 and 4.5 present dimension processing and fact processing,
respectively. Section 4.7 introduces the implementation of ETLMR in the Disco
MapReduce framework and presents the performance study. Section 4.8 reviews re-
lated work. Finally, Section 4.9 concludes the chapter and provides ideas for future
work. The appendix compares ETLMR to Hive and Pig by means of concrete ETL
solutions.

4.2 MapReduce Programming Model

MapReduce [22] computations are expressed by means of two functions called map
and reduce.

map: (k1, v1) -> list(k2, v2)
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Figure 4.2: ETL Data flow on MapReduce framework

reduce: (k2, list(v2)) -> list(v3)
The map function, defined by users, takes as input a key/value pair (k1, v1) and

produces a list of intermediate key/value (k2, v2) pairs. The MapReduce framework
then groups all intermediate values with the same intermediate key k2 and passes
them on to the reduce function. The reduce function, also defined by users, takes as
input a pair consisting of a key k2 and a list of values. It merges or aggregates the
values to form a possibly smaller (or even empty) list of values list(v3).

Besides the map and reduce functions, there are five other functions offered
by most MapReduce frameworks, including functions for input reading, data parti-
tioning, combining map output, sorting, and output writing. Users can (but do not
have to) specify these functions to fit to their specific requirements. A MapReduce
framework achieves parallel computations by executing the implemented functions
in parallel on clustered computers, each processing a chunk of the data sets.

4.3 Overview

In this section, we give an overview of ETLMR on a MapReduce framework and
describe the data processing phases in ETLMR. Figure 4.2 illustrates the data flow
using ETLMR on MapReduce. In ETLMR, the dimension processing is done at first
in a MapReduce job, then the fact processing is done in another MapReduce job. A
MapReduce job spawns a number of parallel map/reduce task (map/reduce task de-
notes map tasks and reduce tasks running separately) for processing dimension or fact
data. Each task consists of several steps, including reading data from a distributed
file system (DFS), executing the map function, partitioning, combining the map out-
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put, executing the reduce function and writing results. In dimension processing, the
input data for a dimension table can be processed by different processing methods,
e.g., the data can be processed by a single task or by all tasks. In fact processing,
the data for a fact table is partitioned into a number of equal-sized data files which
then are processed by parallel tasks. This includes looking up dimension keys and
bulk loading the processed fact data into the DW. The processing of fact data in the
reducers can be omitted (shown by dotted ellipses in Figure 4.2) if no aggregation of
the fact data is done before it is loaded.

Algorithm 8 ETL process on MapReduce framework
1: Partition the input data sets;
2: Read the configuration parameters and initialize;
3: Read the input data and relay the data to the map function in the map readers;
4: Process dimension data and load it into online/offline dimension stores;
5: Synchronize the dimensions across the clustered computers, if applicable;
6: Prepare fact processing (connect to and cache dimensions);
7: Read the input data for fact processing and perform transformations in mappers;
8: Bulk-load fact data into the DW.

Algorithm 8 shows the details of the whole process of using ETLMR. The oper-
ations in lines 2-4 and 6-7 are the MapReduce steps which are responsible for initial-
ization, invoking jobs for processing dimensions and facts, and returning processing
information. Line 1 and 5 are the non-MapReduce steps which are used for preparing
input data sets and synchronizing dimensions among nodes (if no DFS is installed).
The data reader in ETLMR partitions the data while it reads lines from the input files.
Specifically, it supports the following two partitioning schemes.

• Round-robin partitioning: This method distributes row number n to task num-
ber n% nr map where nr map is the total number of tasks and % is the mod-
ulo operator. By this method, the data sets are equally divided and processed
by the parallel tasks. Thus, it ensures the load balance.

• Hash partitioning: This method partitions data sets based on the values of one
or several attributes of a row. It computes the hash value h for the attribute
values and assigns the row to task number h % nr map.

All parameters are defined in a configuration file, including declarations of di-
mension and fact tables, dimension processing methods, number of mappers and
reducers, and others. The parameteres are summarized in Table 4.1. The use of pa-
rameters gives the user flexibility to configure the tasks to be more efficient. For
example, if a user knows that a dimension is a data-intensive dimension, she can
add it to the list bigdims so that an appropriate processing method can be chosen to
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achieve better performance and load balancing. The configuration file is also used
for specifications of user-defined functions (UDFs) for data processing.

Table 4.1: The configuration parameters
Parameters Description
Dimi Dimension table definition, i = 1, . . . , n
Facti Fact table definition, i = 1, . . . ,m
Setbigdim data-intensive dimensions whose business keys are used for par-

titioning the data sets if applicable
Dimi(a0, a1, ..., an) Define the relevant attributes a0, a1, ..., an ofDimi in data source
DimScheme Dimension scheme, online/offline (online is the default)
nr reduce Number of reducers
nr map Number of mappers

4.4 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the configura-
tion file. For example, we define the object for the dimension table testdim of the
running example by testdim = CachedDimension(name=’testdim’, key=’testid’, de-
faultidvalue =-1, attributes=[’testname’, ’testauthor’], lookupatts=[’testname’, ]).
It is declared as a cached dimension which means that its data will be temporarily
kept in main memory during the processing. ETLMR also offers other dimension
classes for declaring different dimension tables, including SlowlyChangingDimen-
sion and SnowflakedDimension, each of which is configured by means of a number
of parameters for specifying the name of the dimension table, the dimension key, the
attributes of dimension table, the lookup attributes (which identify a row uniquely),
and others. Each class offers a number of functions for dimension operations such as
lookup, insert, ensure, etc.

ETLMR employs MapReduce’s map, partition, combine, and reduce to process
data. This is, however, hidden from the user who only specifies transformations to
apply to the data and declarations of dimension tables and fact tables. A map/reduce
task reads data by iterating over lines from a partitioned data set. A line is first
processed by map, then by partition which determines the target reducer, and then
by combine which groups values having the same key. The data is then written to an
intermediate file (there is one file for each reducer). In the reduce step, a reduce reader
reads a list of key/values pairs from an intermediate file and invokes reduce to process
the list. In the following, we present different approaches to process dimension data.
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4.4.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by applying user-defined
transformations and by finding the relevant parts of the source data for each dimen-
sion. The data for a given dimension is then processed by a single reduce task. We
name this method one dimension one task (ODOT for short).

The data unit moving around within ETLMR is a dictionary mapping attribute
names to values. Here, we call it a row, e.g., row={’url’:’www.dom0.tl0/p0.htm’,’size’:
’12553’,’serverversion’:’SomeServer/1.0’, ’downloaddate’:’2011-01-31’,’lastmoddate’:
’2011-01-01’, ’test’:’Test001’, ’errors’:’7’}. ETLMR reads lines from the input files
and passes them on as rows. A mapper does projection on rows to prune the unneces-
sary data through the defined UDFS for a target dimension table, and makes key/value
pairs to be processed by reducers. If we define dimi for a dimension table and its rel-
evant attributes, (a0, a1..., an), in the data source schema, the mapper will generate
the map output, (key, value) = (dimi.name,

∏
a0,a1,...,an

(row)) where name rep-
resents the name of dimension table. The MapReduce partitioner does hash partition-
ing the map output based on the key, i.e., dimi.name, such that the data of dimi will
be shuffled to a single reducer (see Figure 4.3). Thus, each reducer will eventually
load the data into a particular dimension table. To optimize, the values with identical
keys (i.e., dimension table name) are combined in the combiner before they are sent
to the reducers such that the network communication cost can be reduced. In a re-
ducer, a row is first processed by UDFs to do data transformations, then the processed
row is inserted into the dimension store, i.e., the dimension table in the DW or in an
offline dimension store (described later). When ETLMR does this data insertion, it
has the following reduce functionality: If the row does not exist in the dimension
table, the row is inserted. If the row exists and its values are unchanged, nothing is
done. If there are changes, the row in the table is updated accordingly. The ETLMR
dimension classes provide this functionality in a single function, dimi.ensure(row).
For an SCD, this function adds a new version if needed, and updates the values of the
SCD attributes, e.g., the validto and version.

We have now introduced the most fundamental method for processing dimensions
where only a limited number of reducers can be utilized. Therefore, its drawback is
that it is not optimized for the case where some dimensions contain large amounts of
data, namely data-intensive dimensions.

4.4.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks process data for all
dimensions. We name it one dimension all tasks (ODAT for short). In some cases, the
data volume of a dimension is very large, e.g., the pagedim dimension in the running
example. If we employ ODOT, the task of processing data for this dimension table
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Figure 4.3: ODOT Figure 4.4: ODAT

will determine the overall performance (assume all tasks run on similar machines).
We therefore refine the ODOT in two places, the map output partition and the reduce
functions. With ODAT, ETLMR partitions the map output by round-robin fashion
such that the reducers receive equally many rows (see Figure 4.4). In the reduce
function, two issues are considered in order to process the dimension data properly
by the parallel tasks:

The first issue is about the surrogate key assignment and to keep the uniqueness
across the all the tasks, e.g., for the dimension values of a particular dimension ta-
ble. We propose the following two approaches. The first one is to use a global ID
generator (by making use of the sequential number generator of the underlying DW
RDBMS), and use post-fixing (detailed in Section 4.4.4) to merge rows with identi-
cal values in the dimension lookup attributes (but different key values) into one row.
The other approach is to use private ID generators and post-fixing. Each task has
its own ID generator, and after the data is loaded into the dimension table, post-
fixing is employed to fix the resulting duplicated surrogate key values. This requires
the uniqueness constraint on the key of a dimension table to be disabled in the DW
RDBMS before the data processing.

The second issue is how to handle concurrency when data manipulation language
(DML) SQL, such as UPDATE, DELETE, etc., is issued by several tasks. Consider,
for example, the type-2 SCD table pagedim for which INSERTs and UPDATEs are
frequent (the SCD attributes validfrom and validto are updated). There are at least two
ways to tackle this problem. The first one is row-based commit in which a COMMIT
is issued after every row has been inserted so that the inserted row will not be locked.
However, row-based commit is more expensive than transaction commit, thus, it is
not very useful for a data-intensive dimension table. Another and better solution is
to delay the UPDATE to the post-fixing which fixes all the problematic data when all
the tasks have finished.

In the following section, we propose an alternative approach for processing snow-
flaked dimensions without requiring the post-fixing.
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4.4.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that there are foreign key
references and hierarchies between dimension tables. If we consider the dependen-
cies when processing dimensions, the post-fixing step can be avoided. We therefore
propose two methods particularly for snowflaked dimensions: level-wise processing
and hierarchy-wise processing.

Figure 4.5: Level-wise processing Figure 4.6: Hierarchy-wise processing

Level-wise processing This refers to processing snowflaked dimensions in an or-
der from the leaves towards the root (the dimension table referred by the fact table
is the root and a dimension table without a foreign key referencing other dimension
tables is a leaf). The dimension tables with dependencies (i.e., with foreign key refer-
ences) are processed in sequential jobs, e.g., Job1 depends on Job0, and Job2 depends
on Job1 in Figure 4.5. Each job processes independent dimension tables (without di-
rect and indirect foreign key references) by parallel tasks, i.e., one dimension table
is processed by one task. Therefore, in the level-wise processing of the running ex-
ample, Job0 first processes topdomaindim and serverdim in parallel, then Job1 pro-
cesses domaindim and serverversiondim, and finally Job2 processes pagedim, date-
dim and testdim. It corresponds to the configuration loadorder = [(’topdomaindim’,
’serverdim’), (’domaindim’, ’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)].
With this order, a higher level dimension table (the referencing dimension table) is
not processed until the lower level ones (the referenced dimension tables) have been
processed and thus, the referential integrity can be ensured.

Hierarchy-wise processing This refers to processing a snowflaked dimension
in a branch-wise fashion (see Figure 4.6). The root dimension, pagedim, derives
two branches, each of which is defined as a separate snowflaked dimension, i.e., do-
mainsf = SnowflakedDimension([(domaindim, topdomaindim)]), and serverversionsf
= SnowflakedDimension([(serverversiondim, serverdim)]). They are processed by
two parallel jobs, Job0 and Job1, each of which processes in a sequential manner, i.e.,
topdomaindim followed by domaindim in Job0 and serverdim followed by serverver-
siondim in Job1. The root dimension, pagedim, is not processed until the dimensions
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on its connected branches have been processed. It, together with datedim and testdim,
is processed by the Job2.

4.4.4 Post-fixing

As discussed in Section 4.4.2, post-fixing is a remedy to fix problematic data in ODAT
when all the tasks of the dimension processing have finished. Four situations require
data post-fixing: 1) using a global ID generator which gives rise to duplicated values
in the lookup attributes; 2) using private ID generators which produce duplicated key
values; 3) processing snowflaked dimensions (and not using level-wise or hierarchy-
wise processing) which leads to duplicated values in lookup and key attributes; and
4) processing slowly changing dimensions which results in SCD attributes taking
improper values.

Example 14 (Post-fixing) Consider two map/reduce tasks, task 1 and task 2, that
process the page dimension which we here assume to be snowflaked. Each task
uses a private ID generator. The root dimension, pagedim, is a type-2 SCD. Rows
with the lookup attribute value url=’www.dom2.tl2/p0.htm’ are processed by both the
tasks.

Figure 4.7: Before post-fixing

Figure 4.7 depicts the resulting data in the dimension tables where the white
rows were processed by task 1 and the grey rows were processed by task 2. Each
row is labelled with the taskid of the task that processed it. The problems include
duplicated IDs in each dimension table and improper values in the SCD attributes,
validfrom, validto, and version. The post-fixing program first fixes the
topdomaindim such that rows with the same value for the lookup attribute (i.e.,
url) are merged into one row with a single ID. Thus, the two rows with topdom =
tl2 are merged into one row. The references to topdomaindim from domaindim
are also updated to reference the correct (fixed) rows. In the same way, pagedim
is updated to merge the two rows representing www.dom2.tl2. Finally, pagedim is
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Figure 4.8: After post-fixing

updated. Here, the post-fixing also has to fix the values for the SCD attributes. The
result is shown in Figure 4.8.

Algorithm 9 post fix(dim)
refdims← The referenced dimensions of dim
for ref in refdims do

itr← post fix(ref )
for ((taskid, keyvalue), newkeyvalue) in itr do

Update dim set dim.key = newkeyvalue where dim.taskid=taskid and
dim.key=keyvalue
ret← An empty list
Assign newkeyvalues to dim’s keys and add ((taskid, keyvalue), newkeyvalue) to ret
if dim is not the root then

Delete the duplicate rows, which have identical values in dim’s lookup attributes
if dim is a type-2 SCD then

Fix the values on SCD attributes, e.g., dates and version
return ret

The post-fixing invokes a recursive function (see Algorithm 9) to fix the prob-
lematic data in the order from the leaf dimension tables to the root dimension table.
It comprises four steps: 1) assign new IDs to the rows with duplicate IDs; 2) update
the foreign keys on the referencing dimension tables; 3) delete duplicated rows which
have identical values in the business key attributes and foreign key attributes; and 4)
fix the values in the SCD attributes if applicable. In most cases, it is not needed to fix
something in each of the steps for a dimension with problematic data. For example,
if a global ID generator is employed, all rows will have different IDs (such that step
1 is not needed) but they may have duplicate values in the lookup attributes (such
that step 3 is needed). ETLMR’s implementation uses an embedded SQLite database
for data management during the post-fixing. Thus, the task IDs are not stored in the
target DW, but only internally in ETLMR.



88 ETLMR: A Scalable Dimensional ETL Framework based on MapReduce

4.4.5 Offline Dimension

In ODOT and ODAT, the map/reduce tasks interact with the DW’s (“online”) di-
mensions directly through database connections at run-time and the performance is
affected by the outside DW RDBMS and the database communication cost. To opti-
mize this, the offline dimension scheme is proposed. In this scheme, the tasks do not
interact with the DW directly, but with distributed offline dimensions residing phys-
ically in all nodes. The offline dimension scheme has the following characteristics
and advantages. First, a dimension is partitioned into multiple smaller-sized sub-
dimensions, and small-sized dimensions can benefit dimension lookups, especially
for a data-intensive dimension such as pagedim. Second, a high-performance storage
system, such as an in-memory DBMS, can be employed to persist dimension data.
Dimensions are thus configured to be fully or partially cached in main memory to
speed up the lookups. In addition, since offline dimension sheme does not require di-
rect communication with the DW, the overhead (from the network and the DBMS) is
greatly reduced. ETLMR has offline dimension implementations for one dimension
one task (ODOT (offline) for short) and hybrid, which are described in the following.

4.4.5.1 ODOT (offline)

Figure 4.9 depicts the run-time architecture with two map/reduce tasks processing
data. The data for each dimension table is saved locally in its own store in the node
that processes it or in the DFS (shown in the center of the Figure 4.9). The data
for a dimension table is processed by one and only one reduce task (as in the online
ODOT), which does the following: 1) Select the values of the fields that are relevant
to the dimension table in mappers (through the UDFs); 2) Partition the map output
based on the names of dimension tables; 3) Process the data for dimension tables by
using UDFs in the reducers (a reducer only processes the data for a single dimension
table); 4) When all map/reduce tasks have finished, the data for all dimension tables
are synchronized across all the nodes if no DFS is installed (Note that a reducer only
processes the data for a single dimension table. The data files of the offline dimension
stores are synchronized across all the nodes, thus, each of the nodes will eventually
have the local copies of the data files of all dimension tables).

4.4.5.2 Hybrid

Hybrid combines the characteristics of ODOT and ODAT. In this approach, the di-
mensions are divided into two groups, the most data-intensive dimension and the
other dimensions. The input data for the most data-intensive dimension table is par-
titioned based on the business keys, e.g., on the url of pagedim, and processed
by all the map tasks (this is similar to ODAT), while for the other dimension tables,
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Figure 4.9: ODOT (offline)

their data is processed in reducers, a reducer exclusively processing the data for one
dimension table (this is similar to ODOT).

This corresponds to the following steps: 1) Choose the most data-intensive di-
mension and partition the input data sets, for example, on the business key values;
2) Process the chosen data-intensive dimension and select the required data for each
of the other dimensions in the mappers; 3) Round-robin partition the map output; 3)
Process the dimensions in the reducers (each is processed by one reducer); 4) When
all the tasks have finished, synchronize all the processed dimensions across the nodes
if no DFS is installed, but keep the partitioned data-intensive dimension in all nodes.

Example 15 (Hybrid) Consider using two parallel tasks to process the dimension
tables of the running example (see the upper part in Figure 4.10). The data for
the most data-intensive dimension table, pagedim, is partitioned into a number
of chunks based on the business key url. The chunks are processed by two map-
pers, each processing a chunk. This results in two offline stores for pagedim,
pagedim-0 and pagedim-1. However, the data for the other dimension tables
is processed similarly to the offline ODOT, which results in the other two offline di-
mension stores, datedim and testdim, respectively.

In the offline dimension scheme, the dimension data in the offline stores is ex-
pected to reside in the nodes permanently and will not be loaded into the DW until
this is explicitly requested.

4.5 Fact Processing

Fact processing is the second phase in ETLMR. In this phase, ETLMR looks up di-
mension keys for the facts, does aggregation of measures (if applicable), and loads the
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Figure 4.10: Hybrid

processed facts into the DW. Similarly to the dimension processing, the definitions
and settings of fact tables are also declared in the configuration file. ETLMR provides
the BulkFactTable class which supports bulk loading of facts to the DW. For example,
the fact table of the running example is defined as testresultsfact=BulkFactTable(name
=’testresultsfact’, keyrefs=[’pageid’, ’testid’, ’dateid’], measures=[’errors’], bulk-
loader= UDF pgcopy, bulksize=5000000). The parameters are the fact table name, a
list of the keys referencing dimension tables, a list of measures, the bulk loader func-
tion, and the size of the bulks to load. The bulk loader is a UDF such that ETLMR
can be used with different types of DBMSs.

Algorithm 10 shows the pseudo code for processing facts.

Algorithm 10 process fact(row)
Input: A row from the input data and the config

1: facttbls← the fact tables defined in config
2: for facttbl in facttbls do
3: dims← the dimensions referenced by facttbl
4: for dim in dims do
5: row[dim.key]← dim.lookup(row)
6: rowhandlers← facttbl.rowhandlers
7: for handler in rowhandlers do
8: handler(row)
9: facttbl.insert(row)

The function can be used as the map function or as the reduce function. If no
aggregations (such as sum, average, or count) are required, the function is configured
to be the map function and the reduce step is omitted for better performance. If
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aggregations are required, the function is configured to be the reduce function since
the aggregations must be computed from all the data. This approach is flexible and
good for performance. Line 1 retrieves the fact table definitions in the configuration
file and they are then processed sequentially in line 2–8. The processing consists
of two major operations: 1) look up the keys from the referenced dimension tables
(line 3–5), and 2) process the fact data by the rowhandlers, which are user-defined
transformation functions used for data type conversions, calculating measures, etc.
(line 6–8). Line 9 invokes the insert function to insert the fact data into the DW. The
processed fact data is not inserted into the fact table directly, but instead added into a
configurably-sized buffer where it is kept temporarily. When a buffer becomes full,
its data is bulk loaded into the DW. Each map/reduce task has a separate buffer and
bulk loader such that tasks can do bulk loading in parallel.

4.6 Implementation and Optimization

ETLMR is designed to achieve plug-in like functionality to facilitate the integra-
tion with Python-supporting MapReduce frameworks. In this section, we introduce
the ETL programming framework pygrametl which is used to implement ETLMR.
Further, we give an overview of MapReduce frameworks with a special focus on
Disco [24] which is our chosen MapReduce platform. The integration and optimiza-
tion techniques employed are also described.

4.6.1 pygrametl

pygrametl was implemented in previous work [84] and has a number of charac-
teristics. It is a code-based ETL framework which enables efficient development due
to its simplicity and use of Python. pygrametl supports processing of dimensions
in both star schema and snowflake schema and it provides direct support for slowly
changing dimensions. Regardless of the dimension types, the ETL implementation is
very concise and convenient. It uses an object to represent a dimension. Only a single
method call such as dimobj.insert(row) is needed to insert new data. In this
method call, all details, such as key assignment and SQL generation, are transparent
to users. pygrametl supports the most commonly used operations on a dimension,
such as lookup, insert, ensure. In the implementation of ETLMR, most func-
tionality offered by pygrametl can be re-used, but some parts have been extended
or modied to support the MapReduce operations.

4.6.2 MapReduce Frameworks

There are many open source and commercial MapReduce frameworks available. The
most popular one is Apache Hadoop [78], which is implemented in Java and includes
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a distributed file system (HDFS). Hadoop is embraced by a variety of academic
and industrial users, including Amazon, Yahoo!, Facebook, and many others [8].
Google’s MapReduce implementation is extensively used inside the company, but is
not publicly available. Apart from them, many companies and research units develop
their own MapReduce frameworks for their particular needs, such as [45, 66, 89].

For ETLMR, we choose the open source framework Disco [24] as the MapRe-
duce platform. Disco is developed by Nokia using the Erlang and Python program-
ming languages. Disco is chosen for the following reasons. First, Disco’s use of
Python facilitates rapid scripting for distributed data processing programs, e.g., a
complicated program or algorithm can be expressed in tens of lines of code. This
feature is consistent with our aim of providing users a simple and easy means of
implementing a parallel ETL. Second, Disco achieves a high degree of flexibility
by providing many customizable MapReduce programming interfaces. These make
the integration of ETLMR very convenient by having a plug-in-like effect. Third,
unlike the alternatives, it provides direct support for the distributed programs writ-
ten in Python. Some MapReduce frameworks implemented in other programming
languages also claim to support Python programs, e.g., Hadoop, but they require
bridging middleware and are, thus, not implementation-friendly.

4.6.3 Integration with Disco

Disco’s architecture is similar to the Google and Hadoop MapReduce architectures in
which intermediate results are stored as local files and accessed by appropriate reduce
tasks. However, the used version (0.2.4) does not include a built-in distributed file
system (DFS), but supports any POSIX-compatible DFS such as GlusterFS. If no
DFS is installed, the input files are required to be distributed initially to each node
so that they can be read locally [24]. To use Disco, the functions to use as map and
reduce are passed on as arguments to Disco.

We present the runtime architecture of ETLMR on Disco in Figure 4.11, where all
ETLMR instances are running in parallel on many processors of clustered computers
(or nodes). This architecture is capable of shortening the time of an ETL job by
scaling up to the number of nodes in the cluster. It is an one-master-many-worker
architecture. The master is responsible for scheduling the components (tasks) of the
jobs to run on the workers, assigning partitioned data sets to the workers, tracking the
status, and monitoring the status of the workers. When the master receives ETL jobs,
it puts them into a queue and distributes them to the available workers. In each node,
there is a worker supervisor started by the master which is responsible for spawning
and monitoring all tasks on that particular node. When a worker receives a task, it
runs this task exclusively in a processor of this node, processes the input data, and
saves the processed data to the DW.
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Figure 4.11: Parallel ETL overview

The master-workers architecture has a highly fault-tolerant mechanism. It achieves
reliability by distributing the input files to the nodes in the cluster. Each worker re-
ports to the master periodically with the completed tasks and their status. If a worker
falls silent for longer than an interval, the master will record this worker as dead and
send the node’s assigned tasks to other workers.

4.6.4 Optimizations

In ETLMR, the data sets from different storage systems are prepared into data files.
Each file gets a unique address for map readers, such as a URL, file path, or dis-
tributed file path. In many cases, however, a data source may be a database or an
indexed file structure such that we can make use of its indices for efficient filtering,
i.e., instead of returning all the data, only the needed columns or subsets of the data
are selected. If the data sets are pre-split, such as several data files from heteroge-
neous systems, the split parts are directly processed and combined in MapReduce.
Different map readers are implemented in ETLMR for reading data from different
storage systems, such as the DBMS reader supporting user-defined SQL statements
and text file reader. If the data sets are not split, such as a big data file, Dean and
Ghemwat [21] suggest utilizing many MapReduce processes to run complete passes
over the data sets, and process the subsets of the data. Accordingly, we implement
such a map reader (see Program 2). It supports reading data from a single data source,
but does not require the data sets to be split before being processed. In addition, we
implement the offline dimension scheme by using the Python shelve package [70]
in which main-memory database systems, such as bsdbdb, can be configured to
persist dimension data. At run-time, the dimension data is fully or partially kept in
main memory such that the lookup operation can be done efficiently.
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Program 2 Map reader function
def map_reader(content, bkey, thispartition=this_partition()):

while True:
line = content.next()
if not line:

break
if (hash(line[bkey])%Task.num_partitions)==thispartition:

yield line

4.7 Performance Study

In this section, we present the performance improvements achieved by the proposed
methods. Further, we evaluate the system scalability on various sizes of tasks and
data sets and compare with other business intelligence tools using MapReduce.

4.7.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected through a gigabit
switch and each having an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB
RAM, and a SATA hard disk (350 GB, 3 GB/s, 16 MB Cache and 7200 RPM). All
nodes are running the Linux 2.6.32 kernel with Disco 0.2.4, Python 2.6, and ETLMR
installed. The GlusterFS DFS is set up for the cluster. PostgreSQL 8.3 is used for
the DW DBMS and is installed on one of the nodes. One node serves as the master
and the others as the workers. Each worker runs 4 parallel map/reduce tasks, i.e., in
total 20 parallel tasks run. The time for bulk loading is not measured as the way data
is bulk loaded into a database is an implementation choice which is independent of
and outside the control of the ETL framework. To include the time for bulk loading
would thus clutter the results. We note that bulk loading can be parallelized using
off-the-shelf functionality.

4.7.2 Test Data

We continue to use the running example. We use a data generator to generate the test
data for each experiment. In line with Jean and Ghemawat’s assumption that MapRe-
duce usually operates on numerous small files rather than a single, large, merged
file [21], the test data sets are pre-partitioned and saved into a set of files in DFS.
These files provide the input for the dimension and fact processing phases. We gener-
ate two data sets, bigdim and smalldim which differ in the size of the page dimension.
In particular, 80 GB bigdim data results in 10.6 GB fact data (193,961,068 rows) and
6.2 GB page dimension data (13,918,502 rows) in the DW while 80 GB smalldim
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data results in 12.2 GB (222,253,124 rows) fact data and 54 MB page dimension data
(193,460 rows) in the DW. Both data sets produce 32 KB test (1,000 rows) and 16
KB date dimension data (1,254 rows).

4.7.3 Scalability of the Proposed Processing Methods

In this experiment, we compare the scalability and performance of the different
ETLMR processing methods. We use a fixed-size bigdim data set (20 GB), scale
the number of parallel tasks from 4 to 20, and measure the total elapsed time from
start to finish. The results for a snowflake schema and a star schema are shown in
Figure 4.12 and Figure 4.13, respectively. The graphs show the speedup, computed
by T4,odot,snowflake/Tn where T4,odot,snowflake is the processing time for ODOT us-
ing 4 tasks in a snowflake schema and Tn is the processing time when using n tasks
for the given processing method.

We see that the overall time used for the star schema is less than for the snowflake
schema. This is because the snowflake schema has dimension dependencies and hi-
erarchies which require more (level-wise) processing. We also see that the offline
hybrid scales the best and achieves almost linear speedup. The ODAT in Figure 4.13
behaves similarly. This is because the dimensions and facts in offline hybrid and
ODAT are processed by all tasks which results in good balancing and scalability. In
comparison, ODOT, offline ODOT, level-wise, and hierarchy-wise do not scale as
well as ODAT and hybrid since only a limited number of tasks are utilized to process
dimensions (a dimension is only processed in a single task). The offline dimension
scheme variants outperform the corresponding online ones, e.g., offline ODOT vs.
ODOT. This is caused by 1) using a high performance storage system to save dimen-
sions on all nodes and provide in-memory lookup; 2) The data-intensive dimension,
pagedim, is partitioned into smaller chunks which also benefits the lookups; 3) Unlike
the online dimension scheme, the offline dimension scheme does not communicate
directly with the DW and this reduces the communication cost considerably. Finally,
the results show the relative efficiency for the optimized methods which are much
faster than the baseline ODOT.

4.7.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the number of
tasks and the size of the data sets. We select the hybrid processing method, use the
offline dimension scheme, and conduct the testing on a star schema, as this method
not only can process data among all the tasks (unlike ODOT in which only a limited
number of tasks are used), but also showed the best scalability in the previous experi-
ment. In the dimension processing phase, the mappers are responsible for processing
the data-intensive dimension pagedim while the reducers are responsible for the other
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Figure 4.12: Load for snowflake
schema, 20 GB

Figure 4.13: Load for star schema, 20
GB

two dimensions, datedim and testdim, each using only a single reducer. In the fact
processing phase, no reducer is used as no aggregation operations are required.

We first do two tests to get comparison baselines by using one task (named 1-
task ETLMR) and (plain, non-MapReduce) pygrametl, respectively. Here, pygrametl
also employs 2-phase processing, i.e., the dimension processing is done before the
fact processing. The tests are done on the same machine with a single CPU (all
cores but one are disabled). The tests process 80 GB bigdim data. We compute the
speedups by using T1/Tn where T1 represents the elapsed time for 1-task ETLMR
or for pygrametl, and Tn the time for ETLMR using n tasks. Figure 4.14 shows that
ETLMR achieves a nearly linear speedup in the number of tasks when compared to
1-task ETLMR (the line on the top). When compared to pygrametl, ETLMR has a
nearly linear speedup (the lower line) as well, but the speedup is a little lower. This
is because the baseline, 1-task ETLMR, has a greater value due to the overhead from
the MapReduce framework.
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Figure 4.14: Speedup with increasing
tasks, 80 GB

Figure 4.15: Speedup of pre-split and no
split, 20 GB

Table 4.2: Execution time distribution, 80 GB (min.)
Testing data Phase Task

Num
Part.
Input

Map
func.

Part. Comb. Red.
func.

Others Total

bigdim data

dims

4 47.43 178.97 8.56 24.57 1.32 0.1 260.95
8 25.58 90.98 4.84 12.97 1.18 0.1 135.65
12 17.21 60.86 3.24 8.57 1.41 0.1 91.39
16 12.65 47.38 2.50 6.54 1.56 0.1 70.73
20 10.19 36.41 1.99 5.21 1.32 0.1 55.22

(results in

facts

4 47.20 183.24 0.0 0.0 0.0 0.1 230.44
10.6GB 8 24.32 92.48 0.0 0.0 0.0 0.1 116.80
facts) 12 16.13 65.50 0.0 0.0 0.0 0.1 81.63

16 12.12 51.40 0.0 0.0 0.0 0.1 63.52
20 9.74 40.92 0.0 0.0 0.0 0.1 50.66

smalldim data facts

4 49.85 211.20 0.0 0.0 0.0 0.1 261.15
8 25.23 106.20 0.0 0.0 0.0 0.1 131.53

(results in 12 17.05 71.21 0.0 0.0 0.0 0.1 88.36
12.2GB 16 12.70 53.23 0.0 0.0 0.0 0.1 66.03
facts) 20 10.04 42.44 0.0 0.0 0.0 0.1 52.58

To learn more about the details of the speedup, we break down the execution
time of the slowest task by reference to the MapReduce steps when using the two
data sets (see Table 4.2). As the time for dimension processing is very small for
smalldim data, e.g., 1.5 min for 4 tasks and less than 1 min for the others, only
its fact processing time is shown. When the bigdim data is used, we can see that
partitioning input data, map, partitioning map output (dims), and combination (dims)
dominate the execution. More specifically, partitioning input data and map (see the
Part.Input and Map func. columns) achieve a nearly linear speedup in the two phases.
In the dimension processing, the map output is partitioned and combined for the two
dimensions, datedim and testdim. Also here, we see a nearly linear speedup (see
the Part. and Comb. columns). As the combined data of each is only processed
by a single reducer, the time spent on reducing is proportional to the size of data.
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However, the time becomes very small since the data has been merged in combiners
(see Red. func. column). The cost of post-fixing after dimension processing is not
listed in the table since it is not required in this case where a global key generator is
employed to create dimension IDs and the input data is partitioned by the business
key of the SCD pagedim (see section 4.4.4).

In the fact processing, the reduce function needs no execution time as there is
no reducer. The time for all the other parts, including map and reduce initialization,
map output partitioning, writing and reading intermediate files, and network traffic,
is relatively small, but it does not necessarily decrease linearly when more tasks are
added (Others column). To summarize (see Total column), ETLMR achieves a nearly
linear speedup when the parallelism is scaled up, i.e., the execution time of 8 tasks is
nearly half that of 4 tasks, and the execution time of 16 tasks is nearly half that of 8
tasks.

Table 4.2 shows some overhead in the data reading (see Part. input column)
which uses nearly 20% of the total time. We now compare the two approaches
for reading data, namely when it is split into several smaller files (“pre-split”) and
when it is available from a single big file (“no-split”). We use bigdim data set and
only process dimensions. We express the performance improvement by the speedup,
T4,no-split/Tn, where T4,no-split is the time taken to read data and process dimensions
on the no-split data using 4 tasks (on 1 node), and Tn is the time when using n tasks.
As illustrated in Figure 4.15, for no-split, the time taken to read data remains constant
eventhough there are more tasks as all read the same data sets. When the data is pre-
split, the time taken to read data and process dimensions scales much better than for
no-split since a smaller sized data set is processed by each task. In addition, pre-split
is inherently faster – by a factor of 3 – than no-split. The slight sub-linear scaling
is seen because the system management overhead (e.g., the time spent on commu-
nication, adjusting, and maintaining the overall system) increases with the growing
number of tasks. However, we can conclude that pre-split is by far the best option.

We now proceed to another experiment where we for a given number of tasks
size up the data sets from 20 to 80 GB and measure the elapsed processing time.
Figure 4.16 and Figure 4.17 show the results for the bigdim and smalldim data sets,
respectively. It can be seen that ETLMR scales linearly in the size of the data sets.

4.7.5 Comparison with Other Data Warehousing Tools

There are some MapReduce data warehousing tools available, including Hive [86,
87], Pig [57] and Pentaho Data Integration (PDI) [62]. We compare ETLMR with
each of them in the following.

Pig and Hive: They both offer data storage on the Hadoop distributed file system
(HDFS) and the scripting languages which have some limited ETL abilities. Unlike
Hive and Pig, ETLMR does not have its own data storage (note that the offline di-
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Figure 4.16: Scale up the size of bigdim
data

Figure 4.17: Scale up the size of smalldim
data

mension store is only for speedup purpose), but is an ETL tool suitable for processing
large scale data in parallel. Hive and Pig share large similarity, such as using Hadoop
MapReduce, using HDFS as their data storage, integrating a command line user in-
terface, having a scripting language, being able to do some ETL data analysis, and
others. Table 4.3 summarizes the comparison of the ETL features for all.

First, each system has a user interface. Hive provides an SQL-like language
HiveQL and a shell, Pig provides a scripting language Pig Latin and a shell, and
ETLMR provides a configuration file to declare dimensions, facts, UDFs, and other
run-time parameters. Unlike Hive and Pig which require users to write data process-
ing scripts explicitly, ETLMR is intrinsically an ETL tool which implements ETL
process within the framework. The advantage is that users do not have to learn the
details of each ETL step, and are able to craft a parallel ETL program even without
much ETL knowledge. Second, each system supports UDFs. In Hive and Pig, an
external function or user customized code for a specific task can be implemented as
a UDF, and integrated into their own language, e.g., functions for serialization/de-
serialization data. In ETLMR, UDFs are a number of rowhandlers (see Section 4.4
and B.4) integrated into map and reduce functions. These UDFs are defined for data
filtering, transformation, extraction, name mapping. ETLMR also provides other
ETL primitive constructs, such as hash join or merge join between data sources, and
the aggregation of facts by plugable function, i.e., used as the reduce function (see
Section 4.5). In contrast, Hive and Pig achieve the functionality of ETL constructs
through a sequence of user-written statements, which are later translated into exe-
cution plans, and executed on Hadoop. Third, as ETLMR is a specialized tool de-
veloped for fast implementation of parallel ETLs, it explicitly supports the ETLs for
processing different schemas, including star schema, snowflake schema and SCDs,
and very large dimensions. Therefore, the implementation of a parallel ETL program
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Table 4.3: The comparison of ETL features
Feature ETLMR HIVE PIG
User Interface Configuration

file
Shell/HiveQL/Web
JDBC/ODBC

Shell/Pig Latin

Pre-knowledge of
ETL

Low High High

User Defined
Functions (UDF)

Yes Yes Yes

Filter/Aggregation
/Join

Yes Yes Yes

Star Schema Yes (explicit) By handcode (im-
plicit)

By handcode (im-
plicit)

Snowflake Schema Yes (explicit) By handcode (im-
plicit)

By handcode (im-
plicit)

Slowly Changing
Dimension (SCD)

Yes (explicit) No No

ETL details ex-
posed to users

Transparent Fine-level Fine-level

is very concise and intuitive for these schemas, i.e., only fact tables, their referenced
dimensions and rowhandlers if necessary must be declared in the configuration file.
Although Hive and Pig both are able to process star and snowflake schemas techni-
cally, implementing an ETL, even the most simple star schema, is not a trivial task as
users have to dissect the ETL, write the processing statements for each ETL step, im-
plement UDFs, and do numerous testing to make them correct. Moreover, Hive and
Pig do not support the UPDATE operation, which is required for processing SCDs,
i.e., update the valid date or/and version of an SCD. Fourth, ETLMR is an alterna-
tive to traditional ETL tools but offer better scalability. In contrast, Hive and Pig are
obviously not optimal for the situation, where an external DW is used.

In order to make the comparison more intuitive, we create the ETL programs of
processing the snowflake schema for the running example (see Figure 4.5) using each
of the tools. The scripts for ETLMR, HiveQL and Pig-Latin are shown in Program
3, 4 and 5, respectively. UDFs are not shown in the scripts, but indicated by self-
explaining names (starting with UDF ).

As shown, the implementation of ETLMR is very concise, which only contains
14 statements for declaring dimension tables, fact tables, data sources and other pa-
rameters (a statement may span several lines by “\” in Python). In contrast, the scripts
of Hive and Pig are much cumbersome and not intuitive, i.e., containing the finest-
level details of ETL. The numbers of the statements are 23 and 40 for Hive and Pig,
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Program 3 ETL program for snowflake schema using ETLMR
# The configuration file, config.py
# Declare all the dimensions:
datedim = Dimension(name=’date’,key=’dateid’,attributes=[’date’,’day’,’month’,\

’year’,’week’,’weekyear’],lookupatts=[’date’])
testdim = Dimension(name=’test’,key=’testid’,defaultidvalue=-1,\

attributes=[’testname’],lookupatts=[’testname’])
pagedim = SlowlyChangingDimension(name=’page’,key=’pageid’,lookupatts=[’url’],

attributes=[’url’, ’size’, ’validfrom’,’validto’,’version’,’domain’,\
’serverversion’],versionatt=’version’,srcdateatt=’lastmoddate’,\
fromatt=’validfrom’,toatt=’validto’,srcdateatt=’lastmoddate’)

topdomaindim = Dimension(name=’topdomain’,key=’topdomainid’,\
attributes=[’topdomain’],lookupatts=[’topdomain’])

domaindim = Dimension( name=’domain’,key=’domainid’, attributes=[’domain’, \
’topdomainid’], lookupatts=[’domain’])

serverdim = Dimension(name=’server’,key=’serverid’,attributes=[’server’],\
lookupatts=[’server’])

serverversiondim = Dimension(name=’serverversion’,key=’serverversionid’,\
attributes = [’serverversion’,’serverid’], lookupatts = \
[’serverversion’],refdims=[serverdim])

# Define the snowflaked referencing-ship:
pagesf = [(pagedim, [serverversiondim, domaindim]),(serverversiondim, serverdim),\

(domaindim, topdomaindim)]

# Declare the facts:
testresultsfact = BulkFactTable(name=’testresults’,keyrefs=[’pageid’,’testid’,\

’dateid’], measures=[’errors’], bulkloader=UDF_pgcopy,bulksize=5000000)

# Define the settings of dimensions, including data source schema, UDFs,
# dimension load order, and the referenced dimensions of fact:
dims ={pagedim: {’srcfields’:(’url’,’serverversion’,’domain’,’size’,\

’lastmoddate’),’rowhandlers’:(UDF_extractdomain, UDF_extractserver)},\
datedim: {’srcfields’:’downloaddate’,),’rowhandlers’:(UDF_explodedate,) },\
testdim:{’srcfields’:(’test’,), ’rowhandlers’:(, )},}

# Define the processing order of snowflaked dimesions:
loadorder = [(’topdomaindim’, ’serverdim’),(’domaindim’, ’serverversiondim’),\

(’pagedim’, ’datedim’, ’testdim’)]

# Define the settings of facts:
facts = {testresultsfact:{’refdims’:(pagedim, datedim, testdim),’rowhandlers’:(, )},}

# Define the input data:
inputdata = [’dfs://localhost/TestResults0.csv’, ’dfs://localhost/TestResults1.csv’]

# The main ETLMR program: paralleletl.py
# Start the ETLMR program:
ETLMR.load(’localhost’,inputdata,required_modules=[(’config’,’config.py’),],\

nr_maps=4,nr_reduces=4)
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Program 4 ETL program for snowflake schema using HiveQL
-- Copy the data sources from local file system to HDFS:
hadoop fs -copyFromLocal /tmp/DownloadLog.csv /user/test;
hadoop fs -copyFromLocal /tmp/TestResults.csv /user/test;

-- Create staging tables for the data sources:
CREATE EXTERNAL TABLE downloadlog(localfile STRING, url STRING, serverversion
STRING, size INT, downloaddate STRING,lastmoddate STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/downloadlog’;

CREATE EXTERNAL TABLE testresults(localfile STRING, test STRING, errors INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION
’/user/test/testresults’;

-- Load the data into the staging tables:
LOAD DATA INPATH /user/test/input/DownloadLog.csv INTO TABLE downloadlog;
LOAD DATA INPATH /user/test/input/TestResults.csv INTO TABLE testresults;

-- Create all the dimension tables and fact tables:
CREATE EXTERNAL TABLE datedim(dateid INT, downloaddate STRING, day STRING,
month STRING, year STRING, week STRING, weekyear STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/datedim’;

CREATE EXTERNAL TABLE testdim(testid INT, testname STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/testdim’;

CREATE EXTERNAL TABLE topdomaindim(topdomainid INT, topdomain STRING) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION
’/user/test/topdomaindim’;

CREATE EXTERNAL TABLE domaindim(domainid INT, domain STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/domaindim’;

CREATE EXTERNAL TABLE serverdim(serverid INT, server STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/serverdim’;

CREATE EXTERNAL TABLE serverversiondim(serverversionid INT, serverversion STRING,
serverid INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE
LOCATION ’/user/test/serverversiondim’;

CREATE EXTERNAL TABLE pagedim(pageid INT, url STRING, size INT, validfrom STRING,
validto STRING, version INT, domainid INT,serverversionid INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION
’/user/test/pagedim’;

CREATE EXTERNAL TABLE testresultsfact(pageid INT, testid INT, dateid INT,
error INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE
LOCATION ’/user/test/testresultsfact’;

-- Load data into the non-snowflaked dimension tables, testdim and datedim:
INSERT OVERWRITE TABLE datedim SELECT UDF_getglobalid() AS dateid, downloaddate,
UDF_extractday(downloaddate), UDF_extractmonth(downloaddate),
UDF_extractyear(downloaddate), UDF_extractweek(downloaddate),
UDF_extractweekyear(downloaddate) from downloadlog;

INSERT OVERWRITE TABLE testdim SELECT UDF_getglobalid() AS testid, A.testname FROM
(SELECT DISTINCT test AS testname FROM testresults) A;

-- Load data into the snowflaked dimension tables from leaves to the root:
INSERT OVERWRITE TABLE topdomaindim SELECT UDF_getglobalid() AS topdomainid,
A.topdomain FROM (SELECT DISTINCT UDF_extracttopdomain(url) FROM downloadlog) A;
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INSERT OVERWRITE TABLE domaindim SELECT UDF_getglobalid() AS domainid, A.domain,
B.topdomainid FROM (SELECT DISTINCT UDF_extractdomain(url) AS domain,
UDF_extracttopdomain(url) AS topdomain FROM downloadlog) A JOIN topdomaindim B
ON (A.topdomain=B.topdomain);

INSERT OVERWRITE TABLE serverdim SELECT UDF_getglobalid() AS serverid, A.server
FROM (SELECT DISTINCT UDF_extractserver(serverversion) AS server FROM downloadlog) A;

INSERT OVERWRITE TABLE serverversiondim SELECT UDF_getglobalid() AS serverversionid,
A. serverversion, B.serverid FROM (SELECT DISTINCT serverversion,
UDF_extractserver(serverversion) as server FROM downloadlog) A JOIN serverdim B
ON (A.server=B.server);

INSERT OVERWRITE TABLE pagedim SELECT UDF_getglobalid() AS pageid, A.url, A.size,
A.lastmoddate, B.domainid, C.serverversionid FROM (SELECT url, size, lastmoddate,
UDF_extractdomain(uri) AS domain, serverversion FROM downloadlog) A JOIN domaindim B
ON (A.domain=B.domain) JOIN serverversiondim C JOIN (A.serverversion=C.serverversion);

CREATE EXTERNAL TABLE pagedim_tmp(pageid INT, url STRING, size INT, lastmoddate
STRING, domainid INT, serverversionid INT) ROW FORMAT DELIMITED FIELDS
TERMINATED BY ’\t’ STORED AS TEXTFILE LOCATION ’/user/test/pagedim_tmp’;

-- Load data into the fact table, testresultstact:
INSERT OVERWRITE TABLE testresultsfact SELECT C.pageid, E.testid, D.dateid,
B.errors FROM downloadlog A JOIN testresults B ON (A.localfile=B.localfile)
JOIN pagedim C ON (A.url=C.url) JOIN datedim D ON
(A.downloaddate=D.downloaddate) JOIN testdim E ON (B.test=E.testname);

Program 5 ETL program for snowflake schema using Pig-Latin
-- Copy the data from local file system to HDFS:
hadoop fs -copyFromLocal /tmp/DownloadLog.csv /user/test;
hadoop fs -copyFromLocal /tmp/TestResults.csv /user/test;

-- Load the data into in PIG:
downloadlog = LOAD ’DownloadLog.csv’ USING PigStorage(’\t’)

AS (localfile, url, serverversion,size,downloaddate,lastmoddate);
testresults = LOAD ’TestResults.csv’ USING PigStorage(’\t’)

AS (localfile, test, errors);

-- Load the dimension table, testdim:
testers = FOREACH testresults GENERATE test AS testname;
distincttestname = DISTINCT testers;
testdim = FOREACH distincttestname GENERATE UDF_getglobalid()

AS testid, testname;
STORE testdim INTO ’/tmp/testdim’ USING PigStorage();

-- Load the dimension table, datedim:
downloadates = FOREACH downloadlog GENERATE downloaddate;
distinctdownloadates = DISTINCT downloadates;

datedim = FOREACH distinctdownloadates GENERATE UDF_getglobalid()
AS dateid, downloaddate, UDF_extractday(downloaddate) AS day,
UDF_extractmonth(downloaddate) AS month, UDF_extractyear(downloaddate) AS year,
UDF_extractweek(downloaddate) AS week, UDF_extractweekyear(downloaddate)
AS weekyear;
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STORE datedim INTO ’/tmp/datedim’ USING PigStorage();

-- Load the sknowflaked dimension tables:
urls = FOREACH downloadlog GENERATE url;

serverversions = FOREACH downloadlog GENERATE serverversion;

domains = FOREACH downloadlog GENERATE UDF_extractdomain(url) AS domain;

distinctdomains = DISTINCT domains;

topdomains = FOREACH distinctdomains GENERATE UDF_extracttopdomain(domain)
AS topdomain;

distincttopdomains = DISTINCT topdomains;

topdomaindim = FOREACH distincttopdomains GENERATE UDF_getglobalid()
AS topdomainid, topdomain;

STORE topdomaindim INTO ’/tmp/topdomaindim’ USING PigStorage();

ndomains = FOREACH distinctdomains GENERATE domain AS domain,
UDF_extracttopdomain(domain) AS topdomain;

ndomainjoin = JOIN ndomains BY topdomain, topdomaindim BY topdomain;

domaindim = FOREACH ndomainjoin GENERATE UDF_getglobalid()
AS domainid, domain, topdomainid;

STORE domaindim INTO ’/tmp/domaindim’ USING PigStorage();

distinctserverversions = DISTINCT serverversions;

nserverversions = FOREACH distinctserverversions GENERATE serverversion
AS serverversion, UDF_extractserver(serverversion) AS server;

servers = FOREACH nserverversions GENERATE server AS server;
distinctservers = DISTINCT servers;

serverdim = FOREACH distinctservers GENERATE UDF_getglobalid() AS serverid, server;
STORE serverdim INTO ’/tmp/serverdim’ USING PigStorage();

nserverversionjoin = JOIN nserverversions BY server, serverdim BY server;

serverversiondim = FOREACH nserverversionjoin GENERATE UDF_getglobalid()
AS serverversionid, serverversion, serverid;

STORE serverversiondim INTO ’/tmp/serverversiondim’ USING PigStorage();

joindomservversion = JOIN (JOIN downloadlog BY UDF_extractdomain(url),
domaindim by domain) BY serverversion, serverversiondim
BY serverversion;

pagedim = FOREACH joindomservversion GENERATE UDF_getglobalid() AS pageid,
url, size, lastmoddate, serverversionid, domainid;

STORE pagedim INTO ’/tmp/pagedim’ USING PigStorage();
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-- Load the fact tables:
testresults = JOIN downloadlog BY localfile, testresults BY localfile;

joinpagedim = JOIN testresults BY url, pagedim BY url;

joindatedim = JOIN joinpagedim BY downloaddate, datedim BY downloaddate;

jointestdim = JOIN joindatedim BY test, testdim BY testname;

testresultsfact = FOREACH jointestdim GENERATE dateid, pageid, testid, errors;

STORE testresultsfact INTO ’/tmp/testresultsfact’ USING PigStorage();

respectively (each statement ends with “;”). In addition, during the implementation
although we have a clear picture of the ETL processing for this schema, we still spent
several hours to write the scripts (the time of implementing UDFs is not included),
and test each step, however, it is very efficient to script using ETLMR.

Pentaho Data Integration (PDI): PDI is an ETL tool and provides Hadoop sup-
port in its 4.1 GA version. However, there are still many limitations with this version.
For example, it only allows to set a limited number of parameters in the job executor,
customized combiner and mapper-only jobs are not supported, and the transforma-
tion components are not fully supported in Hadoop. We only succeeded in making
an ETL flow for the simplest star schema, but still with some compromises. For ex-
ample, a workaround is employed to load the processed dimension data into the DW
as PDI’s table output component repeatedly opens and closes database connections
in Hadoop such that the performance suffers.

In the following, we compare how PDI and ETLMR perform when they process
the star schema (with page as a normal dimension, not an SCD) of the running ex-
ample. To make the comparison neutral, the time for loading the data into the DW
or the HDFS is not measured, and the dimension lookup cache is enabled in PDI to
achieve a similar effect of ETLMR using offline dimensions. Hadoop is configured
to run 4 parallel task trackers in maximum on each node, and scaled by adding nodes
horizontally. The task tracker JVM option is set to be -Xmx256M while the other
settings are left to the default.

Table 4.4 shows the time spent on processing 80 GB smalldim data when scal-
ing up the number of tasks. As shown, ETLMR is significantly faster than PDI for
Hadoop in processing the data. Several reasons are found for the differences. First,
compared with ETLMR, the PDI job has one more step (the reducer) in the fact pro-
cessing as its job executor does not support a mapper-only job. Second, by default
the data in Hadoop is split which results in many tasks, i.e., 1192 tasks for the fact
data. Thus, longer initialization time is observed. Further, some transformation com-
ponents are observed to run with low efficiency in Hadoop, e.g., the components to
remove duplicate rows and to apply JavaScript.
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Table 4.4: Time for processing star schema (no SCD), 80 GB smalldim data set,
(min.)

Tasks 4 8 12 16 20
ETLMR 246.7 124.4 83.1 63.8 46.6

PDI 975.2 469.7 317.8 232.5 199.7

4.8 Related Work

Besides MapReduce, other parallel programming models also exist. Multi-threading
is an alternative and it is possible for an ETL framework to provide abstractions that
make it relatively easy for the ETL developer to use several threads. Multi-threading
is, however, only useful when a solution is scaled up on a SMP machine and not
when scaled out to several machines in a cluster. For very large data sets it is nec-
essary to scale out and the MapReduce framework does this elegantly and provides
support for the “tedious” details. Another, alternative is Message Passing Interface
(MPI), but again the MapReduce framework makes the developer’s work easier by its
abstractions and automatic handling of crashes, stragglers working unusually slowly,
etc. In recent years, other massively parallel data processing systems have also been
proposed. These include Clustera [23], Dryad [38], and Percolator [61]. Clustera
and Dryad are systems that support many kinds of tasks ranging from general cluster
computations to data management with parallel SQL queries. Their different ap-
proaches to this are interesting and give promising results, but the tools are still only
available as academic prototypes and are not available to the general public for com-
mercial use. In comparison, MapReduce so far has a far more wide-spread use. It is
supported by many different frameworks and is also available as a service, e.g., from
Amazon. Percolator was developed by Google motivated by the fact that web index-
ing with MapReduce requires a re-run on the entire data set to handle updates. Unlike
this situation, Percolator supports incremental updates. It does so by letting the user
define “observers” (code) that execute when certain data in Google’s BigTable is up-
dated. Further, Percolator adds transnational support. It is, however, closely related
to Google’s BigTable which makes it less general for ETL purposes. Further, it is not
publicly available. MapReduce, on the other hand, can be used with several types of
input data and many free implementations exist.

Though MapReduce is a framework well suited for large-scale data processing
on clustered computers, it has been criticized for being too low-level, rigid, hard to
maintain and reuse [57, 86]. In recent years, an increasing number of parallel data
processing systems and languages built on the top of MapReduce have appeared. For
example, besides Hive and Pig (discussed in Section 4.7.5), Chaiken et al. present
the SQL-like language SCOPE [19] on top of Microsoft’s Cosmos MapReduce and
distributed file system. Friedman et al. introduce SQL/MapReduce [31], a user-
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defined function (UDF) framework for parallel computation of procedural functions
on massively-parallel RDBMSs. These systems or languages vary with respect to
how they are implemented and what functionality they provide, but overall they give
good improvements to MapReduce such as high-level languages, user interfaces,
schemas, and catalogs. They process data by using query languages, or UDFs em-
bedded in the query languages, and execute them on MapReduce. However, they
do not offer direct constructs for processing star schemas, snowflaked dimensions,
and slowly changing dimensions. In contrast, ETLMR runs separate ETL processes
on a MapReduce framework to achieve parallelization and ETLMR directly supports
common ETL operations for these schemas.

Another well-known distributed computing system is the parallel DBMS which
first appeared two decades ago. Today, there are many parallel DBMSs, e.g., Ter-
adata, DB2, Objectivity/DB, Vertica, etc. The principal difference between parallel
DBMSs and MapReduce is that parallel DBMSs run long pipe-lined queries instead
of small independent tasks as in MapReduce. The database research community has
recently compared the two classes of systems. Pavlo et al. [60], and Stonebraker et
al. [76] conduct benchmarks and compare the open source MapReduce implementa-
tion Hadoop with two parallel DBMSs (a row-based and a column-based) in large-
scale data analysis. The results demonstrate that parallel DBMSs are significantly
faster than Hadoop, but they diverge in the effort needed to tune the two classes of
systems. Dean et al. [21] argue that there are mistaken assumptions about MapRe-
duce in the comparison papers and claim that MapReduce is highly effective and
efficient for large-scale fault-tolerance data analysis. They agree that MapReduce
excels at complex data analysis, while parallel DBMSs excel at efficient queries on
large data sets [76].

In recent years, ETL technologies have started to support parallel processing. In-
formatica PowerCenter provides a thread-based architecture to execute parallel ETL
sessions. Informatica has also released PowerCenter Cloud Edition (PCE) in 2009
which, however, only runs on a specific platform and DBMS. Oracle Warehouse
Builder (OWB) supports pipeline processing and multiple processes running in par-
allel. Microsoft SQL Server Integration Services (SSIS) achieves parallelization by
running multiple threads, multiple tasks, or multiple instances of a SSIS package.
IBM InfoSphere DataStage offers a process-based parallel architecture. In the thread-
based approach, the threads are derived from a single program, and run on a single
(expensive) SMP server, while in the process-based approach, ETL processes are
replicated to run on clustered MPP or NUMA servers. ETLMR differs from the
above by being based on MapReduce with the inherent advantages of multi-platform
support, scalability on commodity clustered computers, light-weight operation, fault
tolerance, etc. ETLMR is also unique in being able to scale automatically to more
nodes (with no changes to the ETL flow itself, only to a configuration parameter)
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while at the same time providing automatic data synchronization across nodes even
for complex structures like snowflaked dimensions and SCDs. We note that the li-
censes of the commercial ETL packages prevent us from presenting comparative ex-
perimental results.

4.9 Conclusion and Future Work

As business intelligence deals with continuously increasing amounts of data, there
is an increasing need for ever-faster ETL processing. In this chapter, we have pre-
sented ETLMR which builds on MapReduce to parallelize ETL processes on com-
modity computers. ETLMR contains a number of novel contributions. It supports
high-level ETL-specific dimensional constructs for processing both star schemas and
snowflake schemas, SCDs, and data-intensive dimensions. Due to its use of MapRe-
duce, it can automatically scale to more nodes (without modifications to the ETL
flow) while it at the same time provides automatic data synchronization across nodes
(even for complex dimension structures like snowflakes and SCDs). Apart from scal-
ability, MapReduce also gives ETLMR a high fault-tolerance. Further, ETLMR is
open source, light-weight, and easy to use with a single configuration file setting all
run-time parameters. The results of extensive experiments show that ETLMR has
good scalability and compares favourably with other MapReduce data warehousing
tools.

ETLMR comprises two data processing phases, dimension and fact processing.
For dimension processing, this chapter proposed a number of dimension management
schemes and processing methods in order to achieve good and load balancing. The
online dimension scheme directly interacts with the target DW and employs several
dimension specific methods to process data, including ODOT, ODAT, and level-wise
and hierarchy-wise processing for snowflaked dimensions. The offline dimension
scheme employs high-performance storage systems to store dimensions distributedly
on each node. The methods, ODOT and hybrid allow better scalability and per-
formance. In the fact processing phase, bulk-load is used to improve the loading
performance.

Currently, we have integrated ETLMR with the MapReduce framework Disco. In
the future, we intend to port ETLMR to Hadoop and explore a wider variety of data
storage options. In addition, we intend to implement dynamic partitioning which au-
tomatically adjusts the parallel execution in response to additions/removals of nodes
from the cluster, and automatic load balancing which dynamically distributes jobs
across available nodes based on CPU usage, memory, capacity and job size through
automatic node detection and algorithm resource allocation.



Chapter 5

CloudETL: Scalable Dimensional
ETL for Hadoop and Hive

Extract-Transform-Load (ETL) programs process data from sources into data ware-
houses (DWs). Due to the rapid growth of data volumes, there is an increasing de-
mand for systems that can scale on demand. Recently, much attention has been given
to MapReduce which is a framework for highly parallel handling of massive data
sets in cloud environments. The MapReduce-based Hive has been proposed as a
DBMS-like system for DWs and provides good and scalable analytical features. It
is, however, still challenging to do proper dimensional ETL processing with Hive;
for example, UPDATEs are not supported which makes handling of slowly changing
dimensions (SCDs) very difficult. To remedy this, we here present the cloud-enabled
ETL framework CloudETL. CloudETL uses the open-source MapReduce implemen-
tation Hadoop to parallelize the ETL execution and to process data into Hive. The
user defines the ETL process by means of high-level constructs and transformations
and does not have to worry about the technical details of MapReduce. CloudETL
provides built-in support for different dimensional concepts, including star schemas,
snowflake schemas, and SCDs. In the chapter, we present how CloudETL works. We
present different performance optimizations including a purpose-specific data place-
ment policy for Hadoop to co-locate data. Further, we present a performance study
using realistic data amounts and compare with other cloud-enabled systems. The re-
sults show that CloudETL has good scalability and outperforms the dimensional ETL
capabilities of Hive both with respect to performance and programmer productivity.

109
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5.1 Introduction

In data warehousing, data from different source systems is processed into a central
DW by an Extract–Transform–Load (ETL) process in a periodic manner. Tradition-
ally, the DW is implemented in a relational database where the data is stored in fact
tables and dimension tables which form a star schema or snowflake schema [43].
Many enterprises now collect and analyze tens or hundreds of gigabytes data each
day. The data warehousing technologies are thus faced with the challenge of handling
the growing data volumes in little time. However, many existing data warehousing
systems already take hours, or even days to finish loading the daily data and will be
to slow with larger data volumes.

There is thus an increasing need for a new data warehousing architecture that can
achieve better scalability and efficiency. In recent years, with the emergence of the
cloud computing technologies, such as the MapReduce paradigm [22], many enter-
prises have shifted away from deploying their analytical systems on high-end propri-
etary machines and instead moved towards cheaper, commodity machines [2]. The
MapReduce paradigm provides cost-effective scalability for large-scale data sets and
handles fault tolerance very well even on hundreds or thousands of machines. The re-
cent system Hive [86] uses the open-source MapReduce implementation Hadoop [78]
and can be used for scalable data warehousing. Hive stores data in the Hadoop Dis-
tributed File System (HDFS), and presents the data by logical tables. The data in the
tables is queried by user-written (SQL-like) HiveQL scripts which are translated into
MapReduce jobs to process the data. However, Hive only has limited dimensional
ETL capabilities and it is not straightforward to use in an ETL process. It is more like
a DBMS and less like an ETL tool. For example, Hive lacks support for high-level
ETL-specific constructs including those for looking up a dimension member or, if not
found, updating the dimension table (or even more dimension tables in a snowflake
schema). There is also no specialized handling for SCDs. Writing HiveQL scripts
for such processing is cumbersome and requires a lot of programming efforts [50].
In addition, Hive also lacks support for UPDATEs which makes handling of SCDs
even more complicated when time-valued attributes are used to track the changes of
dimension values.

In this chapter, we present CloudETL which is a scalable dimensional ETL frame-
work for Hive running on Hadoop. CloudETL supports the aforementioned ETL
constructs, among others, for different DW schemas. CloudETL coexists with Hive
for scalable data warehousing and aims at making it easier and faster to create scal-
able and efficient ETL processes that load DWs in Hive. CloudETL allows ETL
programmers to easily translate a high-level ETL design into actual MapReduce jobs
on Hadoop by only using high-level constructs in a Java program and without know-
ing MapReduce concepts. We provide a library of commonly used ETL constructs as
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building blocks. All the complexity associated with parallel programming is transpar-
ent to user, and the programmer only needs to think about how to apply the constructs
to a given DW schema leading to high programmer productivity.

The contributions of this chapter are listed in the following: First, we present a
novel and scalable dimensional ETL framework which provides direct support for
high-level ETL constructs, including handling of star schemas, snowflake schemas,
and SCDs. Second, we present a method for processing SCDs enabling update ca-
pabilities in a cloud environment. Third, we present how to process big dimensions
efficiently through purpose-specific co-location of files on the distributed file system,
and we present in-map updates to optimize dimension processing. Fourth, we present
lookup indices and multi-way lookups for processing fact data efficiently in parallel.
Fifth, we provide a set of high-level transformation operators to simplify the imple-
mentation of a parallel, dimensional ETL program for a MapReduce environment.

The rest of the chapter is structured as follows. In Section 5.2, we give an
overview of CloudETL and its components. In Section 5.3, we introduce a running
example. In Section 5.4, we detail dimension processing including the paralleliza-
tion for multiple dimension tables, co-locating data and the updates for SCDs. In
Section 5.5, we present the approach for processing facts. In Section 5.6, we de-
scribe the implementation of CloudETL. In Section 5.7, we study the performance
CloudETL and compare with other similar works. In Section 5.8, we present the re-
lated work. Finally, in Section 5.9, we summarize the chapter and discuss the future
research directions.

5.2 System Overview

CloudETL employs Hadoop as the ETL execution platform and Hive as the ware-
house system (see Figure 5.1). CloudETL has a number of components, including
the application programming interfaces (APIs) used by ETL programs, a sequence
service, a metastore, ETL transformers, and a job planner. The sequence service
is used by the distributed jobs to generate unique, sequential numbers for dimen-
sion keys. The ETL transformers define the transformations for reading source data,
cleansing data, and writing the data into the DW. The job planner is used to plan the
execution order of the jobs that will be submitted to Hadoop. The metastore is the
system catalog which contains the meta-data about the dimension and fact data stored
in the Hive, and the next values of the sequential number generator.

The ETL workflow in CloudETL consists of two sequential steps: dimension pro-
cessing and fact processing. The source data is assumed to be present in HDFS when
the MapReduce (MR) jobs are started (see the left of Figure 5.1). CloudETL allows
processing of data into multiple tables within a job. The source data is processed
into dimension values or facts by the user-defined transformers which are executed
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Figure 5.1: CloudETL Architecture

by mappers and reducers. A transformer integrates a number of transformation oper-
ators used for processing data, such as filters, data type converters, splitters, lookups
(for getting dimension key values), and others. According to the dependencies of the
tables to be processed, the CloudETL job planner can automatically plan the jobs and
submit the jobs to the Hadoop JobTracker in a sequential order. The jobs for dimen-
sion processing are planned to run before the jobs for fact processing (see the middle
of Figure 5.1) as processing facts requires looking up referenced primary key values
from the dimension tables. For normalized (“snowflaked”) dimensions with many
dimension tables, there also exists foreign key dependencies. The MR jobs handling
the dimension tables run partly sequentially (see Section 5.4 for details). Take the
snowflaked dimension tables T1, . . . , Tn as an example. Suppose that the tables have
foreign key references such that T1 is referenced by T2 which is referenced by T3,
etc. Then the execution order of the jobs becomes MR job1 followed by MR job2, MR
job2 followed by MR job3 and so forth (see the middle of Figure 5.1).

Hive employs HDFS for physical data storage but presents the data in the HDFS
directories and files as logical tables. Therefore, when Hive is used, we can easily
write data directly into files which then can be used by Hive. The right-most part of
Figure 5.1 shows a star schema in Hive which consists of five files in HDFS.

5.3 Running Example

In the following, we will use a running example to show how CloudETL processes
data into dimension tables and fact tables. This example is inspired by our work in
a previous project [82]. This example considers a DW with data about tests of web
pages. The star schema shown in Figure 5.2 consists of a fact table testresults-
fact with the single measure errors telling how many errors were detected on
a given version of a web page on a given date. There are three dimension tables,
testdim, pagedim, and datedim, which represent tests, web pages, and dates,
respectively. The pagedim can be normalized to get a partial snowflake schema
(we show the snowflake schema in Section 5.4.6). Note that pagedim is a “type-
2” SCD which tracks changes by having multiple versions of its dimension values.
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pagedim is also a data-intensive dimension table which contains many more rows
than the other two dimension tables. We use this example, instead of a more common
example such as TPC-H [88], because it has an SCD, a data-intensive dimension,
and can be represented by both star and snowflake schemas. The chosen example
thus allows us to illustrate and test our system more comprehensively.

Figure 5.2: Star schema

5.4 Dimension Processing

5.4.1 Challenges and Designs

In conventional ETL processing, many transformation capabilities rely on the under-
lying DW DBMS to, e.g., generate sequential key values, perform SCD updates, and
insert rows into dimension tables and fact tables. However, support for this is not
available in Hive and Hadoop and, as mentioned, Hive and other MapReduce-based
programs for data analysis do not support the UPDATE operation known from SQL.
In addition, a number of limitations make the ETL on Hadoop more challenging. For
example, the nodes running the MR jobs share no global state, which makes certain
tasks (such as acquiring unique values for a dimension key) more difficult for an ETL
process, and Hadoop does not hold schema information for the data to process, which
makes data cleansing difficult.

We address these limitations with the following design which is explained fur-
ther in the following sections: First, a line read from the data source is made into
a record which migrates from mappers to reducers. A record contains schema in-
formation about the line, i.e., the names of attributes and the data types. For exam-
ple, a record with pagedim data has the schema 〈url string, size int,
moddate date〉. Example attribute values are 〈www.dom.com/p0.htm, 10,
2012-02-01〉. Second, to currectly maintain an SCD, we union incremental data
with the existing dimension data that has already been processed into a dimension
table, and replace the attribute values for both when necessary. Third, we create
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a global sequential number generation service and add a metastore to maintain the
global state of the ETL on Hadoop.

5.4.2 Execution Flow

Figure 5.3 shows the execution flow for dimension processing. For simplicity, we
only show the ith reducer which processes a part of the intermediate data output by
all mappers. The dimension source data in HDFS is split (by Hadoop) and assigned
to the map tasks. The records from a file split are processed by user-defined transfor-
mation operators in mappers and reducers. Here, we categorize the transformation
operators into two classes: non-aggregating and aggregating. The non-aggregating
operators are those that can be performed by only seeing a single record (e.g., field
projection, filtering, and splitting). They are executed in the mappers. The aggregat-
ing operators, on the other hand, operate on many records (e.g., a grouping). They
are executed in the reducers. Note that a mapper can process a source with data that
will go to different dimensions. In the shuffling, the data is sent to different reducers.
The reducer output (corresponding to a dimension table) is written to the HDFS.

Figure 5.3: Execution flow of dimension processing

We now describe how to process changes by using the pagedim dimension as
an example. All dimensions are considered to be SCDs, but if there are no changes
in the source data, the dimensions will of course not be updated. The main problem
of processing SCDs is how to update the special SCD type-2 attribute values (with
validity dates and version numbers) in a MapReduce environment. For type-2 SCDs,
the validity dates and version numbers are updated by following the original change
order in the source data. For example, the end date of a given version is set to the start
date of its successor. For type-1 SCDs, the attribute values of a dimension member
are overwritten by new values. When doing incremental loading, we also need to
update the versions that have already been loaded into Hive. The idea here is to
collect different versions of dimension values from both the incremental data and
the existing dimension data, and to perform the updates in reducers. Therefore, the
execution flow is as follows: First, we do the non-aggregating transformations on the
incremental data in mappers, then hash partitioning on the business keys (a dimension
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must have a key that distinguishes its members) of the map output. For example, we
partition the map output for pagedim based on the values of the business key, url.
Therefore, the rows with identical key values are shuffled to the same reducer. To
acquire the original change order, we sort the intermediate data by the modification
date. For example, moddate of the pagedim source data tells when a given page
was changed. If the source data does not include a date, we assume that the line
numbers show the changing order (line numbers should be explicitly given in input
data if the input is made up of several files). Alternatively, the user can choose that
another attribute should be used to get the change order.

In any case, we include the sorting attribute(s) in the key of the map output since
Hadoop only supports sorting on keys, but not on values. To decrease the network
I/O, we include both the business key and the SCD date (or another sorting attribute)
in the key of the map output (this is an application of the value-to-key MapReduce
design pattern [48]). In addition, we make a task support processing of multiple
dimension tables by tagging the key-value pairs with the name of the dimension table
to which the data will be written. Therefore, the map output has the format (〈 the
name of a dimension table, business key, SCD date/line no. 〉, 〈 the rest of dimension
values〉) where the key is composite of three attributes.

To make the above more concrete, we show the input and output of map and re-
duce when processing pagedim (see Table 5.1). We assume that a single dimension
value has already been loaded into Hive, and now we perform incremental loading
with two new values. The map input consists of both the existing and the new data
(see Map input). We discuss an optimization in Section 5.4.5. A new record has
the attributes url, size, and moddate which indicate the web page address, the
size (may change when the page is modified) and the modification date of a page,
respectively. The existing dimension record contains the three additional SCD at-
tributes version, validfrom, and validto. In map, we transform the raw
incremental data into dimension values by adding the three additional SCD attributes
and the surrogate key id. Then, the mapper writes the records in the described out-
put format. For the existing dimension record, no transformation is needed, but the
record is re-structured in line with the map output format. When the map output is
shuffled to the reducers, the key-value pairs are grouped by the composite key val-
ues and sorted by the validity SCD date in ascending order (see reduce input).
In the reducer, unique numbers (acquired from the sequence generation service) are
assigned to the key attribute, i.e., id, of the two new dimension values and the val-
ues of the SCD attributes are updated, i.e., validto of a version is updated to the
starting valid date of the following version (see the validfrom and validto of
the different versions for url=www.dom.com/p0.htm). The version number is
also updated accordingly. The three records are finally written to HDFS (nil in the



116 CloudETL: Scalable Dimensional ETL for Hadoop and Hive

validto attribute represents that a dimension record is valid till now) (see reduce
output in Table 5.1).

Table 5.1: MapReduce input and output of type-2 page SCDs (nil represents the
value is empty)

5.4.3 Algorithm Design

Algorithm 11 shows the map algorithm and Figure 5.4 shows the ETL components
in a mapper. In the algorithm, Γ is the set of transformers defined by the user. A
transformer is an ETL flow for processing data from a source to a dimension table.
Formally, a transformer is a pair 〈

−→
P , d〉where

−→
P is an n-tuple

−→
P = 〈P1, P2, . . . , Pn〉

representing a number of transform pipes connected one after another. The connected
transform pipes process data from a data source into a final dimension table d. The
transformers are deserialized when a mapper is initialized (see line 3). The algorithm
supports processing of several dimension tables within a mapper; each of them is
then processed by a different transformer (see line 5–12). A transform pipe, Pi with
(1 ≤ i ≤ n) is the ETL component integrating a variety of operators for transforming
data. It is defined as Pi = 〈ti1, ti2, . . . , tim〉 where tij with (1 ≤ j ≤ m) represents
an ETL transformation operator. The root transform pipe, P1, defines the schematic
information of the data source such as the names of attributes, the data types, and
the attributes for sorting of versions (such as a date or line no.). When a record is
processed in a mapper, the record goes through the connected transform pipes from
the root and is processed by the transformation operators consecutively within each
of the transform pipes (see line 6–8). In the algorithm, the transformer for processing
existing dimension data only consists of one transform pipe, i.e., Γ only consists of
the root. The reason is that the existing dimension data is only read back be able to
process SCD attribute values and no other data transformation is required.

Algorithm 12 shows the reduce algorithm (in Section 5.4.5, we present a special-
ized map-only method for big dimensions). The input is grouped by the composite
key values and sorted (by the validity date or line no.) before it is fed to the REDUCE
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Algorithm 11 Map
1: class Mapper
2: function INITIALIZE( )
3: Γ← DESERIALIZETRANSFORMERS()
4: function MAP(offset o, Record r)
5: for all 〈

−→
P , d〉 ∈ Γ do

6: for all P ∈
−→
P do .

−→
P = 〈P1, P2, ..., Pn〉

7: for all t ∈ P do . P = 〈t1, t2, ..., tm〉
8: r ← t.PROCESSRECORD(r) . This function might return the special value ⊥ which

represents that r is filtered out or deleted.
9: if r 6= ⊥ then

10: key ← CREATECOMPOSITEKEY(r, d)
11: value← CREATEVALUE(r, d)
12: EMIT(key, value)

13:

Figure 5.4: Transformers, transform pipes and transformation operators

method. The REDUCE method reads all the dimension data with a particular com-
posite key value (and thus the data also has the same business key value). For type-2
SCDs (see lines 4–13), we keep the dimension values temporarily in a buffer (lines 5–
10), assign a sequential number to the key of a new dimension record (line 9), and
update the SCD attribute values (line 11), including the validity dates and the version
number. The function MAKEDIMENSIONRECORD extracts the dimension’s business
key from the composite key given to the mapper and combines it with the remaining
values. Finally, we write the reduce output with the name of the dimension table as
the key, and the dimension data as the value (see line 12). The reduce output for-
mat is customized so that the value is written into the directory named by the output
key value. For type-1 SCDs (see line 14–21), we overwrite the old values. That is,
we only keep the latest version with a given business key value. An important point
here is that if r0 has a primary key value set (here denoted r0[id]), the data in r0

comes from the existing table and the primary key value should be reused (line 18).
If the primary key value is not set in r0, we are handling an entirely new member and
should get a new primary key value.
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Algorithm 12 Reduce
1: class Reducer
2: function REDUCE(CompositeKey key, values[0...n− 1])
3: name← GETNAMEOFDIMENSIONTABLE(key)
4: if DIMTYPE(name) = type2SCD then
5: L← new LIST()
6: for i← 0, n− 1 do
7: r ← MAKEDIMENSIONRECORD(key, values[i])
8: if r[id] = ⊥ then . id is the dimension key
9: r[id]← GETDIMENSIONID(name)

10: L.ADD(r)

11: UPDATESCDATTRIBUTEVALUES(L)
12: for all r ∈ L do
13: EMIT(name, r)

14: else . It is a type-1 SCD: keep the key value of the first record, but the dimension values of the last
record

15: r0 ← MAKEDIMENSIONRECORD(key, values[0])
16: rn−1 ← MAKEDIMENSIONRECORD(key, values[n− 1])
17: if r0[id] 6= ⊥ then
18: rn−1[id]← r0[id]
19: else
20: rn−1[id]← GETDIMENSIONID(name)
21: EMIT(name, rn−1)

22:

5.4.4 Pre-update in Mappers

On Hadoop, it is relatively time-consuming to write map output to disk and trans-
fer the intermediate data from mappers to reducers. For type-1 SCDs, we thus do
pre-updates in mappers to improve the efficiency by shrinking the size of the inter-
mediate data shuffled to the reducers. This is done by only transferring the resulting
dimension member (which may have been updated several times) from the mapper to
the reducer. On the reduce side, we then do post-updates to update the dimension to
represent the dimension member correctly.

Algorithm 13 shows how pre-updates for type-1 SCDs are handled. For simplic-
ity, we no longer show the ETL transformation operations in this algorithm. In the
map initialization (see line 3), we create a hash map M to cache the mappings of a
business key value to the corresponding dimension values. Since the state of M is
preserved during the multiple calls to the MAP method, we can use M until the entire
map task finishes. In the mapper, the dimension attribute values are always updated
to the latest version’s if there are any changes (see line 5–9). Here, we should pre-
serve the key value (i.e., the value of id) if the member is already represented, but
update the other attribute values (see line 8 and 9). The construction and emission
of the composite key-value pairs are deferred to the CLOSE method which is called
when the mapper has finished processing a file split.
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Algorithm 13 Pre-update in mappers for type-1 SCDs
1: class Mapper
2: function INITIALIZE( )
3: M ← new HASHMAP()
4: function MAP(offset o, Record r)
5: k ← GETBUSINESSKEY(r)
6: pre←M [k]
7: if pre 6= ∅and (pre[scddate] < r[scddate]) then
8: r[id]← pre[id] . Preserve id of the existing dimension
9: M [k]← r . Update the old attribute values

10: function CLOSE( )
11: for all m ∈M do
12: key ← CREATECOMPOSITEKEY(m)
13: value← CREATEVALUE(m)
14: EMIT(key, value)

15:

With the pre-updates, we can decrease the size of the intermediate data trans-
ferred over the network, which is particularly useful for data with frequent changes.
Of course, we can also do the updates in a combiner. However, doing pre-updates
in a combiner would typically be more expensive since we have to transfer the in-
termediate data from the mapper to the combiner, which involves object creation and
destruction, and object serialization and deserialization if the in-memory buffer is not
big enough to hold the intermediate data.

5.4.5 Process Big Dimensions

Typically, the size of dimension data is relatively small compared to the fact data and
can be efficiently processed by the method we discussed above. This is the case for
datedim and testdim of the running example. However, some dimensions – such
as pagedim – are very big and have much more data than typical dimensions. In
this case, shuffling a large amount of data from mappers to reducers is not efficient.
We now present a method that processes data for a big dimension in a map-only job.
The method makes use of data locality in HDFS and is based on the general ideas
of CoHadoop [29], but is in CloudETL automated and made purpose-specific for
dimensional data processing. We illustrate it by the example in Figure 5.5. Consider
an incremental load of the pagedim dimension and assume that the previous load
resulted in three dimension data files, D1, D2, and D3, each of which is the output
of a task. The files reside in the three data nodes node1, node2, and node3,
respectively (see the left of Figure 5.5). For the incremental load, we assume the
incremental data is partitioned on the business key values using the same partitioning
function as in the previous load. Suppose that the partitioning has resulted in two
partitioned files, S1 and S3. D1 and S1 have the same hash value on the business key
values, and so do D3 and S3. When S1 and S3 are created in HDFS, data co-location
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is applied to them, i.e., D1 and S1 are placed together on a data node and so are D3

and S3 (see the right of Figure 5.5). Then, a map-only job is run to process the co-
located data on each node locally. In this example, note that no incremental data is
co-located with D2. The existing dimension data in D2 is not read or updated during
the incremental load.

Figure 5.5: Co-locate files on HDFS

Figure 5.6: Data blocks of co-location (replication factor = 1)

We now present how the blocks of the co-located files are handled (see Fig-
ure 5.6). For simplicity, we show the blocks when the replication factor is set to 1.
As shown, blocks of co-located files are placed on the same data node. For example,
the blocks ofD1 (d11, d12, and d13) and the blocks of S1 (s11 and s12) are on node1.
If the replication factor is different from 1, the block replicas of the co-located files
are also co-located on other nodes.

Since Hadoop 0.21.0, users can use their own block placement policy by setting
the configuration property “dfs.block.replicator .classname”. This does not require
re-compiling Hadoop or HDFS. The block placement policy used by CloudETL is
shown in Algorithm 14. In CloudETL, we (unlike CoHadoop) co-locate the files
based on their names, i.e., the files whose names match the same regular expres-
sion are co-located. The regular expressions are defined in the name node config-
uration file, core-site.xml. For example, if we define the regular expression
(.*\.page1), the data blocks of the existing dimension data files and the parti-
tioned incremental files with the name extension .page1 are placed together. When
the name node starts up, a hash dictionary, M , is created to hold mappings from a
data node to information about the blocks on the node, i.e., the total number of blocks
of the files whose names match a regular expression (see line 2–12). When an HDFS
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Algorithm 14 Choosing targets in the block placement policy
1: class BlockPlacementPolicy
2: function INITIALIZE( )
3: M ← new HASHMAP()
4: regex← GETFILENAMEREGEXFROMCONFIG()
5: n← GETREPLICANUMFROMCONFIG()
6: F ← GETFILESFROMNAMESYSTEM(regex) . Get the files whose names match regex
7: for all f ∈ F do
8: B ← GETBLOCKSFROMBLOCKMANAGER(f )
9: for all b ∈ B do

10: D ←GETDATANODES(b)
11: for all d ∈ D do
12: M [d]←M [d] + 1

13: function CHOOSETARGETS(String filename)
14: D ←new COLLECTION()
15: if regex.MATCHES(filename) then
16: if SIZE(M ) > 0 then
17: Q← GETDATANODES(M ) . Sort M descendingly by the number of blocks and add data

nodes to the queue Q.
18: while SIZE(Q) > 0 and SIZE(D) < n do
19: d←Q.POP()
20: if ISGOODTARGET(d) then
21: D.ADD(d)
22: M [d]←M [d] + 1

23: while SIZE(D) < n do
24: d← CHOOSERANDOM()
25: if ISGOODTARGET(d) then
26: D.ADD(d)
27: M [d]←M [d] + 1

28: else
29: D ← CHOOSETARGETSBYDEFAULTPOLICY(filename)
30: for all d ∈ D do
31: M [d]←M [d] + 1

32: else
33: D ← CHOOSETARGETSBYDEFAULTPOLICY(filename)
34: return D
35:
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client writes a block, it first asks the name node to choose target data nodes for the
block and its replicas. The name node checks if the name of the file matches the
regular expression. If the name matches, the name node chooses the targets based on
the statistics in M . If M is empty, the client is writing the first block of co-located
data and the name node chooses the targets by the default policy and updates M (see
line 28–31). If M is non-empty, the name node chooses the targets based on the ex-
isting co-located data blocks in HDFS. The name node selects a data node for each
replica to store. As in CoHadoop, the data nodes with the highest number of blocks
and with enough space are selected (this is done by sorting M by values, adding the
nodes into a queue Q, and checking the nodes in an descending order, see line 17–
22). When all the nodes in Q have been checked, but fewer data nodes than needed
have been selected, the name node chooses the remaining nodes randomly. Each of
the chosen nodes is tested to see if it meets the selection criteria and has sufficient
space (see line 23–27). If the file name does not match the regular expression, the file
should not be co-located with anything and the name node uses the default policy of
HDFS to choose the targets (see line 33).

Figure 5.7: Type-2 SCD updates in mapper for D1 and S1

CloudETL also offers a program for partitioning data that is not already parti-
tioned. It runs a MapReduce job to partition the data into a number of files in HDFS
based on a user-specified business key. Data with the same business key value is
written into the same file and sorted by SCD attribute values. For example, before
loading pagedim, we can partition the incremental source data on url and sort it
on moddate if it is not already partitioned.
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As a partitioned file and its co-located existing dimension data file both are sorted,
we can simply run a map-only job to merge the data from the two co-located files.
Figure 5.7 illustrates the processing of pagedim on node1 which contains the co-
located files D1 and S1. The lines from S1 (in the blocks s11 and s12) are first
processed by user-defined transformers. We then merge them with the lines from the
existing dimension data fileD1 (in the blocks d11, d12 and d13). The SCD updates are
performed during the merging, and the final dimension values are written to HDFS.
As explained above, it can, however, happen that the incremental data does not get
totally co-located with the existing dimension data, e.g., if a data node lacks free
space. In that case, a reduce-side update is used. The job submission client checks
the co-location and decides which update method to use.

5.4.6 Snowflaked Dimensions

We now describe how to process snowflaked dimension tables. We thus normalize
the pagedim dimension of the running example and get the schema in Figure 5.8.
As shown, there exist several foreign-key references between the snowflaked dimen-
sion tables, e.g., pagedim references domaindim and domaindim references
topdomaindim. When the jobs are planned, the dependencies of the tables are
taken into account.

Figure 5.8: Partial snowflake schema of the running example

For simplicity, consider just the two dependent tables topdomaindim (for
brevity, referred to as T1) and domaindim (T2). The execution flow is shown in
Figure 5.9. It consists of the two sequential jobs, Job1 and Job2, that process T1

and T2, respectively. The input of Job1 consists of two parts: the incremental data
(denoted MT1) and the existing dimension data (denoted D1). When Job1 has com-
pleted successfully, T1 holds both the old and the newly added dimension values, i.e.,
D1+ MT1 . When Job1 writes the output into Hive, a side-product, called a lookup
index (denoted LKIT1), is also generated for T1. LKIT1 is distributed to all nodes
and is used for retrieval of dimension key values by the subsequent job Job2.

The input of Job2 consists of the lookup index LKIT1 , the incremental data MT2

and the existing dimension data D2. LKIT1 is read into an in-memory hash dictio-
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Figure 5.9: Process Snowflaked dimensions, T1 and T2

nary in the mapper initialization, and the foreign key values are retrieved in the map
method. The retrieval of the dimension key values is similar to the lookups in fact
processing which are described in the next section.

5.5 Fact Processing

Fact processing is the second step in the ETL flow in CloudETL. It involves retrieving
surrogate key values from the referenced dimension tables. We call this operation
lookup. Hive, however, does not support fast lookups from its tables. In addition, the
size of fact data is typically very large, several orders of magnitude larger than the
size of dimension data. It is, thus, very important to support efficient fact processing.
Therefore we use multi-way lookups to retrieve the dimension key values through the
so-called lookup indices and exploit a map-only job to process fact data.

5.5.1 Lookup Indices

A lookup index (which is generated during dimension processing) contains the min-
imal information needed for doing lookups, including the business key values, the
dimension key values, and the SCD dates for type-2 SCDs. The data of lookup in-
dices is read into main memory in the map initialization. The structures of lookup
indices for type-2 and type-1 SCDs are shown in Figure 5.10. As a type-2 SCD index
needs to keep track of the changes of the dimension, the index maps a business key
value to all the versions that have the business key value. The result is thus a list of
key-value pairs with the format 〈 SCD effective date, dimension key〉 in descending
order such that the newest version is the first item to be retrieved by a lookup oper-
ation. Given the business key www.dom.com/p0.htm and the date 20110301,
we can thus find the surrogate key value of the correct dimension member version
by first using the hash dictionary and then getting the first element from the resulting
list. For type-1 SCDs, only the first step is needed (see the lower part in Figure 5.10).

In dimension processing, a lookup index file is generated for the incremental data
for each dimension table. It is stored as a Hadoop sequence file. Instead of distribut-

www.dom.com/p0.htm
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Figure 5.10: Lookup indices of page dim., LKIs

ing the full sets of the dimension values, only the minimum values are saved in the
lookup index. The lookup index is distributed and kept in each node permanently (for
handling of big dimensions, see Section 5.5.3).

5.5.2 Multi-way Lookups

We now describe how the lookup indices are used during the fact processing (see Al-
gorithm 15). We run a map-only job to process the fact data. In the map initialization,
the lookup indices relevant to the fact data are read into main memory (see line 2–7).
A mapper first does all data transformations (see line 9). This is similar to the di-
mension processing. Then, the mapper does multi-way lookups to get dimension key
values from the lookup indices (see line 10–11). Finally, the mapper writes the map
output with the name of the fact table as the key, and the record (a processed fact) as
the value (see line 12). The record is directly written to the directory in HDFS (named
by the key of map output) using a customized record writer. Note that all mappers
can work in parallel on different parts of the fact data since the lookup indices are
distributed.

We now give more details about the lookup operator in the algorithm (see line 14–
23). If it is a lookup in a type-2 SCD, we first get all the versions from the SCD index
by the business key, bk (see line 17). Recall that different versions are sorted by the
SCD effective dates in descending order. We get the correct version by comparing
the effective date of a version and the SCD date, sd (see line 19–21). For the lookup
index of a type-1 SCD table, the dimension key value is returned directly through a
hash lookup operation (see line 23).

5.5.3 Lookup on a Big Dimension Table

Typically, the lookup indices are small and can be fully cached in main memory.
However, when a dimension table is very big, and its lookup index is too big to
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Algorithm 15 Map for fact processing and lookup
1: class Mapper
2: function INITIALIZE( )
3: f ← GETCURRENTFACTTABLE()
4: D ← GETTHEREFERENCEDDIMENSIONS(f )
5: for all d ∈ D do
6: if LKI[d] = ∅ then
7: LKI[d]← Read the lookup index of d from local file system
8: function MAP(offset o, Record r)
9: r ← TRANSFORM(r)

10: for all d ∈ D do
11: r[d.key]← LKI[d].LOOKUP(r)

12: EMIT(f, r)

13:
14: function LOOKUP(Record r)
15: bk ← r[bkey]
16: if type = type2SCD then
17: sd← r[scdDate]
18: V ←LKI[d][bk] . Get versions by the business key, bk
19: for all v ∈ V do
20: if sd > v.date then
21: return v.id
22: else
23: return LKI[d][bk]

be fully cached in the main memory, we propose the following two approaches for
retrieving dimension key values. The first, called the hybrid solution, makes use of
a Hive join and the multi-way lookups. The source fact data is first joined with the
big dimension table to retrieve the dimension key values in Hive and then the lookup
indices are used for the small dimension tables in CloudETL. The other solution,
called the partitioned lookup-index solution, uses multi-way lookups for both big
and small dimension tables which requires using a partitioned lookup index. The
partitioned lookup index is generated for the big dimension table. Recall that we
assume that the source data for a big dimension table is partitioned on the business
key values. A partition of the data is processed into the dimension values saved in
a data file in HDFS. At the same time, a lookup index is also generated for each
partition. We call this a partitioned lookup index. If the fact source data is also
partitioned with the same partitioning function as for the big dimension data (this is,
e.g., possible in case the source data comes from another MapReduce job or from a
database), a map-only job is run to do the multi-way lookups. We illustrate this in
Figure 5.11. Suppose the job runs n mappers, each of which processes a partition of
fact source data. Each mapper reads a partition of the lookup index for pagedim,
and the (full) lookup indices for datedim and testdim (small dimension tables)
into memory, and then does multi-way lookups.
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Figure 5.11: Fact processing with partitioned big lookup index

5.6 Implementation

5.6.1 Input and Output

Figure 5.12 shows the input and output of CloudETL (both located in HDFS). We
first describe the output. The output is organized as hierarchical directories and data
files in HDFS. Hive employs HDFS to store data. A folder and the files in it can
be recognized as a logical table without changing the data format (via the SerDe
customized storage formats). The schema of a table (names and data types of of
attributes) are saved in the metastore. When a table is created, a folder with the same
name is created in HDFS. We can “insert” data into the table by simply adding files
in the folder. To make Hive recognize dimension data and fact data, we write the data
into the files with the input format that we have specified when the table was created
in Hive (a tabular file format is used as the default).

Figure 5.12: Input and output of CloudETL

We now describe the input. As discussed in Section 5.4, processing SCDs re-
quires updating both existing and incremental data. Therefore, the input typically
consists of two parts, incremental data and the existing dimension data (see Fig-
ure 5.12). The existing data files of each dimension table are in a separate folder in
the HDFS (see the left of Figure 5.12). Suppose that we now process pagedim.
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When the job starts, the existing dimension data of pagedim is first moved into a
temp directory. (If there are other dimension tables to be processed together, their
data files are moved into this temporary directory as well. Moving files between fold-
ers only needs to update the meta-data in the name node). The data in the temporary
folder and the incremental data both serve as the input to the job (see the left of Fig-
ure 5.12). When the job has finished, the new output is written and the temporary
folder and the files underneath are removed. If the job does not finish successfully,
CloudETL does a rollback simply by moving the files back to the original folder.

In fact processing, no update is done on existing fact data. The incremental fact
data files are just added to the directory of the fact table.

5.6.2 Transformation

CloudETL exploits transformers to execute the data transformations from sources to
target tables, as described in Section 5.4. Within a job, CloudETL supports multiple
transformers that process data into different tables. Figure 5.13 shows an exam-
ple with three transformers in a job. The transformers 1 and 2 use the same data
source, but process data into the two different tables Table 1 and Table 2. Trans-
former 3 uses a different source and processes data into Table 3. CloudETL pro-
vides built-in transformation operators, including filter, field selector,
lookup, sequence, and splitter, and users can also create their own trans-
formation operators by implementing a Java interface. The operators provide the
abstractions to easily implement a dimensional ETL program while the details about
the execution on Hadoop are transparent to users.

Figure 5.13: The data transformers in a job

In the following, we introduce the transformation operations of split, join and
sequential number generation.

Split and Join: The operator splitter is used to process data from a single
source into different tables. The upstream transform pipe of a splitter is shared
by the downstream transform pipes. For example, Figure 5.14 shows three transform
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Figure 5.14: Splitter
Figure 5.15: Sequential number gen-
erator

pipes, P1, P2, and P3, which are used by two transformers that get data from the same
source. P1 is thus shared by P2 and P3 such that the data goes through P1 is only
processed once for the downstream transform pipes, P2 and P3. Here, the observer
design pattern is used such that P2 and P3 are notified to process the data when the
state of the splitter is changed. For join operations, we make use of Hive as it
has intensively optimized join algorithms, including equijoins, outer joins, left semi
joins, and map side joins. The data of two relations in Hive is joined by simply
writing a join query. The output of the join then serves as the input to transformation
pipes for further processing.

Sequential number generation: One of the features lacking in Hadoop is shared
global states across nodes. In CloudETL, a sequential number generator is imple-
mented (see Figure 5.15) and used to generate unique surrogate key values for a
dimension table processed by all tasks. The number generator has a master-worker
architecture and uses remote procedure call (RPC) as the communication protocol
between the master and a worker (RPC is also the communication protocol between
the name node and data nodes in Hadoop). During the data processing, a MapRe-
duce task always asks for the next sequential numbers from the number generator. To
reduce the network overhead of frequent calls, a task fetches a range of numbers in
each call instead of a single number.

5.6.3 Job Planner

We now describe the job planner which plans jobs based on the dependencies of the
tables to be processed. For example, a fact table has foreign-key dependencies on its
referenced dimension tables and snowflaked dimension tables also contain foreign-
key dependencies between the participating tables. Figure 5.16 shows the table de-
pendencies of our running example (see the left), and the four sequential jobs that
are planned to process the dimension and fact tables (see the right, the arrow repre-
sents the job execution order). In the job planning, a separate job is planned for a
big dimension table whenever possible such that a map-only job can be planned to
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improve the performance if the data is co-located. The tables without dependencies
are planned into a single job.

Figure 5.16: Job planning

The job planner plans jobs by pruning the leaves of the tree of the dependent ta-
bles (see the left of Figure 5.16). The leaves are the tables without foreign keys refer-
encing other tables, e.g., topdomaindim, serverdim, testdim, and datedim.
The leaves are pruned step by step until the whole tree is pruned. The leaves are put
into a single job in each pruning. In the end, we get the execution plan in the right of
Figure 5.16, in which pagedim is a big dimension table within its own job.

5.6.4 An ETL Program Example

We now show how to use CloudETL to easily implement a parallel dimensional ETL
program. The code in Figure 5.17 shows how to process the pagedim SCD. The
implementation consists of four steps: 1) define the data source, 2) create the trans-
form pipe and the transformation operators, 3) define the target table, and 4) add the
transformer to the job planner and start. When the data source is defined, the schema
information, the business key, and the date attribute to use in SCD processing are
specified (see line 1–5). CloudETL provides a variety of commonly used transforma-
tion operators and lines 10–12 show the operators for excluding a field, adding the
dimension key (the defined sequence object will automatically get sequential num-
bers from the number generator), and renaming a field, respectively. Lines 16–21
define the target, a type-2 SCD table parameterized by the name of a table, the names
of attributes and their data types, and SCD attributes. CloudETL also offers other di-
mension and fact classes. Here, only one statement is needed to define a target while
the complexity of processing SCDs is transparent to users. Finally, the transformer is
added to the job planner, and the job planner automatically plans and submits jobs to
the Hadoop JobTracker (see line 24).

This is much more difficult to do in Hive. As Hive does not support UPDATEs
needed for SCDs, we use a cumbersome and labour-intensive workaround including
overwriting tables and joins to achieve the update effect. The HiveQL codes of initial
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Figure 5.17: The ETL program for page SCD

Figure 5.18: The ETL program for fact processing
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and incremental loads are shown in Program 6 and 7 respectively. CloudETL has
much better programming efficiency and only needs 6 statements (818 characters, a
statement ended by “;”), while Hive uses 112 statements (4192 characters, including
the statements for HiveQL and UDFs) and the code is less intuitive.

The code in Figure 5.18 shows how to do the fact processing. Only 6 statements
with 811 characters are needed. In Hive, we need 12 statements with 938 characters
for the fact processing (see Program 8).

Program 6 HiveQL script for the initial load of type-2 SCDs
-- 1. Create the type-2 SCD table:

CREATE TABLE IF NOT EXISTS pagescddim(pageid INT, url STRING, serverversion
STRING, size INT, validfrom STRING, validto STRING, version INT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ LINES TERMINATED BY ’\n’ STORED AS
TEXTFILE;

-- 2. Create the data source table and load the source data:

CREATE TABLE pages(localfile STRING, url STRING, serverversion STRING,
size INT, downloaddate STRING, moddate STRING) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH ’/q/disk_0/xiliu/dataset/pages40GB.csv’ OVERWRITE
INTO TABLE pages;

-- 3. Create UDFs, add the UDFs jars to the classpath of Hive, and create
-- the temporary functions for the UDFs:

// Create the UDFs for reading dimension key values from the global sequential
// number generator.
package dk.aau.cs.hive.udf;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

public final class SeqUDF extends UDF {
enum ServerCmd {BYE, READ_NEXT_SEQ}
String seqName = null;
byte[] nameInBytes;
IntWritable curSeq = new IntWritable();
IntWritable endSeq = new IntWritable();
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SocketChannel channel;
ByteBuffer buffer = ByteBuffer.allocate(512);
Configuration conf;
static final String hostname = "localhost";
static final int port = 9250;
final IntWritable delta = new IntWritable(10000);

public IntWritable evaluate(final Text name) {
if (name.toString().equalsIgnoreCase("close")){

this.cleanup();
return new IntWritable(-1);

}
try {

if (seqName == null) {
this.seqName = name.toString();
this.nameInBytes = SeqUDF.getBytesUtf8(this.seqName);
this.setup();

}
return new IntWritable(this.nextSeq());

} catch (Exception e) {
e.printStackTrace();

}
return new IntWritable(-1);

}

private void setup() {
try {

this.channel = SocketChannel.open(new InetSocketAddress(hostname, port));
this.curSeq.set(this.readNextFromServer());
this.endSeq.set(curSeq.get() + delta.get());

} catch (IOException e) {
e.printStackTrace();

}
}

private int readNextFromServer() throws IOException {
buffer.clear();
buffer.putInt(ServerCmd.READ_NEXT_SEQ.ordinal())

.putInt(nameInBytes.length).put(nameInBytes).flip();
channel.write(buffer);

buffer.clear();
channel.read(buffer);
return buffer.getInt(0);

}

private int nextSeq() throws IOException {
if (curSeq.get() >= endSeq.get()) {

this.curSeq.set(readNextFromServer());
this.endSeq.set(curSeq.get() + delta.get());

}
int ret = curSeq.get();
curSeq.set(ret+1);
return ret;

}
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private void cleanup() {
try {

buffer.clear();
buffer.putInt(ServerCmd.BYE.ordinal()).flip();
channel.write(buffer);
channel.close();

} catch (IOException e) {
e.printStackTrace();

}
}

public static byte[] getBytesUtf8(String string) throws UnsupportedEncodingException{
if (string == null) {

return null;
}
return string.getBytes("UTF-8");

}
}

// Create the UDF for generating version IDs for SCDs
package dk.aau.cs.hive.udf;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

public final class VersionIDUDF extends UDF {
IntWritable curID = new IntWritable();
Text bkey = new Text();

public IntWritable evaluate(final Text bkey) {
if (bkey.toString().equalsIgnoreCase(this.bkey.toString())) {

int curVersionID = curID.get();
IntWritable ret = new IntWritable(curVersionID);
curID.set(curVersionID + 1);
return ret;

} else {
IntWritable ret = new IntWritable(1);
curID.set(2);
this.bkey.set(bkey);
return ret;

}
}

}

-- Add the UDF jar package to the classpath of Hive
ADD jar file:///hive/hiveudfs.jar;

-- Create the temporary functions in Hive for UDFs
CREATE TEMPORARY FUNCTION nextseq AS ’dk.aau.cs.hive.udf.SeqUDF’;
CREATE TEMPORARY FUNCTION versionid AS ’dk.aau.cs.hive.udf.VersionIDUDF’;

-- 4. Load data from the source to type-2 pagescddim table.
-- This requires several intermediate steps.

CREATE TABLE pagestmp1 (pageid INT, url STRING, serverversion STRING,
size INT, validFROM STRING, validto STRING, version INT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE;

CREATE TABLE pagestmp2 (pageid INT, url STRING, serverversion STRING,
size INT, validfrom STRING, validto STRING, version INT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE;
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-- Sort by SCD date for each group
INSERT OVERWRITE TABLE pagestmp1 AS SELECT nextseq(’pagedim_id’) AS pageid,
url, serverversion, size, moddate AS validfrom, NULL AS validto, NULL AS version
FROM pages ORDER BY url, moddate ASC;

-- Add the version number
INSERT OVERWRITE TABLE pagestmp2 AS SELECT pageid, url, serverversion, size,
validfrom, validto, versionid(url) AS version FROM pagestmp1;

DROP TABLE pagestmp1;

-- Update the validto attribute values, 1 Job
INSERT OVERWRITE TABLE pagescddim SELECT a.pageid, a.url, a.serverversion, a.size,
a.validfrom, b.validfrom AS validto, a.version FROM pagestmp2 a LEFT OUTER JOIN
pagestmp2 b ON (a.version=b.version-1 AND a.url=b.url);

DROP TABLE pagestmp2;

Program 7 HiveQL script for the incremental load of type-2 SCDs
CREATE TABLE pagestmp3 (pageid INT, url STRING, serverversion STRING, size INT,
validfrom STRING, validto STRING, version INT) ROW FORMAT DELIMITED FIELDS
TERMINATED BY ’\t’ STORED AS TEXTFILE;

INSERT OVERWRITE TABLE pagestmp3 SELECT * FROM (SELECT pageid, url,
serverversion, size, validfrom, validto, version FROM pagescddim UNION ALL
SELECT pageid, url, serverversion, size, validfrom, validto, version
FROM pagestmp2) a ORDER BY a.url, a.validfrom ASC;

CREATE TABLE pagestmp4 AS SELECT pageid, url, serverversion, size, validfrom,
validto, versionid(url) AS version FROM pagestmp3;

DROP TABLE pagestmp3;

INSERT OVERWRITE TABLE pagescddim SELECT a.pageid, a.url, a.serverversion,
a.size, a.validfrom, b.validfrom as validto, a.version FROM pagestmp4 a
LEFT OUTER JOIN pagestmp4 b ON (a.version=b.version-1 AND a.url=b.url);

DROP TABLE pagestmp4;
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Program 8 HiveQL script for fact processing
-- 1. Create fact table:
CREATE TABLE IF NOT EXISTS testresultsfact(pageid INT, testid int, dateid int,
error int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ LINES
TERMINATED BY ’\n’ STORED AS TEXTFILE;

-- 2. Create the data source table and load the source data:
CREATE TABLE testresults(localfile STRING, url STRING, serverversion STRING,
test STRING, size INT, downloaddate STRING, moddate STRING, error INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’ STORED AS TEXTFILE ;

LOAD DATA LOCAL INPATH ’/q/disk_0/xiliu/dataset/testresults.csv’
OVERWRITE INTO TABLE testresults;

-- 3. Filter the unnecessary attribute values and look up dimension key values:
CREATE TABLE testresults_tmp1 AS SELECT b.pageid, downloaddate, serverversion,
test, error FROM testresults a LEFT OUTER JOIN pagedim b
ON (a.url=b.url AND moddate>=validfrom AND moddate<validto);

CREATE TABLE testresults_tmp2 AS SELECT a.pageid, b.testid, a.serverversion,
a.downloaddate, a.error FROM testresults_tmp1 a LEFT OUTER
JOIN testdim b ON (a.test = b.testname);

DROP TABLE testresults_tmp1;

CREATE TABLE testresults_tmp3 AS SELECT a.pageid, b.testid, a.dateid, a.error
FROM testresults_tmp2 a LEFT OUTER JOIN datedim b ON (a.downloaddate = b.date);

DROP TABLE testresults_tmp2;

CREATE TABLE testresults_tmp4 AS SELECT * FROM (SELECT * FROM testresults_tmp3
UNION ALL SELECT pageid, testid, dateid, error FROM testresultsfact);

DROP TABLE testresults_tmp3;

INSERT OVERWRITE TABLE testresultsfact AS SELECT * from testresults_tmp4;

DROP TABLE testresults_tmp4;
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5.7 Performance Study

In this section, we empirically evaluate the performance of CloudETL by studying
1) the performance of processing different DW schemas, including a star schema,
a snowflake schema, and schemas with an SCD and a big dimension table, and 2)
the effect of the various optimization techniques applied to CloudETL, including the
pre-updates in the mapper and co-location of data. We compare CloudETL with our
previous work ETLMR [50] which is a parallel ETL programming framework using
MapReduce. ETLMR is selected because CloudETL is implemented with the same
spirit as ETLMR and both make use of MapReduce to parallelize ETL execution.
ETLMR is, however, designed for use with an RDBMS-based warehouse system.
We also compare with Hive and the co-partitioning of Hadoop++ [25].

Cluster setup: Our experiments are performed using a local cluster of nine ma-
chines: eight machines are used as the DataNodes and TaskTrackers, each of them
has two dual-core Intel Q9400 processors (2.66GHz) and 3GB RAM. One machine
is used as the NameNode and JobTracker and it has two quad-core Intel Xeon E5606
(2.13GHz) processors and 20GB RAM. The disks of the worker nodes are 320GB
SATA hard drives (7200rpm, 16MB cache, and 3.0Gb/s). Fedora 16 with the 64-bit
Linux 3.1.4 kernel is used as the operating system. All machines are connected via a
gigabit Ethernet switch with bandwidth 1Gbit/s.

We install Hadoop 0.21.0 on all machines and use Hive 0.8.0 as the warehouse
system. Based on the number of cores, we configure Hadoop to run up to four map
tasks or four reduce tasks concurrently on each node. Thus, at any point in time,
at most 32 map tasks or 32 reduce tasks run concurrently. The following configu-
ration parameters are used: the sort buffer size is set to 512MB, JVMs are reused,
speculative execution is turned off, the HDFS block size is set to 512MB, and the
replicator factor is set to 3. Hive uses the same Hadoop settings. For ETLMR, we
use Disco 0.4 [24] as MapReduce platform (as required by ETLMR), set up the Glus-
terFS distributed file system (the DFS that comes with Disco) in the cluster, and use
PostgreSQL 8.3 as the DW DBMS.

Data sets: We use generated data sets for the running example and consider both
the star schema (see Figure 5.2) and the snowflake schema (see Figure 5.8). In the
experiments, the pagedim and datedim dimensions get data from the same source data
set which we scale from 40 to 320GB. Every 10GB of source data result in 1.85GB
pagedim dimension data (113,025,455 rows) and 1.01MB datedim dimension data
(41,181 rows). The testdim dimension has its own source data set with a fixed size
of 32KB (1,000rows). The fact source data set is also scaled from 40 to 320GB.
Every 10GB of source data result in 1.45GB fact data (201,233,130 rows) in the DW.
The reason that the size of the loaded data is smaller is than the dimension source
data contains redundant data, while the dimension attribute values in fact source data
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are replaced by integer values referencing the dimension keys. The data generator
and the CloudETL source code are available at http://people.cs.aau.dk/
˜xiliu/CloudETL.

5.7.1 Dimension Data Processing

Star and snowflaked dimension tables: In the first experiments, we process data
into the dimension tables of both the star schema and the snowflake schema. To
make Hive support dimension processing, we implement a number generator similar
to CloudETL’s to generate the dimension key values and use a user-defined function
(UDF) to get the numbers. We use all 32 tasks to process the data without any SCD
and scale the data from 40GB to 320GB. We measure the time from the start to the
end of each run.

Figure 5.19 shows the results for the star schema. CloudETL processes the three
dimension tables within one job and does data transformations in mappers. The data
for a dimension table is collected and written to HDFS in a reducer. Hive, however,
has to process the statements for different dimension tables in different jobs. The to-
tal time used by Hive is up to 28% higher than the time used by CloudETL (the time
for testdim is not shown in Figure 5.19 since it is negligible). During the tests, we
observe that Hive uses only map to process pagedim and testdim, but uses both
map and reduce to process datedim since datedim requires the DISTINCT oper-
ator to find duplicate records. ETLMR uses its so-called offline dimension scheme in
which the data is first processed and stored locally on each node, then collected and
loaded into the DW by the DBMS bulk loader (PostgreSQL’s COPY is used in this
experiment). As shown, ETLMR is efficient to process relatively small-sized data
sets, e.g., 40GB, but the time grows fast when the data is scaled up and ETLMR uses
about 81% more time than CloudETL for 320GB.
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Figure 5.19: Star schema, no SCDs

40 80 160 320
Dataset size, GB

0

60

120

180

240

300

360

420

Ti
m
e 
(m

in
.)

All-CloudETL
All-Hive
All-ETLMR

Figure 5.20: Sf. schema, no SCDs

We now load the snowflaked dimension tables. Due to the dependencies of the
tables, three jobs are planned by CloudETL’s job planner, i.e., Job1 handles da-

http://people.cs.aau.dk/~xiliu/CloudETL
http://people.cs.aau.dk/~xiliu/CloudETL
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tedim, testdim, topdomaindim, and serverdim while Job2 then handles
domaindim and serververdim and Job3 handles pagedim. However, the ta-
bles in Job2 and Job3 are normalized from the single flat pagedim table of the
star schema, and they use the same source data. To optimize, we first do the data
transformations for the tables handled by Job2 and Job3 in the same job that handles
the tables of Job1. We call this combined job Job′1. In other words, Job′1 pro-
cesses datedim, testdim, topdomaindim, serverdim, domaindimtmp,
serververdimtmp, and pagedimtmp. Job2 and Job3 then use the intermediate
data from the three temporary tables domaindimtmp, serververdimtmp and
pagedimtmp as their inputs, and process the data into the final three dimension ta-
bles, respectively. This optimization reduces the size of the inputs for Job2 and Job3,
and both the jobs only need to look up the foreign key values and do the dimension
key values assignment. Figure 5.20 shows the test results. All the three systems use
more time to process the snowflake schema than the star schema, which is due to
more dimension tables being processed. Hive uses more time than CloudETL and
uses 30% more time when processing 320GB. This is because Hive has to process
the snowflaked dimension tables in several jobs which involve several rounds where
the same source data is read. In addition, getting the foreign key values requires Hive
to do joins. In contrast, CloudETL uses only three jobs that can process multiple ta-
bles. ETLMR uses about 2.05–2.56 times longer time than CloudETL since ETLMR
only supports snowflake schemas in the online dimension scheme in which SQL IN-
SERT and SELECT operations are used. The operations become more expensive
when more data has been loaded.

Processing a type-2 SCD: We now study the performance when processing the
big dimension table pagedim which is a type-2 SCD (see Figure 5.21 and Fig-
ure 5.22). We test both initial load (“init.”) and incremental load (“incr.”) in this
experiment. In an initial load, pagedim is cleared before a job starts. In an in-
cremental load, 320GB source data is already loaded into pagedim before the job
starts. For CloudETL, the initial and incremental loads are both tested using data
with and without co-location. Figure 5.21 and Figure 5.22 show the results of the
initial and incremental loads, respectively. The results show that data co-location im-
proves the performance significantly and between 60% and 73% more time is used
when there is no co-location. This is because the co-located data can be processed by
a map-only job which saves time. CloudETL outperforms ETLMR. When the data
is scaled to 320GB, ETLMR uses up to 2.2 and 2.3 times as long for the initial and
incremental loads (without co-location), respectively. The processing time used by
ETLMR grows faster which is mainly due to the database-side operation called post-
fixing [50] used to set SCD attribute values correctly. CloudETL also outperforms
Hive significantly. For example, when tested using 320GB data with and without co-
location respectively, Hive uses up to 3.9 times and 2.3 times as long for the initial
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load, while for the incremental load, it uses up to 3.5 times and 2.2 times as long.
This is due to that the workaround to achieve the update effect for the SCD han-
dling requires several sequential jobs (4 jobs for the initial load and 5 jobs for the
incremental load, see Program 6 and 7).
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Figure 5.21: Init. loading type-2 page
SCDs
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Figure 5.22: Incr. loading type-2 page
SCDs

Compared with Hadoop++: We now compare with Hadoop++ for incremental
load of pagedim. Hadoop++ co-partitions two data sets by adding a “Trojan” join
and index through MapReduce jobs. The lines (from the two data sets) with identical
join key values are put into the same data split and the same data node. We change our
program to read the co-partitioned data splits, and to run a map-only job. Figure 5.23
shows the test results. The results include the times for prepartitioning the data sets
and indicate that Hadoop++ uses nearly 2.2 times longer than CloudETL to partition
the same data set. Processing the co-partitioned data also takes longer, 8%–14% more
time. We found that Hadoop++ co-partition is much more tedious and has jobs for
the following tasks: converting textual data to binary, co-partitioning, and creating
index. In addition, for an incremental load, Hadoop++ has to rebuild the index from
scratch which is increasingly expensive when the data amounts grow. The co-location
of CloudETL, however, makes use of the customized block placement policy to co-
locate the data. It is very light-weight and more suitable for incremental load.

Processing a type-1 SCD: We now process pagedim as a type-1 SCD and do
the following three tests: T1) we do the type-1 updates in reducers; T2) we first do
“pre-updates” in mappers, then do “post-updates” in reducers; and T3) we first par-
tition the source data, co-locate the partitioned files, and then do map-only updates.
The results are shown in Figure 5.24. The map-only updates (T3) are the fastest fol-
lowed by pre- and post-updates (T2) which use between 16% and 42% more time.
Updates in the reducers (T1) use between 28% and 60% more time. The ETLMR of-
fline dimension scheme supports type-1 SCDs by processing data on MapReduce and
loading the processed data into the DW (see also the discussion of Figure 5.19). It
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Figure 5.23: Proc. type-2 page SCDs
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Figure 5.24: Proc. type-1 page SCDs

uses more time to process the scaled data, e.g., the time for 320GB is 16%, 42% and
90% more than that of T1, T2 and T3, respectively. Hive requires 4 jobs to process
the type-1 SCD and takes 3.5 times longer than CloudETL.

Speedup: We now study the speedup by varying the number of cores from 4
to 32. We do the speedup tests using 320GB pagedim data with and without co-
location, respectively, i.e., the tests are done when only map is used, and when map
and reduce both are used. Figure 5.25 shows the speedup lines of both tests. The
results indicate that the speedup with data co-location is close to linear, and better
than without co-location. In other words, loading co-located data can achieve better
speedup since a map-only job is run for the data. The sub-linearity is mainly due to
the communication cost as well as task setup overheads on Hadoop.

Figure 5.25: Speedup of dim. process-
ing
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Figure 5.26: Proc. facts, small dims
(SCD)

5.7.2 Fact Data Processing

We now study the performance of fact processing. Fact processing includes doing
data transformations and looking up dimension key values. We load fact data into
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testresultsfact in this experiment and use both small and big dimension ta-
bles by varying the size of pagedim. With the small dimension table, the lookup
indices are used and cached in main memory for multi-way lookups. The lookup
index sizes are 32KB (testdim), 624KB (datedim), 94MB pagedim (as a tra-
ditional dimension, i.e., not an SCD) and 131MB pagedim (as a type-2 SCD). They
are generated from 2GB dimension source data. For ETLMR, we use its offline di-
mension scheme when pagedim is used as a non-SCD. This is the ETLMR scheme
with the best performance [50]. When pagedim is used as an SCD, however, the
online dimension scheme is compared. This scheme retrieves dimension key values
from the underlying RDBMS.For Hive, we join the fact data with each of the dimen-
sion tables to retrieve dimension key values. Figures 5.26 and 5.27 present the results
from using the small dimension tables with and without SCD support, respectively.
The comparison of the results in two figures shows that CloudETL (without SCD
support) has the highest performance while the processing with an SCD uses about
5%–16% more time than without an SCD. CloudETL outperforms both ETLMR and
Hive when using small dimension tables since a map-only job is run and in-memory
multi-way lookups are used. In contrast, Hive requires four sequential jobs (an addi-
tional job is used for projection after getting the dimension key values) and uses up
to 72% more time. ETLMR (with SCD support) takes about 2.1 times longer than
CloudETL (see Figure 5.26) due to the increasing cost of looking up dimension key
values from the DW. ETLMR (without SCD support) also runs a map-only job, and
its performance is slightly better when processing the relatively small-sized data (see
Figure 5.27), e.g., 40GB, but the time grows faster when the data is scaled.
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Figure 5.27: Proc. facts, small dims
(no SCD)
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Figure 5.28: Proc. facts, big dims
(SCD)

We now study the performance with big dimension tables. The dimension values
in the big table pagedim is generated from 40GB source data. We use the following
two approaches for the lookups. The first is the hybrid solution which uses a Hive
join to retrieve the key values from the big dimension table and then uses multi-way



5.8 Related Work 143

lookups to retrieve the key values from the small dimension tables (the lookup index
sizes are 4.5MB for datedim and 32KB for testdim). The other is the partitioned
lookup-index solution. Again, we assume that the fact source data has already been
partitioned. Each mapper caches only one partition of the big lookup index, but all the
small lookup indices. A partition of the fact data is processed by the mapper which
caches the look index partition that is relevant to the fact partition. A map-only job is
run to do multi-way lookups. Figure 5.28 and 5.29 show the results with and without
SCD support, respectively. As shown, CloudETL again outperforms both Hive and
ETLMR. When the partitioned big lookup index is used, CloudETL is more efficient
than when the hybrid solution is used. The partitioned lookup-index solution requires
between 11% and 18% more time. Hive and ETLMR do not scale as well and, e.g,
for 320GB and no SCD, they require 71% and 211% more time, respectively. We
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Figure 5.30: Speedup of fact process-
ing

now study the speedup with the scaling up of the number of the nodes. Figure 5.30
shows the speedup when processing 320GB fact source data using small dimension
tables and big dimension tables (using the hybrid solution). As shown, CloudETL
achieves a nearly linear speedup in both cases. The speedup is slightly better when
using small dimension tables than using big dimension tables. The reason for this is
that the hybrid solution requires an additional Hive job for the big dimension.

5.8 Related Work

To tackle large-scale data, parallelization is the key technology to improve the scala-
bility. The MapReduce paradigm [22] has become the de facto technology for large-
scale data-intensive processing due to its ease of programming, scalability, fault-
tolerance, etc. Multi-threading is another parallelization technology which has been
used for a long time. Our recent work [83] shows multi-threading is relatively easy
for ETL developers to apply. It is, however, only effective on Symmetric Processor
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Systems (SMP) and does not scale out on many clustered machines. Thus, it can only
achieve limited scalability. The two widely studied parallelism models Parallel Vir-
tual Machine (PVM) [77] and Message Passing Interface (MPI) [30] provide abstrac-
tions for cluster-level parallelization by extensive messaging mechanisms. However,
they are mostly designed for tackling processor-intensive problems and are compli-
cated to use such that developers, e.g., have to manage the assignment of computing
resources. The recent parallelization systems Clustera [23] and Dryad [38] support
general cluster-level computations to data management with parallel SQL queries.
They are, however, still only available as academic prototypes and remain far less
studied than MapReduce.

Stonebraker et al. compare MapReduce with two parallel DBMSs (a row-store
and a column-store) and the results show that the parallel DBMSs are significantly
faster than MapReduce [60, 76]. They analyze the architectures of the two system
types, and argue that MapReduce is not good at query-intensive analysis as it does
not have a declarative query language, schema, or index support. Olston et al. com-
plain that MapReduce is too low-level, rigid, hard to maintain and reuse [57]. In
recent years, HadoopDB [2], Aster, Greenplum, Cloudera, and Vertica all have de-
veloped hybrid products or prototypes by using two class systems which use both
MapReduce and DBMSs. Other systems built only on top of MapReduce but provid-
ing high-level interfaces also appear, including Pig [57] and Hive [86]. These systems
provide MapReduce scalability but with DBMS-like usability. They are generic for
large-scale data analysis, but not specific to ETL. For example, they do not support
SCD updates. In contrast, CloudETL provides built-in support for processing dif-
ferent DW schemas including SCDs such that the programmer productivity is much
higher. Our previous work, ETLMR, [50] extends the ETL programming framework
pygrametl [84] to be used with MapReduce. ETLMR, however, is built for pro-
cessing data into an RDBMS-based DW and some features rely on the underlying
DW RDBMS, such as generating and looking up dimension key values. In contrast,
CloudETL provides built-in support of the functionality needed to process dimen-
sions and facts. ETLMR uses the RDBMS-side operation “post-fixing” to repair
inconsistent data caused by parallelization, while CloudETL solves this issue by pro-
viding global key value generation and SCD updates on Hadoop. The recent project
Cascading [18] is able to assemble distributed processes and plan them to run in a
Hadoop cluster. The workflow of Cascading is somewhat similar to the transformers
of CloudETL. However, Cascading does not consider DW-specific data processing
such as key generation, lookups, and processing star, snowflake schemas and SCDs.

The co-location of data in CloudETL is similar to the co-location in CoHadoop [29].
CoHadoop is, however, a general extension to Hadoop that requires applications to
explicitly co-locate files by using a common identifier (a “locator”) when a file is
created. Instead of changing Hive to do that, we in CloudETL exploit how files
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are named and define co-location by means of a regular expression. Further, this is
fully implemented by using HDFS’s standard block placement mechanism such that
CloudETL requires no changes of the Hadoop/HDFS code. HadoopDB [2] and Had-
oop++ [25] do also co-locate data. HadoopDB does so by using RDBMS instances
instead of HDFS. Hadoop++ considers the entire data set when doing co-location
which is impractical when incremental data is added.

Pig and Hive provide several join strategies in terms of the features of the joined
data sets. HadoopDB [2] is a hybrid solution that uses both Hadoop and DBMS
instances. It pushes joins to the DBMSs on each node. The join algorithms for
MapReduce are compared and extensively studied in [14, 40]. The join implemen-
tations above process a join operation within one MapReduce job, which causes a
non-trivial cost. To address this issue, [3, 39] propose multi-way joins which shuf-
fle the joining of data to reducers in an one-to-many fashion and do the joins on
the reduce side. This, however, becomes expensive if there are many tables to join.
In contrast, CloudETL does “multi-way lookups” (similar to the multi-way joins) in
map side when processing fact data and only a minimal amount of data is saved in the
lookup index files and used for joins. This is much more efficient for our particular
purpose.

5.9 Conclusion and Future Work

With the ever-growing amount of data, it becomes increasingly challenging for data
warehousing technologies to process the data in a timely manner. This chapter pre-
sented the scalable dimensional ETL framework CloudETL for data warehousing.
Unlike traditional data warehousing systems, CloudETL exploits Hadoop as the ETL
execution platform and Hive as the warehouse system. CloudETL provides built-in
support of high-level ETL-specific constructs for different DW schemas, including
star schemas, snowflake schemas, and SCDs. The constructs facilitate easy imple-
mentation of parallel ETL programs and improve programmer productivity very sig-
nificantly. We presented an approach for efficient processing of updates of SCDs in a
distributed environment. We proposed a method for processing type-1 SCDs which
does pre-updates in mappers and post-updates in reducers. We also presented a block
placement policy for co-locating the files in HDFS to place data to load such that
a map-only job can do the load. In fact processing, we proposed to use distributed
lookup indices for multi-way lookups, and a hybrid approach to achieve efficient
retrieval of dimension key values. We conducted extensive experiments to evalu-
ate CloudETL and compared with the similar works ETLMR and Hive. The results
showed that CloudETL achieves better performance than ETLMR when processing
different dimension schemas and outperforms the dimensional ETL capabilities of
Hive: It offers significantly better performance than Hive when processing differ-
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ent DW schemas and it is much easier to implement parallel ETL programs for the
schemas.

There is a number of future research directions for this work. First, we plan to
make CloudETL support more ETL transformation operators. Second, it would be
interesting to consider more efficient backends allowing fast ETL processing. Last,
it would be good to create a graphical user interface (GUI) where developers can
“draw” an ETL flow by using visual transformation operators.



Chapter 6

Summary of Conclusions and
Future Research Directions

This chapter summarizes the conclusions and directions for future work presented in
Chapter 2-5, Appendix A and B.

6.1 Summary of Results

This thesis is about the data warehousing technologies for large-scale and right-time
data. The work led to this thesis was primarily done in relation to the eGovMon
project for which several aspects of the data warehousing technologies were pro-
posed. The thesis has thus among other things presented the technologies to deal
with several problems of the data warehousing, including how to handle OWL Lite
data efficiently, how to handle the near real-time/right-time data, and especially, how
to tackle the exponential growth of the data today. The developed technologies were
all made to be general, and although the work was done in relation to the eGovMon
project, the developed technologies can also be applied to the other environments.
In the following, we go through each of the presented chapters and summarize the
important results.

Chapter 2 addressed how to efficiently store and retrieve OWL Lite data. 3XL is
a DBMS-based triple-store with a specialized data-dependent schema derived from
an OWL Lite ontology. Unlike the traditional triple-store of saving triples in a nar-
row and giant table, 3XL stores triples in many class tables. In other word, 3XL
performs the “intelligent partitioning” of the triples, which is efficiently used by the
system to answer queries. In this chapter, we first described how to generate the
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database schema based on the ontology that describes the triples. We introduced the
rules on how to map OWL classes, and properties, and the property restrictions to
an object-relational database schema. We then presented a number of techniques to
optimize the loading performance, including the in-memory value holders, partial-
commit, using the main-memory Berkeley DB for caching map table, and bulk-load.
We described the queries where the subject and/or the predicate is known, as we
found such queries are the most important for most bulk data management applica-
tions. We also described the composite queries, and introduced how to make use of
the map table to speed up query performance. We evaluated 3XL by the extensive
experiments of using real-world EIAO data sets and LUBM benchmark, and com-
pared with other similar works. The results showed that 3XL has loading and query
performance comparable to the best file-based triple-store, BigOWLIM, and outper-
forms other DBMS-based solutions. At the same time, 3XL provides flexibility as
it is DBMS-based and uses a specialized and intuitive schema to represent the data.
3XL thus bridges the gap between efficient representations and flexible and intuitive
representations of the data. 3XL thus places itself in a unique spot in the design space
for triple-stores.

Chapter 3 presented an ETL middle-ware system, All-RiTE, for live DW data.
We introduced the supported operations of All-RITE for live DW data, including
INSERT, UPDATE, DELETE and SELECT. We proposed a novel intermediate in-
memory buffer catalyst to cache live DW data, and to perform the on-the-fly updates
and deletions when the data in the catalyst is queried or materialized. We also pre-
sented a number of flush policies of defining when the data is available to external
users, e.g., users can specify the time accuracy of the data read from the catalyst. In
this chapter, we introduced dual data stores to optimize read/write performance of the
data in the catalyst, and to manage the concurrency of read/write. We compared the
supported operations with bulk loading, RiTE, traditional JDBC insert, JDBC batch
and RDBMS selection. The results showed that in short transactions All-RiTE inser-
tion is 4.7, 4.4, 9.2 and 2.4 times faster than bulk loading, RiTE, JDBC insert, and
JDBC batch, respectively. This is an important contribution since short transactions
are typically used for processing live DW data. Thus, with All-RiTE it is possible
to insert data quickly and also make it available to consumers quickly. When per-
forming the on-the-fly updates and deletions for the live DW data, All-RiTE works 4,
3.9, 8.9 and 3.6 times faster than bulk loading, RiTE, JDBC insert and JDBC batch,
respectively. When selecting the full set of the rows of a table, RiTE is comparable
to the select on an ordinary table in the DW. All-RiTE has better performance when
selecting the the rows with the condition on a non-indexed column. Thus, the results
indicates that All-RiTE provides a new “sweet spot” with the best of both worlds for
live DW data: JDBC-like data availability but with bulk-load speed.
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Chapter 4 presented ETLMR, a dimensional ETL programming framework us-
ing MapReduce. The presented framework supports the high-level ETL-specific
constructs on MapReduce, including those for processing star schema, snowflake
schema, SCDs, and data-intensive dimensions. We proposed a number of paral-
lelization methods for processing different DW schemas on MapReduce, including
one dimension one task (ODOT), one dimension all task (ODAT), level-wise and
hierarchy-wise methods for snowflaked dimension tables. We also presented the of-
fline dimension scheme for efficiently processing a big dimension table, in which the
dimension data is partitioned, saved in each node locally and cached to main memory
for lookups. This chapter also proposed the methods for processing fact data, and the
method of parallel bulk-loading processed facts into the DW. The experiments first
evaluated the scalability of processing different DW schemas, then compared with
the other data warehousing tools using MapReduce including PDI v4.1. The results
showed that ETLMR achieves good scalability, and the performance outperforms
PDI significantly. This chapter also compared the programming effort of implement-
ing a parallel program using ETLMR, Hive and Pig. ETLMR needs the least effort,
e.g., it only needs 14 statements for a snowflake schema, while Hive and Pig need 23
and 40 statements, respectively. Therefore, ETLMR can achieve high programmer
productivity for implementing the parallel ETL programs for different DW schemas.

Chapter 5 presented CloudETL, a scalable dimensional ETL framework for cloud
warehouse. This chapter presented a novel data warehousing architecture for large-
scale data, i.e., using Hadoop as the platform to parallelize ETL execution, and Hive
as the warehouse to store data. CloudETL is applicable for the data warehousing in
a cloud environment. This chapter detailed how to processing different DW schemas
on Hadoop, and how to make use of Hive such as join in data warehousing. A novel
approach was presented for doing updates for SCDs in a distributed environment.
To process dimensions efficiently, this chapter first proposed the in-map updates for
type-1 SCDs, then proposed the data co-location for very big dimension processing.
In fact processing, this chapter presented the method of using lookup indices and
using multi-way lookups. This chapter also presented the hybrid approach (using
Hive joins and multi-way lookups) for fact processing with very big dimensions. In
addition, this chapter introduced other technologies that are necessary for the data
warehousing to Hive, including dimension key value generations, transformation op-
erators and job planner. The experiments studied the performance of CloudETL, and
compared with Hive and ETLMR. The results showed that CloudETL has better per-
formance than ETLMR when processing scalable sizes of data, and outperforms the
dimensional ETL capabilities of Hive. To process an identical DW schema, Hive
requires much more programming effort and more jobs, e.g., for a type-2 SCD,
CloudETL only needs 6-code lines and 1 job, while Hive requires 112 code lines
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and 5 jobs. The co-location of CloudETL was also compared with the co-partition of
Hadoop++, and the results showed that CloudETL co-location was 2.2 times faster.

Appendix A is the supplement to the 3XL system in Chapter 2. It demonstrated
how to use 3XL, including data dependent schema generation, triple loading, point-
wise and composite queries. It also showed how to configure the run-time setting to
tune the loading performance. Appendix B is the supplement to ETLMR in Chap-
ter 2, which showed that it is very easy to implement parallel ETL programs for
different DW schema using ETLMR. Appendix C compared the programming ef-
fort for a snowflake schema using ETLMR, Hive and Pig, which further shows that
ETLMR is more efficient.

Data warehousing is a collection of decision support technologies, which enable
enterprises to make better and faster decision, and to gain competitive advantage.
Traditional technologies become increasingly challenging to meet the emerging re-
quirements of data warehousing today. This thesis has considered several aspects
of the current challenges and issues of data warehousing. The first proposed tech-
nology is a RDBMS-based triple-store for OWL Lite data. Since 3XL makes use
of the object-relational features of PostgreSQL, i.e., inheritance, it give an intuitive
representation of the triples stored in the RDBMS. 3XL not only has the perfor-
mance offered by the file-based triple-stores, but also has the flexibility offered by
the DBMS-based ones, e.g., very convenient to integrate with other non-OWL Lite
data. 3XL is suitable for the projects which emphasize the efficiency of inserting
and retrieving large amounts of triples (bulk operations), but without requiring the
advanced features, such as logical inference etc.

The presented middle-ware system, All-RiTE, in Chapter 3 offers the capability
of right-time and near real-time data integration. Traditionally, the data refreshment
of DW proceeds in regular and off-line fashion. The right-time/near real-time data
availability offered by All-RiTE enables enterprises to get the information quickly.
Particularly, All-RiTE supports on-the-fly data modifications including UPDATE and
DELETE. This enables to integrate live DW data in right-time/near real-time fashion,
which is widely recognized as one of the most tricky problems in data warehousing.
Since the data can be modified before, but not after, being loaded into the DW, it
achieves much very good loading performance, e.g., the experiments showed that
the performance even faster than bulk-load with deletions and updates. All-RiTE
can be integrate with the ETL solutions which require right-time/near real-time date
availability, or process live DW data.

The programming framework, ETLMR, presented in Chapter 4 facilitates to im-
plement parallel dimensional ETL programs. Although ETL parallelization has long
been studied, it is not easy to implement, such as using MPI, or it has certain restric-
tions, such as requiring using high-end machines. ETLMR considers these difficulties
and restrictions. Thus, it provides the high-level ETL-specific constructs for quickly
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implementing parallel ETL programs for different schemas, and cost-effective scal-
ability. The examples in Chapter 4 and Appendix B showed that it was very easy to
implement a parallel ETL program using ETLMR, only a few code lines needed in
configuration. Thus, ETLMR achieves both good scalability and programmer pro-
ductivity.

The presented CloudETL in Chapter 5 supports scalable operations for cloud
warehouse. The architecture of CloudETL differs dramatically from those of the in-
house data warehousing systems. Due to its use of the cloud products, Hadoop and
Hive, CloudETL is applicable to be deployed in a cloud environment for processing
large-scale data for data warehousing. The idea of SCD updates is also applicable to
the other works that require data modification operations in a distributed environment.
The method of co-locating data in HDFS can also be applied to the other works which
require some sets of data being processed together.

CloudETL and ETLMR both apply the cutting-edge cloud computing technology,
MapReduce, to the parallelization of dimensional ETL. However, they differentiate
in several aspects. First, they have different design purposes. ETLMR is designed for
the traditional DBMS-based warehouse, while CloudETL is designed for the cloud
warehouse, and CloudETL has much better scalability. Second, the parallelization
methods in ETLMR are the foundation for the technologies used by CloudETL. In
ETLMR, we emphasize the trials of the parallelization methods for different DW
schemas, such as ODOT and ODAT. In CloudETL, however, we focus on using all
the tasks but different optimization methods to improve the performance, including
in-map updates, co-location and lookup indices. Third, they have different imple-
mentations, including MapReduce platforms and the programming languages. The
experiences and lessons from ETLMR are taken into account during the implementa-
tion of CloudETL. For example, we introduce a metastore in CloudETL to maintain
the global states of ETL. CloudETL introduces the key value generation service, and
SCD updates to avoid the post-fixing of ETLMR.

In summary, the thesis has thus presented several aspects of data warehousing
technologies of recent focus. The proposed technologies are designed to be general.
They can be applied to various areas such as web data, large-scale data and right-
time/near real-time data warehousing.

6.2 Research Directions

There are a number of future work for the technologies presented in this thesis. The
open source technologies for BI has been evolving. Many volunteers participate in
the development of open source projects around the world. However, in general
the open source technologies for BI still lag behind the commercial counterparts for
many years. There are still no complete solutions that can replace the commercial
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ones. It would be interesting to continue developing more open source software for
BI. In addition, it would also be interesting to keep monitoring the evolution of the
open source BI technologies. So, we expect in the near future complete open source
BI solutions could be available to enterprises, organizations or even persons.

For the 3XL system, it would be interesting to integrate 3XL triple-store with
All-RiTE, which builds a right-time triple warehousing solution. 3XL triple-store is
thus used as the data source system, and the triples in 3XL are loaded into the DW
by All-RiTE. According to the flush policies used, the warehousing system, thus, can
offer right-time or near real-time data availability. It would be desirable to extend
3XL to support more or all the ontology constructs of OWL Lite, and to support an
OWL/RDF query language that exploits the specialized database schema. As large
amounts of web data are produced each day, and much of them is in OWL/RDF
format, it is interesting to build a triple-store that uses distributed file system (DFS)
to store large-scale OWL/RDF data, and uses MapReduce to parallelize loading and
querying the triples.

Today, the Web increasingly becomes one of the most important sources for de-
cision support systems. An increasing number of DW projects for web data appear.
It is very attractive to implement a DW system that can easily integrate the dynamic
data from the Web, such as using virtual dimension or fact tables over the web re-
sources including RDF documents, XML documents, web services, etc. It would be
interesting to represent the knowledge in the DW in a semantic way, i.e., RDF, such
that users can do the reasoning and find new knowledge.

There are several future directions for Chapter 3. The first one is to support par-
allelization operation. As it is very common to process several tables together in data
warehousing, and currently almost all the computers have multi-core CPUs, it would
be interesting to extend All-RiTE to support the data-level parallelization, i.e., using
multi-threading to process data into a single table. The current implementation, how-
ever, only supports loading multiple tables at the same time, each of which uses a
separate thread to load data into a separate table. Second, it would be interesting to
implement All-RiTE as a module for the host DBMS, instead of a middle-ware, such
that it would provide the DBMS with the near real-time and right-time capabilities
for live DW data. Third, more complete functionalities implemented for the catalyst
are desirable, e.g., offers some DBMS functionalities, supports logging, and provides
a domain language to operate the data in the catalyst, etc. Fourth, the current imple-
mentation is more or less coupled with the host DBMS, e.g., creates the MinMax
table in the underlying DBMS, and uses a table function to read the data from the
catalyst. It would be interesting to union the fresh data with the materialized data in
the catalyst, instead of in the underlying DBMS.

For ETLMR described in Chapter 4, there are also some interesting directions for
future work. First, it seems attractive to investigate how to avoid the post-fixing step
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that repairs the data inconsistent problem caused by the data processed by multiple
parallel tasks. Second, it would be ideal to implement a global sequential number
generator as we did in Chapter 5 such that ETLMR can be decoupled from the un-
derlying DBMS, and be more portable for the use. Third, it would be interesting to
extend ETLMR to support more complex ETL transformation operators, such as join,
split, merge, etc.

Also with respect to CloudETL there are several future directions as follows.
First, it would be desirable to implement more transformation operators for Cloud-
ETL. Second, it would be interesting to offer a tool for migrating the data from HDFS
to RDBMS-based warehouse systems in parallel such that CloudETL can be inte-
grated with the traditional DW systems. Third, it is also desirable to implement a
domain specific language for the dimensional ETL operations on Hadoop. Last, as
some ETL developers prefer to use a graphical user interface (GUI) for their develop-
ment, it would be interesting to develop a GUI-based tool for CloudETL such that the
developers can “draw” ETL flows by using the visualized transformation operators.

In the future, we will continue to focus our attention on the following aspects.
First, with the exploding data growth today, enterprises are forced to process data
quickly and efficiently, however, most of the existing data warehousing systems can
not be scaled out cost-effectively. MapReduce for data warehousing deserves our
further research, such as exploring its use for more complex DW schemas and ETL
operations. Second, with the increasing popularity of cloud computing technology,
it seems highly appealing to provide “out-of-the-box” BI solutions on the cloud such
that organizations can build their BI systems quickly, with less effort, and at a poten-
tially lower cost. Third, with the popularity of the social network and the widely use
of portable devices, there would be an increasing need for the near real-time anal-
ysis on the data from hundreds, or even thousands of sources. It is thus interesting
to investigate the technologies that support integrating data from a large number of
data sources in near real-time/right-time fashion. Fourth, with the increasing diver-
sity of the data sources today, data warehousing has to handle the unstructured data
from many sources, including online surveys, Web forums, e-mail, etc. Since the
data from these sources does not conform to any standard data models, and possibly
has a big size, it is interesting to discover how to incorporate the unstructured data
information into BI systems.

In conclusion, we see that data warehousing comprises a wide variety of inter-
esting research topics, however, this thesis has only addressed several aspects. In
the future, we will do scientific research on a wide range of topics related to data
warehousing, and discover the new research opportunities.





Bibliography

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable Semantic
Web Data Management Using Vertical Partitioning. In Proc. of VLDB, pp. 411–
422, 2007.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB, 2(1):922–933, 2009.

[3] F. N. Afrati and J. D. Ullman. Optimizing Joins in a Map-reduce Environment.
In Proc. of EDBT, pp.99-110, 2010

[4] S. Alexaki, V. Chrisophides, G. Karvounarakis, and D. Plexousakis. On Storing
Voluminous RDF Descriptions: The Case of Web Portal Catalogs. In Proc. of
WebDB, pp. 43–48, 2001.

[5] S. Alexaki, V. Chrisophides, G. Karvounarakis, D. Plexousakis, and K. Tolle.
The ICS-FORTH RDFSuite: Managing Volumiunous RDF Description Bases.
In Proc. of ISWC, pp. 1–13, 2001.

[6] Amazon Elastic Compute Cloud (Amazon EC2). Available at aws.amazon.
com/ec2 as of 2012-08-011.

[7] G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT press, 2004.

[8] Applications and Organizations Using Hadoop. Available at wiki.apache.
org/hadoop/PoweredBy as of 2012-08-01.

[9] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons and R. Stoica. MaSM:
Efficient Online Updates in Data Warehouses. In Proc. of SIGMOD, 2011.

1This bibliography has been created by merging the bibliographies from the individual papers that
appear in this thesis. The dates given in “as of ...” for web resources have in general been updated, but
for web resources that do not exist anymore or have had their content significantly updated, the date
given in the original paper has been kept.

155

aws.amazon.com/ec2
aws.amazon.com/ec2
wiki.apache.org /hadoop /PoweredBy
wiki.apache.org /hadoop /PoweredBy


156 BIBLIOGRAPHY

[10] B. Azvine, Z. Cui and D. Nauck. Towards Real-time Business Intelligence. BT
Technology Journal, 23(3):214-225, 2005.

[11] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L. Stein. OWL Web Ontology Language
Reference, W3C Recommendation, 2004. Available at w3.org/TR/
REC-rdf-syntax as of 2012-08-01.

[12] Berkeley DB - Oracle Embedded Database. Available at oracle.com/us/
products/database/berkeley-db as of 2012-08-01.

[13] BigOWLIM - Semantic Repository for RDF(S) and OWL. Available at www.
ontotext.com/owlim/OWLIM_primer.pdf as of 2012-08-01.

[14] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, and Y. Tian. A Com-
parison of Join Algorithms for Log Processing in MapReduce. In Proc. of SIG-
MOD, pp.975-986, 2010.

[15] M. Bouzeghoub, F. Fabret, and M. Matulovic. Modeling Data Warehouse Re-
freshment Process as a Workflow Application. In Proc. of DMDW, 1999.

[16] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Archi-
tecture for Storing and Querying RDF and RDF Schema. In Proc. of ISWC, pp.
54–68, 2002.

[17] R. M. Bruckner, B. List and J. Schiefer. Striving Towards Near Real-Time Data
Integration for Data Warehouses. In Proc. of Dawak, pp. 317–326, 2002.

[18] Cascading, www.cascading.org as of 2012-08-01.

[19] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets.
PVLDB, 1(2):1265–1276, 2008.

[20] S. Das, E. Chong, W. Zhe, M. Annamalai, and J. Srinivasan. A Scalable Scheme
for Bulk Loading Large RDF Graphs into Oracle. In Proc. of ICDE, pp. 1297–
1306, 2008.

[21] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing Tool.
CACM, 53(1):72–77, 2010.

[22] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. CACM, 1(51):107–113, 2008.

w3.org/TR/REC-rdf-syntax
w3.org/TR/REC-rdf-syntax
oracle.com/us/products/database/berkeley-db
oracle.com/us/products/database/berkeley-db
www.ontotext.com/owlim/OWLIM_primer.pdf
www.ontotext.com/owlim/OWLIM_primer.pdf


BIBLIOGRAPHY 157

[23] D. DeWitt, E. Robinson, S. Shankar, E. Paulson, J. Naughton, A. Krioukov,
and J. Royalty. Clustera: An Integrated Computation and Data Management
System. PVLDB, 1(1):28–41, 2008.

[24] Disco project. Available at discoproject.org as of 2012-08-01.

[25] J. Dittrich, J. -A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad.
Hadoop++: Making a Yellow Elephant Run Like a Cheetah. PVLDB, 3(1):518–
529, 2010.

[26] J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, E. Schonberg, K. Srini-
vas, and L. Ma. Scalable Semantic Retrieval Through Summarization and Re-
finement. In Proc. of AAAI, pp. 299–304, 2007.

[27] eGoverment Monitor. Available at egovmon.no as of 2012-08-01.

[28] EIAO Ontology. Available at people.cs.aau.dk/˜xiliu/
3xlsystem/experiment/ontology/eiao.owl as of 2012-08-01.

[29] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPherson.
CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop. PVLDB,
4(9):575–585, 2011.

[30] M. Forum. MPI 2.0 Standard. 1997.

[31] E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce: A Practi-
cal Approach to Self-describing, Polymorphic, and Parallelizable User-defined
Functions. PVLDB, 2(2):1402–1413, 2009.

[32] Gartner. Available at www.gartner.com/it/page.jsp?id=1856714
as of 2012-08-01.

[33] L. Golab, T. Johnson and V. Shkapenyuk. Scheduling Updates in a Real-time
Stream Warehouse. In Proc. of ICDE, pp. 1207–1210, 2009.

[34] Y. Guo, J. Heflin, and Z. Pan. LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semantics: Science, Services and Agents on the World Wide Web,
3(2):158–182, 2005

[35] Hadoop. hadoop.apache.org as of 2012-08-01.

[36] S. Han, D. Chen, M. Xiong, and A. K Mok. Online Scheduling Switch for
Maintaining Data Freshness in Flexible Real-Time Systems. In Proc. of RTSS,
pp. 115–124, 2009.

discoproject.org
egovmon.no
people.cs.aau.dk/~xiliu/3xlsystem /experiment/ontology/eiao.owl
people.cs.aau.dk/~xiliu/3xlsystem /experiment/ontology/eiao.owl
www.gartner.com/it/page.jsp?id=1856714


158 BIBLIOGRAPHY

[37] S. Harris and N. Gibbins. 3Store: Efficient Bulk RDF Storage. In Proc. of PSSS,
pp. 1–15, 2003.

[38] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In Proc. of EuroSys,
pp. 59–72, 2007.

[39] D. Jiang, A. K. H. Tung, and G. Chen. Map-join-reduce: Towards Scalable and
Efficient Data Analysis on Large Clusters. TKDE, 23(9):1299–1311, 2010.

[40] D. Jiang, B.C. Ooi, L. Shi, and S. Wu. The Performance of MapReduce: An
In-depth Study. PVLDB, 3(1):472–483, 2010.

[41] T. Jörg and S. Dessloch. Near Real-time Data Warehousing Using State-of-the-
art ETL Tools. In Enabling Real-Time Business Intelligence, 41:100-117, 2010.

[42] R. Kimball. Design Tip #57: Early Arriving Facts. www.kimballgroup.
com, 2004.

[43] R. Kimball and W.H. Inmon. The Data Warehouse Toolkit. John Wiley: New
York, 1996.

[44] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM – A Pragmatic Semantic
Repository for OWL. In Proc. of SSWS, pp. 182–192, 2005.

[45] G. Kovoor, J. Singer, and M. Lujan. Building a Java MapReduce Framework
for Multi-core Architectures. In Proc. of MULTIPROG, pp. 87–98, 2010.

[46] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. Available at w3.org/TR/REC-rdf-syntax as of
2012-08-01.

[47] A. Labrinidis and N. Roussopoulos. A Performance Evaluation of Online Ware-
house Update Algorithms. Technical Report (CS-TR-3954), Dept. of Computer
Science, University of Maryland, Nov. 1998.

[48] J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan
& Claypool Publishers, 2010.

[49] X. Liu, C. Thomsen, and T. B. Pedersen. CloudETL: Scalable Dimensional ETL
for Hadoop and Hive. Technical Report (TR-31), Dept. of Computer Science,
Aalborg University, Available at dbtr.cs.aau.dk/pub.htm as of 2012-
08-01.

[50] X. Liu, C. Thomsen, T. B. Pedersen, ETLMR: A Highly Scalable Dimensional
ETL Framework Based on MapReduce. In Proc. of Dawak, pp. 96–111, 2011.

www.kimballgroup.com
www.kimballgroup.com
w3.org/TR/REC-rdf-syntax
dbtr.cs.aau.dk/pub.htm


BIBLIOGRAPHY 159

[51] LUBM queries. swat.cse.lehigh.edu/projects/lubm/query.
htm as of 2012-08-01.

[52] H. P. Luhn. A Business Intelligence System. IBM Journal of Research and De-
velopment, 2(4):314-319, 1958.

[53] J. S. Narayanan and T. Kurc. DBOWL: Towards Extensional Queries on
a Billion Statements Using Relational Databases. Technical Report (2006),
Available at bmi.osu.edu/resources/techreports/osubmi.tr.
2006.n3.pdf as of 2012-08-01.

[54] G. Luo, J. F. Naughton, C. J. Ellmann and M. W. Waltzke. Transaction Reorder-
ing and Grouping for Continuous Data Loading. In Proc. of BIRTE, pp. 34-49,
2006

[55] T. Neumann and G. Weikum. RDF-3X: A RISC-style Engine for RDF. PVLDB,
1(1):647–659, 2008.

[56] T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF
Graphs. In Proc. of SIGMOD, pp. 627–640, 2009.

[57] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-
so-foreign Language for Data Processing. In Proc. of SIGMOD, pp. 1099–1110,
2008.

[58] Oracle Semantic Technologies Center. Available at oracle.com/
technology/tech/semantic_technologies as of 2012-08-01.

[59] Z. Pan and J. Heflin. DLDB: Extending Relational Databases to Support Se-
mantic Web Queries. In Proc. of PSSS, pp. 109–113, 2003.

[60] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. Stone-
braker. A Comparison of Approaches to Large-scale Data Analysis. In Proc. of
SIGMOD, pp. 165–178, 2009.

[61] D. Peng and F. Dabek. Large-scale Incremental Processing Using Distributed
Transactions and Notifications. In Proc. of OSDI, pp. 251–264, 2010.

[62] Pentaho. Available at www.pentaho.com as of 2012-08-01.

[63] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis and N. E. Frantzell.
Supporting Streaming Updates in an Active Data Warehouse. In Proc. of ICDE,
pp. 476–485, 2007.

[64] Press Releases. Available at www.gartner.com/it/page.jsp?id=
1856714 as of 2012-08-01.

swat.cse.lehigh.edu/projects/lubm/query.htm
swat.cse.lehigh.edu/projects/lubm/query.htm
bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf
bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf
oracle.com/technology/tech/semantic_technologies
oracle.com/technology/tech/semantic_technologies
www.pentaho.com
www.gartner.com/it/page.jsp?id=1856714
www.gartner.com/it/page.jsp?id=1856714


160 BIBLIOGRAPHY

[65] G. Prud’ Hommeaux, A. Seaborne, and others. SPARQL query language for
RDF. W3C Working Draft, 2006.

[66] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Eval-
uating MapReduce for Multi-core and Multiprocessor Systems. In Proc. of
HPCA, pp. 13–24, 2007.

[67] Resource Description Framework (RDF) Model and Syntax Specification.
Available at www.w3.org/TR/PR-rdf-syntax as of 2012-08-01.

[68] R. J. Santos and J. Bernardino, Real-time Data Warehouse Loading Methodol-
ogy. In Proc. of IDEAS, pp. 49–58, 2008.

[69] J. Schiefer and R. M. Bruckner. Container-Managed ETL Applications for In-
tegrating Data in Near Real-Time. In Proc. of ICIS, pp. 604–616, 2003.

[70] Shelve - Python object persistence. Available at docs.python.org/
library/shelve.html as of 2012-08-01.

[71] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-
store Support for RDF Data Management: Not All Swans Are White. PVLDB,
pp. 1553–1563, 2008.

[72] A. Simitsis, P. Vassiliadis and T. Sellis. Optimizing ETL Processes in Data
Warehouses. In Proc. of ICDE, pp. 564–575, 2005.

[73] P. Snyder. tmpfs: A Virtual Memory File System. In Proc. of EUUG, pp. 241–
248, 1990.

[74] SoftReference. Available at download.oracle.com/javase/6/docs/
api/java/lang/ref/SoftReference.html as of 2012-08-01.

[75] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a Column-oriented DBMS.
In Proc. of VLDB, pp. 553–564, 2005.

[76] M. Stonebraker, D. J. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. MapReduce and Parallel DBMSs: friends or foes?. CACM, 53(1):64–
71, 2010.

[77] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing, Con-
currency - Practice and Experience, 2(4):315–339, 1990.

[78] The Apache Hadoop Project. Available at hadoop.apache.org as of 2012-
08-01.

www.w3.org/TR/PR-rdf-syntax
docs.python.org/library/shelve.html
docs.python.org/library/shelve.html
download.oracle.com/javase/ 6/docs/api/java/lang/ref/SoftReference.html
download.oracle.com/javase/ 6/docs/api/java/lang/ref/SoftReference.html
hadoop.apache.org


BIBLIOGRAPHY 161

[79] The Java Database Connectivity (JDBC). Available at www.oracle.com/
technetwork/java/javase/jdbc/ as of 2012-08-01.

[80] C. Thomsen and T. B. Pedersen. A Survey of Open Source Tools for Business
Intelligence. Data Warehousing and Knowledge Discovery, pp. 74–84, 2005.

[81] C. Thomsen and T. B. Pedersen. A Survey of Open Source Tools for Business
Intelligence. IJDWM, 5(3):56–75, 2009.

[82] C. Thomsen and T.B. Pedersen. Building a Web Warehouse for Accessibility
Data. In Proc. of DOLAP, pp. 43–50, 2006.

[83] C. Thomsen and T. B. Pedersen. Easy and Effective Parallel Programmable
ETL. In Proc. of DOLAP, pp. 37–44, 2011.

[84] C. Thomsen and T. B. Pedersen. pygrametl: A Powerful Programming Frame-
work for Extract-Transform-Load Programmers. In Proc. of DOLAP, pp. 49-56,
2009.

[85] C. Thomsen, T. B. Pedersen and W. Lehner. RiTE: Providing On-demand Data
for Right-time Data Warehousing. In Proc. of ICDE, pp. 456–465, 2008.

[86] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy. Hive: A Warehousing Solution Over a Map-reduce Frame-
work. PVLDB, 2(2):1626–1629, 2009.

[87] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu,
and R. Murthy. Hive-A Petabyte Scale Data Warehouse Using Hadoop. In Proc.
of ICDE, pp. 996–1005, 2010.

[88] TPC-H. Available from tpc.org/tpch/ as of 2012-08-01.

[89] R. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable MapRe-
duce on a Large-scale Shared-memory System. In Proc. of IISWC, pp. 198–207,
2009.

[90] P. Vassiliadis. A Survey of ExtractTransformLoad Technology. IJDWM, 5(3):1–
27, 2009.

[91] P. Vassiliadis and A. Simitsis. Near Real Time ETL. New Trends in Data Ware-
housing and Data Analysis, pp. 1–31, Springer, 2009.

[92] P. Vassiliadis, Z. Vagena, S. Skiadopoulos and N. Karayannidis. ARKTOS: To-
wards the Modeling, Design, Control and Execution of ETL Processes. Infor-
mation Systems, 26(8):537–561, 2001.

www.oracle.com/technetwork/java/javase/jdbc/
www.oracle.com/technetwork/java/javase/jdbc/
tpc.org/tpch/


162 BIBLIOGRAPHY

[93] H. Watson and B. Wixom. The Current State of Business Intelligence. Computer
40(9):96–99, 2007.

[94] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena2. In Proc. of SWDB, pp. 131–150, 2003.

[95] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A Scalable OWL
Ontology Storage and Inference System. In Proc. of ASWC, pp. 429–443, 2006.



Appendix A

3XL: An Efficient DBMS-Based
Triple-Store

This demonstration presents 3XL, a DBMS-based triple-store for OWL Lite data.
3XL is characterized by its use of a database schema specialized for the data to rep-
resent. The specialized database schema uses object-relational features – particularly
inheritance – and partitions the data such that it is fast to locate the needed data when
it is queried. Further, the generated database schema is very intuitive and it is thus
easy to integrate the OWL data with other kinds of data. 3XL offers performance
comparable to the leading file-based triple-stores.

We will demonstrate 1) how a specialized database schema is generated by 3XL
based on an OWL ontology; 2) how triples are loaded, including how they pass
through the 3XL system and how 3XL can be configured to fine-tune performance;
and 3) how (simple and complex) queries can be expressed and how they are executed
by 3XL.

A.1 Introduction

In recent years, the Web Ontology Language1 (OWL), a semantic markup language
recommended by W3C for publishing and sharing ontologies, has gained popularity.
OWL is layered on top of the Resource Description Framework1 (RDF). OWL (and
RDF) data takes the form of (subject, predicate, object) triples. These triples are
typically stored in specialized storage engines called triple-stores. We have seen that
in some projects, the triple-stores are used mainly as specialized bulk data stores,

1www.w3.org/TR
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Figure A.1: 3XL Architecture

i.e., for inserting and retrieving large amounts of triples (bulk operations). More
advanced features such as logical inference, etc., are often not used in such projects.
Additionally, for basic representation of OWL instances, we found that even a subset
of the least expressive OWL layer (OWL Lite) was enough. A well-known example
of such instances is the data generated by the data generator for the de-facto industry
standard OWL benchmark Lehigh University Benchmark (LUBM) [34].

This demonstration shows 3XL (see Chapter 2), a triple-store offering highly
efficient loading and retrieval for OWL Lite data with a known ontology using a
subset of OWL Lite. 3XL has a number of unique characteristics:

• 3XL is DMBS-based which makes it flexible and easy to integrate the OWL
data with other data.

• Based on an OWL ontology, 3XL generates a specialized and intuitive database
schema which intelligently partitions the data.

• 3XL uses object-relational features of the DBMS.

• Caching and bulk loading is intensively used in the implementation such that
3XL offers performance comparable to state-of-the-art file-based triple-stores.

This combination of efficiency and flexibility positions 3XL in a unique spot.
Figure A.1 shows the major components of 3XL and their interactions. 3XL

consists of GUI and command line (CLI) interfaces, an API, a database schema gen-
erator, a data loader, a query engine, and an underlying DBMS (PostgreSQL). The
database schema generator is responsible for parsing an OWL Lite ontology to create
a hierarchical object-relational database schema according to a number of mapping
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Figure A.2: 3XL’s GUI for database schema generation

rules. The data loader parses OWL data and inserts the data into the database. To
speed up the data loading, it uses several cache and bulk schemes, including an em-
bedded instance of BerkeleyDB. The query engine has a query parser and an executor
which are used to generate SQL and run the SQL in the underlying database, respec-
tively. In the demonstration, we use the GUI, but we note that a client application
also could use the API.

A.2 Specialized Schema Generation

Figure A.2 shows the interface for database schema generation. In this interface, the
user can load and/or edit an OWL ontology. Further, the connection to PostgreSQL
can be set up and the support for “multiproperty values” (to be explained later) can be
configured. Based on the ontology (shown to the right in Figure A.2), a specialized
database schema with an inheritance layout is generated by 3XL. We show how this
is done by means of a running example.

Figure A.3 shows our example’s small OWL Lite ontology which is inspired by
the LUBM ontology. For brevity, it is shown as a graph. The ontology defines classes
(shown as ellipses), properties (shown as rectangles), and their relationships (shown
as labelled edges). In our example, each student has exactly one email address and
one name and each course has exactly one name. A student can take several courses.
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Figure A.3: OWL Lite schema for the running example

Figure A.4: 3XL database schema



A.2 Specialized Schema Generation 167

When creating a database schema, 3XL creates a class table for each class in the
ontology. Class tables have columns for those properties that have owl:maxCardinality
1. Figure A.4 shows the resulting database schema for our example and it can, for
example, be seen that a class table is generated for Student. The Student class table
has columns (name and emailAddress, both of type varchar) to represent the literal
values of Student’s data properties. When storing data, each Student instance results
in a row in the Student class table.

The class table for a given class inherits the class table for the parent of the
represented class. In Figure A.4 it can be seen that the class tables for Undergraduat-
eStudent and GraduateStudent inherit from the class table for Student. When reading
from the Student class table, PostgreSQL also includes data from the inheriting class
tables. This represents that an UndergraduateStudent also is a Student (and similarly
for GraduateStudent). In OWL, every class is (explicitly or implicitly) a subclass of
owl:Thing. Therefore, a class table representing owl:Thing is always present in a
generated database schema. The class table for owl:Thing has two columns: ID (of
type int) and URI (of type varchar) such that each of its descendants (i.e., each class
table) at least has these two columns. The column URI represents the URI of the rep-
resented instance while ID represents a unique numerical identifier for the instance
assigned by 3XL.

Data properties in the ontology result in columns of an appropriate type in the
database schema (e.g., varchar for literal values as previously shown). For object
properties, 3XL creates a column of type int. This column holds the IDs of the refer-
enced objects and acts like a foreign key. However, the foreign key is not declared in
the database schema and we thus denote the column as a loose foreign key.

In OWL Lite, some properties do not have maxCardinality 1. We refer to such
properties as multiproperties. In the database schema, a multiproperty can be repre-
sented in two ways: By a column of an array type in the class table or by a special
table called a multiproperty table. When an array type is used, it is possible to rep-
resent several values in a single column of a row. As can be seen in Figure A.2, it
is possible to chose from the GUI how to represent multiproperties. In this example,
we use multiproperty tables. As a student can take several courses, the takesCourse
property is represented by means of a multiproperty table in Figure A.4. This multi-
property table holds a row for each value the multiproperty takes for a given instance.
ID in the table for takesCourse is a loose foreign key to Student to represent which
instance the value belongs to. As takesCourse also is an object property, a value of
the property is represented by a loose foreign key to the class table for Course. If it
had been a data property, a column of the appropriate type would have been used.

Based on the mapping rules (see Chapter 2) summarized in Table A.1, 3XL gen-
erates DDL as shown in the bottom of Figure A.2. We emphasize how easy it is
to understand and use a generated schema as the one in Figure A.4 with plain SQL
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(although queries by means of triples also are supported as demonstrated next). This
makes it very easy to integrate the OWL data with other data.

Table A.1: Transformation rules
OWL constructs Results in database schema
owl:Class a class table
rdfs:subClassOf inheritance between two class tables
owl:ObjectProperty or
owl:DatatypeProperty

a column in a class table if owl:maxCardinality is 1, and
in a multiproperty table or array column otherwise

rdfs:domain a column in the class table if the maxCardinality is 1,
and a loose foreign key from a multiproperty table to a
class table otherwise

rdfs:range a type for the column representing the property

Besides class tables and multiproperty tables, 3XL always creates the table map
(URI, ID, ct) which makes it fast to find the ID and/or class table representing
an instance with a given URI. Although 3XL is specialized for data with known
ontologies, it also supports the standard open world assumption by creating the table
overflow(ID, sub, pre, obj) which is used to hold triples that are not
described by the ontology.

A.3 Triple Loading

We demonstrate how data is loaded into the 3XL system and consider the following
triples:

(http://www.univ0.edu/s0, rdf:type, Student)
(http://www.univ0.edu/s0, name, "s0")
(http://www.univ0.edu/s0, emailAddress, "s0@univ0.edu")
(http://www.univ0.edu/s0, takesCourse, http://www.univ0.edu/course0)
(http://www.univ0.edu/course0, rdf:type, Course)
(http://www.univ0.edu/course0, name, "course0")

Data from triples with a common subject is first gathered in a value holder that
maps from predicates to values. A value holder holds all known data about a specific
individual. In the shown triples, there are two unique subjects. Thus, 3XL creates the
two value holders shown in Figure A.5.

Note that each value holder also represents a unique ID which is assigned by 3XL.
Further, the rdf:type is represented. It is required in OWL Lite that the rdf:type is
explictly given to declare the class of an instance. In many cases, 3XL can, however,
also deduce the rdf:type based on the seen predicates. For example, only students
have email addresses in our scenario. Multiproperty values, as takesCourse in the
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Figure A.5: Value holders

example, are represented as lists in value holders. Since takesCourse is an object
property, 3XL’s IDs of the referenced instances are held in the list instead of the
(longer) URIs.

A value holder eventually results in a row in a class table and possibly some rows
in multiproperty tables. The value holder to the left in Figure A.5 results in a row
in the class table for Student and a row in the multiproperty table for takesCourse.
For efficiency reasons, 3XL only updates the underlying database in bulks. Thus,
many value holders are held in a data buffer. When the data buffer is full, the value
holders in the data buffer are transferred to the underlying database in a bulk operation
(instead of using the slower INSERT SQL statements). This is shown in the upper
part of Figure A.6.

Figure A.6: Data flow in triple loading

When a value holder’s data is inserted into the database, the value holder is
deleted from the data buffer. When another triple is added, it can, however, hap-
pen that its corresponding value holder was just loaded into the database such that
3XL has to re-generate this value holder from the database. To avoid this, only the
least-recently-used value holders are loaded into the database. We call this partial
commit. This exploits that the data can have locality such that triples describing the
same instance appear close to each other. For example, it is likely that the triples we
insert in our scenario are more or less sorted on student name and/or course name.
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As will be shown, the percentage of the data buffer to load into the database is con-
figurable.

When the first triple in our example is seen by 3XL, there is no value holder
for http://www.univ0.edu/s0. If a corresponding value holder for a new
triple is not found in the data buffer, 3XL tries to look it up in the database. In our
example, there is also no information about http://www.univ0.edu/s0 in the
database when 3XL sees the first triple. This is, however, difficult to determine as
3XL after seeing the first triple still does not know what type the instance has (and
thus the appropriate class table is not known). Instead of searching all class tables,
which would be very expensive, the map table is used. This table maps from a URI
to the ID assigned by 3XL and the class table holding data about the instance (i.e,
from http://www.univ0.edu/s0 to the ID 1 and the class table Student in
our case). For better performance, this table is loaded into BerkeleyDB which can
keep a configurable amount of data in main memory. It is then very fast to determine
which class table to look into (if the instance is already represented) or to decide that
a new empty value holder should be created and no database lookup is necessary (if
the instance is not already represented). For details about how bulk loading, partial
commit, and use of BerkeleyDB for map influence the performance, see Chapter 2.

3XL can also load triples that are not described by the OWL Lite ontology used
for the schema generation. If we, e.g., load the triple (http://www.univ0.
edu/s0, supervisor, http://www.univ0.edu/prof0), the data will
be represented in the overflow table.

Figure A.7 shows the interface for configuring the loading of triples into 3XL.
Triples in the N3-format can be loaded from a file using this interface. It is possible
to configure the amount of memory used by BerkeleyDB. Further, the size of the data
buffer can be set as well as the percentage of least-recently-used value holders to in-
sert into the database when the data buffer is full. It is thus possible to fine-tune 3XL’s
performance. Details about the configuration parameteres are available in Chapter 2
and will be discussed during the demonstration. With proper configuration, 3XL
achieves load-speeds of up to 25,000 triples/second on a normal notebook (see Chap-
ter 2) which is comparable to the leading file-based triple-stores BigOWLIM [13] and
RDF-3X [55].

A.4 Triple Queries

We demonstrate how the triple-store can be queried. Figure A.8 shows the interface
for querying. A query can be entered in the upper part of the window and the result
can either be written to a file or shown in the lower part of the window. 3XL supports
two classes of queries: point-wise and composite queries. They are described in the
following.

http://www.univ0.edu/s0
(http://www.univ0.edu/s0,
(http://www.univ0.edu/s0,
http://www.univ0.edu/prof0)
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Figure A.7: 3XL’s GUI for triple loading

A.4.1 Point-wise Queries

A point-wise query is a single triple, i.e., Q = (s, p, o). The result includes all triples
that have identical values for s, p, and o. Each part of the query triple may, how-
ever, be a wildcard “*” which is considered to be identical to everything. If we issue
the query (http://www.univ0.edu/s0, takesCourse, *) on the previ-
ously loaded triples, the result is http://www.univ0.edu/s0, takesCourse,
http://www.univ0.edu/course0).

To answer such queries, 3XL first identifies the relevant class tables and the IDs
of the instances by means of the map table. In our example, 3XL thus finds the ID 1
for the instance. The class table for Student does, however, not hold the information
needed to answer the query. The reason is that takesCourse is a multiproperty and
we use multiproperty tables. As takesCourse also is an object property, 3XL has to
join with the class table of takesCourse’s range (i.e., Course) to find the URIs of the
courses taken by the represented student:

SELECT Course.URI FROM TakesCourse, Course
WHERE TakesCourse.courseId = Course.ID
AND TakesCourse.studentID = 1

http://www.univ0.edu/s0
http://www.univ0.edu/course0)
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Figure A.8: 3XL’s GUI for triple querying

From the result of this SQL query, 3XL generates the triple result set – which in
this case consists of a single triple. For the query (http://www.univ0.edu/s0,
emailAddress, *) it is enough to identify the relevant class table (by means of
the map table) and then select the email address from that class table. The reason is
that emailAddress has maxCardinality 1 and is a data property. These examples il-
lustrate how 3XL efficiently answers the important category of (s, p, ∗) queries. For
details about these and other point-wise queries, see Chapter 2.

It should be noted that when a query is made on a table with inheriting tables,
the inheriting tables are queried as well. If, for example, a query is made on the
Student table in our case, the UndergraduateStudent and GraduateStudent tables are
also queried due to PostgreSQL’s object-relational features.

A.4.2 Composite Queries

3XL also supports composite queries. Composite queries consist of several query
triples and are more expressive than point-wise queries. Unknown variables used for
linking triples together are specified using a string starting with a question mark while
known constants are expressed using their full URIs or in an abbreviated form where
prefixes can be replaced with shorter predefined values. The upper part of Figure A.8
shows an example of a composite query to find the courses taken by a student with a
certain name. Figure A.9 shows the result as a graph. The result consists of all triples
as those in the query, but with variable names replaced by actual values.
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Figure A.9: The result of the composite query

To answer a composite query, 3XL generates more complex SQL than for the
point-wise queries. For the shown example, the following SQL is enough. 3XL can
then generate all the triples of the result.

SELECT GraduateStudent.uri AS x, Course.uri AS y
FROM GraduateStudent, TakesCourse, Course
WHERE GraduateStudent.ID = TakesCourse.ID AND

TakesCourse.takesCourse = Course.id AND
GraduateStudent.name = ’s0’

For details, see Chapter 2 which also presents a performance study showing
that 3XL’s query performance is comparable to the leading file-based triple-stores
BigOWLIM [13] and RDF-3X [55] on a big real-world data set as well as a big syn-
thetic LUBM-based data set. Generally, file-based triple-stores are considered to be
faster than DBMS-based ones. It is thus remarkable that 3XL offers the both of best
worlds: performance and flexibility.



Appendix B

MapReduce-based Dimensional
ETL Made Easy

This demonstration presents ETLMR, a novel dimensional Extract–Transform–Load
(ETL) programming framework that uses MapReduce to achieve scalability. ETLMR
has built-in native support of data warehouse (DW) specific constructs such as star
schemas, snowflake schemas, and slowly changing dimensions (SCDs). This makes
it possible to build MapReduce-based dimensional ETL flows very easily. The ETL
process can be configured with only few lines of code. We will demonstrate the con-
crete steps in using ETLMR to load data into a (partly snowflaked) DW schema. This
includes configuration of data sources and targets, dimension processing schemes,
fact processing, and deployment. In addition, we also present the scalability on large
data sets.

B.1 Introduction

In data warehousing, ETL flows are responsible for collecting data from different data
sources, transformation, and cleansing to comply with user-defined business rules and
requirements. Current ETL technologies are demanded to process many gigabytes of
data each day. The vast amount of data makes ETL extremely time-consuming. The
use of parallelization technologies is the key to achieve better ETL scalability and
performance. In recent years, the “cloud computing” technology MapReduce [22]
has been widely used for parallel computing in data-intensive areas due to its good
scalability. We see that MapReduce can be a good foundation for ETL paralleliza-
tion. The ETL processing exhibits the composable property such that the processing

174
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of dimensions or facts can be split into smaller computations and the partial results
from these computations can be merged to constitute the final results in a DW. Fur-
ther, the MapReduce programming paradigm is very powerful and flexible. MapRe-
duce makes it easier to write a distributed computing program by providing interpro-
cess communication, fault-tolerance, load balancing, and task scheduling. However,
MapReduce is a general framework and lacks support for high-level ETL-specific
constructs such as star and snowflake schemas, SCDs, etc. This results in low ETL
programmer productivity. To implement a parallel dimensional ETL program on
MapReduce is thus still very costly and time-consuming due to the inherent com-
plexities of ETL-specific activities when processing dimensional DW schemas with
SCDs etc.

In this demonstration, we present the MapReduce-based framework ETLMR (see
Chapter 4). ETLMR directly supports high-level ETL-specific constructs on fact ta-
bles and dimensions (including SCDs) in both star schemas and snowflake schemas.
A user can implement parallel ETL programs by using these constructs without
knowing the details of the parallel execution of the ETL processes. This makes
MapReduce-based ETL very easy. It reduces tedious programming work such that
the user only has to make a configuration file with few lines of code to declare dimen-
sion and fact objects and the necessary transformation functions. ETLMR achieves
this by using and extending pygrametl [84], a Python-based framework for easy ETL
programming. Figure B.1 shows parallel ETL using ETLMR. The ETL flow con-
sists of two sequential phases: dimension processing and fact processing. Data is
read from the sources, i.e., files on a distributed file system (DFS), transformed, and
processed into dimension values and facts by parallel ETLMR instances which con-
solidate the data in the DW. To make a parallel ETL program, only few lines of code
declaring target tables and transformation functions are needed.

Figure B.1: Parallel ETL using ETLMR
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In this demonstration, we will focus on a complete scenario where we process
data for a partly snowflaked schema which also has an SCD. We demonstrate the
configuration of data sources and targets, three dimension processing schemes, and
fact processing as well as deployment and scalability. For a full description of the
research challenges in making ETLMR, we refer to Chapter 4.

B.2 Sources and Targets

Throughout the demonstration, we use a running example inspired by a project which
tests web pages with respect to accessibility (i.e., the usability for disabled people)
and conformance to certain standards. Each test is applied to all pages. For each
page, the test outputs the number of errors detected, and the results are written to
a number of tab-separated files which form the data sources. The data is split into
approximately equal-sized files and uploaded to the DFS. The files are located by
ETLMR through URLs.

# Define the sources in the main program paralleletl.py:
fileurls = [’dfs://localhost/TestResults0.csv’,

’dfs://localhost/TestResults1.csv’, ...]

Lines from the input files are read into Python dictionaries for manipulation in
ETLMR. Here, we call them rows and they map attribute names to values. An exam-
ple of a row is

row={’url’:’www.dom0.tl0/p0.htm’, ’size’:’15998’,
’serverversion’:’1.0’, ’downloaddate’:’2011-01-31’,
’lastmoddate’:’2011-01-01’, ’test’:’Test001’, ’errors’:’7’

}

Figure B.2 shows the partly snowflaked target schema (ETLMR supports star
and snowflake schemas, and their combinations). The schema comprises testdim,
datedim, five snowflaked page dimension tables, and the fact table testresultsfact.
pagedim is an SCD. The declarations of the dimension tables are seen in the following
(we show the declaration of the fact table in Section B.4).

# Declared in the configuration file, conFigurepy
from odottables import *

# Declare the dimensions:
testdim=CachedDimension(name=’test’,key=’testid’,defaultid=-1,

attributes=[’testname’], lookupatts=[’testname’])

datedim = CachedDimension(name=’date’,key=’dateid’,
attributes=[’date’, ’day’, ’month’, ’year’, ’week’, ’weekyear’],
lookupatts=[’date’])

# Declare the dimension tables of the normalized pagedim.
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Figure B.2: The running example

pagedim = SlowlyChangingDimension(name=’page’,
key=’pageid’, lookupatts=[’url’], attributes=[’url’,
’size’,’validfrom’,’validto’,’version’,’domainid’, ’serverversionid’],
versionatt=’version’, srcdateatt = ’lastmoddate’, fromatt=’validfrom’,
toatt=’validto’,srcdateatt=’lastmoddate’)

topdomaindim=CachedDimension(name=’topdomaindim’,
key=’topdomainid’,attributes=[’topdomain’], lookupatts=[’topdomain’])

domaindim = CachedDimension(name=’domaindim’,key=’domainid’,
attributes=[’domain’,’topdomainid’],lookupatts=[’domain’])

serverdim = CachedDimension(name=’serverdim’,key=’serverid’,
attributes=[’server’], lookupatts=[’server’])

serverversiondim = CachedDimension(name=’serverversiondim’,
key=’serverversionid’,attributes=[’serverversion’,’serverid’],
lookupatts=[’serverversion’], refdims=[serverdim])

# Define the references in the snowflaked dimension:
pagesf=SnowflakedDimension(

(pagedim, (serverversiondim, domaindim)),
(serverversiondim, serverdim), (domaindim, topdomaindim))

Different parameters are given when declaring a dimension table instance, in-
cluding the dimension table name, the key column, and lists of attributes and lookup
attributes (sometimes referred to as the “business key”). Besides, optional parameters
can be given, such as a default value for the dimension key when a dimension value
is not found in a lookup, e.g., defaultid=-1 in the declaration of testdim. For
an instance of SlowlyChangingDimension, additional SCD related parameters
– such as the columns for the version number and the timestamps – are given. Note
how easy it is to declare and use a snowflaked SCD in ETLMR. This is very complex
with traditional tools. Other settings of the dimension tables for different processing
schemes are discussed later.
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B.3 Dimension Processing Schemes

ETLMR has several dimension processing schemes. We will demonstrate how to
configure and choose the schemes.

B.3.1 One Dimension One Task

We first consider an intuitive approach to process dimensions in parallel, namely “one
dimension, one task” (ODOT) where there is one (and only one) map/reduce task for
each dimension table.

We first define the corresponding attributes of the data source for each dimension
table (the srcfields), and the transformations for extracting values from the field
values of a row (the rowhandlers). The user implements transformations as nor-
mal Python functions. The user-defined functions (UDFs) for transformations are not
shown here for space reasons, but given self-explanatory names starting with UDF .

# Defined in config.py
dims={
pagedim:{’srcfields’:(’url’,’serverversion’,’domain’,’size’, ’lastmoddate’),

’rowhandlers’:(UDF_extractdomain,UDF_extractserverver)},
domaindim:{’srcfields’:(’url’,),

’rowhandlers’:(UDF_extractdomain,)},
topdomaindim:{’srcfields’:(’uri’,),

’rowhandlers’:(UDF_extracttopdomain,)},
serverversiondim:{’srcfields’:(’serverversion’,),

’rowhandlers’:(UDF_extractserverver,)},
serverdim:{’srcfields’:(’serverversion’,),

’rowhandlers’:(UDF_extractserver,)},
datedim:{’srcfields’:(’downloaddate’,),

’rowhandlers’:(UDF_explodedate,)},
testdim:{’srcfields’:(’test’,), ’rowhandlers’:()}
}

As there are references between the tables of the snowflaked (normalized) dimen-
sion, the processing order matters and is specified in the following. It is illustrated in
Figure B.3.

order=[(’topdomaindim’, ’serverdim’), (’domaindim’,
’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)]

With this order, ETLMR processes the dimensions from the leaves towards the
root (the dimension table referenced by the fact table is the root and a dimension
table without a foreign key to another dimension tables is a leaf). The dimension
tables with dependencies (from foreign key references) are processed in sequen-
tial jobs, e.g., Job1 depends on Job0, and Job2 depends on Job1. Each job pro-
cesses independent dimension tables by parallel tasks. Therefore, Job0 first pro-
cesses topdomaindim and serverdim, then Job1 processes domaindim and
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Figure B.3: Process snowflake schema

serverversiondim, and finally Job2 processes pagedim, datedim, and tes-
tdim.

When processing, ETLMR does data projection in the mappers to select the nec-
essary values for each dimension table. This results in key/value pairs of the form (di-
mension table name, tuple of values) that are given to the reducers. ETLMR partitions
the map outputs based on the dimension table names such that the values for one di-
mension table are processed by a single reducer (see Figure B.4). For example, the re-
ducer for pagedim receives among others the values {’url’:’www.dom0.tl0/-
p0.htm’,’serverversion’:’1.0’,’size’:’12’,’lastmoddate’:’2011-

-01-01’}. In the reducers, ETLMR automatically applies UDFs for transformations
(if any) to each row. The row is then automatically ensured to be in the dimension
table, i.e., ETLMR inserts the dimension value if it does not already exist in the
dimension table, and otherwise updates it as needed. For a type-2 SCD (where ver-
sioning of rows is applied), ETLMR also adds a new version and updates the valid
timestamps of the old version as needed. The programmer thus only has to program
the transformations to apply and ETLMR takes care of the rest.

Figure B.4: ODOT Figure B.5: ODAT
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B.3.2 One Dimension All Tasks

We now consider another approach to process dimensions (see Figure B.5), namely
“One dimension, all tasks” (ODAT). This approach makes use of all the reducers to
process the map outputs, i.e., one dimension is processed by all tasks unlike ODOT
where only a single task is utilized for a dimension. Thus ODAT can use more nodes
and has better scalability. ETLMR has a separate Python module implementing this
approach, and only a single line, from odattables import *, is needed to
use it. As the ODAT dimension and fact classes have the same interfaces as the
ODOT classes, nothing is changed in the declarations in Section B.2, except that the
processing order is not needed any more.

With ODAT, the map output is partitioned in a round-robin fashion such that all
reducers receive an almost equal-sized map output containing key/values pairs for all
dimension tables (see Figure B.5). A reducer processes map output for all dimension
tables. Therefore, a number of issues need to be considered, including the uniqueness
of dimension keys, concurrency problems when different tasks are operating on the
same dimension values to update the timestamps of SCD dimensions, and duplicated
values of the same dimension. To remedy this, ETLMR automatically employs an
extra step called post-fixing to fix the problematic data when the dimension process-
ing job has finished. Figures B.6 and B.7 illustrate post-fixing. The details about the
post-fixing steps can be found in Chapter 4.
Post-fixing Consider two map/reduce tasks, task 1 and task 2, which process the
snowflaked dimension page. Each task uses a private ID generator. The root di-
mension, pagedim, is a type-2 SCD. Both task 1 and task 2 process rows with the
lookup attribute value url=’www.dom2.tl2/p0.htm’.

Figure B.6 depicts the resulting data in the dimension tables. White rows were
processed by task 1 and grey rows were processed by task 2. Each row is labelled
with the taskid of the task that processed it. The problems include duplicated IDs
in each dimension table and improper values in the SCD attributes, validfrom,
validto, and version. The post-fixing program first fixes the topdomaindim

Figure B.6: Before post-fixing
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Figure B.7: After post-fixing

such that rows with the same value for the lookup attribute are merged into one row
with a single ID. Thus, the two rows with topdom = tl2 are merged into one row. The
references to topdomaindim from domaindim are also updated to reference the
correct (fixed) rows. In the same way, pagedim is updated to merge the two rows
representing www.dom2.tl2. Finally, pagedim is updated. Here, the post-fixing also
has to fix the values for the SCD attributes.

B.3.3 Offline Dimensions

ETLMR also has a module for processing dimensions which are stored on the nodes.
We say such dimensions are offline as opposed to the previously described approaches
where the dimensions reside in the DW database and are online. The interface of
offline dimensions is similar to that of online dimensions except that there is an addi-
tional parameter, shelvedpath, to denote the local path for saving the dimension data.
The following code snippet exemplifies a declaration:

from offdimtables import *
datedim = CachedDimension(

name=’date’,
key=’dateid’,
attributes=[’date’,’day’,’month’,’year’,’week’,’weekyear’],
lookupatts=[’date’],
shelvedpath=’/path/to/datedim’ )

When offline dimensions are used, the map/reduce tasks do not interact with the
DW by means of database connections and as the data is stored locally in each node,
the network communication cost is greatly reduced. The dimension data is expected
to reside in the nodes, and is not loaded into the DW until this is explicitly requested.

B.3.4 How to Choose

The ODOT scheme is preferable for small-sized dimensions when high scalability
is not required. On the contrary, the ODAT scheme is preferable for dimension ta-
bles with big data volumes as the data can processed by all tasks which gives better
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scalability. When immediate data availability is not required, the offline dimension
scheme can be chosen for better performance.

B.4 Fact Processing

We now demonstrate how to configure the fact processing. For our example, the fact
table is declared as below:

# In config.py
# Declare the fact table (here we support bulk loading):
testresultsfact = BulkFactTable(name=’testresultsfact’,

keyrefs=[’pageid’,’testid’,’dateid’], measures=[’errors’],
bulkloader=UDF_pgcopy, bulksize=5000000)

# Set the referenced dimensions and the
# transformations to apply to facts:
facts = {testresultsfact:

{’refdims’:(pagedim, datedim, testdim),
’rowhandlers’:(UDF_convertStrToInt,)}

}

It is, of course, also possible to declare several fact tables if needed, these can
be processed in parallel. The declaration of a fact table includes the name of the
fact table and the column names of the dimension referencing keys and measures.
Here, the BulkFactTable class is used to enable bulk loading of facts. As the
bulk loader varies from DBMS to DBMS, the user has to declare which function to
call to perform the actual bulk loading. After the declaration, ETLMR must be con-
figured to use the instance correctly. This involves specifying the dimension objects
from which ETLMR looks up dimension keys and specifying the transformations
(“rowhandlers”) which ETLMR should apply to the facts.

When ETLMR processes the fact data, the data files are assigned to the map/re-
duce tasks in a round-robin fashion. Each task automatically does its work by ap-
plying the user-defined transformations to the rows from the data files, looking up
dimension keys, and inserting the rows into a buffer. When the buffer is full, the data
in the buffer is loaded into the DW by means of the bulk loader. This is again very
easy for the user who just has to program transformations.

B.5 Deployment

ETLMR uses the Python-based Disco [24] as its MapReduce platform. The sys-
tem uses a master/worker architecture with one master and many workers (or nodes).
Each worker has a number of map/reduce tasks which run the ETLMR parts in paral-
lel. The master is responsible for scheduling the tasks, distributing partitioned data,
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tracking status, and monitoring the status of workers. Each worker has a worker su-
pervisor responsible for spawning and monitoring its tasks. If a worker crashes, the
MapReduce framework automatically assigns the node’s task to another node and
thus provides us with restart and checkpointing capabilities.

To deploy ETLMR, a configuration module is placed on the master. This con-
figuration defines dimension and fact tables. The distributed ETL program is then
started by the following code which defines which node is the master, where the in-
put is located, the name of the configuration module, and the numbers of mappers
and reducers.

# Start the ETLMR main program, paralleletl.py:
ETLMR.start(master=’masternode’,inputs=fileurls,required_\
modules=[(’config’,’config.py’)], nr_maps=20, nr_reduces=20)

We note that the number of mappers and reducers can easily be changed in this
program by only updating the nr maps and nr reduces arguments. This makes
it very easy for the ETL developer to scale up/scale down ETL programs.

B.6 Scalability

We now present the scalability of ETLMR. Details about the used cluster are available
in Chapter 4. Table B.1 shows the time of dimension processing when we use the
ODAT and offline dimension processing scheme (the fastest). We use an 80 GB fixed-
size data set for the running example represented in a star schema (with 13,918,502
rows in the page dimension). We scale the number of map/reduce tasks from 4 to
20. As the data is equally split and processed by all tasks, ETLMR achieves a nearly
linear speedup in processing the big dimension. The speedup is nearly linear as the
partitioning costs become more dominating when each map/reduce task gets less data
and run for a shorter time. Further, the costs from the MapReduce framework (e.g.,
for communication) increase when more tasks are added.

Table B.1: The time of dimension processing
no. of tasks 4 8 12 16 20
Time (min) 260.95 135.65 91.39 70.73 55.22

We also consider another 80 GB data set which has small-sized dimensions (19,460
rows in the page dimension) to study the scalability. Figure B.8 shows ETLMR has a
nearly linear speedup in the increasing number of tasks. When we use a fixed number
of tasks (such that the MapReduce costs don’t increase) and vary the size of the test
data, the processing time grows linearly in the data size (see Figure B.9).
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More studies of the scalability can be found in Chapter 4 which also considers
the use of ETLMR compared to doing ETL operations by means of the MapReduce
tools Hive and Pig. As ETLMR is a specialized ETL tool, it is much simpler to
create an ETL solution with ETLMR. Further, Chapter 4 compares the performance
of ETLMR to the leading open source ETL tool PDI which also supports MapReduce.
In the comparison, ETLMR is significantly faster. The licenses of commercial ETL
tools do not allow us to publish performance results for the tools.
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Summary in Danish / Dansk
Resumé

Data Warehousing er en vigtig teknologi til informationsintegration og dataanalyse.
På grund af den eksponentielle vækst af data i dag er det blevet en almindelig prak-
sis for mange virksomheder at behandle hundredvis af gigabytes data per dag. I
data warehousing indsættes data fra heterogene kilder traditionelt i et centralt data
warehouse (DW) vha. en Extract-Transform-Load (ETL) proces med regelmæssige
tidsintervaller, f.eks. månedligt, ugentligt eller dagligt. Men efterhånden bliver det
udfordrende at behandle store datamængder og opfylde nær real-time/right-time for-
retningsmæssige krav. Denne afhandling omhandler nogle af disse nye udfordringer
og problemstillinger, og har følgende bidrag:

For det første præsenterer denne afhandling 3XL, et OWL Lite triple-store. Triple-
stores har i stigende grad brug for store operationer (såkaldte “bulk-operationer”) til
at indsætte og hente store mængder tripler effektivt. 3XL har et specialiseret database
skema der er udledt fra en OWL Lite ontologi og gør brug af de objekt-relationelle
egenskaber fra RDBMS, såsom nedarvning. I modsætning til det traditionelle triple-
store med smalle og store tabeller til opbevaring af tripler, partitionerer 3XL triplerne
på baggrund af OWL klasser, og gemmer dem i mange klassetabeller. 3XL gør ind-
sætning af tripler effektiv vha. omfattende brug af bulk-teknikker, bl.a. in-memory
buffer, commit af data i henhold til datalokalitet og bulk-loading. 3XL understøtter en
effektiv hentning af tripler fra klassetabeller. 3XL har ikke kun god ydeevne (sam-
menlignelig med førende fil-baserede triple-stores, RDF-XL og BigOWLIM), men
har også god fleksibilitet grundet brugen af RDBMS.

For det andet præsenterer denne afhandling All-RiTE, som er “right-time” ETL
middle-ware til levende DW data. All-RiTE anvender en nyskabende mellemliggende
in-memory databuffer til at akkumulere levende DW data, og kan foretage dataæn-
dringer i luften. Data fra kildesystemer overføres til den mellemliggende buffer

185
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og bliver sidenhen materialiseret til DW’et baseret på brugerdefinerede politikker.
Dataene i den mellemliggende buffer, er imidlertid også tilgængelige for læsning
med specificeret tidsnøjagtighed, før det materialiseres. De eksperimentelle resultater
viser, at All-RiTE kombinerer det bedste fra standard JDBC og bulk-load: datatil-
gængeligheden af INSERTs, load-hastigheder hurtigere end bulk-loading, og meget
effektive UPDATEs og DELETEs af levende DW data .

For det tredje foreslår denne afhandling det første dimensionelle ETL-programm-
eringsframework, der anvender MapReduce, kaldet ETLMR. ETLMR tilbyder høj-
niveau ETL-specifikke konstruktioner til forskellige DW-skemaer, herunder stjer-
neskema, snowflakeskema, slowly changing dimensioner (SCDs) og meget store di-
mensioner. Dette framework giver forskellige paralleliseringsmetoder til behandling
af data ind i et RDBMS-baseret DW. Det muliggør implementering af et parallelt
ETL-program med frameworket kan man opnå høj programmeringseffektivitet, dvs,
kun få kommandoer er nødvendige for at implementere et parallelt ETL-program
med god skalerbarhed.

For det fjerde præsenterer denne afhandling et dimensionelt ETL-framework for
cloud warehouses, kaldet CloudETL. I forhold til ETLMR udnytter CloudETL Hadoop
til at parallelisere ETL-udførelsen, og processerer data ind i Hive-tabeller. Således
understøtter CloudETL skalerbare operationer for både loading og analytiske fores-
pørgsler på store data. Vi præsenterer en række nye dimensionelle ETL-teknologier
til data warehousing på Hadoop, herunder understøttelse af opdateringer af SCDs,
samplacering på Hadoop Distributed File System (HDFS), in-map opdateringer, op-
slagsindekser og multivejs opslag til fact-behandling. De eksperimentelle resultater
viser at CloudETL har bedre ydeevne end ETLMR og overgår de dimensionelle ETL-
muligheder, som Hive har, dvs. CloudETL har brug for mindre programmeringsind-
sats for at behandle et identisk DW skema, og ydeevnen er også meget bedre.

Sammenfattende diskuterer denne afhandling adskillige aspekter af de nuværende
udfordringer og problemstillinger i data warehousing herunder integration af web
data, næsten real-time/right-time data ware housing der håndterer eksponentiel vækst
af data og data warehousing i skyen. Denne afhandling foreslår en række teknologier
til at håndtere disse specifikke problemstillinger.
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