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Abstract—Automatic and accurate detection of action 

potentials of unknown waveforms in noisy extracellular neural 

recordings is an important requirement for developing brain-

computer interfaces. This study introduces a new, wavelet-based 

manifestation variable that combines the wavelet shrinkage 

denoising with multi-scale edge detection for robustly detecting 

and finding the occurrence time of action potentials in noisy 

signals. To further improve the detection performance by 

eliminating the dependence of the method to the choice of the 

mother wavelet, we propose an unsupervised optimization for 

best basis selection. Moreover, another unsupervised criterion 

based on a correlation similarity measure was defined to update 

the wavelet selection during the clustering to improve the spike 

sorting performance. The proposed method was compared to 

several previously proposed methods by using a wide range of 

realistic simulated data as well as selected experimental 

recordings of intra-cortical signals from freely moving rats. The 

detection performance of the proposed method substantially 

surpassed previous methods for all signals tested. Moreover, 

updating the wavelet selection for the clustering task was shown 

to improve the classification performance with respect to 

maintaining the same wavelet as for the detection stage. 

 

Index Terms—Action potential, extracellular recording, spike 

detection, spike sorting, unsupervised optimization, wavelet 

design.  

I. INTRODUCTION 

XTRACELLULAR recordings from neuronal activities of 

the brain can be used as a source of information for brain-

computer interfacing (BCI). Decoding the discharge pattern of 

several neurons allows prediction of the motor output. 

Microelectrodes can often pick up the action potentials (APs) 

of a few neurons in a local region near the electrode tip. The 

signals recorded from these microelectrodes therefore contain 

the spike trains from multiple neural units contaminated by 

background noise. Retrieving the firing information of 

different units is the main goal of spike sorting techniques. 

Such information is not only important for studying brain 

functions but can also be used as an input for BCI 

applications. The prerequisite for these studies is detecting the 

APs in the presence of background noise.  

The most common method for spike detection is amplitude 

thresholding which has been often used for real-time 

implementations of cortically controlled BCI systems [1, 2]. 

The computational load of this technique is low; however, the 

procedure is associated with the challenging problem of 

threshold selection for a trade-off between false negatives and 

false positives [3]. Methods proposed for the automatic 

identification of the threshold level [4-6] are based on the 

estimation of the background noise power and need prior 

assumption on the noise amplitude distribution (usually 

Gaussianity). These assumptions are often not verified [7, 8]. 

Moreover, an inherent problem of the amplitude thresholding 

methods is that they fail when the spike amplitude peaks are 

close to or lower than the noise level. 

Template matching is another approach for extracting the 

spikes from noisy background. This approach requires the 

knowledge on the spike shapes [9, 10]. The detection 

performance of this method is higher than simple 

thresholding; however, as a primary step, in order to form the 

template of different spike morphologies automatically and 

without any prior knowledge about the signal, another 

detection algorithm is required which is often based on 

thresholding  [11-13], facing similar issues as outlined above. 

The nonlinear energy operator (NEO), magnifies local 

peaks in both amplitude and frequency, and has been widely 

used for detecting neural spikes [14, 15]. The NEO spike 

detection method has been reported to perform well and it is 

attractive because of its easy implementation and 

computational simplicity [16]. A modification on the NEO, 

called the Multi-resolution Teager Energy Operator (MTEO) 

[17], combines the results of applying the energy operator to 

the signal with different resolution scales and has shown 

encouraging results. However, both NEO and MTEO are also 

threshold-based methods and need manual or automatic level 

adjustments [18, 19].  

Wavelet transformation methods have also been applied for 

denoising and detection of neural spikes in a noisy 

environment [8, 20-23]. The main idea behind wavelet based 
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methods is that using the wavelet transform, the projection of 

the signal will be localized in the time instants where the 

signal resembles the mother wavelet shape or its dilated 

versions in the time-scale domain. Thus, if the mother wavelet 

shape is selected properly, the wavelet transform can be seen 

as a bank of matched filters. This implies either an a priori 

knowledge about the dominant spike shapes or using a 

procedure for adaptive design of the mother wavelet. Various 

choices of mother wavelet have been reported for spike 

detection based on a priori knowledge on the spike shapes, 

including Daubechies [20], Symlet [22], Coiflet [8], and 

Biorthogonal [23]. Since there is a significant variability in the 

AP waveforms in different experimental recordings, due to 

random positioning of the electrode and the morphology of the 

neuron [24], there is not a single wavelet optimal for all 

situations. For this reason, Hulata et al. [21] proposed a 

method for optimal basis selection for the wavelet packet 

decomposition. However, the method involves a supervised 

procedure and user intervention in preparing the training 

dataset for the optimization task. Kamavuako et al. [25] 

proposed an unsupervised algorithm for the selection of the 

mother wavelet for detection of single unit APs in 

intrafascicular nerve recordings using a signal-based criterion. 

This method and many others will be compared to the 

approach proposed in this study.  

In this paper, we propose a new wavelet based method to 

define a novel manifestation variable for action potential 

detection. Although the main contribution is on extracellular 

spike detection, we also describe a hierarchical clustering 

method that provides a spike sorting of multiunit signals. In 

addition, two unsupervised optimizations are proposed for 

mother wavelet selection in the detection and clustering tasks. 

The method was tested and compared with other approaches 

by using an extensive set of simulated data as well as selected 

experimental recording. 

II. METHODS 

An overview of the proposed method is shown in Fig.1. The 

technique consists of two main parts: detection and clustering. 

Both parts are based on an optimization procedure based on 

wavelet parameterization. The methods are described in detail 

in the following.    

A. Stationary Wavelet Transform 

The first processing step consists in the stationary wavelet 

transform (SWT) of the signal. The signal is transformed into 

multiple resolution levels by projecting it on a family of 

scaling )(tφ  and wavelet )(tψ functions. The approximation 

and the detail coefficients are computed on each scale of 

decomposition by applying a low-pass filter h and a high-pass 

filter g derived from the scaling and the wavelet basis 

functions. 

Contrary to the discrete wavelet transform (DWT), the SWT 

does not down-sample the output signal after filtering. 

Conversely, the discrete filter coefficients are up-sampled at 

each level. In the case of orthogonal wavelets, the high-pass 

filter g can be deduced from the low-pass filter h through the 

relation ]1[)1(][ 1 khkg k −⋅−= − , and thus one filter defines the 

entire decomposition.  

B. Wavelet Parameterization 

Since the decomposition and, accordingly, the mother 

wavelet are completely defined by the scaling filter h, the 

parameterization of h provides a way to describe a family of 

decompositions and mother wavelets. Filter coefficient 

parameterization was previously used for different signal 

processing applications, such as signal classification [26], 

compression [27], denoising [25], and blind source separation 

[28]. To generate an orthogonal representation of wavelets in 

the multi-resolution analysis (MRA) framework, h must 

satisfy certain conditions which leave L/2 - 1 free parameters, 

where L is the filter length [29, 30]. For L = 4, the design 

parameter vector ][αθ =  is reduced to a scalar parameter: 

22

)sin()1()cos(1
][3,0

αα i

ihi
−+−

==  (1) 

22

)sin()1()cos(1
][2,1

αα i

ihi
−−+

==  (2) 

In this study, we will use the filter length L = 4, 

corresponding to only one independent parameter. This choice 

reduces the computational time with respect to longer filters 

and thus may allow the method to be implemented in real-time 

applications.  

C. Detection 

The application of the SWT to a signal contaminated by 

noise using a mother wavelet matching the spike shapes will 

result in the signal energy being localized in a few coefficients 

and the noise spread over several coefficients. This rationale is 

used in the method of wavelet shrinkage de-noising which is 

based on coefficient thresholding [31, 32]. Moreover, the 

 

Fig. 1. Block diagram of the proposed method. Criteria I and II based on detected and classified action potential (AP) candidates are used to optimize the wavelet 

selection in detection and clustering tasks respectively. See text for details.  
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detection can be further enhanced by using wavelet multi-

scale edge representation [33] and scale multiplication for 

edge detection [34, 35], as done in image processing. This 

approach can be generalized to the spike detection by 

exploiting the fact that the spikes and edges are similar 

phenomena (i.e., fast signal variations). This approach has 

been used by Kim & Kim [8] who proposed point-wise 

product of the wavelet coefficients in three consecutive dyadic 

scales for calculating a manifestation variable for spike 

detection. However, the results from a recent simulation study 

showed weakness of this approach in a wide range of SNRs 

[18, 19].  

We propose a different method to define a manifestation 

variable for AP detection that combines the wavelet shrinkage 

denoising with multi-scale edge detection. The method is 

based on the summation of absolute thresholded coefficients 

(i.e., after denoising) over the three scales that yield maximum 

energy. The signal is decomposed over 5 scales by using the 

parameterized SWT. The coefficients obtained in this way are 

hard-thresholded to remove the low energy time-scale points 

in all scales. As in wavelet shrinkage denoising [31], the 

threshold level at each scale is estimated as follows: 

)log(2. NThr jj σ=  (3)   

where N is the number of time samples (n) and 
jσ  is the noise 

standard deviation for the scale j which is estimated with the 

median absolute deviation (MAD) operator, as previously 

proposed [31]: 

7456.0)),2(( nWMAD
j

j =σ  (4) 

In this study we used 80% of this threshold level to keep the 

highest 20% as marginal candidates for detection: 

7456.0)),2((.)log(28.0 nWMADNThr j

j =  (5) 

Hard thresholding can be described by the following 

equation, as in [31]: 







≤

>
=

j

j

j
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j

T
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nW

),2(0

),2(),2(
),2(

 (6)  

where ���2
� , �� denotes the wavelet coefficients after 

thresholding at scale j with threshold level equal to ��	�. After 

hard-thresholding, we select three scales which contain most 

of the signal energy, assuming that the energy of the noise is 

distributed approximately equally over all scales. The signal 

energy at each scale  
�� is calculated as: 

(7) 
�� � ∑ ����2
�, �� ���

��������
��� 

where ),2( nW j

T
is the wavelet coefficient after thresholding 

at scale j and 
TjW  denotes the average value at each scale. 

Then the manifestation variable S(n) is calculated as the 

summation of the absolute values of the thresholded wavelet 

coefficients over the 3 selected scales: 

∑=
j

j

T nWnS ),2()(  (8) 

Finally, for removing spurious peaks, )(nS  is filtered with 

a Bartlett window of duration equal to half the average length 

of an action potential, as proposed previously [8]: 

)(*)()( nSnwnT =  (9) 

where )(nw  
is the Bartlett window used for smoothing and 

)(nT is the manifestation variable for detection, and * denotes 

convolution. Fig. 2 shows the block diagram of the proposed 

detection method. Since the selected wavelet scales have been 

de-noised by hard thresholding, the composed manifestation 

acts robustly against the detection of false events. Thus no 

further thresholding is required to prevent such errors and all 

local peaks of the manifestation with minimum time distance 

(i.e., between subsequent peaks) of 2 ms are detected as 

positions of the spikes. For each detected spike, 48 samples 

were segmented and stored (i.e., 2 ms). All spikes were 

upsampled by a factor 4 using cubic spline interpolation and 

aligned to their maximum.  

D.  Wavelet Selection Criterion for Detection 

The above detection method can be applied with a 

parameterized version of the scaling filter (as described in 

section II-B) for the SWT. By sampling of the parameter α 

from 0 to 2π, m times (m=12, here) and running the detection 

procedure for each, m different variables for detection and 

consequently m sets of detected spikes (AP candidates) are 

generated, among which the best with minimum detection 

errors should be selected. Detection errors can be false 

positives (FP) or false negatives (FN). The detection error rate 

(DER) is defined by the summation of these two types of 

error, divided by the total number of spikes: 

%
rSpikeNumbe

FNFP
DER

+
=  (10) 

Thus, we define the best mother wavelet as the wavelet that 

minimizes the metrics DER. However, DER cannot be used in 

practice for selection of the mother wavelet since it is not 

known a-priori, thus the best wavelet cannot be directly 

selected. It is necessary to have a criterion based only on 

information that can be extracted from the signal. The wavelet 

resulting from this criterion will be denoted as optimal wavelet 

and, in the ideal case of perfect criterion, it should correspond 

to the best wavelet.  

 
 

Fig. 2.  Block diagram of the proposed method to define a manifestation variable for detection. 
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We propose a criterion for optimal wavelet selection based 

on the correlation. We assume that APs recorded from one 

electrode originating from one or more units are not fully 

uncorrelated to each other whereas the noise (non-spike event) 

is uncorrelated to them. Based on this rationale, we define a 

correlation similarity measure to evaluate the detection 

performance. The correlation similarity between two 

waveforms x(n),  y(n)  is defined by P(�, �) as follows: 

)11(
)])(())([(

),(
yx

yx nynx
yx

σσ

µµ

⋅

−⋅−Ε
=Ρ  

where E is the expected value operator, ��, �� are the means 

and ��, �� are the standard deviations of x(n) and y(n), 

respectively. Based on (11), the correlation between all 

detected APs, ���(�), and the median value of them, ������(n), 

was calculated and compared to a threshold KD to classify 

them into two groups of “reference” and “outliers”, as 

described in (12): 







<Ρ

>=Ρ
=

KDAPAP"outlier"

KDAPAP""reference
L

i

i

i
),(

),(
)  (12) 

where 
iL
)

 is the designated label for )(nAPi . The threshold 

value was conservatively set to a low value of KD=0.4 that 

only rejects very far outliers. The value was determined based 

on measurements on several experimental neural recordings 

but not on the experimental dataset used for testing in this 

study (cases shown in Table I).  

The optimal wavelet was chosen among m wavelets which 

were generated from the parameterized wavelet as the one 

leading to the maximum number of reference APs. (The 

wavelet parameterization is demonstrated in section II-B)  

E. Clustering 

After the detection, a new parameterized wavelet 

decomposition is performed for each detected spike as a basis 

for defining the features for clustering. The DWT is used for 

this step and the coefficients are extracted from 5 scales. The 

resulting wavelet coefficients are used as feature vector for the 

clustering task
1
. The clustering was based on a hierarchical 

method with normal distance measurement [36, 37] and 

Ward's Minimum variance method. Ward linkage combines 

the 2 clusters whose combination results in the smallest 

increase in the sum of squared deviations from the cluster 

centroid [36, 37]. 

F. Wavelet Selection Criterion for Clustering 

The correlation measure described in (11) was applied to 

evaluate the similarity of each spike to its related cluster 

center. The identification of the cluster centers was performed 

by calculating the median of all reference APs for each cluster. 

Each spike candidate corresponds to a feature vector, 

computed as described above. All the following computations 

were done on the feature vectors. For each cluster j, the 

correlation of any action potentials (���,�(�)) with the center 

                                                           
1 Reducing the dimension of the feature space by principal component 

analysis (PCA) was also tested but it did not improve the clustering 

performance significantly. Thus, PCA was not used for the results reported. 

of the cluster j (�������(�)) was calculated and compared to a 

threshold value KC, as described in (13), deciding whether the 

spikes in each cluster j are among the inner or outer samples 

with respect to the center of the clusters. The value for KC was 

adjusted empirically to KC = 0.8, which represents the high 

similarity requirement for the inner spikes in all clusters: 







<Ρ

>=Ρ
=

KCAPAPouter

KCAPAPinner
L

jji

jji

ji
),(""

),("")  (13) 

where  	
�,� is the designated label for	���,�(�). 

The optimal wavelet for clustering was chosen as the one 

leading to the maximum number of inner labeled over all APs. 

III. EVALUATION 

A. Experimental Methods 

Experimental recordings of intra-cortical signals from freely 

moving rats were performed with the recording system TDT 

RX5 Pentusa Base Station (TDT, Inc.). All experimental 

procedures were approved by the Animal Experiments 

Inspectorate under the Danish Ministry of Justice. Three male, 

Sprauge-Dawley rats were implanted by  4 × 4 arrays of 100 

µm, length = 2-3 cm tungsten wires spaced 500 µm apart. A 

craniotomy was performed over the primary motor cortex 

(M1). The area related to forelimb movement is located 2-4 

mm rostal and 2-4 mm lateral relative to Bregma. Layer V and 

VI were selected and the target depth was at approx. 1.7-1.8 

mm. The implantation and surgical procedure is similar to that 

described previously [38]. Analog neural data were filtered at 

400 Hz and 10 kHz before digitization at 24 kHz. 

To perform an evaluation of the algorithm using recorded 

neural cortical data, five data segments were selected for 

manual detection by the experts. The data segments were 

manually inspected to provide the ground truth. Each segment 

of data contained at least 100 spikes identified as true neural 

waveforms. The marked data were used to compare the 

detection performance of different methods.   

B. Simulations 

The proposed method was tested in 7 sets of simulated signals. 

For simulating multi-unit neural APs, a library of 21 

experimental APs (64 samples per AP) from 3 implanted rats 

was generated. For simulating neural recordings in each 

dataset, data segments with length of 2.5 s (60032 samples at 

sampling rate of 24 kHz) were generated as following. Three 

spikes were selected from the library and each was distributed 

randomly in time with average firing rate of 20 Hz.  

Overlapping between different units was excluded from the 

simulations in order to eliminate the confounding factor of 

non-classified overlapped APs when testing and comparing 

the proposed method. Each data segment contained 150 spikes 

on average. The background noise was simulated as a colored 

noise with similar power spectrum as in the experimental 

recordings. For this purpose, the noise was simulated by an 

auto-regressive (AR) model which was previously reported to 

accurately represent the noise in neural recordings [8]. In the 

simulations, the SNR was defined as: 
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entnoise segme of pure   RMS valu  

Ps itude of A peak amplf absolute Average o
SNR

×
=

3

    (14)       

The definitions of SNR in previous works on AP detection 

are several, without an accepted common definition [8, 13, 22, 

23]. The definition used in this study [Eq. (14)] does not 

depend on the level of activity (number of spikes) and is 

intuitively related to the complexity of detection. For example, 

SNR=1 represents the situation in which spikes and noise have 

comparable amplitude levels. According to the proposed SNR 

definition, 7 levels of added noise were investigated, 

corresponding to SNR from 1 to 2.5, with increments of 0.25. 

For each noise level, 20 noise realizations were generated. 

Before SNR calculation, all simulated signals were band-pass 

filtered by a fourth-order zero phase-shift butterworth filter 

(300–6000 Hz). 

C. Performance Measures 

Recalling the definition of the detection error rate (DER) as 

the summation of the two types of errors divided by the total 

number of spikes [Eq. (10)], the detection performance rate 

(DPR) was defined by subtracting DER from 100%, which 

can be also described as the difference between the true 

positive rate (TPR) and the false positive rate (FPR): 

FPRTPR
NumberSpike

FPTP
DERDPR −=

−
=−= %%100

  (15) 

The correct classification rate (CCR) was defined as the 

percentage of correctly clustered (CC) spikes divided by the 

total number of spikes: 

%
NumberSpike

CC
CCR =   (16) 

The defined CCR clearly measures the overall classification 

performance which is influenced by both the detection and 

clustering performance.  

D. Compared Methods 

The proposed method for detection was compared to four 

commonly used detectors: absolute value thresholding (THR) 

[6], NEO [14], MTEO [17], and the point-wise product of the 

wavelet scales described by Kim & Kim [8] (DWT product). 

The NEO detector output )(nT was defined as in [14]:  

)1()1()()( 2 −⋅+−= nxnxnxnT  
(17)   

where x(n) is sample of the waveform at time n. 

The MTEO detector is an unsupervised combination of the 

outputs of a few NEOs with different resolution parameters. In 

this study 1, 3, and 5 are selected as the resolution parameters. 

The complete method has been described in [17]. 

The DWT product detector output was defined as in [8]:      











∗= ∏

−=

max

max 2

2
j

jj

j
,n)W(ω(n)T(n)   (18) 

where ,n)W( j2  denotes the wavelet coefficients at scale j, 

and 
maxj  is the scale where the absolute value yields a 

maximum over 5 dyadic scales. The product absolute value is 

smoothed by convolution with the Bartlet window )(nω . The 

Symlet4 as well as an optimized wavelet using the same 

criterion as for the proposed approach were used as mother 

wavelet for the DWT product method. 

For evaluating the performance of various spike detection 

methods, the receiver operator characteristic (ROC) curves 

were used to eliminate the dependence of the comparison to 

the thresholds. The ROC curves were generated by measuring 

the relative values of TPR and FPR obtained from applying 

different threshold levels to the detector outputs. 

To evaluate the performance of the detection methods on 

the complete simulation dataset, an automatic threshold level 

estimation was used. For the THR method, the automatic 

threshold level (Thr) was set as previously proposed [6]: 

)
.

|x|
 median(Thr=

67450
4

 

 (19) 

where x is the waveform (including the spikes and background 

noise). The threshold level for NEO, MTEO and DWT 

product was estimated as a scaled version of the median for 

absolute value of the detector output:  

an(|T(n)|)Thr=K medi   (20) 

where T(n)  is the detector output waveform, and K is a fixed 

scale. The scale factor K was selected empirically from the 

resulting ROC curves of each method after applying simulated 

signals so that the false positive detection rate was limited to 

relatively low values (FPR<10%). The selected K values were 

10, 18, and 8 for the DWT product, NEO, and MTEO 

methods, respectively.  

The proposed wavelet selection criterion was compared to 

the selection criterion which was recently proposed by 

Kamavuako et al. [25]. In that study, the detected candidates 

of APs after wavelet denoising were synchronized and the root 

mean square of the synchronized average (RMSSA) was the 

criterion for selection of the optimal wavelet (details can be 

found in [25]). To compare the performance of the wavelet 

selection, a two sample t-test was used to calculate p-values.  

Finally, the clustering results were compared to the 

Wave_clus algorithm [6] based on superparamagnetic 

clustering (SPC). The simulated datasets applied to the 

software and results were used for measuring the classification 

performance. 

 
Fig. 3.  Visual comparison of the detector output quality for all methods.    

(a) A section of a band-pass filtered intra-cortical data (recorded as described 

in section III-A) with the arrows indicating the true time of occurrence for the 

APs, SNR=1.5. (b) Absolute value waveform used for THR detector. (c) 

NEO detector waveform. (d) MTEO detector waveform. (e) DWT product 

detector waveform. (f) Proposed manifestation variable for detection.  
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IV.  RESULTS 

A. Simulated Data 

1) Detection without Wavelet Optimization 

Fig. 3 provides a visual comparison of the detector output 

quality for all methods tested in this study. The methods were 

applied on an experimental data segment (of SNR=1.5) in 

which the APs were manually marked by the experts. The 

Symlet4 was used as mother wavelet for both the DWT 

product and the proposed method. The proposed detector 

output shows clear peaks only at the occurrence times of the 

APs. Contrarily, other detectors have more spurious peaks. 

To compare the detection performance of the proposed 

method with other four methods of DWT product, MTEO, 

NEO, and THR, regardless of the effect of the threshold level 

setting, the ROC curves were computed for three SNRs (1.5, 

1.25, and 1). Fig. 4 shows the resulting averages of the ROC 

curves over 7 simulated signals (each of 10 s length). The 

Symlet4 was used as the mother wavelet for the DWT product 

and for the proposed method. The proposed method is 

represented by 7 single points (circles) related to 7 signals 

instead of an average curve since no threshold level was used 

in the method. The proposed method outperformed the other 

methods. It is also shown in the figure that the proposed 

method is robust and resistant to the false positives.  

The proposed detection method was evaluated and 

compared with the DWT product detection method. The 

comparison was done for three catalogue mother wavelets 

(Symlet4, Coiflet4, and Daubechies4). Fig. 5 shows the 

average performance over all independent simulated datasets 

for the two algorithms. The proposed method outperformed 

the previous ones in all cases.  

2) Detection with Wavelet Optimization 

The ideal optimization was defined as the one maximizing 

the performance by selecting the best mother wavelet in each 

time segment. The worst optimization was defined as the one 

 
Fig. 4.  Comparison of different detection method performance by the averages of ROC curves over 7 simulated signals for three SNR values: 1.5, 1.25, and 1 

(indicated at the top of each panel). The horizontal axis of each panel represents the percentage rate of false positives (FPR) and the vertical axis represents the 

percentage rate of true positives (TPR). The detection methods compared are: the proposed method (circles; one circle for each simulated signal), MTEO (dash 

point line), NEO (short dash line), DWT product (solid line), and THR (long dash line). The ROC curves presented are averages over the 7 simulated signals. 

 

 
Fig. 5. Average detection performance over all simulated datasets as a 

function of SNR. The proposed method is compared to the DWT product 

method for three catalogue mother wavelets (Symlet4, Coiflet4 and 

Daubechies4) and THR method. DPR: Detection performance rate. 

 

 
Fig.  6. Average detection performance over the simulated dataset as a 

function of SNR, The proposed optimal selection is compared to the best 

wavelet, the RMSSA criterion for selection, the worst wavelet, and THR 

method. DPR: Detection performance rate. 
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that minimized the performance measure. Fig. 6 shows the 

average a posteriori detection performance for the proposed 

selection method and for the RMSSA based selection method 

[25], over all the simulated dataset. The performance of the 

proposed wavelet selection criterion was close to the ideal 

optimization. A two sample t-test was applied to the results of 

each SNR separately and showed that the performance of the 

selected wavelet using the proposed criterion was significantly 

higher than both RMSSA based selection performance 

(� ≪ 0.001) and worst optimization performance (� ≪ 0.001 

) for all SNRs, whereas the proposed selection performance 

for SNRs � 1.5 was not significantly different from the ideal 

optimization performance (� � 0.2). 

A further comparison of detection performance was made 

between the proposed method after wavelet optimization and 

the other methods. For the DWT product method, the 

detection performance was measured both by using a fixed 

mother wavelet (Symlet4) and by applying the proposed 

optimization procedure (i.e., wavelet selection). For this 

comparison the detection rates of true positives (TPR) and 

false positives (FPR) were used for description of the results 

instead of the detection performance rate (DPR). In such a 

way the effect of empirically selected K scale factor in (20) on 

false positive detection rates can be studied. Fig. 7 shows this 

comparison for the average detection results in terms of true 

positive and false positive detection rates over the simulated 

dataset. The TPR with the proposed selection criterion are 

close to the ideal optimization. A two sample t-test applied to 

the results of each SNR separately, showed that the TPR of 

selected wavelet using the proposed criterion was not 

significantly different from the ideal optimization TPR 

(� � 0.1) for all SNRs. It is also shown in Fig. 7 that the 

threshold adjustment for all four detection methods had 

reasonable results of keeping FPR low for the simulated 

signals and all SNRs. The results indicate that the proposed 

method outperformed the previous ones in all cases in terms of 

TPR, while the FPRs for all methods were kept in the same 

range. Fig. 7 also indicates that applying the proposed wavelet 

optimization with the DWT product method substantially 

improved the detection performance of that method. For 

SNRs
 1.5, the MTEO outperformed the NEO, THR and 

non-optimized DWT product methods, whereas the optimized 

version of the DWT product method outperformed the MTEO 

for all SNRs. 

3) Classification 

The correct classification rate (CCR) was compared in case 

of the proposed optimization for clustering and when using the 

same optimization as used for detection. The ideal (worst) 

optimization was defined as the one that maximized 

(minimized) the performance measure by selection of the best 

(worst) mother wavelet in every time segment. In addition, the 

proposed method was compared to the Wave_clus algorithm 

   
Fig.  8. Comparison of average correct classification rates (CCR) over all 

simulated datasets versus SNR for all methods. The proposed methods with 

different wavelet selections in the clustering task (best wavelet performance, 

proposed criterion for clustering, old criterion for detection and the worst 

wavelet performance) are compared to the Wave_clus algorithm.   

 
Fig.  7. Comparison of average true positive rates (TPR) in the left panel and average false positive rates (FPR) in the right panel over all simulated datasets 

versus SNR among all method. The proposed detection method with maximum performance (best wavelet) and unsupervised wavelet selection are compared to 

the other methods including MTEO, NEO, THR and optimized DWT product method (i.e. with wavelet selection). 
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[6], which is based on superparamagnetic clustering (SPC). 

Fig. 8 represents the classification results for all compared 

cases. The CCR results of the proposed selection criterion are 

close to the ideal optimization. A two sample t-test applied to 

the results of each SNR separately, showed that the CCR of 

the selected wavelet using proposed criterion was not 

significantly different from the ideal optimization CCR 

(� � 0.1) for all SNRs whereas the CCR was lower than the 

ideal value when using the same wavelets as used for 

detection when the SNR was between 1.5 and 2 (� � 0.05). 

The results indicate that updating the wavelet selection for the 

clustering task results in better performance than keeping it 

unchanged from the detection stage. It is also shown in Fig. 8 

that the proposed method outperformed the Wave_clus 

algorithm in all cases. 

B.  Experimental Data 

Table I reports the comparison of detection performance for 

different detection methods on each segment from 

experimental recordings. The average SNR of the data 

segments was 1.48 (+-0.04 SD). The results indicate that the 

proposed method outperformed all other methods tested, 

Fig. 9 shows an example of efficiency verification of the 

proposed criterion for wavelet selection in the detection task 

on real experimental data (segment 1). The variation of the 

proposed selection criterion (the number of reference APs in 

Eq. (12)) versus the parameter α (representing different 

mother wavelets) and the corresponding detection results for 

the experimental data are shown. In this example, the 

maximum value of the criterion (indicated with the arrows) 

corresponds to the maximum TPR and the minimum FPR. It is 

shown in Fig. 9 that the proposed criterion has positive 

correlation to the TPR and negative correlation to FPR. 

V.    DISCUSSION AND CONCLUSION 

We have proposed a novel method for unsupervised and 

automatic detection of APs in extracellular recordings. The 

denoised wavelet coefficients over selected scales were 

combined to define a new manifestation variable for detection.  

In addition, we have proposed two signal-based criteria for 

unsupervised wavelet basis selection, one to improve the 

detection performance and the other to improve the 

classification performance.  

A. Manifestation Variable for Detecting APs 

With respect to other detection methods, the manifestation 

variable proposed in this study is smoother and less noisy, and 

consequently more robust against the non-spike events (see 

Fig. 3). Other detection methods always require threshold 

level setting for the detector output. Recall from section I that 

the automatic identification of the threshold level needs prior 

knowledge on the noise amplitude distribution. Moreover, the 

comparison of ROC curves for simulated data showed the 

superiority of the proposed manifestation variable with respect 

to the previous methods (Fig. 4). The results from this study 

showed that the proposed technique for combining the 

information (i.e., the summation of absolute coefficients after 

denoising) over the selected maximum energy scales can 

highly improve the detection performance with respect to the 

DWT point-wise product technique described previously [8] 

(see Fig. 5). In fact, the DWT product acts like an intersect 

operator which only takes the common information from the 

scales, whereas the proposed method acts like a union operator 

which effectively combines the filtered information from the 

scales.   

B. Unsupervised Wavelet Basis Optimization for the 

Detector and Classifier 

As a basic limitation of template matching in detection and 

classification, the performance relies on a priori knowledge of 

the spike shape to form the template. This issue has been 

discussed previously [16, 23]. In a similar way, the 

performance of wavelet-based methods can be strongly 

affected by the choice of the mother wavelet shape. This fact, 

however, has not received much attention in most of the 

previous wavelet-based methods. In the present study we used 

a known framework for parameterizing wavelet filter 

coefficients, as previously applied in many biomedical signal 

processing applications [25-28]. We proposed a new 

unsupervised criterion for the optimization based on 

correlation measures on the detected APs. The a posteriori 

   
Fig.  9. A comparison of the proposed wavelet selection criterion with the 

measured detection performance on experimental data. (a) Number of 

reference APs (proposed signal-based criterion) versus the parameter α.  (b) 

True positive detection rate (TPR) versus α.  (c) False positive detection rate 

(FPR) versus α. The arrows indicate the selected wavelet corresponding to 

the maximum of the proposed criterion, maximum TPR, and minimum FPR. 

TABLE I 

DETECTION PERFORMANCE RATE (IN PERCENT) OBTAINED BY APPLYING             

THE SIX ALGORITHMS ON THE EXPERIMENTAL RECORDING SEGMENTS. 
 

Method 

 

Data 

 

THR 

 

 

 

DWT 

product

(opt) 

 

NEO 

 

 

 

MTEO 

 

 

 

Proposed 

method 

      

Segment 1 32.9 % 53.1 % 71.1 % 49.2 % 79.2 % 

Segment 2 47.8 % 71.0 % 70.3 % 59.3 % 90.1 % 

Segment 3 49.0 % 61.5 % 65.6 % 57.5 % 75.6 % 

Segment 4 60.3 % 81.1 % 77.6 % 72.8 % 81.1 % 

Segment 5 54.1 % 70.4 %  70.6 % 70.4 % 75.2 % 

      

Mean 48.8 % 67.6 % 71.0 % 61.8 % 80.2% 

St. Dev. 10.2 % 10.7 % 4.3 % 9.7 % 6.0 % 
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performance measurement for all simulated datasets showed 

that the proposed criterion optimized the wavelet selection 

quite efficiently (with respect to minimum and maximum 

performance) for the detection task (Fig. 6) and significantly 

outperformed the optimization results obtained by a criterion 

previously proposed (RMSSA) [25]. The reason for this result 

is that the RMSSA criterion only measures the average power 

of the detected spikes which is independent to the number of 

detections. Consequently it is not sensitive to the type II errors 

(missed APs) which are common in low SNR conditions, as 

those studied in this work. 

The results obtained from the simulation study showed that 

the TPR index for the proposed method using unsupervised 

wavelet selection was not significantly different from that of 

the ideal optimization and was substantially higher than other 

previous detection methods whereas the FPR for all methods 

was in the same range (Fig. 7).  Among the previous detection 

methods, the optimized DWT product method showed 

superior performance in the SNR range studied for the 

simulated dataset (Fig. 7). These results show that the wavelet 

based methods outperformed the other compared methods 

when an appropriate wavelet selection was used.  

Since the DWT coefficients are used as the primary features 

in the clustering task, the classification performance could be 

influenced by basis selection of the wavelet. To study this 

relation, we have proposed another algorithm for the wavelet 

optimization in the clustering task by defining a new criterion 

to improve the separability of the clusters. The obtained 

results from the simulated dataset showed that the 

classification performance depends on the selection of the 

mother wavelet and updating the wavelet selection for the 

clustering task using the proposed criterion can lead to higher 

performance than keeping it unchanged from the detection 

stage (Fig. 8). Moreover, the classification performance of the 

proposed method was higher than with the Wave_clus 

algorithm [6] based on superparamagnetic clustering.   

C. Methodological Considerations 

The colored noise which we used in the simulations 

reproduces the frequency content of a realistic background 

noise, while it does not necessarily reproduce the time domain 

characteristics of the experimental noise. This may be 

considered as a potential limitation. However, with the 

exception of the THR detector which is based on amplitude 

thresholding in the time domain, all other detectors and 

sorters, including the NEO, MTEO, DWT product, SPC, and 

the proposed method, are based on both frequency and time 

domain characteristics. Thus, the frequency content of the 

simulated noise is very relevant for the performance. 

Moreover, all methods have been compared under the same 

conditions (simulations), thus the comparison among methods 

remains unbiased.  

We would like also to point out that we have used a limited 

set of experimental signals only to verify the results obtained 

from the simulated datasets. The realistic simulation enabled 

us to cover a wider range of conditions in the test signals and 

to provide more accurate quantitative evaluation (for example, 

sensitivity to various noise levels).  

The computational cost for the proposed algorithm is higher 

than the classic detection algorithms, such as THR, MTEO or 

NEO. This may be considered as a limitation for this 

algorithm at first glance. However, the accurate number of 

floating point arithmetic operations for execution of non-

optimized MATLAB codes for the THR detector and the 

proposed detector (without optimization) for detecting APs in 

a data segment of 1 s were calculated as 3.87 and 17.83 

millions respectively. This means that the proposed detector 

would be acceptable for online BCI applications with normal 

PCs. The wavelet optimization process, which is more time 

consuming, can be updated occasionally (e.g., every 10 s). 

In conclusion, the results of this study show that the newly 

defined manifestation variable can be used as a powerful and 

robust technique for action potential detection with acceptable 

computational cost for online implementation. Moreover, it 

was shown that the proposed signal-based criteria for the 

optimization of the mother wavelet substantially improved 

both detection and classification performance, by eliminating 

the dependence of the methods to the choice of the mother 

wavelet. The proposed unsupervised optimization can be 

applied potentially to any wavelet-based method for the 

purpose of spike detection and sorting. 
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