

Aalborg Universitet

Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+

_	_		_		_	
I o Droou	loromo:	Haicalhara	Dor.	Niolcon	Dotor	١/
Le Dieau.	Jeronie.	Heiselberg.	rei.	MEISELL.	T ELEI	ν.

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Le Dreau, J., Heiselberg, P., & Nielsen, P. V. (2012). Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+. Department of Civil Engineering, Aalborg University. DCE Technical reports No. 147

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Simulation with different turbulence models in an Annex 20 benchmark test using Star-CCM+

Jérôme Le Dréau Per Heiselberg Peter V. Nielsen

Aalborg University Department of Civil Engineering Indoor Environmental Engineering Research Group

DCE Technical Report No. 147

Simulation with different turbulence models in an Annex 20 benchmark test using Star-CCM+

by

Jérôme Le Dréau Per Heiselberg Peter V. Nielsen

March 2012

© Aalborg University

Scientific Publications at the Department of Civil Engineering

Technical Reports are published for timely dissemination of research results and scientific work carried out at the Department of Civil Engineering (DCE) at Aalborg University. This medium allows publication of more detailed explanations and results than typically allowed in scientific journals.

Technical Memoranda are produced to enable the preliminary dissemination of scientific work by the personnel of the DCE where such release is deemed to be appropriate. Documents of this kind may be incomplete or temporary versions of papers—or part of continuing work. This should be kept in mind when references are given to publications of this kind.

Contract Reports are produced to report scientific work carried out under contract. Publications of this kind contain confidential matter and are reserved for the sponsors and the DCE. Therefore, Contract Reports are generally not available for public circulation.

Lecture Notes contain material produced by the lecturers at the DCE for educational purposes. This may be scientific notes, lecture books, example problems or manuals for laboratory work, or computer programs developed at the DCE.

Thesis are monograms or collections of papers published to report the scientific work carried out at the DCE to obtain a degree as either PhD or Doctor of Technology. The thesis is publicly available after the defence of the degree.

Latest News is published to enable rapid communication of information about scientific work carried out at the DCE. This includes the status of research projects, developments in the laboratories, information about collaborative work and recent research results.

Published 2012 by Aalborg University Department of Civil Engineering Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

Printed in Denmark at Aalborg University

ISSN 1901-726X DCE Technical Report No. 147

Contents

1. Intr	oduction	
2. Pre	esentation of the isothermal case	
3. Pre	esentation of the simulations	4
4. Diff	ferent computational grids	5
4.1	List of simulations	6
4.2	Convergence	7
4.3	Streamlines	
4.4	Velocity profiles	9
5. Diff	ferent k-ε models	10
5.1	List of simulations	10
5.2	Convergence	11
5.3	Streamlines	12
5.4	Velocity profiles	14
5.5	About the Low-Reynolds number model	15
6. Diff	ferent k-ω models	16
6.1	List of simulations	16
6.2	Convergence	16
6.3	Streamlines	17
6.4	Comparison profiles	18
7. Co	nclusion	19
Referen	nces	20

1. INTRODUCTION

The purpose of this investigation is to compare the different flow patterns obtained for the 2D isothermal test case defined in Annex 20 (1990) using different turbulence models. The different results are compared with the existing experimental data. Similar study has already been performed by Rong et al. (2008) using Ansys CFX 11.0. In this report, the software Star-CCM+ has been used.

2. Presentation of the isothermal case

The simulations are performed with the two dimensional isothermal Annex 20 room benchmark test described by Nielsen (1990). The sizes of the annex 20 room are specified as:

$$L = 9m, H = 3m, h_1 = 0.168m, h_2 = 0.48m$$

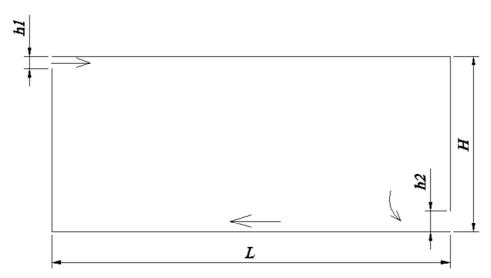


Figure 1: Sketch of the benchmark test

The air is supplied from left top with velocity in 0.455 m/s and exhausted from right bottom. The inlet conditions are listed in the following:

$$\begin{split} u_0 &= 0.455 \, m/s \\ k_0 &= 1.5 * \, (0.04 \, u_0)^2 = 4.97 \, . \, 10^{-4} \, J/kg \\ \varepsilon_0 &= \frac{k_0^{1.5}}{l_0} = 6.59 \, . \, 10^{-4} \, J/kg \, . \, s \qquad \qquad \text{with} \qquad l_0 = \frac{h_1}{10} \end{split}$$

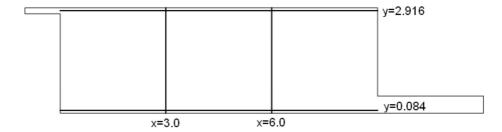
According to Nielsen (1990), the inlet conditions correspond to a turbulence intensity of 4%.

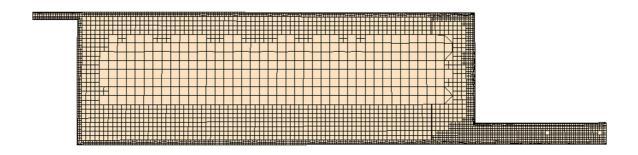
3. Presentation of the simulations

It has been shown by Olmedo et al. (2010) that the studied case can be considered as a steady two dimensional case (steady or unsteady) in the major part of the domain. Therefore the simulations have been performed with a two dimensional geometry, and assuming a steady state. The CFD models are solved using the segregated flow model and air is considered as an ideal gas.

In this report the results obtained with different meshes are presented, and different k- ϵ and k- ω models are tested.

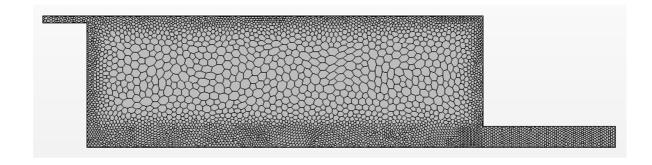
Figure 2 shows four line locations where the simulations results can be compared with measurements.



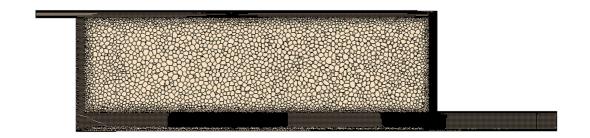

Figure 2: Sketch of the vertical and horizontal lines where the velocity profiles have been measured

4. DIFFERENT COMPUTATIONAL GRIDS

The number of cells in the computational grid has been chosen similar to Voigt (2000). Different grids are used in combination with the k- ϵ and k- ω models.


- Mesh 1: coarse & structured

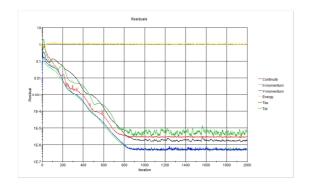
Characteristics	Surfaces mesh 3D	Volume mesh 3D	Surface mesh 2D
Structured	38 930 faces	185 125 faces	4 068 cells
Base size: 0.2m	(surface	(trimmer with	
Custom size at the	remesher)	prism layer	
border: 30% (0.06m)	,	mesher)	


Mesh 2: coarse & unstructured

Characteristics	Surfaces mesh 3D	Volume mesh 3D	Surface mesh 2D
Unstructured	38 930 faces	117 567 faces	4 793 cells
Base size: 0.2m	(surface remesher)	(polyhedral with	
Custom size at the border:		prism layer	
30% (0.06m)		mesher)	

- Mesh 3: fine & unstructured

Characteristics	Surfaces mesh 3D	Volume mesh 3D	Surface mesh 2D
Unstructured	140 762 faces	4 840 630 faces	16 658 cells
Base size: 0.1m	(surface remesher)	(polyhedral with	
Custom size at the		prism layer	
border: 30% (0.03m)		mesher)	



4.1 LIST OF SIMULATIONS

Nbr	Type of turb. model	Wall function	Others	Mesh
2				1- Structured
			Steady state – 2D	Coarse (4,1 k-cells)
1	1 k- ε	High y + Wall treatment	Ideal gas Segregated flow	2- Unstructured
				Coarse (4,8 k-cells)
3				3- Unstructured
				Fine (16,7 k-cells)

4.2 CONVERGENCE

The figures below show the convergence with different grids. Convergence is longer to reach with a finer mesh.

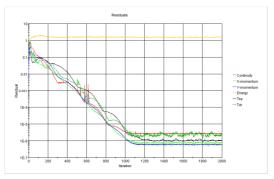
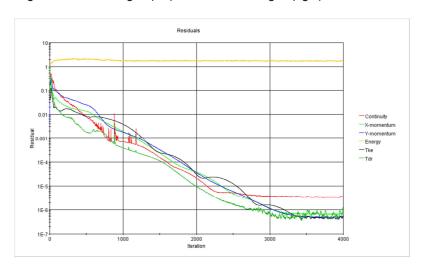
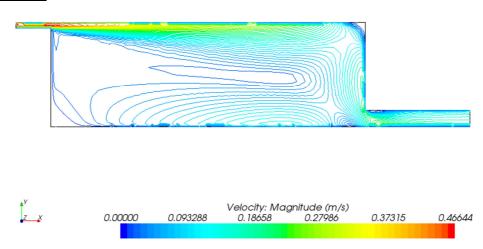
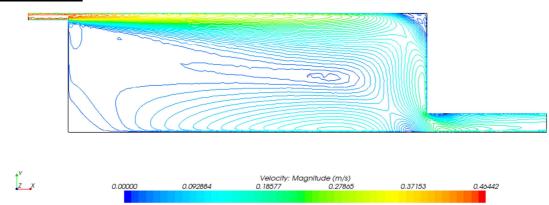
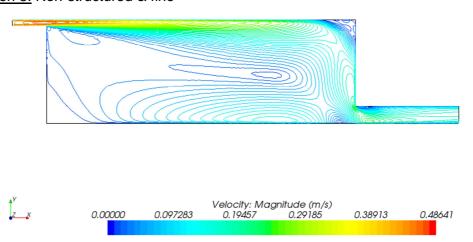


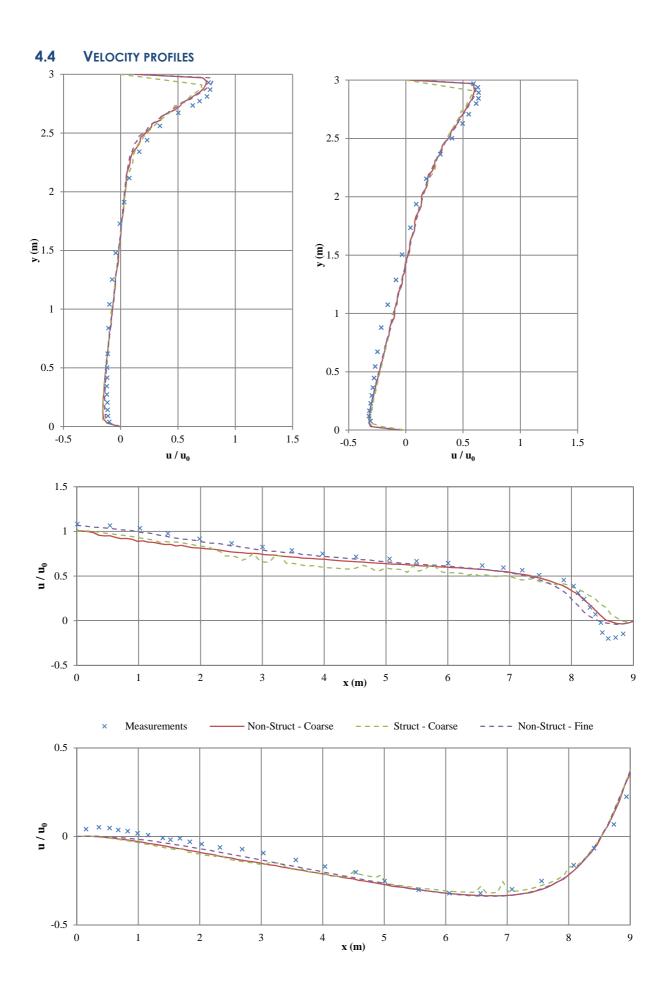
Figure 3: Structured grid (left) vs. Unstructured grid (right) - Coarse mesh


Figure 4: Fine and unstructured mesh

4.3 STREAMLINES


Simulation 2: Structured & coarse



Simulation 1: Non-structured & coarse

Simulation 3: Non-structured & fine

⇒ The structured mesh showed the less accurate results. This could be due to the slightly lower number of cells used, or due to the layout, which might be less efficient. A finer mesh is required. With an unstructured grid, a finer mesh gives better results compared to experiment, but still doesn't fit exactly with the results.

Nevertheless it has to be noticed that this analysis has been performed only with the standard k-ε model. Conclusions might change with another turbulence model.

5. DIFFERENT K-E MODELS

5.1 LIST OF SIMULATIONS

Nbr	Type of turb. model	Wall function	Others	Mesh
3	Standard k- ε	High y + Wall treatment		
4	Standard k-ε Low-Re	All y + Wall treatment	Steady state – 2D Ideal gas	3- Unstructured
5	AKN k-ε Low-Re	All y + Wall treatment	Segregated flow	Fine (16,7 k-cells)
6	Realizable k-ε	High y + Wall treatment		

The inlet conditions are defined with:

$$k_0 = 1.5 * (0.04 u_0)^2 = 4.97 \cdot 10^{-4} J/kg$$

 $\varepsilon_0 = \frac{k_0^{1.5}}{l_0} = 6.59 \cdot 10^{-4} J/kg \cdot s$

When using the Standard k- ϵ model, the inlet turbulent viscosity is therefore equal to (CD Adapco - 2011):

$$\mu_t = \rho \ C_{\mu} \ k \ max \left(\frac{k}{\varepsilon} \ ; \ 0.6 \sqrt{\frac{v}{\varepsilon}}\right) \approx 1.225 \cdot 0.09 \cdot \frac{k^2}{\varepsilon} \approx 4.13 \cdot 10^{-5} \ Pa.s$$

And the inlet turbulent viscosity ratio:

$$\frac{\mu_t}{\mu} \approx \frac{4.13 \cdot 10^{-5}}{1.855 \cdot 10^{-5}} \approx 2.22$$

5.2 CONVERGENCE

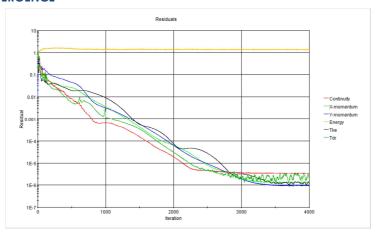


Figure 5: Simulation 4

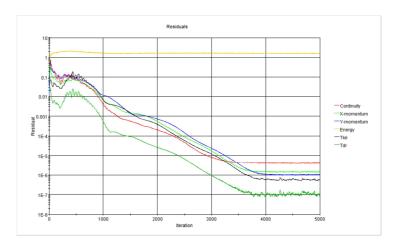


Figure 6: Simulation 5

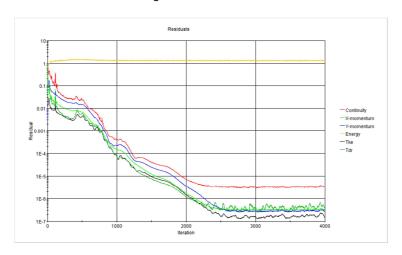
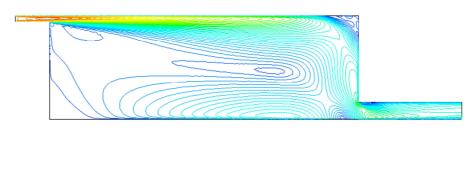
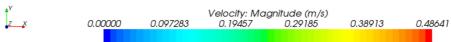
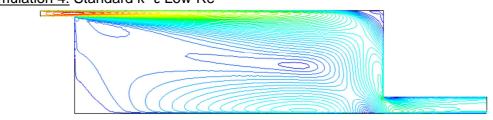
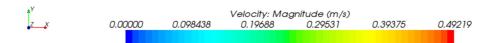
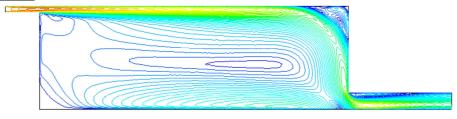
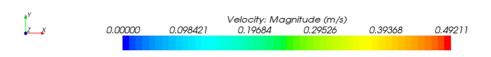




Figure 7: Simulation 6

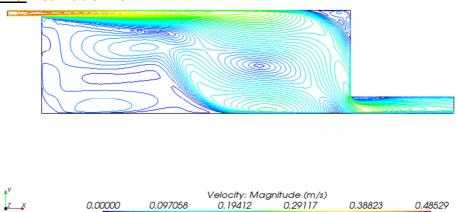

5.3 STREAMLINES


Simulation 3: Standard k- ϵ

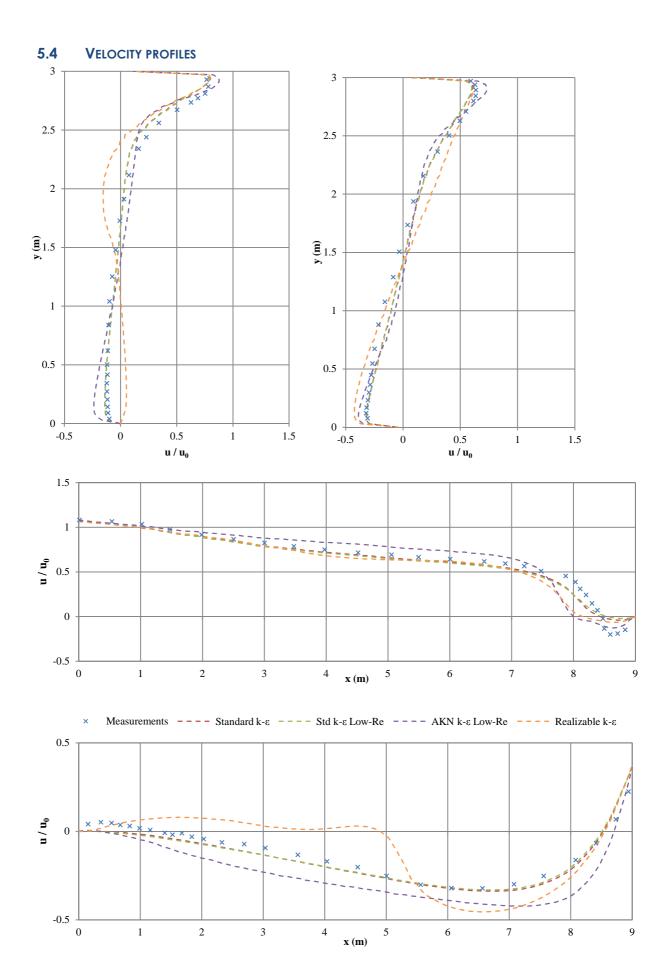



Simulation 4: Standard k- ε Low-Re

Simulation 5: AKN k- ε Low-Re



Simulation 6: Realizable k- ε


0.00000

0.097058

0.38823

0.48529

 \Rightarrow The performance of the standard k- ϵ and standard k- ϵ Low-Re are comparable and quite close to the measurements. Nevertheless the wall bounded flow is difficult to predict with all the models.

When applying the model AKN k-ε Low-Re, a recirculation zone appears in the right-upper corner. A less accurate correspondence with the results can be observed.

The results obtained with the turbulence model Realizable k-ε diverge the most with the experimental results. This is due to the presence of a complex zone of recirculation on the left part of the room.

5.5 ABOUT THE LOW-REYNOLDS NUMBER MODEL

It has been seen that the results of the standard k- ϵ and standard k- ϵ Low-Re are almost the same. This might be due to the fact that the Low-Reynolds model is almost never activated during the simulation, and the standard k- ϵ model dominates. In fact, a standard k- ϵ model can be considered as a special version of a Low-Re number model, without any damping function at low local turbulence Reynolds number R_f .

Nielsen (1995) suggested that the limit for R_t was 400: above this value, a Low-Re model corresponds to a standard k- ϵ model. Even if the Low-Re model used in Star-CCM+ is slightly different (model from Lien, and not from Launder and Sharma), this limit has been kept, as the basis of the two models are the same.

This means that if the turbulent viscosity ratio is above around 40, the damping functions will disable the Low-Reynolds number model.

The turbulent viscosity ratio obtained from the simulation can be seen on the figure below. It can be seen that this ratio is in most of the domain above 40, therefore deactivating the Low-Re model. This explains why the results of the standard k- ϵ and standard k- ϵ Low-Re are similar.

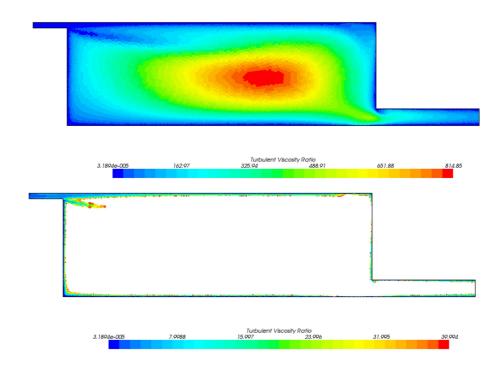


Figure 8: Turbulent viscosity ratio - Standard Low-Re turbulence model Below are only represented the cells where the turbulent viscosity ratio is below 40.

When having a closer look to the inlet, it can be observed that the turbulence viscosity ratio is relatively small, close to 2. This can be explained by the values of k_0 and ε_0 that have been set at the inlet: it will lead to a turbulence viscosity ratio around 2.2 for the standard k- ε model (cf. page 10).

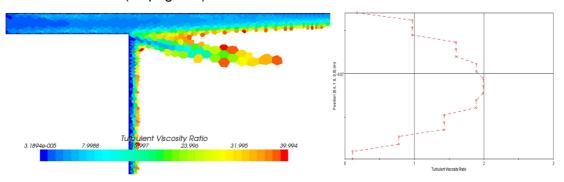


Figure 9: Turbulence viscosity ratio at the inlet

6. DIFFERENT $K-\Omega$ MODELS

6.1 LIST OF SIMULATIONS

Nbr	Type of turb. model	Wall function	Others	Mesh
7	Standard k-ω (Wilcox)	All y + Wall treatment	Steady state – 2D	3- Unstructured
8	SST k-ω (Menter)	All y + Wall treatment	Ideal gas Segregated flow	Coarse (4,8 k-cells)

The inlet conditions are defined with:

 $turbulence\ intensity=0.04$

$$l_0 = \frac{h_1}{10} = 0.0168 \, m$$

6.2 CONVERGENCE

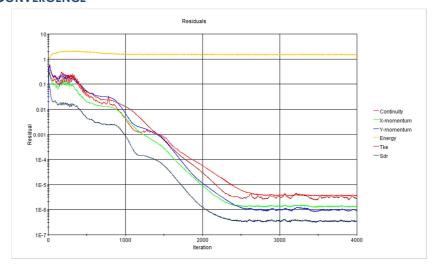


Figure 10: Simulation 7

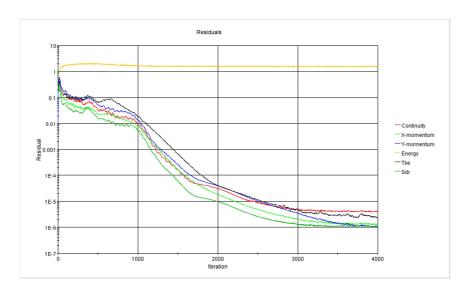
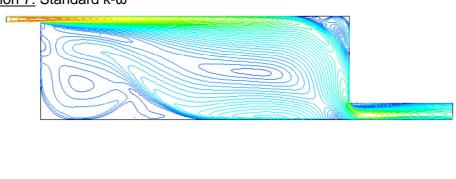
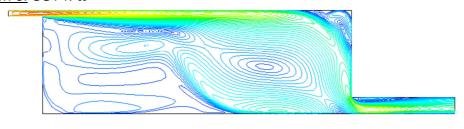
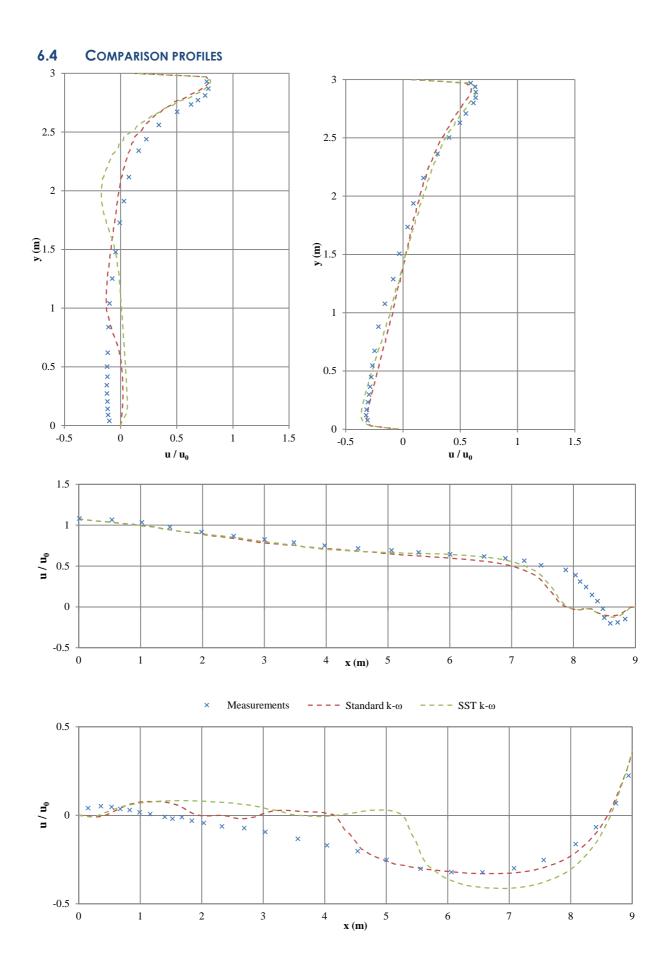



Figure 11: Simulation 8


6.3 STREAMLINES

Simulation 7: Standard k-ω



Simulation 8: SST k-ω

 \Rightarrow The results obtained with a k- ω model are not in accordance with the experimental results, especially away from the main stream. In these two cases, a complex recirculation zone can be observed on the left part of the room.

But the eddy recirculation in the right upper corner is better predicted with these models than with the k- ϵ model.

7. CONCLUSION

In this report, simulations with the Annex 20 benchmark test have been performed using Star-CCM+. The goal was to study how different turbulence models predict the velocity distribution in a ventilated room.

In the main stream away from the wall (upper part and right part of the test room), all turbulence models give relatively accurate results. Differences can be observed in the recirculation zone on the upper right corner and on the left part. The standard k- ϵ or the standard k- ϵ low-Re models predict well the recirculation zone on the left part, but no eddy recirculation is predicted in the right upper corner.

The other models $(k-\omega, k-\epsilon \text{ AKN} \text{ and Realizable})$ predict this eddy recirculation, but underpredict its intensity. Nevertheless the velocity profile in the left part of the room is not well-predicted with these models.

These simulations pointed out the fact that numerical simulations should always be compared with measurements since different turbulence models will give different results in a specific case.

References

CD Adapco. Star-CCM+ (v. 6.04.014). 2011.

Lars Koellgaard Voigt. Comparison of Turbulence Models for Numerical Calculation of Airflow in an Annex 20 Room. International Center for Indoor Environment and Energy Department of Energy Engineering. Technical University of Denmark. ISBN 87-7475-225-1.

Peter V. Nielsen. *Specification of a Two-dimensional Test Case*. Department of Building Technology and Structure Engineering. Aalborg University, 1990. ISBN 0902-7531 R9040.

Peter V. Nielsen. *Flow in Air Conditioned Rooms: Model experiments and numerical solution of the flow equations.* PhD thesis, Technical University of Denmark, 1974.

Peter V. Nielsen. Airflow in a world exposition pavilion studied by scale-model experiments and computational fluid dynamics. ASHRAE Transactions,101(2), 1118-1126, 1995.

Inés Olmedo, Peter V. Nielsen. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow? Aalborg University, 2010. ISSN 1901-726X.

Li Rong, Peter V. Nielsen. Simulation with different turbulence models in an annex 20 room benchmark test using Ansys CFX 11.0. Aalborg University, 2008. ISSN 1901-726X.

ISSN 1901-726X DCE Technical Report No. 147