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Abstract—Due to overlapping frequency bands, IEEE 802.11a
WLAN and Ultra Wide-Band systems potentially suffer from
mutual interference problems. This paper proposes a method for
inserting frequency notches into the IR-UWB power spectrum
to ensure compatibility with WLAN systems. In contrast to
conventional approaches where complicated waveform equations
are used, the proposed method uses a dual-pulse frequency
notching approach to achieve frequency suppression in selected
bands. The proposed method offers a solution that is generi-
cally applicable to UWB pulse generators using different pulse
waveforms. In addition the method can be easily implemented.
A prototype UWB pulse generator designed using the proposed
method has been fabricated in a standard 0.18 µm CMOS process
for verification, and satisfactory results are found.

Index Terms—CMOS implementation, Frequency notching,
IR-UWB, Pulse generator, WLAN compatibility.

I. INTRODUCTION

Owing to its attractive potential of low power implemen-
tation, multi-path robustness, localization etc., Impulse-Radio
Ultra Wide-Band (IR-UWB) has been increasingly employed
for short range applications, such as wireless sensor networks,
biomedical applications and RFID [1], [2]. The deployment
of IR-UWB wireless transceivers is for most of these ap-
plications usually in environments where other narrow band
communication systems are present. Some of the narrow
band systems, such as GSM, GPS and Bluetooth, operate
in frequency bands that fall outside of the main UWB band
(3.1-10.6 GHz) and therefore present no direct compatibility
issues for their co-existence with the UWB system. IEEE
802.11a WLAN systems, however, operate in the 5.15-5.35
and 5.725-5.825 GHz frequency bands and may therefore give
rise to significant mutual interferences [3]. As shown in Fig. 1
the problem can be WLAN-to-UWB interference or UWB-to-
WLAN interference, where the victims are the UWB receiver
and the WLAN receiver, respectively. The focus of this paper
is on the mitigation of the UWB-to-WLAN interference.

Existing methods used to mitigate UWB-to-WLAN inter-
ference issues can be categorized into one of three groups: 1)
Use only one of the sub UWB bands, e.g. 3-5 GHz or 6-10
GHz [4]; 2) Use antennas or filters with a frequency notch to
suppress the UWB signal in the 5-6 GHz WLAN band [5],
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Fig. 1. The compatibility issue between UWB and WLAN systems.

[6]; 3) Use special waveforms to realize a frequency notch
at 5-6 GHz in the power spectral density (PSD) of the 3-10
GHz UWB pulse signal [7], [8]. Methods belonging to the
first group are the simplest, but the frequency efficiency is
low as the UWB frequency band is not fully utilized. This
can reduce the achievable system communication range or
data rate. The second group of methods is also reasonably
straight forward to implement. The drawback here is that the
methods increase circuit complexity and it is challenging to
maintain good radiating/filtering performance (for example
low insertion loss and return loss) while inserting a notch
into the UWB band. Approaches belonging to the third group
hold the potential to obtain high frequency efficiency as it
uses both the lower and upper UWB bands. In addition, it
also features high power efficiency since no generated in-
band power is rejected or filtered out. Therefore increasing
research effort has been put into this area [8], [9]. However,
one drawback of these approaches is that the special waveform
equations needed usually are based on infinite series or integral
equations, such as the example below [7]

λkψk(t) =

∫ Tp/2

−Tp/2

ψk(x)
sinWk(t− x)

t− x
dx, (1)
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Fig. 2. The combination of two pulses with a relative time delay of Td.
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Fig. 3. The notched frequency bands introduced by the time delay between
two identical pulse signals (Td = 275 ps and the spectrum is normalized).

where ψk(t) is the kth sub-band waveform, and the waveform
with frequency notch is the sum of N sub-band waveforms

ψmul(t) =

N∑
k=1

ψk(t). (2)

The implementation of such signals is complicated and there-
fore also very challenging.

This paper presents a simple method that makes it possible
to insert frequency notches in the PSD of the UWB signal.
This is accomplished using a dual-pulse frequency notching
(DPFN) approach. The DPFN approach requires no special
waveform equations and may thus be implemented using well
known UWB waveforms.

II. THE DUAL-PULSE FREQUENCY NOTCHING METHOD

When looking to generate UWB pulse signals many dif-
ferent pulse waveforms may be used. Well known examples
include the Gaussian pulse and its derivatives [10], [11], raised
cosine pulses [8] etc. In this paper any one of these waveforms
is generically represented by p(t). As shown in Fig. 2, the
proposed method uses two basic pulses to form a pulse signal
u(t). A1 and A2 are the amplitudes of the original pulse and
the delayed pulse, respectively. In the ideal case the two pulses
have identical shapes and amplitudes (A1 = A2). The only

difference is a short relative time delay, Td, between the two
pulses. Based on this, u(t) is expressed as

u(t) = A1·p(t) +A2·p(t− Td). (3)

For UWB systems using on and off keying (OOK), every
combined waveform of u(t) represents a bit ”1”.When A1 =
A2 = A the Fourier transform of u(t) can be found as

U(f) = P (f)(1 + exp(−j2πfTd)), (4)

where U(f) and P (f) are the Fourier transform of u(t) and
A·p(t), respectively. Assuming that the power spectral density
of A·p(t) is Φp(f), the PSD of u(t) can be found by

Φu(f) = Φp(f)|1 + exp(−j2πfTd)|2. (5)

It can be seen that Φu(f) is the product of an envelope term,
|1 + exp(−j2πfTd)|2, and the PSD of A·p(t). The envelope
term is plotted in Fig. 3 for a Td of 275 ps. Frequency notches
are located at frequencies given by

fk =
1 + 2k

2Td
, k = 0, 1, 2..., (6)

where fk is the central frequency of the kth notch. Thus
by adjusting the time delay between two identical pulses
frequency notches can be inserted at desired frequencies.
When using Td = 275 ps the second frequency notch is located
at 5.5 GHz which improves compatibility with WLAN. In
addition, the first notch is located at 1.82 GHz which improves
compatibility with GPS and bluetooth systems.

A. Application to the 3rd derivative of Gaussian pulse

As can be seen in (5) the frequency notching introduced
by the envelope term, |1 + exp(−j2πfTd)|2, is independent
of the specific waveform used for the basic pulse p(t). This
means that the proposed method can be generically applied to
different basic UWB waveforms.

The 3rd-order derivative of the Gaussian pulse is widely
used in UWB pulse generators due to its easy circuit imple-
mentations and for that reason this pulse shape is used here
as an example for the proof of the proposed concept. In this
case, A·p(t) in (3) is

g(3)(t) = A

(
3t√
2πσ5

− t3√
2πσ7

)
exp

(
− t2

2σ2

)
, (7)

and for the case of A = 1, σ = 43 ps and Td = 275 ps,
the waveform of u(t) in (3) is shown in Fig. 4(a), and its
normalized PSD is shown in Fig. 4(b). As a reference, the
normalized PSD of the third derivative of Gaussian pulse
without notching (single pulse) is also shown in Fig. 4(b).
By comparison it can be seen that the magnitude suppression
achieved in the WLAN frequency bands is in excess of 10
dB. As an added benefit the first frequency notch provides
the attenuation needed for the 3rd-order derivative of the
Gaussian pulse to meet EIRP requirements. In any practical
design, however, tolerances and mismatch issues always limit
performance. For the proposed method such imperfections
could easily result in an amplitude difference between the two
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Fig. 4. The application of the proposed method on a UWB pulse signal
using two 3rd order derivative Gaussian pulses. a) The pulse in time domain
and b) its normalized power spectral density.

pulses. Fig. 4 reveals the effect of different pulse amplitudes
and it is clearly seen that the notching level is reduced in
this case. However, despite a 1:2 relation between the pulse
amplitudes the method still provides for > 8dB of suppression
for both the WLAN bands. In addition it is seen that the
locations of the notches are maintained.

III. CMOS IMPLEMENTATION AND EXPERIMENT

A block diagram of the implementation of the proposed
method is shown in Fig. 5. The highlighted basic pulse
generator (BPG) and time delay block are for generating the
basic pulse p(t) and time delay Td in (3), respectively. The
time delay block can be realized by CMOS time delay cells,
which can provide fine delay time in the order of hundreds
of ps [12]. The BPG can be implemented using any CMOS-
friendly UWB pulse generator, which can be easily found in
publications. To achieve an optimal frequency notching level,
the two basic pulse generators should be identical, and this can
be ensured by using the same generator topology and identical
layouts.

It should be noted that the total power efficiency of the
two basic pulse generators is almost the same as that of a
single pulse generator. This is because the output power is
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Fig. 5. The block diagram illustrating the implementation of the proposed
frequency notching method using CMOS technologies.

also doubled while the two basic pulse generators consumes
doubled power. The delay block adds power consumption to
the whole circuit. But this is insignificant compared to the
power consumption of the BPGs as the delay block usually
consists of only a few small-sized inverters.

A UWB pulse generator has been implemented using a
standard 0.18 µm CMOS process to verify the proposed
frequency notching method. The circuit schematic of the
pulse generator is shown in Fig. 6. A widely used CMOS
UWB pulse generator is employed in the design to show
the generic application potential of the proposed method.
The specific pulse generator implementation results in 1st-
order derivative Gaussian pulses [13], [14]. The delay cell
has two biasing voltages, which provide the possibility of
adaptive tuning of the notched frequencies. The output filter
is included to suppress the signal spectrum content in the 0-
3 GHz band. Equivalently, the filter converts the low order
derivative of Gaussian pulse to higher order derivative. SPICE
simulations have been conducted to validate the implemented
pulse generator in Fig. 6. Fig. 7 shows the simulated PSD
of the generated UWB pulse signal using DPFN (two basic
pulse generators). The PSD of the UWB pulse signal without
DPFN (one basic pulse generator) is also shown in the figure.
It can be seen that DPFN introduces frequency notches at
desired frequencies. When V ctr1 and V ctr2 are 1.2 V and
0.72 V respectively, the frequency notches are located at 1.8
GHz, 5.45 GHz and 9.1 GHz, which are very close to those
in Fig. 4.

The microphotograph of the fabricated test chip is shown
in Fig. 8. The chip size is 0.7 mm by 0.7 mm including
measurement pads. The layout of the two basic pulse gen-
erators is identical aiming for identical pulse waveforms and
amplitudes. In the measurements a 125 MHz pulse generator
PM 5785 from Philips

TM
was used as the data source and the

PSD of the output signal was measured using a Rohde and
Schwarz

TM
FSQ26 signal analyzer. The measured PSD of the

UWB pulse signal is shown in Fig. 9. It can be clearly seen
that three frequency notches are created at about 1.8 GHz, 5.4
GHz and 8.4 GHz, similar to the results in Fig. 4. The notch
at 5.4 GHz results in an attenuation of about 4.5 dB, which is
lower than the ideal case in Fig. 4 but still comparable to the
suppression using frequency notched antennas ( suppression <
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Fig. 6. Schematic of the circuit implementation of a UWB pulse generator using the proposed dual-pulse frequency notching approach.
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Fig. 7. Simulated PSD of the UWB pulse signal generated by the circuit
shown in Fig. 6 (both BPGs), and the PSD using only the upper BPG (the
lower one is disconnected). The pulse repetition frequency is 50 MHz.

5 dB in [5]). This might be due to the asymmetrical layouts
of the basic pulse generators, even though the generators
have identical layouts. The asymmetrical layouts could lead to
different rising/falling time of the input signal for the two pulse
generators, and consequently introduce a waveform difference
in the generated pulses.

In addition, violations of the UWB mask are observed
at about 1.2 GHz and 3 GHz. This could be solved by
the use of higher order derivative gaussian pulses that have
lower spectrum content at low frequencies in comparison to
lower order derivatives [13], [14]. Fig. 10 shows the SPICE
simulated PSD of UWB pulse signals using the proposed
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Fig. 8. The microphotograph of the test chip fabricated using a standard
0.18 µm CMOS process.

DPFN method on basis of two 3rd, 4th and 5th order derivative
Gaussian pulses. Compared to the PSD of 3rd order derivative
Gaussian pulse, the frequency content of the case using 5th
order derivative Gaussian pulse is significantly reduced by >20
dB and >10 dB at 1.2 GHz and 3 GHz, respectively. The
whole PSD also fulfills the FCC’s UWB mask.

IV. CONCLUSION

This paper presents a dual-pulse frequency notching ap-
proach that makes it possible to insert notched frequency bands
in the PSD of IR-UWB pulses. This approach can be generi-
cally applied to widely used pulse waveforms as the notching
is independent of the specific pulse waveforms. The proposed
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The pulse repetition frequency is 125 MHz.

method is simple and requires no complicated waveform func-
tions, and therefore it can be easily implemented using CMOS
technologies. A test chip fabricated using a standard 0.18 µm
CMOS process has been used for experimental demonstration
and a 4.5 dB magnitude suppression was measured in the
WLAN band. It can be useful for mitigation of UWB-to-
WLAN interference in the design of IR-UWB systems.
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