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Design of Vertical Wall Caisson Breakwaters 
Using Partial Safety Factors 

Hans F. Burcharth* and John Dalsgaard S0rensen** 

1,   Abstract 

The paper presents a new system for implementation of target reliability in caisson breakwater 
designs by means of partial safety factors. The development of the system is explained, and tables of 
partial safety factors are presented for important overall stability failure modes related to caisson 
structures placed on bedding layers and high rubble mound foundations with underlaying sand and 
clay subsoils. 

2. Introduction 

Given the stochastic nature of wave loads it is important to deal with the involved uncertainties in a 
rational way when designing breakwaters. Application of the partial safety factor concept is 
generally accepted as a rational solution to implementation of safety in designs, and is adopted in 
many national codes as well as in the EUROCODE. The partial safety factors are in existing codes 
calibrated against experience with the performance of numerous civil engineering structures in 
which way it is assured that a conventional structure, such as a house, will obtain the usual safety 
when designed using the prescribed safety factors. However, the actual safety in terms of 
probability of a certain damage within a certain span of years is unknown. For breakwaters this 
seems not to be a suitable concept because extensive experience with existing structures is not 
available. Moreover, it is deciable to know the actual safety of a design also because rational 
comparisons of alternative designs have to be performed on the basis of equal safety levels. 
Reliability analysis, f.ex. using a level 2 First Order Reliability Method (FORM), can of course be 
done for any structure by means of computer programs. However, it is regarded a help to the 
designers to make a partial safety factor system available which in an easy way makes it possible to 
design a breakwater to any target reliability level. 

Such a system was introduced and developed by the PIANC PTC II Working Group 12 on Rubble 
Mound Breakwaters (Burcharth 1991 and 1993) and has now been further developed to cover 
caisson breakwaters by the PIANC PTC II Working Group 28 on Vertical Wall Breakwaters. 

The partial safety factor system is developed on the basis of the validity of the Goda (1985) wave 
load formula. This formula is not valid for design cases where frequent wave breaking directly on 
the caisson wall takes place. This causes very large short-duration impulsive loads for which design 
tools are hardly developed. Steep seabed slopes or semi-high rubble slopes in front of the structure 
can trigger such unfavorable wave conditions. Goda (1985 pp 132-138) provides advice as how to 
avoid such excessive impact loadings. 
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The overall procedure in development of the partial safety factor system comprises the following 
steps: 

• Identification of failure modes 
• Formulation of limit state equations for the failure modes 
• Modelling of uncertainties related to loads (waves), 

strengths (soils, concrete) and limit state equations 
• Selection of format for the partial safety factor system 
• Calibration of the partial safety factors 
• Verification 

3. Failure modes 

All possible failure modes must be considered in the design. The present paper deals with the 
overall stability failure modes illustrated in Fig.l. A more complete discussion of failure modes is 
given in Burcharth (1998). 
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Fig.l.   Important overall stability failure modes. 
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4. Wave modelling 

For calibration of partial safety factors the maximum significant wave height in T 
years is denoted Hg and is modelled by the extreme Weibull distribution function: 

FHj(M=[l-e*p(-(^)")] 
0 (1) 

Wave data from 4 quite different geographical locations are selected, see table 1 
where hs is the water depth, N is number of samples and A is the number of 
observations per year. 

N A a P B'„ h3 

Bilbao 50 4.17 1.39 1.06 4.9 29 
Sines 15 1.25 1.78 2.53 7.1 35 

Tripoli 15 0.75 1.83 3.24 2.9 27 
Follonica 46 5.94 1.14 0.58 2.69 10 

Table 1. Wave data from different locations fitted to a Weibull distribution. /3, Hs and hs are 
in meters. 

The wave data from Bilbao, Sines and Tripoli correspond to deep water waves 
while the wave data from Follonica correspond to shallow water waves. In order 
to model the statistical uncertainty a and /? are modelled as Normal distributed 
variables. 

The model uncertainty related to the quality of the measured wave data is mo- 
delled by a multiplicative stochastic variable ZHS which is assumed to be normal 
distributed with expected value 1 and standard deviation a'z . Good and poor 

wave data could be represented by a'z = 0.05 and 0.2, corresponding to accele- 
rometer bouy and fetch diagram estimates, respectively. 

5. Soil strength modelling 

The undrained shear strength of clay is modelled by a log-Gaussian distributed 
stochastic field {cu(x,z)} where z and x are vertical and horisontal coordinates, 
respectively. The expected value function E[cu(x, z)] and the covariance function 
Cov[cu(xi,zi),cu(x2,z2)} is written 

E[cu(x,z)}=E[cu(z)] 

Cov[cu(xi,z1),cu(x2,z2)] = Cov[cu(x1 -X2,Zi - z2) 

(2) 
(3) 

where (xi,Zi) and (x2,z2) are two points in the soil. E[cu(x,z)\ gives the expected 
value in depth z of the undrained shear strength of clay. C'ov[cu(xi, «i), cu(x2, 2r2)] 
gives the covariance between cu at position (xi,zi) and cu at position (x2,z2). 
V ar[cu (x i,zi)] = Cov[cu(xi,zi),cu(xi,zi)] is the variance of cM at position (xi,«i). 

It is seen that the expected value depends on the depth and the covariance de- 
pends on the vertical and horisontal distances. Generally the correlation lengths 
in horisontal and vertical direction will be different due to the soil stratification. 
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The mean value function and covariance function are assumed to be modelled by 

E[cu(x,z)) = c„o + cnlz 

Cov[cu(x1,z1),cu(x2,z2)] = ofo exp^-|a(^ -z2)|J expf-(/3(x1 - z2))  J 

where cu0 and cKl model the expected value, aCu is the standard deviation and a 
and /3 model the correlation. 

Since the breakwater foundation is made of friction material and it is assumed 
that foundation failure modes can develope both in the rubble mound and in sand 
subsoil, statistical models for the effective friction angle and the angle of dilation 
are needed for the rubble material and the sand subsoil. These angles are modelled 
by Lognormal stochastic variables. 

6. Estimation of partial safety factors for one failure mode 

In code calibration based on first order reliability methods (FORM) it is assumed 
that the limit state function can be written 

ff(x,z) = 0 (4) 

where x = (xi,. .. ,xn) is a realization of X = (Xi,. .. ,Xn). External loads 
(e.g. wave), strength parameters and model uncertainty variables are examples of 
uncertain quantities, z = (z-[,.. . ,ZN) are N design variables which are used to 
design the actual structure. Realizations x of X where g(x, z) < 0 corresponds to 
failure states, while <?(x, z) > 0 corresponds to safe states. 

If the number of design variables is N = 1 then the design (modelled by z) can be 
determined from the design equation 

G(xV,7)>0 (5) 

xc = (x\,..., xc
n) are characteristic values corresponding to the stochastic variables 

X. 7 = (71,... ,7m) are m partial safety factors. The partial safety factors 7 are 
usually denned such that ji > 1, i = 1,..., m. In the most simple case m = n. 

The design equation is closely connected to the limit state function (4). In most 
cases the only difference is that the variables x are exchanged by design values xrf 

obtained from the characteristic values xc and the partial safety factors 7. 

The characteristic values are for variable load variables usually the 98 % fractile of 
the distribution function of the stochastic variables. For the significant wave height 
the characteristic value HS

L is chosen as the central estimate of the significant wave 
height which in average is exceeded once every TL years. The design values for 
load variables are then obtained from 

xf = xc,~fi (6) 

The characteristic values are for strength variables usually the 5 % or 50 % fractiles 
of the distribution function of the stochastic variables.  Here the 50 % fractile is 
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used in order to obtain partial safety factors larger than or equal to 1. The design 
values are then obtained from 

£1 (7) 

The limit state / design equations are formulated either as a force balance or, 
in case of foundation failure modes, as work equations using the upper bound 
theory of plasticity related to kinematically admissible rupture failures. Figure 2 
illustrates two typical cases. 

Horizontal sliding Foundation failu 

To  be varied 
to identify 
min.   stability 

Figure 2.  Illustration of failure modes for formulation of limit state design equa- 
tions. 

For sliding failure the limit state function can be written 

g = (FG- ZFvFu(ZHsHD))f - ZFHFH{Z„SHD) 

where 

FG reduced weight of caisson under water 

Fu wave induced uplift force 

FH horisontal wave force 

HD design wave height 

ZHS model uncertainty related to the significant wave height Hs 

pc density of the caisson 

ZpH model uncertainty on horisontal wave load 

Zpv model uncertainty on vertical wave load 

/ friction coefficient 

The design equation corresponding to (8) is written 

G = — (FG - 0.77F[r)fc - 0.9(LF£ 

where 

(8) 

(9) 
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fc mean of base friction coefficient 

•jz partial safety factor on fc 

FQ mean value of reduced weight of caisson under water 

F[j and F^ wave induced uplift force and horisontal wave force calculated by 

Goda formulae using •ynHD
L as wave height, where JH is the partial 

safety factor and HD
L is the expected maximum wave height in a 

storm with 7Y-years return period (often taken as 1.8HS
L). The 

factors ZF =0.77 and ZF =0.90 compensates for the bias (safety) 
implemented in the Goda formulae. 

For foundation failure the limit state function can be written 

g = (FS + FG - ZFvFu(ZHaHD))u>v ~ ZFHFH(ZHSHD)UH (10) 

where 

Fs boyancy reduced gravitational force on the sliding soil element 

u>V displacement vector, toy = sin(tp<i — 8)/cos(pd 

U>H displacement vector, UJH = cos{^pj, — 9)/cos(pci 

The reduced effective angle of friction is calculated from 

sin tp'r cos «/v 
ta,inpd 

• sin <p'r sin rj)r 

where ip'r is the effective angle of friction and t/v is the dilation. 

The design equation is written 

G = {Fc
s + F{, - 0.77.F£X - 0.90-F^ (11) 

where FJ is the mean value of Fs- cov and uj, are obtained using the the design 
value of tan ipc

d determined from 

72 tan v% = ^ e   r.e 12 

where 7^ is the partial safety factor on tanyj. 

The application area for the code is described by a number, L of different typical 
structures. The partial safety factors 7 are calibrated such that the reliability 
indices corresponding to the L structures are as close as possible to the target 
reliability index j3t = — $~1(Pj), where Pj is the target probability of failure. 
This is formulated by the following optimization problem 

min    W(7) = 2>y(&(7)-ft)2 (13) 
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where Wj, j = 1,... , L are weighting factors (Xw=i wi = 1) indicating the relative 
frequency of appearance of the different design situations. /3j(j) is the reliability 
index for structure no. j 

7. Format for partial safety factors 

Partial safety factors are calibrated with the following code entries: 

• the design lifetime TL (= 20, 50 or 100 years) 

• the acceptable probability of failure Pf (= 0.01, 0.05, 0.10, 0.20 or 0,40) 
corresponding to the target reliability indices /3T (= 2.33, 1.65, 1.28, 0.84 
or 0.25) 

• the coefficient of variation az      = (0.05 and 0.20). 

• Deep or shallow water conditions. 

• Hydraulic model test or not. 

The partial safety factors are: 

- a load partial safety factor fp = 1 to be multiplied to the permanent load. 

- a load partial safety factor 7# to be multiplied to HS
L (the central estimate of 

the significant wave height which in average is exceeded once every TL years). 
The design wave height is to be taken as a multiplum of HS

L. 

- a safety factor jz to be used with friction materials in rubble mound and/or 
subsoil (tangent to the mean value of the friction angle is divided by -yz)- 

- a safety factor jc to be used with the undrained shear strength of clay materials 
in the subsoil (the mean value of the undrained shear strength is divided by 7c). 

8. Limit state functions and design equations 

For calibration of the partial safety factors the parameters for the stochastic vari- 
ables shown in table 2 are used. The correlation coefficient between ZFH and ZMH 

and between Zpv and ZMV 
are estimated roughly to 0.9. In table 2 D denotes a 

deterministic variable, N(jU, a) denotes a normal distribution with expected value 
ft and standard deviation a and LN(/J, a) denotes a lognormal distribution. 

The tidal elevation f is modelled as a stochastic variable with distribution function 

-Fc(C) = \ arccos (— ^- j where (0 is the maximum tidal height. (0 = 0.75 m is 

used. 
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distribution reference 

Pc N(2.1, 0.1075) Burcharth (1992) 

ZFH 
N(0.90, 0.25) Bruining (1994) 

ZFV 
N(0.77, 0.25) Bruining (1994) 

ZM„ N(0.81, 0.40) Bruining (1994) 

ZMV 
N(0.72, 0.37) Bruining (1994) 

Vv LN(0.43, 0.043) 

V'r LN(0.61, 0.061) 

Ips LN(0.35, 0.035) 

f'. LN(0.52, 0.052) 

Ucn N(0, 1) 
Cu0 150 kPa 

Cul 0 
acu D(37.5 kPa) 
a D(0.33) 

0 D(0.033) 
Z N(l, 0.1) 

f N(0.636, 0.0954) Takayama (1992) 

C see eq. (14) Takayama (1992) 

Hs ex Weibull 

ZHS N(1,^J 
Table 2. Statistical parameters for calibration of partial safety factors for founda- 
tion failure with sand subsoil. 

If model tests have been performed to estimate the wave forces the model uncert- 
ainties shown in table 3 can be used. 

distribution reference 

ZF„ N(0.90, 0.05) Van der Meer et al. (1994) 

ZFV N(0.77, 0.05) Van der Meer et al. (1994) 

ZMH N(0.81, 0.10) Van der Meer et al. (1994) 

ZMV N(0.72, 0.10) Van der Meer et al. (1994) 

Table 3.  Statistical parameters for model uncertainties when wave forces are de- 
termined on the basis of model tests. 

8.1 Horizontal sliding 

Equations are given in. section 6. 

8.2 Scour failure for circular roundheads on sand 

The design equation is written, see Sumer et al. (1996) (no rubble foundation) 

G = Vz^c ~ °'5(1 " eM~0-mKC(7HH^) - 1))) 

where sp is the wave steepness and 

KC = 
vm.J-p u„ •KZHSHS 

TT       smh.(2Txh'3ILp 
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(T)   Sliding between structure and bedding (s) Failure in rubble mound 
^"^   layer/rubble foundation ^^ 

(3)   Failure in   rubble   and sliding   between 
rubble and clay/sand 

0 

Clay, sand or rock 

Failure in  rubble mound 

Clay, sand or rock 

(5J   Failure in rubble and sand 

ft 
6)  Failure in rubble and sand 

ft 

(7)   Failure in rubble and clay (rotation) 

H     ft 

6J   Failure in rubble and clay (circular) 

ft, 

Figure 3. Foundation failure modes. 

T = p 

ZHS HS 2-7T 

sP      9 

and the wave length Lp is determined from 

Lp = g^taBh(2nh'JLp) 
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8.3 Hydraulic instability of foundation rubble mound armour layer 

The design equation is written, see Madrigal et al. (1995) : 

h' 
G —Ac^(5.8- • 0.60)iVo7

! 7HH? 

8.4 Foundation failure modes 

Figure 3 shows the investigated foundation failure modes. The complete sets of 
design equations can be found in Burcharth (1998) and J.D. S0rensen et al. (1998). 

9. Partial Safety Factors 

Below is shown the results of the probabilistic calibration of partial safety factors. 
In deterministic design of the breakwater the following bias values for the forces 
and moments are to be used: 

value 

ZMH 

0.90 
0.77 
0.81 
0.72 

Table 4. Values of model uncertainties to be used in deterministic design. 

Foundation failure - sand subsoil: 

ZH!S 

= 0.05 a' = 0.2 

P.HM 1H 7Z 1H 7Z 
0.01 1.4 1.4 1.4 1.4 
0.05 1.3 1.3 1.3 1.4 
0.10 1.2 1.3 1.2 1.3 
0.20 1.1 1.2 1.1 1.2 
0.40 1.1 1.1 1.1 1.1 

Table 5. Partial safety factors for foundation failure - sand subsoil - deep water - no model tests 
performed. 

= 0.05 
ZH« 

= 0.2 

Pf 1H 7Z 1H lz 
0.01 1.3 1.3 1.4 1.3 
0.05 1.3 1.2 1.4 1.2 
0.10 1.2 1.2 1.3 1.2 
0.20 1.1 1.2 1.1 1.2 
0.40 1.1 1.1 1.1 1.1 

Table 6.   Partial safety factors for foundation failure • 
performed. 

ad subsoil - deep water - model tests 
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a' zxK 
= 0.05 = 0.2 

Pf 1H TZ 1H TZ 
0.01 1.5 1.4 1.3 1.5 
0.05 1.4 1.3 1.3 1.4 
0.10 1.3 1.2 1.2 1.3 
0.20 1.2 1.1 1.1 1.3 
0.40 1.1 1.0 1.1 1.1 

Table 7.   Partial safety factors for foundation failure • 
tests performed. 

' subsoil - shallow water - no model 

a' Z»K 
= 0.05 zns 

= 0.2 

P.! 1H Tz 1H Tz 
0.01 1.3 1.3 1.4 1.3 
0.05 1.3 1.3 1.4 1.3 
0.10 1.2 1.2 1.3 1.2 
0.20 1.1 1.1 1.1 1.1 
0.40 1.1 1.1 1.1 1.1 

Table 8. Partial safety factors for foundation failure : 
performed. 

sand subsoil - shallow water - model tests 

Foundation failure - clay subsoil: 
<T'        - 0.05 <r'   = 0.2 

Pf 1H Tz lc TH Tz lc 
0.01 1.3 1.4 1.4 1.4 1.4 1.4 
0.05 1.2 1.3 1.3 1.3 1.3 1.3 
0.10 1.1 1.2 1.3 1.2 1.2 1.3 
0.20 1.0 1.1 1.2 1.0 1.1 1.2 
0.40 1.0 1.1 1.1 1.0 1.0 1.1 

Table 9. Partial safety factors for foundation failure - 
performed. 

clay subsoil - deep water - no model tests 

a'        = 0.05 a'        = 0.2 z«s 

p.f 1H TZ lc 1H TZ lc 
0.01 1.2 1.4 1.4 1.3 1.4 1.4 
0.05 1.1 1.3 1.3 1.2 1.3 1.3 
0.10 1.0 1.2 1.2 1.1 1.2 1.3 
0.20 1.0 1.1 1.1 1.0 1.1 1.2 
0.40 1.0 1.0 1.1 1.0 1.0 1.1 

Table 10.   Partial safety factors for foundation failure 
performed. 

clay subsoil - deep water - model tests 

a'        = 0.05 ZHl 
<r'~  = 0.2 

Pf 1H Tz lc 1H TZ lc 
0.01 1.2 1.7 1.5 1.3 1.7 1.5 
0.05 1.1 1.5 1.4 1.2 1.5 1.4 
0.10 1.1 1.4 1.3 1.2 1.4 1.4 
0.20 1.0 1.3 1.2 1.1 1.3 1.3 
0.40 1.0 1.2 1.2 1.1 1.2 1.2 

Table 11.  Partial safety factors for foundation failure • 
tests performed. 

clay subsoil - shallow water - no model 
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aL       = 0.05 a'        = 0.2 

Pj IH iz 1c IH IZ 1c 
0.01 1.2 1.5 1.4 1.3 1.5 1.4 

0.05 1.1 1.4 1.3 1.2 1.4 1.3 
0.10 1.1 1.3 1.3 1.1 1.3 1.3 
0.20 1.0 1.2 1.2 1.1 1.2 1.2 

0.40 1.0 1.1 1.1 1.1 1.1 1.1 

Table 12. Partial safety factors for foundation failure - clay subsoil - shallow water - model tests 
performed. 

Sliding failure: 

<r'„       = 0.05 a'        =0.2 
ZH.< 

Pf IH ~tz IH Iz 
0.01 
0.05 
0.10 
0.20 
0.40 

1.4 
1.3 
1.3 
1.3 
1.1 

2.0 
1.7 
1.5 
1.2 
1.1 

1.5 
1.4 
1.4 
1.3 
1.1 

2.0 
1.7 
1.5 
1.2 
1.1 

Table 13. Partial safety factors for sliding failure - deep water - no model tests performed. 

a' 
ZHC< 

= 0.05 = 0.2 

Pf IH Iz IH TZ 
0.01 1.3 1.7 1.4 1.7 
0.05 1.2 1.6 1.3 1.6 
0.10 1.2 1.4 1.3 1.4 
0.20 1.2 1.2 1.2 1.2 
0.40 1.1 1.2 1.1 1.1 

Table 14. Partial safety factors for sliding failure - deep water - model tests performed. 

z»« = 0.05 
^H, 

= 0.2 

p.f 1H Iz ~IH iz 
0.01 1.3 2.2 1.4 2.2 
0.05 1.2 1.9 1.3 1.9 
0.10 1.2 1.7 1.3 1.7 
0.20 1.2 1.3 1.2 1.3 
0.40 1.0 1.2 1.0 1.2 

Table 15. Partial safety factors for sliding failure - shallow water - no model tests performed. 

"7 = 0.05 
ZHS 

= 0.2 

Pf 7/7 iz 1H iz 
0.01 1.2 1.7 1.3 1.6 
0.05 1.1 1.5 1.2 1.5 
0.10 1.1 1.3 1.2 1.3 
0.20 1.1 1.2 1.1 1.2 
0.40 1.0 1.1 1.0 1.1 

Table 16. Partial safety factors for sliding failure - shallow water - model tests performed. 
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Scour failure: 

= 0.05 = 0.2 

Pf 7/7 7Z 7H 7z 
0.01 2.0 2.4 2.0 2.4 

0.05 2.0 2.0 2.0 2.0 

0.10 2.0 1.8 2.0 1.8 

0.20 2.0 1.5 2.0 1.5 

0.40 2.0 1.2 2.0 1.2 

Table 17. Partial safety factors for scour failure for circular roundheads - deep water. 

= 0.05 z»« = 0.2 

Pf 7H iz 7H 7Z 
0.01 2.0 2.4 2.0 2.4 

0.05 2.0 2.0 2.0 2.0 

0.10 2.0 1.8 2.0 1.8 

0.20 2.0 1.5 2.0 1.5 

0.40 2.0 1.2 2.0 1.2 

Table 18. Partial safety factors for scour failure for circular roundheads - shallow water. 

Armour layer failure: 

°7 = 0.05 "'7 = 0.2 

Pf ~IH iz 1H iz 
0.01 1.6 1.3 1.7 1.3 

0.05 1.4 1.2 1.5 1.2 

0.10 1.3 1.2 1.4 1.2 

0.20 1.2 1.1 1.3 1.1 

0.40 1.1 1.0 1.2 1.0 

Table 19. Partial safety factors for armour layer failure • deep water. 

a' 
Z

HR 
= 0.05 a' ZH<; 

= 0.2 

Pf 1H iz 1H iz 
0.01 1.5 1.5 1.6 1.5 

0.05 1.3 1.3 1.4 1.3 

0.10 1.2 1.2 1.3 1.2 

0.20 1.1 1.2 1.2 1.2 

0.40 1.1 1.0 1.2 1.0 

Table 20. Partial safety factors for armour layer failure ~ shallow water. 
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