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Chapter VI-6
Reliability Based Design of Coastal Structures

VI-6-1.  Introduction

a. Conventional design practice for coastal structures is deterministic in nature and is based on the
concept of a design load which should not exceed the resistance (carrying capacity) of the structure.  The
design load is usually defined on a probabilistic basis as a characteristic value of the load, for example the
expectation (mean) value of the 100-year return period event.  However, this selection is often made without
consideration of the involved uncertainties.  In most cases the resistance is defined in terms of the load that
causes a certain design impact or damage to the structure, and it is not given as an ultimate force or
deformation.  This is because most of the available design formulae only give the relationship between wave
characteristics and some structural response, such as runup, overtopping, armor layer damage, etc.  An
example is the Hudson formula for armor layer stability.  

b. Almost all coastal structure design formulae are semiempirical and based mainly on central fitting
to model test results.  The often considerable scatter in test results is not considered in general because the
formulae normally express only the mean values.  Consequently, the applied characteristic value of the
resistance is then the mean value and not a lower fractile as is usually the case in other civil engineering
fields.  The only contribution to a safety margin in the design is inherent in the choice of the return period
for the design load.  (The exception is when the design curve is fitted to the conservative side of the data
envelope to give a built-in safety margin.)  It is now more common to choose the return period with due
consideration of the encounter probability, i.e., the probability that the design load value is exceeded during
the structure lifetime.  This is an important step towards a consistent probabilistic approach.

c. In addition to design load probability, a safety factor (as given in some national standards) might be
applied as well, in which case the method is classified as a Level I (deterministic/quasi-probabilistic) method.
However, this approach does not allow determination of the reliability (or the failure probability) of the
design; and consequently, it is not possible to optimize structure design or avoid overdesign of a structure.
In order to overcome this problem, more advanced probabilistic methods must be applied where the
uncertainties (the stochastic properties) of the involved loading and strength variables are considered.  

d. Methods where the actual distribution functions for the variables are taken into account are denoted
as Level III methods.  Level II methods generally transform correlated and non-normally distributed variables
into uncorrelated and standard normal distributed variables, and reliability indices are used as measures of
the structural reliability.  Both Level II and III methods are discussed in the following sections.  Also
described is an advanced partial coefficient system which takes into account the stochastic properties of the
variables and makes it possible to design a structure for a specific failure probability level.

VI-6-2.  Failure Modes and Failure Functions

a. Evaluation of structural safety is always related to the structural response as defined by the failure
modes.  Failure modes for various structures are presented in Part VI-2-4, “Failure Modes of Typical
Structure Types.”

b. Each failure mode must be described by a formula, and the interaction (correlation) between the
failure modes must be known.  As an illustrative example consider only one failure mode, “hydraulic stability
of the main armor layer” described by the Hudson formula
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(VI-6-1)D 3
n '

H 3
s

KD ∆3 cotα

where

Dn = nominal block diameter

∆ = ρs /ρw - 1

ρs = block density

ρw = water density

α = armor slope angle

Hs = significant wave height

KD = coefficient signifying the degree of damage (movements of the blocks)

c. The formula can be split into load variables Xi
load and resistance variables, Xi

res.  Whether a parameter
is a load or a resistance parameter can be seen from the failure function.  If a larger value of a parameter
results in a safer structure, it is a resistance parameter; and if a larger value results in a less safe structure, it
is a load parameter.

d. According to this definition one specific parameter can in one formula act as a load parameter while
in another formula the same parameter can act as a resistance parameter.  An example is the wave steepness
parameter in the van der Meer formulas for rock, which is a load parameter in the case of surging waves, but
a resistance parameter in the case of plunging waves.  The only load variable in Equation VI-6-1 is Hs while
the others are resistance variables.

e. Equation VI-6-1 is formulated as a failure function (performance function)

(VI-6-2)g ' A @∆ @Dn (KD cotα)1/3 & Hs

< 0 failure
' 0 limit state (failure)
> 0 no failure (safe region)

f. All the involved parameters are regarded as stochastic variables, Xi , except KD , which signifies the
failure, i.e., a specific damage level chosen by the designer.  The factor A in Equation VI-6-2 is also a
stochastic variable signifying the uncertainty of the formula.  In this case the mean value of A is 1.0.

g. In general Equation VI-6-2 is formulated as

(VI-6-3)g ' R & S

where R stands for resistance and S for loading.  Usually R and S are functions of many random variables,
i.e.,
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R ' R (X res
1 , X res

2 , . . . , X res
m ) and S ' S (X load

m%1 , . . . , X load
n ) or g ' g (X̄)

The limit state is given by

(VI-6-4)g ' 0

which is denoted the limit state equation and defines the so-called failure surface which separates the safe
region from the failure region.

h. In principle, R is a variable representing the variations in resistance between nominally identical
structures, whereas S represents the maximum load effects within a period of time, for instance T successive
years.  The distributions of R and S are both assumed independent of time.  The probability of failure, Pf ,
during any reference period of duration T years is then given by

(VI-6-5)Pf ' Prob [g # 0]

i. The reliability Rf is defined as  

(VI-6-6)Rf ' 1 & Pf

VI-6-3.  Single Failure Mode Probability Analysis

a. Level III methods.

(1) A simple method (in principle) of estimating Pf is the Monte Carlo method where a very large number
of realizations x of the variables X are simulated.  Pf is then approximated by the proportion of the simulations
where g # 0.  The reliability of the Monte Carlo method depends on a realistic assessment of the distribution
functions for the variables X and their correlations.

(2) Given  as the joint probability density function (jpdf) of the vector  = ( X1 , X2 , ... , Xn ), thenfX̄ X̄
Equation VI-6-5 can be expressed by

(VI-6-7)Pf ' mR#S
fX̄ ( x̄ ) d x̄

(3) Note that the symbol x is used for values of the random variable X.  If only two variables R and S are
considered then Equation VI-6-7 reduces to

(VI-6-8)Pf ' mR#S
f(R,S) (r,s) drds

which is conceptually illustrated in Figure VI-6-1.  If more than two variables are involved it is not possible
to describe the jpdf as a surface but requires an imaginary multidimensional description.
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Figure VI-6-1.   Illustration of the two-dimensional joint probability density function for loading and
strength

(4) Figure VI-6-1 also shows the so-called design point which is the point of failure surface where the
joint probability density function attains the maximum value, i.e., the most probable point of failure.

(5) Unfortunately, the jpdf is seldom known.  However, the variables can often be assumed independent
(noncorrelated) in which case Equation VI-6-7 is given by the n-fold integral

(VI-6-9)Pf ' mmmR#S
. . . m fX1

(x1) . . . fXn
(xn) dx1 . . . dxn

where fXi are the marginal probability density function of the variables Xi .  The amount of calculations
involved in the multidimensional integration Equation VI-6-9 is enormous if the number of variables, n, is
larger than 5.

(6) If only two independent variables are considered, e.g., R and S, then Equation VI-6-9 simplifies to

(VI-6-10)Pf ' mmR#S
fR(r) fS(s) drds

which by partial integration can be reduced to a single integral

(VI-6-11)Pf ' m
4

0
FR(x) fS(x) dx

where FR is the cumulative distribution function for R.  Formally the lower integration limit should be -4, but
it is replaced by 0 since, in general, negative strength is not meaningful.

(7) Equation VI-6-11 represents the product of the probabilities of two independent events, namely the
probability that S lies in the range x, x+dx (i.e., fS(x) dx) and the probability that R # x (i.e., FR(x)), as shown
in Figure VI-6-2.
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Figure VI-6-2.   Illustration of failure probability in case of two independent
variables, S and R

b. Level II methods.  This section gives a short introduction to reliability calculations at Level II.  Only
the so-called first-order reliability method (FORM), where the failure surface is approximated by a tangent
hyberplane at some point, is presented.  A more accurate method is the second-order reliability method
(SORM), which uses a quadratic approximation to the failure surface.

(1) Linear failure functions of normally-distributed random variables.  

(a) Assume the loading S(x) and the resistance R(x) for a single failure mode to be statistically
independent and with density functions as illustrated in Figure VI-6-2.  The failure function is given by
Equation VI-6-3 and the probability of failure is expressed by Equation VI-6-10 or Equation VI-6-11.

(b) However, in many cases these functions are not known, but under certain assumptions the functions
might be estimated using only the mean values and standard deviations.  If S and R are assumed to be
independent normally distributed variables with known means and standard deviations, then the linear failure
function g = R - S is normally distributed with mean value,

(VI-6-12)µg ' µR & µS

and standard deviation

(VI-6-13)σg ' (σ2
R % σ2

S )
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Figure VI-6-3.   Illustration of reliability index

The quantity (g - µg ) /σg  will be unit standard normal, and consequently,

(VI-6-14)Pf ' prob (g#0) ' m
0

&4
fg(x) dx ' Φ

0 & µg

σg

' Φ (&β)

where

(VI-6-15)β '
µg

σg

is a measure of the probability of failure referred to as the reliability index (Cornell 1969).  Figure VI-6-3
illustrates β and the realiability index.  Note that β is the inverse of the coefficient of variation, and it is the
distance (in terms of number of standard deviations) from the most probable value of g (in this case the mean)
to the failure surface,  g = 0.  

(c) If R and S are normally distributed and "correlated," then Equation VI-6-14 still holds, but σ is given
by

(VI-6-16)σg ' (σ2
R % σ2

S % 2 ρRSσRσS )

where ρRS is the correlation coefficient

(VI-6-17)ρRS '
Cov (R,S)
σRσS

'
E [(R & µR ) (S & µS )]

σRσS
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Figure VI-6-4.   Illustration of β in normalized coordinate system

R and S are said to be uncorrelated if ρRS = 0.

(d) In addition to the illustration of β in Figure VI-6-3, a simple geometrical interpretation of β can be
given in the case of a linear failure function g = R - S of the independent variables R and S by a
transformation into a normalized coordinate system of the random variables RN = (R - µR ) /σR and SN = (S -
µS) /σS , as shown in Figure VI-6-4.

(e) With these variables the failure surface g = 0 is linear and given by

(VI-6-18)R )σR & S )σS % µR & µS ' 0

(f) By geometrical considerations it can be shown that the shortest distance from the origin to this linear
failure surface is equal to in which Equations VI-6-12 and VI-6-13 are used.

(VI-6-19)β '
µg

σg

'
µR & µS

σ2
R % σ2

S

(2) Nonlinear failure functions of normally-distributed random variables.  

(a) If the failure function  is nonlinear, then approximate values for µg and σg can be obtainedg ' g (X̄)
by using a linearized failure function.  Linearization is generally performed by retaining only the linear terms
of a Taylor-series expansion about some point.  However, the values of  µg and σg , and thus the value of β,
depend on the choice of linearization point.  Moreover, the value of β defined by Equation VI-6-15 will
change when different, but functionally equivalent, nonlinear failure functions are used.

(b) To overcome these problems, a transformation of the basic variables  into aX̄ ' (X1, X2, . . . , Xn )

new set of normalized variables is performed.  For uncorrelated normally distributedZ̄ ' (Z1, Z2, . . . , Zn )

basic variables  the transformation isX̄
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Figure VI-6-5.   Definition of the Hasofer and Lind reliability index, βHL 

(VI-6-20)Zi '
Xi & µXi

σXi

in which case µZi = 0 and σZi = 1.  By this linear transformation the failure surface g = 0  in the x-coordinate
system is mapped into a failure surface in the z-coordinate system which also divides the space into a safe
region and a failure region as illustrated in Figure VI-6-5.

(c) Figure VI-6-5 introduces the Hasofer and Lind reliability index βHL which is defined as the distance
from the origin to the nearest point, D, of the failure surface in the z-coordinate system (Hasofer and Lind
1974).  This point is called the design point.  The coordinates of the design point in the original x-coordinate
system are the most probable values of the variables  at failure.  βHL can be formulated asX̄

(VI-6-21)βHL '
min

g ( z̄ )'0

n
j
i'1

z 2
i

1/2

(d) The special feature of βHL , as opposed to β, is that βHL is related to the failure "surface" g ( z̄ ) ' 0
which is invariant to the failure function because equivalent failure functions result in the same failure
surface.

(e) The calculation of βHL and the design point coordinates can be undertaken in a number of different
ways.  An iterative method must be used when the failure surface is nonlinear.  A widely used method of
calculating βHL is

• Step 1.  Select some trial coordinates of the design point in the z-coordinate system

z̄ d ' (z d
1 , z d

2 , . . . , z d
n )

• Step 2.  Calculate αi     i = 1, 2, . . . , n  by
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αi ' /000
Mg
Mzi z̄' z̄ d

• Step 3.  Determine a better estimate of   byz̄ d

z d
i ' αi

n
j
i'1

(αi z d
i ) & g |z̄' z̄ d

n
j
i'1

(αi )2

• Step 4.  Repeat Steps 2 and 3 to achieve convergence

• Step 5.  Evaluate βHL by

βHL '

n
j
i'1

(z d
i )2

1/2

The method is based on the assumption of the existence of only one minimum.  However, several “local”
minima might exist.  In order to avoid convergence toward a local minima (and thereby overestimation
of βHL and the reliability) several different sets of trial coordinates might be tried.

(3) Nonlinear failure functions of non-normal random variables.  

(a) It is not always a reasonable assumption to consider the random variables normally distributed.  For
example, parameters characterizing the sea state in long-term wave statistics, such as Hs , will in general
follow extreme distributions (e.g., Gumbel and Weibull).  These distributions are quite different from the
normal distribution and cannot be described using only the mean value and the standard deviation.

(b) For such cases it is still possible to use the reliability index βHL , but an extra transformation of the
non-normal basic variables into normal basic variables must be performed before βHL can be determined as
previously described.

(c) A commonly used transformation is based on the substitution of the non-normal distribution of the
basic variable Xi by a normal distribution in such a way that the density and distribution functions  fXi and FXi
are unchanged at the design point.

(d) If the design point is given by  , then the transformation readsx d
1 , x d

2 , . . . , x d
n
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(VI-6-22)

FXi
(x d

i ) ' Φ
x d

i & µ)

X1

σ)Xi

fXi
(x d

i ) '
1
σ)Xi

n
x d

i & µ)

X1

σ)Xi

where µNXi and σNXi  are the mean and standard deviation of the approximate (fitted) normal distribution.

(e) Equation VI-6-22 yields

(VI-6-23)
σ)Xi

'
n Φ&1 FXi

(x d
i )

fXi
(x d

i )

µ)

Xi
' x d

i & Φ&1 FXi
(x d

i ) σ)Xi

(f) Equation VI-6-22 can also be written

FXi
(x d

i ) ' Φ
x d

i & µ)

Xi

σ)Xi

' Φ (z d
i ) ' Φ (βHL αi )

(g) Solving with respect to xi
d gives

(VI-6-24)x d
i ' F &1

Xi
[Φ (βHL αi )]

(h) The iterative method presented above for calculation of βHL can still be used if for each step of
iteration the values of  µNXi and σNXi  given by Equation VI-6-24 are calculated for those variables where the
transformation (Equation VI-6-22) has been used.  For correlated random variables the transformation into
noncorrelated variables is used before normalization.

(4) Time-variant random variables.  The failure functions within breakwater engineering are generally
of the form

(VI-6-25)g ' f1( R̄ ) & f2(Hs , W , Tm )

where  represents the resistance variables and Hs , W, and Tm are the load variables signifying the waveR̄
height, the water level, and the wave period.  The random variables are in general time-variant.
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(a) Discussion of load variables:

• The most important load parameter in breakwater engineering is the wave height.  It is a time-varying
quantity which is best modeled as a stochastic process.  Distinction is made between short-term and
long-term statistics of the wave heights.  Short-term statistics deal with the distribution of the wave
height H during a stationary sequence of a storm, i.e., during a period of constant Hs (or any other
characteristic wave height).  The short-term wave height distribution follows the Rayleigh
distribution for deepwater waves and some truncated distribution in the case of shallow-water waves.

• Long-term statistics deal with the distribution of the storms which are then characterized by the
maximum value of Hs occurring in each storm.  The storm history is given as the sample (Hs1 , Hs2,... ,
Hsn ) covering a period of observation, Y.  Extreme-value distributions like the Gumbel and Weibull
distributions are then fitted to the data sample.  For strongly depth-limited wave conditions a normal
distribution with mean value as a function of water depth might be appropriate.

• The true distribution of Hs can be approximated by the distribution of the maximum value over T
years, which is denoted as the distribution of Hs

T.  The calculated failure probability then refers to
the period T (which in practice might be the lifetime of the structure) if distribution functions of the
other variables in Equation VI-6-25 are assumed to be unchanged during the period T.

• As an example, consider a sample of n independent storms, i.e., Hs1 , Hs2, ... , Hsn , obtained within
Y years of observation.  Assume that Hs follows a Gumbel distribution given by

(VI-6-26)F(Hs ) ' exp &e &α (Hs & β)

which is the distribution of Hs over a period of Y years with average time span between observations of Y/n.

• The distribution parameters α and β can be estimated from the data using techniques such as the
maximum likelihood method or the methods of moments.  Moreover, the standard deviations of α
and β, signifying the statistical uncertainty due to limited sample size, can also be estimated.

• The sampling intensity is λ = n / Y.  Within a T-year reference period the number of data will be λT.
The probability of the maximum value of Hs within the period T is then

(VI-6-27)F (H T
s ) ' [F (Hs )]λT ' exp &e &α(Hs & β) λT

• The expectation (mean) value of Hs
T is given by

(VI-6-28)µ H T
s
' β &

1
α

ln &ln 1 &
1
λT

and the standard deviation of Hs
T (from maximum likelihood estimates) is
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(VI-6-29)

σH T
s
'

1
nα2

1.109 % 0.514 &ln &ln 1 &
1
λT

%

% 0.608 &ln &ln 1 &
1
λT

2 1/2

• Equation VI-6-29 includes the statistical uncertainty due to limited sample size.  Some uncertainty
is related to the estimation of the sample values Hs1 , Hs2 , ... , Hsn arising from measurement errors,
errors in hindcast models, etc.  This uncertainty corresponds to a coefficient of variation σHs /µHs  on
the order of 5 - 20 percent.  The effect of this might be implemented in the calculations by
considering a total standard deviation of

(VI-6-30)σ ' σ2
H T

s
% σ2

Hs

• In Level II calculations, Equation VI-6-27 is normalized around the design point, and
Equations VI-6-28 and VI-6-29 or VI-6-30 are used for the mean and the standard deviation.

• Instead of substituting Hs in Equation VI-6-25 with Hs
T, the following procedure might be used:  Set

T in Equations VI-6-27 to VI-6-29 to be 1 year.  The outcome of the calculations will then be the
probability of failure in a 1-year period, Pf (1 year).  If the failure events of each year are assumed
independent for all variables then the failure probability in T years is

(VI-6-31)Pf (T years) ' 1 & [1 & Pf (1 year)]T

• This assumption simplifies the probability estimation somewhat, and for some structures it is
reasonable to assume failure events are independent, e.g., rubble-mound stone armor stability.
However, for some resistance variables, such as concrete strength, it is unrealistic to assume the
events of each year are independent.  The calculated values of the failure probability in T-years using
Hs

1 year and Hs
T will be different.  The difference will be very small if the variability of Hs is much

larger than the variability of other variables.

• The water level W is also an important parameter because it influences the structure freeboard and
limits wave heights in shallow-water situations.  Consequently, for the general case it is necessary
to consider the joint distribution of Hs , W, and Tm.  However, for deepwater waves W is often almost
independent (except for barometric effects) of Hs and Tm and can be approximated as a noncorrelated
variable that might be represented by a normal distribution with a certain standard deviation.  The
distribution of W is assumed independent of the length of the reference period T.  In shallow water,
W will be correlated with Hs due to storm surge effects.

• The wave period Tm is correlated to Hs.  As a minimum the mean value and the standard deviation
of Tm and the correlation of Tm with Hs should be known in order to perform a Level II analysis.
However, the linear correlation coefficient is not very meaningful because it gives an insufficient
description when the parameters are non-normally distributed.  Alternatively the following approach
might be used:  From a scatter diagram of Hs and Tm a relationship of the form Tm = A f(Hs) is
established in which the parameter A follows a normal distribution (or some other distribution) with
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mean value µA = 1 and a standard deviation σA which signifies the scatter.  Tm can then be replaced
by the variable A in Equation VI-6-25.  The variable A is assumed independent of all other
parameters.  

• Generally, the best procedure for coping with the correlations between Hs , W, and Tm is to work on
the conditional distributions.  Assume the distribution of the maximum value of Hs within the period
T is given as F1 (Hs

T).  Furthermore, assume the conditional distributions F2 (W |Hs
T) and F3 (Tm |Hs

T)
are known.  Let Z1 , Z2  and Z3  be independent standard normal variables and 

Φ(z1) ' F1(H T
s )

Φ(z2) ' F2(W |H T
s )

Φ(z3) ' F3(Tm |H T
s )

• The inverse relationships are given by

H T
s ' F &1

1 [Φ(z1)]
W ' F &1

2 [Φ(z2) |H T
s ]

Tm ' F &1
3 [Φ(z3) |H T

s ]

• By converting the resistance variables  into standard normal variable  , i.e., the resistance termR̄ Z̄o

is written  , then the failure function Equation VI-6-25 becomesf1( R̄ ) ' f3( z̄o)

g ' f3( z̄o) & f2 F &1
1 [Φ(z1)] , F &1

2 [Φ(z2) |H T
s ] , F &1

3 [Φ(z3) |H T
s ] ' 0

• Because g now comprises only independent standard normal variables, the usual iteration methods
for calculating βHL can be applied.

(b) Discussion of resistance parameters:

• The service life of coastal structures spans anywhere between 20 to 100 years.  Over periods of this
length a decrease in the structural resistance is to be expected because of various types of material
deterioration.  Chemical reaction, thermal effect, and repeated loads (fatigue load) can cause
deterioration of concrete and natural stone leading to disintegration and rounding of elements.  Also
the resistance against displacements of armor layers made of randomly placed armor units will
decrease with the number of waves (i.e., with time) due to the stochastic nature of the resistance.
Consequently, for armor layers this means a reduction over time of the Dn and KD parameters in the
Hudson equation.

• Although material effects can greatly influence reliability in some cases, they are not easy to include
in reliability calculations.  The main difficulty is the assessment of the variation with time which
depends greatly on the intrinsic characteristics of the placed rock and concrete.  At this time only
fairly primitive methods are available for assessment of the relevant material characteristics.  In
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Figure VI-6-6.   Illustration of a first-passage problem

addition, the variation with time depends very much on the load-history which can be difficult to
estimate for the relevant period of structural life.

• Figure VI-6-6 illustrates an example situation representing the tensile strength of concrete armor units
where a resistance parameter R(t) decreases with time t.  R(t) is assumed to be a deterministic
function.  The load S(t) (the tensile stress caused by wave action) is assumed to be a stationary
process.  The probability of failure, P(S > R), within a period T is

(VI-6-32)Pf (T) ' 1 & exp &m
T

0
ν% [R(t)] dt

• where ν+ [R (t)] is the mean-upcrossing rate (number of upcrossings per unit time) of the level R(t)
by the process S(t) at time t.  ν+ can be computed by Rice's formula

ν% [R(t)] ' m
4

Ṙ
(Ṡ & Ṙ ) fSṠ [R(t), Ṡ] dṠ

in which   is the joint density function for S(t) and .  Implementation of time-variant variables intofSṠ Ṡ(t)
Level II analyses is rather complicated.  For further explanation, see Wen and Chen (1987).

VI-6-4.  Failure Probability Analysis of Failure Mode Systems

a. A coastal structure can be regarded as a system of components which can either function or fail.  Due
to interactions between the components, failure of one component may impose failure of another component
and even lead to failure of the system.  A so-called fault tree is often used to clarify the relationships between
the failure modes.
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Figure VI-6-7.   Example of simplified fault tree for a breakwater

b. A fault tree describes the relationships between the failure of the system (e.g., excessive wave
transmission over a breakwater protecting a harbor) and the events leading to this failure.  Figure VI-6-7
shows a simplified example based on some of the failure modes of a rubble-mound breakwater.

c. A fault tree is a simplification and a systematization of the more complete so-called
cause-consequence diagram that indicates the causes of partial failures as well as the interactions between the
failure modes.  An example is shown in Figure VI-6-8. 

d. The failure probability of the system (for example, the probability of excessive wave transmission
in Figure VI-6-7) depends on the failure probability of the single failure modes and on the correlation and
linking of the failure modes.  The failure probability of a single failure mode can be estimated by the methods
described in Part VI-6-3.  Two factors contribute to the correlation, namely physical interaction, such as
sliding of main armor caused by erosion of a supporting toe berm, and correlation through common
parameters like Hs.  The correlations caused by physical interactions are not yet quantified.  Consequently,
only the common-parameter-correlation can be dealt with in a quantitative way.  However, it is possible to
calculate upper and lower bounds for the failure probability of the system.

e. A system can be split into two types of fundamental systems, namely series systems and parallel
systems as illustrated by Figure VI-6-9.

(1) Series systems

(a) In a series system, failure occurs if any of the elements i = 1, 2, ... , n fails.  The upper and lower
bounds of the failure probability of the system, Pf S are
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Figure VI-6-8.   Example of cause-consequence diagram for a rubble-mound breakwater

Figure VI-6-9.   Series and parallel systems
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Figure VI-6-10.   Decomposition of the fault tree into series and parallel systems

(VI-6-33)Upper bound P U
f S ' 1 & (1 & Pf1) (1 & Pf 2) . . . (1 & Pf n)

(VI-6-34)Lower bound P L
f S ' max [Pfi ]

where max [Pf i] is the largest failure probability among all elements.  The upper bound corresponds to
no correlation between the failure modes and the lower bound to full correlation.  Equation VI-6-33 is

sometimes approximated by  which is applicable only for small  because  shouldP U
f S '

n
j
i'1

Pf i Pf i P U
f S

not be larger than 1.

(b) The OR-gates in a fault tree correspond to series components.  Series components are dominant in
breakwater fault trees.  In fact, the AND-gate shown in Figure VI-6-7 is included for illustration purposes,
and in reality it should be an OR-gate.

(2) Parallel systems

(a) A parallel system fails only if all the elements fail.

(VI-6-35)Upper bound P U
f S ' min [Pfi ]

(VI-6-36)Lower bound P L
f S ' Pf1 @ Pf 2 . . . Pf n

(b) The upper bound corresponds to full correlation between the failure modes, and the lower bound
corresponds to no correlation.

• The AND-gates in a fault tree represent parallel components.  To calculate upper and lower failure
probability bounds for a system, it is convenient to decompose the overall system into series and
parallel systems.  Figure VI-6-10 shows a decomposition of the fault tree (Figure VI-6-7).

• To obtain correct Pf S-values it is very important that the fault tree represents precisely the real
physics of the failure development.  This is illustrated by Example VI-6-2 where a fault tree
alternative to Figure VI-6-7 is analyzed.  In Example VI-6-2 the same failure mode probabilities as
given in Example VI-6-1 are used.
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• The real failure probability of the system Pf S will always be in between Pf S
U and  Pf S

L because some
correlation exists between the failure modes due to the common loading represented by the sea state
parameters, e.g., Hs .

• It would be possible to estimate Pf S if the physical interactions between the various failure modes
were known and described by formulae, and if the correlations between the involved parameters were
known.  However, the procedure for determining such correlations are complicated and are not yet
fully developed for practical use.

• The probability of failure cannot in itself be used as the basis for an optimization of a design.
Optimization must be related to a kind of measure (scale), which for most structures is the economy,
but can include other measures such as loss of human life. 

• The so-called risk, defined as the product of the probability of failure and the economic
consequences, is used in optimization considerations.  The economic consequences must cover all
kinds of expenses related to the failure in question, i.e., cost of replacement, downtime costs, etc.

VI-6-5. Parameter Uncertainties in Determining the Reliability of Structures

Calculation of reliability or failure probability of a structure is based on formulae describing the structure's
response to loads and on information about the uncertainties related to the formulae and relevant parameters.
Basically, uncertainty is best given by a probability distribution; but because the true distribution is rarely
known, it is common to assume a normal distribution and a related coefficient of variation, defined as

(VI-6-37)σ) ' σ
µ

'
standard deviation

mean value

as the measure of the uncertainty.  The term "uncertainty" is used in this chapter as a general term referring
to errors, to randomness, and to lack of knowledge.

a. Uncertainty related to failure mode formulae.

The uncertainty associated with a formula can be considerable.  This is clearly seen from many diagrams
presenting the formula as a smooth curve shrouded by a wide scattered cloud of data points (usually from
experiments) that are the basis for the curve fitting.  Coefficients of variation of 15 - 20 percent or even larger
are quite normal.  The range of validity and the related coefficient of variation should always be considered
when using a design formula.

b. Uncertainty related to environmental parameters.

The sources of uncertainty contributing to the total uncertainties in environmental design values are
categorized as follows:

(1) Errors related to instrument response (e.g., from accelerometer buoy and visual observations).

(2) Variability and errors due to different and imperfect calculations methods (e.g., wave hindcast
models, algorithms for time-series analysis).
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P U
f S ' 1 & (1 & Pf 6) (1 & Pf 1) (1 & Pf 5) (1 & Pf 2) (1 & min [Pf 3, Pf 4]) ' 12.9%

P U
f S ' Pf 6 % Pf 1 % Pf 5 % Pf 2 % min [Pf 3, Pf 4]) ' 13.5%

P L
f S ' max [Pf 6 , Pf 1 , Pf 5 , Pf 2 , (Pf 3 @ Pf 4)] ' 6%

EXAMPLE PROBLEM VI-6-1

The Level II analysis of the single failure modes for a specific breakwater schematized in Figure
VI-6-10 revealed the following probabilities of failure in a 1-year period

i 1 2 3 4 5 6

Pf i % 3 6 4 3 0.5 1

Note that these Pf i-values cannot be used in general because they relate to a specific structure. 
However, they are typical for conventionally designed breakwaters with respect to order of magnitude
and large variations.

The simple failure probability bounds for the system are given by Equations VI-6-33, VI-6-34,
VI-6-35, and VI-6-36:

Upper bound (no correlation):

or alternately for small values of Pf i

Lower bound (full correlation):

The simple bounds corresponding to T-years structural life might be approximated by the use of
Equation VI-6-311

Structure life in years

20 50 100

Pfs
U % 94 100 100

Pfs
L %1 71 95 100

(Continued on next page)
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P L
fS '

max
i'1&n [Pfi]

EXAMPLE PROBLEM VI-6-1 (Concluded)

1 It is very important to notice that the use of Equation VI-6-31, which assumes independent failure
events from one year to another, can be misleading.  This will be the case if some of the parameters
which contribute significantly to the failure probability are time-invariant, i.e., are not changed from
year to year.  An example would be the parameter signifying a large uncertainty of a failure mode
formula, such as the parameter A in Equation VI-6-2.  If all parameters were time-invariant then the
correct lower bound would be 

independent of T, i.e., 6% for all T in the example.  It follows that use of Equation VI-6-31 results in
values of Pf S

L for T > 1 year that are too large.

Figure VI-6-11.   Example of simplified fault tree for a breakwater

(3) Statistical sampling uncertainties due to short-term randomness of the variables (variability within
a stochastic process, e.g., two 20-min. records from a stationary storm will give two different values of the
significant wave height) 

(4) Choice of theoretical distribution as a representative of the unknown long-term distribution (e.g., a
Weibull and a Gumbel distribution might fit a data set equally well but can provide quite different values for
a 200-year event).

(5) Statistical uncertainties related to extrapolation from short samples of data sets to events of low
probability of occurrence.
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P U
f S ' 1 & (1 & Pf 6) (1 & min [Pf 1 , Pf 5]) [Pf 1, Pf 2, Pf 3, Pf 4] ' 4.5%

P U
f S ' Pf 6 % min [Pf 1 , Pf 5] % min [Pf 1, Pf 2, Pf 3, Pf 4] ' 4.5%

P L
f S ' max [Pf 6 , (Pf 1 @ Pf 5 ) , (Pf 1 @ Pf 2 @ Pf 3 @ Pf 4)] ' 1%

EXAMPLE PROBLEM VI-6-2

Figure VI-6-11 shows a fault tree that differs from the fault tree in Figure VI-6-7.  In Figure VI-6-11
only failure mode 6 can directly cause system failure, whereas in Figure VI-6-7 each of the failure
modes 6, 5, 1, 2 and (3+4) can cause system failure.

The decomposition of the fault tree is shown in two steps in Figure VI-6-12.  Note that the same
failure mode can appear more than once in the decomposed system.

The simple bounds for the system are given by Equations VI-6-33, VI-6-34, VI-6-35, and VI-6-36:

Upper bound:

or for smaller values of Pf i

Lower bound:

Using the same Pf i -values and procedure as given in Example VI-6-1 the following system failure
probabilities are obtained

Structure life in years

20 50 100

Pfs
U % 60 90 99

Pfs
L %1 18 39 63

These values are quite different from the values of Example VI-6-1 which emphasizes the importance
of a correct fault tree.  
1 See note in Example VI-6-1.
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Figure VI-6-12.   Decomposition of the fault tree into series and parallel systems

(6) Statistical vagaries of the elements.

(a) Distinction must be made between short-term sea state statistics and long-term (extreme) sea
statistics.  Short-term statistics are related to the stationary conditions during a sea state, e.g., wave height
distribution within a storm of constant significant wave height, Hs.  Long-term statistics deal with the extreme
events, e.g., the distribution of Hs over many storms.

(b) Related to the short-term sea state statistics the following aspects must be considered:

• The distribution for individual wave heights in a record in deepwater and shallow-water conditions,
i.e, Rayleigh distribution and some truncated distributions, respectively.

• Variability due to short samples of single peak spectra waves in deep and shallow water based on
theory and physical simulations.
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• Variability due to different spectral analysis techniques, i.e., different algorithms, smoothing and
filter limits.

• Errors in instrument response and influence of measurement location.  For example, floating
accelerometer buoys tend to underestimate the height of steep waves.  Characteristics of
shallow-water waves can vary considerably in areas with complex seabed topography.  Wave
recordings at positions with depth-limited breaking waves cannot produce reliable estimates of the
deepwater waves.

• Imperfection of deep and shallow-water numerical hindcast models and quality of wind input data.

(c) Estimates of overall uncertainties for short-term sea state parameters (first three items) are presented
in Table VI-6-1 for use when more precise site specific information is not available.

Table VI-6-1  
Typical Variational Coefficients σN = σ /µ (standard deviation over mean value) for Measured and Calculated Sea State
Parameters (Burcharth 1992)

Parameter Methods of Determination
Estimated Typical Values

CommentsσN Bias
Significant wave height,
OFFSHORE

Significant wave height
NEARSHORE determined
from offshore significant wave
height accounting for shallow-
water effects

Accelerometer buoy, pressure cell,
vertical radar

Horizontal radar

Hindcast numerical models

Hindcast, SMB method

Visual observations from ships

Numerical models

Manual calculations

0.05 - 0.1

0.15

0.1 - 0.2

0.15 - 0.2

0.2

0.1 - 0.20

0.15 - 0.35

-0

-0

0 - 0.1

?

0.05

0.1

Very dependent on quality
of weather maps

Valid only for storm
conditions in restricted sea
basins

σN  can be much larger in
some cases

Mean wave period offshore
on condition of fixed
significant wave height

Accelerometer buoy

Estimates from ampl.  Spectra

Hindcast, numerical models

0.02 - 0.05

0.15

0.1 - 0.2

-0

-0

-0
Duration of sea state with
significant wave height
exceeding a specific level

Direct measurements

Hindcast numerical models

0.02

0.05 - 0.1

-0

-0
Spectral peak frequency
offshore

Measurements

Hindcast numerical models

0.05 - 0.15

0.1 - 0.2

-0

-0
Spectral peakedness offshore Measurements and hindcast

numerical models 0.4 -0

Mean direction of wave
propagation offshore

Pitch-roll buoy

Measurements η, u, v or
p, u, v  1

Hindcast numerical models

5 degrees

10 degrees

15 - 30 degrees
Astronomical tides Prediction from constants 0.001 - 0.07 -0
Storm surge Numerical models 0.1 - 0.25 ±0.1
1  Two horizontal velocity components and water-level elevation or pressure.
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(d) Evaluation of the uncertainties related to the long-term sea state statistics, and use of these estimates
for design, involves the following considerations:

• The encounter probability.

• Estimation of the standard deviation of a return-period event for a given extreme distribution.

• Estimation of extreme distributions by fitting to data sets consisting of uncorrelated values of Hs from

- Frequent measurements of Hs equally spaced in time.

- Identification of the largest Hs in each year (annual series).

- Maximum values of Hs for a number of storms exceeding a certain threshold value of Hs
using peak over threshold (POT) analysis.

The methods of fitting are the maximum likelihood method, the method of moments, the least square
method, and visual graphical fit.

• Uncertainty on extreme distribution parameters due to limited data sample size.

• Influence on the extreme value of Hs on the choice of threshold value in the POT analysis.  (The
threshold level should exclude all waves which do not belong to the statistical population of interest).

• Errors due to lack of knowledge about the true extreme distribution.  Different theoretical
distributions might fit a data set equally well, but might provide quite different return period values
of Hs .  (The error can be estimated only empirically by comparing results from fits to different
theoretical distributions).

• Errors due to applied plotting formulae in the case of graphical fitting.  Depending on the applied
plotting formulae quite different extreme estimates can be obtained.  The error can only be
empirically estimated.

• Climatological changes.

• Physical limitations in extrapolation to events of low probability.  The most important example might
be limitations in wave heights due to limited water depths and fetch restrictions.

• The effect of measurement error on the uncertainty related to an extreme event.

(e) It is beyond the scope of this chapter to discuss in more detail the mentioned uncertainty aspects
related to the environmental parameters.  Additional information is given in Burcharth (1992).
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c. Uncertainty related to structural parameters.

The uncertainties related to material parameters (such as density) and geometrical parameters (such as slope
angle and size of structural elements) are generally much smaller than the uncertainties related to the
environmental parameters and to the design formulae.

VI-6-6. Partial Safety Factor System for Implementating Reliability in Design

a. Introduction to partial safety factors.

(1) The objective of using partial safety factors in design is to assure a certain reliability of the structures.
This section presents the partial safety factors developed by the Permanent International Association of
Navigation Congresses (PIANC) PTCII Working Group 12 (Analysis of Rubble-Mound Breakwaters) and
Working Group 28 (Breakwaters with Vertical and Inclined Concrete Walls), Burcharth (1991) and Burcharth
and Sørensen (1999).

(2) The partial safety factors, γi , are related to characteristic values of the stochastic variables, Xi,ch .  In
conventional civil engineering codes the characteristic values of loads and other action parameters are often
chosen to be an upper fractile (e.g., 5 percent), while the characteristic values of material strength parameters
are chosen to be a lower fractile.  The values of the partial safety factors are uniquely related to the applied
definition of the characteristic values.

(3) The partial safety factors, γi , are usually larger than or equal to 1.  Consequently, if we define the
variables as either load variables Xi

load (for example Hs ) or resistance variables Xi
res (for example the block

volume) then the related partial safety factors should be applied as follows to obtain the design values:

(VI-6-38)

X design
i ' γload

i @ X load
i,ch

X design
i '

X res
i,ch

γres
i

(4) The magnitude of γi reflects both the uncertainty of the related parameter Xi , and the relative
importance of Xi  in the failure function.  A large value, e.g., γHs = 1.4, indicates a relatively large sensitivity
of the failure probability to the significant wave height, Hs .  On the other hand, γ • 1 indicates little or
negligible sensitivity, in which case the partial coefficient should be omitted.  Bear in mind that the magnitude
of γi is not (in a mathematical sense) a stringent measure of the sensitivity of the failure probability of the
parameter, Xi .

(5) As an example, when partial safety factors are applied to the characteristic values of the parameters
in Equation VI-6-2, a design equation is obtained, i.e., the definition of how to apply the coefficients.  The
partial safety factors can be related either to each parameter or to combinations of the parameters (overall
coefficients).  The design equation obtained when partial safety factors are applied to each parameter is given
by
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(VI-6-39)

G '
Ach

γA

∆ch

γ∆

Dn,ch

γDn

KD
cot αch

γcot α

1/3

& γHs
Hs,ch $ 0

or

Dn,ch $ γAγ∆γDn
γ1/3

cotαγHs

Hs,ch

Ach∆ch KD cotαch

(6) If the partial safety factors are applied to combinations of parameters, there may be only γHs and an
overall coefficient γZ related to the first term on the right-hand side of Equation VI-6-39.  The design equation
would then become

(VI-6-40)

G '
Ach

γZ

∆ch Dn,ch KD cot α 1/3 & γHs
Hs,ch $ 0

or

Dn,ch $ γZγHs

Hs,ch

Ach∆ch KD cotαch
1/3

(7) Equations VI-6-39 and VI-6-40 express two different "code formats."  By comparing the two
equations it is seen that the product of the partial coefficients is independent of the chosen format if the other
parameters are equal.  A goal is to have a system which is as simple as possible, i.e., with as few partial safety
factors as possible, but without invalidating the accuracy of the design equation beyond acceptable limits.
Fortunately, it is often possible to use overall coefficients, such as γA in Equation VI-6-40, without losing
significant accuracy within the realistic range of parameter value combinations.  This is the case for the partial
safety factors system presented in this chapter where only two partial safety factors, γHs  and γZ , are used in
each design formula.

(8) Usually several failure modes are relevant to a particular design.  The relationship between the failure
modes are characterized either as series systems or parallel systems.  A fault tree can be used to illustrate the
complete system.  The partial safety factors for failure modes associated with a system having a failure
probability, Pf , are different from the partial safety factors for single failure modes having the same failure
probability, Pf .  Therefore, partial safety factors for single failure modes and multifailure mode systems must
be treated separately.

b. Uncertainties and statistical models.

Uncertainties in relation to rubble-mound breakwaters can be divided in uncertainties related to the following
three groups:

• Load uncertainties (wave modeling).

• Soil strength uncertainties (modeling of soil strength parameters).

• Model uncertainties (both wave load models and models for bearing capacity of the foundation).
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(1) Wave modeling.  

(a) For calibration of partial safety factors the maximum significant wave height in T years is denoted
as  , and it is modeled (for example) by the extreme Weibull distribution, given asFH T

s

(VI-6-41)FH T
S

(Hs) ' 1 & exp &
Hs & H )

s

β

α
λT

where λ is the number of observations per year, HSN is the threshold level,  and α and β are the Weibull
distribution parameters.

(b) For calibration of the PIANC partial safety factor system, wave data from four quite different
geographical locations were selected as presented in Table VI-6-2.  In Table VI-6-2, N is the number of data
samples and h is the water depth in meters.

Table VI-6-2
Wave Data from Different Locations Fitted to a Weibull Distribution (β, HSN  and h are in meters)

N λ α β (m)  HSN  (m) h (m)

Bilbao 50 4.17 1.39 1.06 4.9 25

Sines 15 1.25 1.78 2.53 7.1 25

Tripoli 15 0.75 1.83 3.24 2.9 25

Fallonica 46 5.94 1.14 0.58 2.7 10

(c) The wave data from Bilbao, Sines and Tripoli correspond to deepwater waves, whereas the wave data
from Fallonica corresponds to shallow-water waves.  To model the statistical uncertainty, α and β are modeled
as independent and normally distributed.

(d) The model uncertainty related to the quality of the measured wave data is modeled by a multiplicative
stochastic variable FHs which is assumed to be normally distributed with expected value 1 and standard
deviation .  High quality and low quality wave data could be represented by  = 0.05 and 0.2,σ)Fhs

σ)FHs

corresponding to accelerometer buoy and fetch diagram estimates, respectively, as given by Table VI-6-1.

(2) Soil strength modeling.  

(a) Statistical modeling of the soil strength (sand and/or clay) is generally difficult, and only few models
are available in the literature that can be used for practical reliability calculations.  In general the material
characteristics of the soil have to be modeled as a stochastic field.  The parameters describing the stochastic
field have to be determined on the basis of the measurements which are usually performed to characterize the
soil characteristics.  Because these measurements are only performed in a few locations, statistical uncertainty
due to the sparse data is introduced, and this uncertainty must be included in the statistical model.
Furthermore, the uncertainty in the determination of the soil properties and the measurement uncertainty must
also be included in the statistical model.
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(b) Because breakwaters are composed of loose material in frictional contact, and it is assumed that the
foundation failure modes are developed in the core; only statistical models for the effective friction angle and
the angle of dilation are needed.  Usually these angles are modeled by normal or lognormal distributions.

(c) The bearing capacities related to the geotechnical failure modes are estimated using the upper bound
theorem of classical plasticity theory where an associated flow rule is assumed.  However, the friction angle
and the dilation angle for the rubble-mound material and the sand subsoil are usually different. Therefore,
in order to use the theory based on an associated flow rule, the following reduced effective friction angle nd
is used (Hansen 1979):

(VI-6-42)tan nd '
sinn) cosψ

1 & sinn) sinψ

where nN is the effective friction angle and ψ is the dilation angle.

(3) Model uncertainties.  

(a) In general, model uncertainties related to a given mathematical model can be evaluated on the basis
of:

• Comparisons between experimental tests/measurements and numerical model calculations.

• Comparisons between numerical calculations with the given mathematical model and a more
advanced/complex model.

• Expert opinions.

• Information from the literature.

(b) Many laboratory experiments have been performed for most of the failure modes related to hydraulic
instability of the armor layer.  Based on these experiments the model uncertainty can be estimated.  Model
uncertainty connected with extrapolation from laboratory to a real structure can be judged on the basis of
expert opinions, information from the literature, and observations of similar existing structures.

(c) For soil strength models no similar measurements models are available.  However, if “simple”
rotation and translation failure models based on the upper bound theorem of plasticity theory are used, then
these can be evaluated by comparison with results from more refined numerical calculations using nonlinear
finite element programs.  Estimates of the model uncertainties can thus be obtained.

c. Format for partial safety factors.  

(1) The PIANC partial safety factors are calibrated with the following input:

• Design lifetime TL (= 20, 50 or 100 years).

• Acceptable probability of failure Pf (= 0.01, 0.05, 0.10, 0.20, or 0.40).

• Coefficient of variation   = (0.05 and 0.20).σ)FHs
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• Deep or shallow-water conditions.

• Wave loads determined with or without hydraulic model tests. 

(2) The partial safety factors are as follows:

• A load partial safety factor γP to be applied to the mean value of the permanent load (= 1).

• A load partial safety factor γH to be applied to   (the central estimate of the significant waveĤ
TL
s

height which, in average, is exceeded once every TL years).

• A partial safety factor to be used to the combination of the mean values of the resistance variables
as shown in the design equation.  γZ is to be used with friction materials in rubble-mound and/or
subsoils (tangent to the mean value of the friction angle is divided by γZ ). 

• A partial safety factor γC to be used with the mean value of the undrained shear strength of clay
materials in the subsoil (the mean value of the undrained shear strength is divided by γC ).

d. Tables of partial safety factors.

(1) Partial safety factors are presented as follows:

Table VI-6-3
Partial Safety Factor Tables

Structure Failure Armor Table(s)

Rubble-mound structures

Armor stability

Rocks VI-6-4 - VI-6-6
Cubes VI-6-7
Tetrapods VI-6-8
Dolosse VI-6-9 & VI-6-10
Hollowed Cubes VI-6-11 & VI-6-12

Toe berm VI-6-13

Breakage
Dolosse VI-6-14 & VI-6-15
Tetrapods VI-6-16

Runup
Rock VI-6-17
Hollowed Cubes VI-6-18
Dolosse VI-6-19

Scour VI-6-20 & VI-6-21

Vertical-wall caisson
structures

Foundation: sand subsoil VI-6-22
Foundation: clay subsoil VI-6-23
Sliding failure VI-6-24
Overturning failure VI-6-25
Scour VI-6-26
Toe berm VI-6-27

(2) In the case of vertical walls, wave forces are calculated from the Goda formula.  Furthermore, the
following factors are used to compensate for the positive bias inherent in the Goda formula (see
Table VI-5-55): 
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 = 0.90, bias factor to be applied to the Goda horizontal wave forceÛHor. Force

 = 0.77, bias factor to be applied to the Goda vertical wave forceÛVer. Force

 = 0.81, bias factor to be applied to the moment from the Goda horizontal wave forcesÛHor. Moment

   around the shoreward heel of the base plate

 = 0.72, bias factor to be applied to the moment from the Goda vertical wave forces aroundÛVer. Moment

   the shoreward heel of the base plate

A “hat” ( ^ ) over the variable indicates a mean value.

(3) Part VI-7, “Design of Specific Project Elements,” contains worked design examples for the most
common coastal structures.  Some of these examples include a reliability analysis based on the information
contained in Tables VI-6-4 to VI-6-27 either as part of the design or as an alternative to deterministic methods
based on a single return period of occurrence.  The Part VI-7 examples  provide coastal engineers with
guidance on selection of partial safety factors γHs and γZ for various levels of Pf and  .σ)FHs

Table VI-6-4
Partial Safety Factors for Stability Failure of Rock Armor, Hudson Formula, Design Without Model Tests
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Table VI-6-5
Partial Safety Factors for Stability Failure of Rock Armor, Plunging Waves, van der Meer Formula, Design Without Model
Tests

Table VI-6-6
Partial Safety Factors for Stability Failure of Rock Armor, Surging Waves, van der Meer Formula, Design Without Model
Tests
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Table VI-6-7
Partial Safety Factors for Stability Failure of Cube Block Armor, van der Meer Formula, Design Without Model Tests

Table VI-6-8
Partial Safety Factors for Stability Failure of Tetrapods, van der Meer Formula, Design Without Model Tests
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Table VI-6-9
Partial Safety Factors for Stability Failure of Dolosse, Without Superstructure, Burcharth Formula, Design Without
Model Tests
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Table VI-6-10
Partial Safety Factors for Stability Failure of Dolosse, With Superstructure, Burcharth and Liu (1995a), Design Without
Model Tests
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Table VI-6-11
Partial Safety Factors for Stability Failure of Trunk of Hollowed Cubes, Slope 1:1.5 and 1:2, Berenguer and Baonza
(1995), Design Without Model Tests
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Table VI-6-12
Partial Safety Factors for Stability Failure of Roundhead of Hollowed Cubes, Slope 1:1.5 and 1:2, Berenguer and Baonza
(1995), Design Without Model Tests
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Table VI-6-13
Partial Safety Factors for Stability Failure of Toe Berm, Parallelepiped Concrete Blocks and Rocks., Burcharth Formula, 
Design Without Model Tests

Table VI-6-14
Partial Safety Factors for Trunk Dolos Breakage, Burcharth Formula, Design Without Model Tests
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Table VI-6-15
Partial Safety Factors for Roundhead Dolos Breakage, Burcharth Formula, Design Without Model Tests

Table VI-6-16
Partial Safety Factors for Trunk Tetrapod Breakage, Burcharth Formula, Design Without Model Tests
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Table VI-6-17
Partial Safety Factors for Runup, Rock Armored Slopes, De Waal and van der Meer (1992), Design Without Model Tests
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Table VI-6-18
Partial Safety Factors for Runup, Hollowed Cubes, Slopes 1:1.5 and 1:2, Berenguer and Baonza (1995), Design Without
Model Tests
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Table VI-6-19
Partial Safety Factors for Runup, Dolosse, Slopes 1:1.5, Burcharth and Liu (1995b), Design Without Model Tests
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Table VI-6-20
Partial Safety Factors for Steady Stream Scour Depth in Sand at Conical Roundheads, Fredsøe and Sumer (1997), 
Design Without Model Tests

Table VI-6-21
Partial Safety Factors for Scour Depth in Sand at Conical Roundheads in Breaking Wave Conditions, Fredsøe and
Sumer (1997), Design Without Model Tests
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Table VI-6-22
Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Sand Subsoil
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Table VI-6-23
Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Clay Subsoil
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Table VI-6-24
Partial Safety Factors for Sliding Failure of Vertical Wall Caissons
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Table VI-6-25
Partial Safety Factors for Overturning Failure of Vertical Caissons
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Table VI-6-26
Partial Safety Factors for Scour at Circular Vertical Wall Roundheads, Sumer and Fredsøe (1997), Design Without Model
Tests

Table VI-6-27
Partial Safety Factors for Toe Berm Rock Armor Failure in Front of Vertical Wall Caissons, Design Without Model Tests
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