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Abstract—We propose a novel algorithm for sensor self-
localization in cooperative wireless networks where observations
of relative sensor distances are available. The variational message
passing (VMP) algorithm is used to implement a mean field
solution to the estimation of the posterior probabilities of the
sensor positions in an R2 scenario. Extension to R3 is straight-
forward. Compared to non-parametric methods based on belief
propagation, the VMP algorithm features significantly lower
communication overhead between sensors. This is supported by
performance simulations which show that the estimated mean
localization error of the algorithm stabilizes after approximately
30 iterations.

I. INTRODUCTION

Information collected and communicated by a wireless

sensor in a wireless sensor network (WSN) is often only

valuable if the location of the wireless sensor is known [1],

[2]. Manually supplying wireless sensors with their positions

is cumbersome or impossible and equipping wireless sensors

with a global positioning system (GPS) receiver may be cost

and energy prohibitive [1], [3]. Furthermore, GPS signals

have poor building penetration properties and receiving these

signals indoors or in urban areas surrounded by tall buildings

may be difficult or impossible. Consequently, the position

information is inadequate or erroneous [2]. To meet the chal-

lenge of providing position information in wireless networks,

reliable methods for self-localization of wireless sensors are

in demand.

In cooperative localization, sensors in a network estimate

their own positions by exploiting relative position information

obtained from measurements with neighbour sensors and/or

absolute reference locations available from anchor sensors [3].

In order to estimate its own position from the information

obtained from other sensors, each sensor needs a processing

unit and an algorithm for self-localization.

Self-localization algorithms based on geometric and proba-

bilistic methods have been considered previously. In [4] and

[5], sensor localization methods based on convex optimization

and semidefinite programming are considered. Probabilistic

localization methods based on belief propagation (BP) in

factor graphs, and its sum-product (SP) implementation, are

proposed in [2] and [3]. The BP methods in these contributions

yield accurate results at the expense of large communication

overhead due to the use of a large number (typically hundreds)

of samples (particles) to represent the messages. The authors

of [6] propose an expectation-propagation based localization

algorithm which uses Gaussian estimates instead of particles

to represent messages. Variational Bayesian methods, and their
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Figure 1. Example network with anchor sensors (black vertices), mobile
sensors (white vertices) and their communication links (edges).

variational message passing (VMP) implementation, comple-

ment BP methods for probabilistic inference on factor graphs

[7], [8]. In the particular application context of localization

considered in this paper, the VMP algorithm allows for simpler

message representations than the SP algorithm. This translates

into lower communication overheads between nodes.

In this contribution, we apply the VMP algorithm to dis-

tributed, iterative self-localization of sensors in cooperative

wireless networks. We present a probabilistic model for the

joint probability density of sensor positions and relative sensor

distance observations in a WSN. We contrast the structures of

the SP and VMP algorithms in this particular application con-

text and show that compared to particle based BP methods the

communication overhead of VMP can be drastically reduced

by approximating the posterior densities of the sensor positions

with circular symmetric Gaussian densities. The resulting

scheme features a simple representation of the messages

broadcast by the nodes. For instance, in an R2 localization

scenario, the mobile nodes need pass only three real values

(the mean, and the standard deviation of the Gaussian pdf

approximating their position) at each iteration. We investigate

the performance of the VMP algorithm in a static scenario

containing 100 mobile and 13 anchor sensors by means of

Monte Carlo simulations. Finally, we present our concluding

remarks.
II. MODELS

Consider a graph defined by a set of vertices V and a set

of edges E (cf. Figure 1). Each vertex v ∈ V represents a

wireless sensor placed randomly in the plane and each edge

(r, t) ∈ E represents a communication link between sensors

r and t, where sensor r receives a signal transmitted from a

neighbouring sensor t. The set V of sensors is divided into a

set of anchor sensors VA at known, fixed positions and a set

of mobile sensors VM at unknown positions. The position of



sensor v is given by the vector xv ∈ R2.

We describe sensor v’s prior knowledge of its position by

a circular symmetric Gaussian pdf pv (xv) in R2 with mean

µv = Epv(xv)[xv] and variance σ2
v = 1

2Epv(xv)

[

‖xv − µv‖
2
]

,

where Ep[·] denotes expectation with respect to the pdf p,

and ‖·‖ is the Euclidean norm. In the special case when v ∈
VA, σ

2
v = 0 and pv (xv) reduces to a Dirac’s delta function

localized at µv in R2.

If (r, t) ∈ E , sensor r can obtain sensor t’s current position

information and a noisy measurement of the distance dr,t
between r and t:

dr,t = ‖xr − xt‖+ wr,t, (1)

where wr,t represents observation noise. In this work, wr,t is

a zero-mean Gaussian random variable with variance σ2
r,t.

Given a network of N sensors, let X = {xi : i ∈ VM}
denote the set of unknown sensor positions. The set E is

obtained as follows: for any r, t ∈ V , (r, t) ∈ E if, and only if,

‖xr − xt‖ ≤ R. Thus, any two sensors in V are connected if,

and only if, their distance is not larger than a given coverage

radius R. The set D = {dr,t | (r, t) ∈ E} contains the distance

observations between the connected sensors. In the considered

decentralized scheme each mobile sensor only utilizes the

distance measurements from the sensors with which it is

connected. Notice that, if each sensor in addition has access

to information on the network topology, e.g. to know the

positions of the sensors connected to its neighbours with which

it is connected, a more sophisticated scheme would also exploit

the position information inherent to the knowledge of absence

of connection [3], e.g. to these neighbours’ neighbours.

The joint pdf describing the probabilistic model for the

considered scenario reads

p (X ,D) = p (D|X ) p (X ) (2)

=

(

∏

(r,t)∈E

p (dr,t |xr,xt)

)(

∏

v∈VM

pv (xv)

)

, (3)

where p (dr,t |xr,xt) is the pdf of the observation dr,t con-

ditioned on the positions of sensors r and t.

III. MESSAGE PASSING FOR LOCALIZATION

A. Message Passing on Factor Graphs

The joint pdf in (3) is representable by a factor graph [9]

with local factors

fv(xv) = pv (xv) , (4)

gr,t(xr,xt) = p (dr,t |xr,xt) . (5)

We abbreviate the notation as fv and gr,t for convenience.

For each sensor v, we draw a variable node, representing the

sensor’s position xv. We connect each xv, v ∈ VM to a factor

node fv, representing the prior position pdf. For each pair of

sensors (r, t), for which a distance observation is available,

we draw a factor gr,t and connect the variable nodes xr and

xt to it. In this step, we make the following two assumptions:

a) For sensors r and t, (r, t) ∈ E ⇔ (t, r) ∈ E ; b) Anchor
sensors have known positions. Thus, the variable node of an
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Figure 2. The factor graph that represents the WSN topology in Figure 1.
Anchor variable nodes are gray.

anchor sensor a is only connected to the variable node of a

mobile sensor m via gm,a because anchors need not estimate

their positions and therefore may disregard messages from

neighbour sensors. The result is an undirected graph. As an

example, the factor graph depicted in Figure 2 corresponds to

the WSN topology of Figure 1.

The position posterior pdf p (xr|D) of any mobile sensor

r ∈ VM can now be estimated via message passing methods

[7]–[14]. Two common message passing methods adapted to

graphs as depicted in Figure 2 are displayed in Figure 3: the

SP algorithm, which implements BP [9], and VMP, which

implements the variational Bayesian method [12].

B. The Sum-Product Algorithm

For continuous hidden variables, evaluation of (6), (8) and

(9) (see Figure 3a) can become arbitrarily complex [3], [7],

[12], [13]. A way to control this is to restrict the messages

passed between the nodes to be Gaussian [7]. Nevertheless,

Gaussian SP remains unattractive for the problem of localiza-

tion adressed in this contribution because the nonlinear sensor

relationship in the observation model (1) leads to unwieldy

integrals in (8). This difficulty can be remedied via the use of

particle based methods, e.g. nonparametric belief propagation

[3], [12], [13]. In this approach, messages (6) – (8) in Figure 3a

are represented by typically hundreds of real-valued samples.

Transmission of such messages imposes substantial communi-

cation overhead and collecting the incoming messages require

that the sensors be equipped with ample memory hardware.

C. The Variational Message Passing Algorithm

Variational methods aim at approximating a complex or

intractable pdf by a simpler pdf [7], [12]. That is, using the

notation in Section II, given the set X of unknown positions

xi, i ∈ VM and the set D of distance measurements, the

posterior pdf p (X|D) is approximated by a pdf that belongs

to a certain family of pdfs satisfying certain constraints that

make their computation tractable. The selected pdf q (X ) is the
one in the family for which the Kullback-Leibler divergence

KL(q (X ) ‖ p (X|D)) =

∫

X

q (X ) ln
q (X )

p (X|D)
dX (14)



a) The sum-product algorithm. b) The variational message passing algorithm.

Messages from variable xt to local factor gr,t(xr,xt)

mxt→gr,t(xt) =
∏

h∈N (xt)\{gr,t}

mh→xt
(xt), (6)

Messages from local factors to variable xr

mfr→xr
(xr) = pr (xr) (7)

mgr,t→xr
(xr) =
∫

xt

mxt→gr,t(xt) gr,t(xr,xt) dxt, (8)

Marginal update of the pdf estimate of xr

qr (xr) =
∏

h∈N (xr)

mh→xr
(xr). (9)

Messages from xt to gr,t(xr,xt) ∈ N (xt)

mxt→N (xt)(xt) =
1
Z

∏

h∈N (xt)

mh→xt
(xt), (10)

Messages from local factors to variable xr

mfr→xr
(xr) = pr (xr) (11)

mgr,t→xr
(xr) =

exp

(
∫

xt

mxt→gr,t(xt) ln gr,t(xr,xt) dxt

)

, (12)

Marginal update of the pdf estimate of xr

qr (xr) = mxr→N (xr)(xr). (13)

Figure 3. Two message passing algorithms for unconstrained Bayesian inference in a localization factor graph: N (xt) denotes the set of factor nodes
neighbouring the node xt and Z is the normalization constant defined in (17).

is minimum. A well-known variant of variational methods

is the mean field approximation framework from statistical

physics where q (X ) is assumed to factorize as q (X ) =
∏

xi∈X qi (xi) [7], [8], [12]. The mean field approximation

yields an iterative algorithm that approximates p (X|D) by

separately updating the factors qi (xi) in a sequential manner.

Note that this factorization tends to produce overly confident

marginals in the approximation of the posterior pdf [15,

Section 10.1.2]. A message passing interpretation of this

algorithm, which we refer to as variational message passing

(VMP), is provided in [12].

Similar to BP, the equations (10), (12) and (13) (see Fig-

ure 3b) of unconstrained VMP can become arbitrarily complex

for continuous hidden variables. A method to harness the

complexity is to restrict the messages passed by variable nodes

to belong to the family of exponential pdfs [7]. In our work,

we restrict these messages to be circular symmetric Gaussian

pdfs and demonstrate that, contrary to Gaussian SP, this so-

called Gaussian VMP leads to a tractable iterative scheme for

distributed localization.

When the message mxt→gr,t(xt) in (12) is restricted to be

a Gaussian pdf, the ln gr,t term in this equation yields the

exponent of a Gaussian, and the integral can be computed

analytically despite the nonlinear sensor relationships in (1).

In this way all messages from factor nodes to variable nodes

are given in closed form. Each variable node computes its

corresponding product in (10), approximates this product by

a circular symmetric Gaussian pdf, and passes the parameters

of this pdf as the message to its neighbour factor nodes. For

localization in R2, this amounts to three real values which

are broadcast to all neighbouring factor nodes (see (10)).

Compared to particle based BP methods, Gaussian VMP mes-

sages impose significantly smaller requirements on message

communication overhead and sensor memory hardware.

IV. THE GAUSSIAN VMP LOCALIZATION ALGORITHM

The unconstrained VMP algorithm listed in Figure 3b

imposes no restrictions on the messages passed between the

nodes in the factor graph. To develop a tractable mean field

localization algorithm, we restrict the messages from variable

nodes to factor nodes to be in the family G of circular

symmetric Gaussians with mean x̂i and variance σ̂2
i for the

ith node. As a result of this constraint, equations (10) and (13)

in Figure 3b must be modified according to (superscript G

indicates Gaussian restriction)

mG
xt→N (xr)

(xr) = argmin
q′r(xr)∈G

KL(q′r (xr) ‖ p̃r (xr)) (15)

with
p̃r (xr) =

1
Z

∏

h∈N (xr)

mh→xr
(xr), (16)

where Z is the normalization constant

Z =

∫

xr

∏

h∈N (xr)

mh→xr
(xr) dxr (17)

and qGr (xr) = mG
xr→N (xr)

(xr) (18)

respectively. The solution to (15) is obtained by finding the

postion and variance estimates x̂r and σ̂2
r of q′r (xr) ∈ G

minimizing KL(q′r (xr) ‖ p̃r (xr)). These estimates can be

obtained by solving the minimization problem using numerical

methods.

To compute p̃r (xr), let Vr = {t ∈ V : (t, r) ∈ E} and

recast (16) as

p̃r (xr) =
1
Z
mfr→xr

(xr)
∏

t∈Vr

mgr,t→xr
(xr). (19)

From (11)

mfr→xr
(xr) ∝ exp

(

− ‖xr−µr‖
2

2σ2
r

)

, (20)

where ∝ denotes proportionality. For t ∈ Vr ∩ VA,

mgr,t→xr
(xr) ∝ exp

(

− 1
2σ2

r,t

(dr,t − ‖xr − µt‖)
2
)

. (21)

For t ∈ Vr ∩ VM , we first substitute (5) into (12) to get

mgr,t→xr
(xr) = exp

(
∫

xt

qGt (xt) ln p (dr,t |xr,xt) dxt

)

.

(22)



Initialization
for all sensors (in parallel) do

I1) Broadcast position information, and collect position
information broadcast from neighbouring sensors.

I2) Obtain distance observations dr,t to neighbouring
nodes.

end for

Location estimation
repeat

for all sensors (in parallel) do

L1) Compute p̃r (xr) using (19).
L2) Compute q′r (xr) ∈ G that minimizes

KL(q′r (xr) ‖ p̃r (xr)).
L3) Broadcast x̂r and σ̂2

r and collect corresponding broad-
cast from neighbouring sensors.

end for
until stopping criterion is reached.

Figure 4. The Gaussian VMP algorithm for distributed self-localization in
cooperative wireless networks.

Inserting qGt (xt) in (22) yields

mgr,t→xr
(xr) ∝ exp

(

− 1
2σ2

r,t

[

d2r,t − 2dr,tσ̂t

√

π
2×

1F1

(

− 1
2 ; 1;−

‖xr−x̂t‖
2

2σ̂2

t

)

+ ‖xr − x̂t‖
2
+ 2σ̂2

t

]

)

, (23)

where 1F1 (a; b;x) is the confluent hypergeometric function

of the first kind. In this particular case we can write

1F1

(

− 1
2 ; 1;x

)

=

exp
(x

2

) [

(1− x)I0
(

−
x

2

)

− xI1
(

−
x

2

)]

, (24)

where In (·) is the modified Bessel function of order n [16].

We note that when p (dr,t |xr,xt) is Gaussian, (22) is pro-

portional to the expectation of the exponent of p (dr,t |xr,xt)
with respect to qGt (xt). Equations (15) and (19) define the

Gaussian VMP algorithm for sensor self-localiztion, which we

list in Figure 4.

V. SIMULATIONS

We verify the performance of the Gaussian VMP algorithm

in a scenario similar to the one described in [2] by means of

Monte Carlo simulations. In this scenario, static anchors are

positioned in a structured manner as depicted in Figure 5.

Moreover, a sensor has a communication link to all other

sensors within a range of 20m, i.e. (r, t) ∈ E and (t, r) ∈ E if,

and only if, ‖xr − xt‖ ≤ 20m. For simplicity, we assume that

sensors r and t make the same distance observation dr,t = dt,r
and that the observation noise variance is constant and equal

for all sensors, i.e. σ2
r,t = σ2

w . In each simulation run, 100

static mobiles are uniformly and independently scattered in

the area and each mobile sensor estimates its position with the

Gaussian VMP localization algorithm depicted in Figure 4.

Figure 6, depicts the estimated mean localization error of

the Gaussian VMP algorithm vs. iteration index with σw as

a parameter. We see that depending on σw, the estimated
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Figure 5. Simulation scenario: A 100m×100m area with 13 anchor sensors
(crosses) and their 20m communication link radii. The scenario is similar to
that in [2].
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Figure 6. Estimated mean localization error distance with σw as a parameter
averaged over 100 independent simulation runs.

mean localization error does not change significantly after

approximately 10–30 iterations. At this point, each sensor has

in total broadcast 3 ·30 = 90 real values in its messages to the

neighbouring sensors. Compared to particle based BP methods

(e.g. as proposed in [2] and [3]), the Gaussian VMP algorithm

for localization has dramatically lower communication require-

ments. Furthermore, the plot shows that for σw ≤ 2.0 the mean

localization error stabilizes at a value that is higher than the

standard deviation of the noise. This is caused by sensors for

which the position cannot be unambiguously determined, due

to the fact that their neighbour sensors are too few and/or

the topology of these neighbour sensors does not enable

an unambiguous determination of the position. E.g. in the

ambiguous case when p̃r (xr) is multimodal with equal-mass

modes the VMP algorithm will produce a qGr (xr) which

approximates one of these modes selected at random [7].

When σw > 2.0, the algorithm exploits the network topology

to mitigate the noise impact on the distance observations

and the mean localization error reaches a value less than the
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Figure 7. Estimated cumulative localization error probability at iteration 100
with σw as a parameter based on 100 independent simulation runs.

standard deviation of the noise.

In Figure 7, we plot the estimated cumulative probability

distribution of the localization error. We see that for all noise

standard deviations, at least 65% of the sensors localize with

an error less than or equal to the noise standard deviation on

average. For an allowable error of 5m, more than 68% of

the sensors are well localized for all the plotted curves. This

percentage increases as σw decreases. At σw = 0.1, nearly
97% of the sensors are localized within 5m. The fact that

the curves in Fig. 7 stabilize to values lower than one results

from large errors due to an ambiguity in the estimation of the

position of sensors having too few distance observations from

their neighbours.

VI. CONCLUSION

We have proposed a novel low-complexity algorithm for

sensor self-localization in cooperative wireless networks. The

algorithm is a special implementation of the variational mes-

sage passing (VMP) method, in which messages from variable

nodes to factor nodes are approximated by circular symmetric

Gaussian probability densities. Note that in the VMP method

these messages coincide with the estimated marginal poste-

rior densities of the node positions. The main virtue of the

proposed Gaussian VMP algorithm is a low communication

overhead when compared to the corresponding requirements

for particle based BP localization schemes. The performance

of the algorithm is illustrated in a scenario with static sensors

by means of Monte Carlo simulations. When the density of

sensors is low, some of them cannot be localized unambigu-

ously as they have too few observations from other sensors.

This network topology leads to a non-identifiable estimation

problem. In a cooperative setting this problem can be alleviated

by exchanging additional information on the network topology,

e.g. each sensor gets the positions of sensors connected to

its neighbours with which it has connection. The cost of this

improvement is a larger communication overhead.

An extension of the Gaussian VMP algorithm to scenarios

with moving sensors is currently under investigation. Also,

work on comparing the proposed algorithm to particle-based

methods is in progress. Further theoretical studies shall be

conducted to assess the performance of the algorithm versus

network characteristics like link attenuation, standard deviation

of the distance measurement, and node density.
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