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Cooperative Cluster of Mobile Devices
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∗Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Hungary

†Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University, Denmark

Abstract—This paper investigates the possibility of packet er-
ror recovery in a cooperative cluster of mobile devices. We assume
that these devices receive data from a broadcast transmission on
their primary network interface (e.g. LTE network), and they are
using a secondary network interface (e.g. ad hoc WLAN network)
to form a cooperative cluster in order to exchange missing data
packets among each other. Our goal is to devise a protocol that
minimizes the number of packets exchanged on the secondary
network whilst maximizes the number of packet errors recovered
on the primary network. Moreover, we aim to repair the packet
losses on-the-fly (as the data is being received), which also imposes
real-time constraints on the protocol. We propose a solution
based on random linear network coding to form cooperative
clusters of mobile devices to facilitate the efficient exchange of
information among them. We also introduce a demo application
that implements this technique on Nokia phones. Then we present
our testbed and the collected measurement results in order to
evaluate the performance of our protocol.

I. INTRODUCTION

Network coding has received a lot of attention lately [1], [2],
[10], [8], [12]. Researchers have shown that network coding
has its clear advantages, especially for wireless and mobile
multi-hop communication systems. Our prior work has been
focused on the feasibility and tuning of network coding for
mobile platforms [5], [14], [13]. Later those findings were
confirmed by other researchers [15], so we could conclude
that network coding is feasible on embedded devices, and
its benefits in terms of energy consumption and bandwidth
usage are realistic. Researchers in [11], [4] proposed solutions
that utilize network coding in cooperative clusters in various
communication scenarios.

The work in this paper is also focusing on protocol design
based on network coding. In particular, we investigate the
possibility of using cooperative clusters of mobile devices
for packet error recovery in content distribution systems. The
main architecture of these systems has not changed much
in the past decade. In the mobile world, we still use a
highly centralized client/server architecture, where the overlay
network is providing the content, and the mobile users are
merely consuming it.

The protocol proposed here takes advantage of the mobile
devices themselves by forming cooperative clusters with the
help of network coding. We attempt to enhance the traditional
client/server communication pattern by allowing neighboring
devices to communicate directly to make the content distribu-
tion more efficient.

This paper is organized as follows. Section II presents our
scenario and gives an overview on network coding. Section III
discusses the features of our protocol and introduces our
application. Section IV presents measurement results. Future
works are discussed in Section V, and the final conclusion is
drawn in Section VI.

II. SCENARIO

In our scenario a source wants to reliably transmit the
same media file or media stream to several receivers. We
assume that these receivers are connected to the source via
their primary network interface (e.g. 4G or LTE network).
In state-of-the-art systems the source broadcasts the data
on this interface, and it also applies some sort of coding
scheme (e.g. Raptor coding) to fix the packet erasures on the
receivers. Since packet losses are quite common in wireless
networks, this coding may require a large overhead. Therefore
we assume that the receivers are also able to communicate
with each other using their secondary network interface (e.g.
ad hoc WLAN). Thereby cooperative clusters can be formed
of several receivers to exchange missing data packets among
each other. This basic scenario is depicted in Figure 1.

Fig. 1. A source transmitting data to multiple receivers.

The fundamental problem with broadcast packets is the fre-
quent losses of packets in real-life wireless networks [6]. Since
channel conditions are not ideal, we cannot expect that all



broadcast packets are delivered to all receivers. Packet losses
must be corrected by using some sort of retransmission scheme
to ensure reliability. As a naive solution, the individual nodes
can request all their missing packets from the original source.
The end result would be similar to the Automatic Repeat-
reQuest (ARQ) mechanism used in one-to-one transmission
protocols, since every lost packet would be transmitted again.
This strategy is sub-optimal if packet losses are uncorrelated,
as each retransmission is only useful to those receivers that
have lost the given packet in the first place. It is likely that a
single retransmission will only benefit a single receiver.

The impact of each retransmission can be maximized by
using network coding [1], [2], [9], [5]. Researchers have
shown that network coding can provide several advantages,
namely improved throughput, robustness, security and lower
complexity in communication networks [7], [3].

A. Network Coding

The basic operations performed in a network coding system
are depicted in Figure 2. To lower the computational com-
plexity of coding operations, large files or continuous streams
are typically split into several equal sized chunks, also called
generations [2], each consisting of g packets.

Fig. 2. Overview of Network Coding

The encoder (the top component in Figure 2) generates
and transmits linear combinations of the original data packets
in the current generation. Addition and multiplication are
performed over a Galois field, therefore a linear combination
of several packets will result in a packet having the same
size as one of the original packets. With Random Linear
Network Coding (RLNC), the coding coefficients are selected
at random. Note that any number of encoded packets can be
generated for a given generation. The middle layer represents
the wireless channel, where packets are lost depending on the
channel conditions. The received encoded packets are passed
to the decoder (the bottom component in the figure), which
will be able to reconstruct the original data packets after
receiving at least g linearly independent packets.

The receiver nodes are also allowed to generate and send
new encoded packets, even before decoding the entire gen-
eration. They form new linear combinations of the packets
that they have previously received. This operation is known
as recoding, and it is a unique feature of network coding.
Traditional coding schemes require the original data to be fully
decoded before it can be encoded again.

Another advantage of network coding is that it makes
”perfect coordination” possible, where an arbitrary number
of sending nodes can be used to serve the same generation to
a receiver. Moreover, a receiver is no longer required to gather
all data packets one-by-one, it can simply ”hold a bucket” for
a generation until it is full, that is enough linearly independent
encoded packets are received. With RLNC, the randomly
generated coding coefficient vectors from different senders
are linearly independent with high probability (depending on
which Galois field is used). Consequently, there is only a
minimal need for signaling among the cooperating nodes.

III. PROTOCOL DESIGN

Our goal is to devise a protocol that minimizes the number
of packets exchanged among the mobile clients, whilst max-
imizes the number of packet errors recovered. Moreover, we
aim to repair the packet losses on-the-fly (as the data is being
received), which imposes real-time constraints on the protocol.
We call our protocol ECP (ENOC Cooperation Protocol).

We assume that the primary network is an LTE network,
which uses systematic Raptor coding for broadcast trans-
missions. Thus the raw symbols (uncoded data packets) are
transmitted first, and they are followed by several encoded
packets to repair the losses. We intend to devise a best-effort
protocol that uses the secondary network established among
the receivers to conceal a significant part of these losses
from the LTE Raptor decoder. It is important to note that
ECP is not intended to provide full reliability, which remains
the responsibility of the Raptor decoder. We assume that the
protocol has read access to the raw symbols received on the
primary network, and it can also write back newly recovered
symbols to the Raptor decoder buffer, thereby significantly
lowering the perceived packet error rate and the required
overhead.

A. Protocol operation

ECP is based on the principles of network coding, since the
receivers cooperate by sending encoded or recoded messages,
which contain information that is most likely innovative for
all peers. The basic unit of operation is a generation, meaning
that the cooperative cluster is only trying to fix a specific
generation at any given time. The network nodes may form a
new cluster for the next generation.

After receiving a certain generation on the primary network,
a receiver can broadcast a NACK (Negative Acknowledgment)
message on the secondary network if it has experienced any
packet losses. This is a retroactive trigger mechanism in ECP.
We apply semi-random back-off intervals to prevent multiple
nodes from broadcasting NACK messages at the same time.



The back-offs are chosen so that it is more likely that the worst
receiver sends out the first NACK. These messages contain
information about how many packets were lost on the receiver.

When the other devices within range receive this packet,
they will suppress their own NACKs, and in response they
schedule several encoded data packets to be sent at a specific
speed. The devices generate and broadcast encoded packets,
which also convey information about their own packet losses.

Since RLNC is used to achieve perfect coordination, en-
coded/recoded packets from any of the nodes can be equally
useful. Senders do not have to pay attention to select specific
packets for specific receivers.

Consequently, the most essential question here is how many
packets the devices should schedule and transmit in response to
a NACK message. They can simply broadcast as many as the
worst receiver needs. The nodes constantly gain information
about the others’ knowledge with every encoded packet they
receive. These updates can be used to continuously adjust the
remaining number of packets to be sent.

This simple approach however leads to sub-optimal per-
formance in most cases. If there are 3 or more cooperating
devices, then the task of ”filling up” the worst receiver should
be equally divided among the others. For example, suppose
that there are 4 devices and the worst one needs 15 packets,
then the other 3 can send 5 packets each.

If we have only 2 cooperating nodes, then it is very likely
that they have some common erasures. Consequently, full
recovery is often not possible in this case, and the devices
should send less packets than the other one has lost. Specific
information about the individual packet losses is necessary to
determine the combined knowledge of the cooperative cluster.
We include a short bitvector (called the knowledge vector) in
all protocol messages that explicitly indicates which packets
of the current generation are currently available on the sender
of the message. The network nodes can quickly calculate the
combined knowledge of the cluster by bitwise OR-ing these
vectors from all receivers. To determine how many innovative
packets can be sent to a given node, we can take the difference
of the combined knowledge and the node’s latest knowledge
vector.

This improved approach can yield near optimal performance
under ideal channel conditions and slow transfer rates. How-
ever, as we increase the transfer rate, we observe that informa-
tion about the other nodes can quickly become out-of-date thus
inaccurate. This may lead to the premature termination of the
repair session, i.e. the nodes may schedule less packets than
necessary. Therefore we allow the receivers to send secondary
NACK messages for the current generation when the others
have stopped sending, but the node is still unable to decode
some of the received messages.

B. Implementation

Based on the protocol design ideas outlined above, we have
implemented a prototype application using the Qt framework
so that we can test our protocol on any Nokia phone, desktop
computer or laptop.

This demo application emulates an incoming LTE packet
flow on all devices synchronously. When the application starts,
it enumerates its network interfaces in order to determine
its IP and broadcast addresses corresponding to the WLAN
network interface. One device is used to start the simulation
by broadcasting a command packet that contains all the
simulation parameters. The other devices receive this packet,
extract the parameters, and initiate the packet flow simulation.
They all use the same random seed to generate random data
packets deterministically, as if these were received on the LTE
network. Packets are generated continuously with the same
data rate on all clients. The devices also drop certain packets
at random to simulate packet losses. Note that they do this
independently from each other. Thereby all devices possess
some parts of the incoming datastream, and they also have
some ”holes” that ECP should be able to fill on-the-fly.

We consider a single Raptor code source block, e.g. 1024
packets in a simulation. The entire block can be segmented
into smaller generations (e.g. 64 packets) that are sufficiently
small for network coding calculations on resource-constrained
mobile devices. ECP works on these generations as depicted
in Figure 3.

Fig. 3. Mapping between Raptor code source blocks and ECP generations.

When the first 64 packets of the emulated packet flow are
(partially) received, the ECP trigger mechanism is activated,
and the nodes generate a random back-off interval before
sending a NACK (Negative Acknowledgment) message. When
they receive a NACK, the devices generate and broadcast
several encoded packets with a specified data rate in order
to repair the packet losses in the cluster.

Network coding involves a computational overhead which
might be prohibitive from a practical point of view. The au-
thors in [5] proposed an efficient solution for mobile devices,
namely to use the binary Galois field, GF(2) to simplify all
calculations. Since this approach increases the probability of
generating linearly dependent (i.e. useless) encoded packets,
we have also implemented arithmetics over another finite
field, GF(28), which is more computationally intensive, but
almost totally free of linearly dependent packets. For a given
simulation, all devices use either GF(2) or GF(28), as dictated
by the source node in the simulation parameters.



The application can run simulations with different data rates,
which is quite useful when we examine the implications of
time constraints on the protocol performance. Moreover, data
rates can be increased automatically for stress tests, and the
collected simulation results from all participating devices can
be transmitted to a logging server.

C. Visualization

The application also has a simple visualization grid with
colors, hence we can observe as the packet losses are being
repaired by the neighboring devices. In Figure 4 we show
screenshots of this visualization grid after finishing simulations
with 1, 2 and 6 devices.

A green box signifies a packet that was received on the
simulated primary network. A red box signifies an encoded
packet that was received from another device, but it has not
been decoded yet, thus it can be considered ”dirty data”. A
blue box signifies a packet that was originally lost on the
primary network, but it has been recovered by ECP. Obviously,
our objective is to maximize the number of blue boxes and to
eliminate all red boxes.

(a) Single device (b) One of 2 devices (c) One of 6 devices

Fig. 4. Visualization grid after complete simulations with 1024 packets and
30% simulated packet loss.

IV. MEASUREMENTS

We have assembled a testbed to demonstrate the capabilities
of our protocol, and to refine its design. The cooperative cluster
consists of 6 Nokia N95 (or N95 8GB version) mobile phones
that run the demo application described above. These devices
form an ad hoc WLAN network for short-range communica-
tion. All ECP packets are transmitted on this network.

It is important to design ECP so that it can work well with
a various number of neighboring devices. In this testbed we
can test its operation with 1-6 devices. With one device, the
objective is to minimize outgoing traffic, although we have to
make sure that the devices can detect each other’s presence
and switch on cooperation when necessary. With 6 devices,
we also aim to send as few packets as possible to minimize
the overall energy consumption.

A. Performance evaluation

The main purpose of this testbed is to evaluate the perfor-
mance of ECP on actual mobile devices, since it is a vital step
in protocol design to gain feedback from real networks.

Our first performance metric is the required overhead to
complete the transmission, as measured on the primary source
node (i.e. the LTE base station).

In Figure 4 we can easily count the white ”holes”, each of
those would require a retransmission from the source. In these
simulations we used a source block consisting of 1024 packets
with 30% simulated packet loss. We expect around 300 lost
packets if a device is alone, that is why we see around 300
holes in the left screenshot (4a) after a finished simulation.

The middle screenshot (4b) illustrates the cooperation gain
with just 2 devices. In this case we were able to fill 70% of the
holes, that means a 70% reduction in the required overhead.
Some packets were not fully decoded here (red boxes), which
indicates sub-optimal performance with 2 devices.

The right screenshot (4c) shows the end result of a sim-
ulation with 6 devices, where 98% of the holes were filled.
Therefore only a minimal amount overhead is required from
the base station in this case. There are no red boxes here,
and the remaining holes are actually correlated erasures, i.e.
packets that were lost on all 6 devices of the cluster.

Fig. 5. Required overhead on the primary network.

Figure 5 shows the average required overhead as the number
of cooperating devices increases. This graph is based on
several hundred measurements performed with GF(2). As we
can observe, the cooperation gain is quite significant even with
2 devices. Note that packets, that were lost on all devices,
cannot be recovered. Their number is shown as correlated
losses in Figure 5. In most cases ECP is able to achieve
very close to the maximum cooperation gain, i.e. it can repair
almost all packet losses that can be repaired by the cluster.

Our second performance metric is the number of packets
exchanged on the WLAN network. The overall energy con-
sumption of the system is heavily influenced by this measure.
In the testbed, we can measure the number of transmissions
(packets sent and received) on a single device, and we can
aggregate these values from all devices for a given simulation.



In our previous work [17] the theoretical upper and lower
bounds for this measure were established considering an ideal
system based on network coding. The upper bound can be
calculated by doubling the expected number of recoverable
(i.e. non-correlated) packet losses on a single device. In the
worst case, the device has to both send and receive that amount
of packets. As we have mentioned before, the sending part
can be optimized if there are more than two devices. We can
divide the number of packets to be sent among all nodes.
This principle is used to establish a lower bound, which is
calculated for the worst receiver (on the primary network). For
this device, the expected number of recoverable packet losses
is higher than the average, and this is the amount of packets
that it has to receive. It should also send its fair share of the
expected number of recoverable losses on the second worst
receiver. The lower bound is obtained by adding the number
of packets received and sent. This is based on the observation
that any packet exchanged on the WLAN network is either
sent or received by a given node.

Fig. 6. Number of exchanged packets on the WLAN network as a function
of the cluster size

The lower and upper bounds are plotted in Figure 6 together
with the actual numbers measured on the testbed using GF(2)
and GF(28). The performance with GF(28) is quite close to
the lower bound for 2 and 3 devices, but it is getting worse
for larger cluster sizes. On the other hand, using GF(2) results
in generating some linearly dependent (i.e. useless) packets,
which account for the performance gap between the two Galois
fields. For 6 devices, GF(2) performs similarly to GF(28),
which is an interesting result. It can be explained by the fact
that the processing delay is significantly smaller for GF(2),
therefore the protocol decisions (how many packets to send)
are based on more up-to-date information.

The third performance metric is the compliance with real-
time constraints. This can be very important for video playback

(a) ECP with GF(2)

(b) ECP with GF(28)

Fig. 7. Performance at different data rates with 4 devices

or similar services, where the packet losses should be repaired
on-the-fly, i.e. faster than the native playout data rate of the
video stream. In the testbed, we can adjust the data rate of
the simulated LTE packet flow, and we can measure how the
increased data rates influence the protocol performance. In
Figure 7 we have plotted the number of total packets sent, the
required overhead and the number of lost packets as measured
in consecutive simulations with 4 devices with increasing data
rates ranging from 10 to 240 KB/s. As we can see in Figure 7a,
these performance indicators were almost unaffected when we
used GF(2). We can only notice a slight increase in the number
of sent packets. However, if we look at Figure 7b, we observe
that the situation is much worse for GF(28). Encoding and
decoding operations over GF(28) impose a heavy load on the
CPU, which leads to frequent packet losses on the WLAN
network. Consequently, the devices will try to send more
packets to counteract these losses, and the number of sent
packets increases almost twofold. As a result, the protocol is
no longer able to recover all the original losses with data rates
higher than 180 KB/s. For higher data rates, GF(2) performs
better than GF(28) due to the high computational overhead
associated with GF(28). Note that the highest data rate here,



240 KB/s corresponds to around 2 Mbit/s, which is more
than sufficient for full quality videos on state-of-the-art mobile
devices.

V. FUTURE WORKS

Before this protocol can be deployed in real-life mobile
networks, we need to investigate the effects of peer mobility
and dynamic behavior. Mobile devices may join and leave the
cluster at any time, and typically they are also moving around,
therefore static cooperative clusters are not to be expected
in reality. Extensive measurements are needed to analyze the
protocol performance in dynamic settings.

ECP was designed so that it can work well with multiple
disjoint clusters if certain nodes move from one to another.
Basically a new cluster is formed for every generation (e.g.
64 packets). If a cluster stays together for that short period of
time, near-optimal performance can be achieved, and the next
generation is handled by a new (possibly different) cluster.

The protocol can also be used for coverage extension in
multi-hop wireless networks to provide services on mobile
phones that are outside the range of 3G, 4G or LTE networks.
If some nodes are not directly reachable by the source, then
it is still possible to deliver the data stream to these receivers
with the help of relaying nodes that propagate the received
data farther away from the source. As it was shown in [16],
the fundamental problem of data dissemination in multi-hop
networks is the dynamic selection of relays and finding the
proper scheduling scheme for the packet flow.

VI. CONCLUSION

In this paper we have introduced a protocol to facilitate
the dissemination of multimedia content using cooperative
clusters of mobile devices. We considered a scenario where
these devices receive data from a broadcast transmission on a
primary network (e.g. LTE network), and they use a secondary
network (e.g. ad-hoc WLAN network) to recover packets that
are lost during the transmission. We proposed a solution based
on random linear network coding to facilitate the efficient
exchange of information in the cooperative cluster. A demo
application running on Nokia phones has been presented to
show the feasibility of this approach. We observed that in
most cases the protocol is able to realize almost the maximum
cooperation gain, that is to recover all packets which are lost
on the primary network. Meanwhile, the number of packets
exchanged on the secondary network was kept close to the
minimum. Moreover, we showed that packet errors can be
recovered on-the-fly with data rates as high as 2 Mbit/s.
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