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 

Abstract— A new relative error model reduction technique 
for linear time invariant (LTI) systems is proposed in this 
paper. Both continuous and discrete time systems can be 
reduced within this framework. The proposed model reduction 
method is mainly based upon time-weighted balanced 
truncation and a recently developed inner-outer factorization 
technique. Compared to the other analogous counterparts, the 
proposed method shows to provide more accurate results in 
terms of time weighted norms, when applied to different 
practical examples. The results are further illustrated by a 
numerical example. 

I. INTRODUCTION  

The accurate mathematical modeling of physical and 
man-made processes leads to models of high complexity. 
The simulation, analysis, control, design and implementation 
of the methods and algorithms for the systems of high orders 
are difficult and costly if at all possible. To cope with these 
problems, over the past few decades, there has been 
increasing interest in the methods which reduce the order of 
dynamical systems while preserving the input-output 
behavior and important features [1],[7],[14]. 

    Two main categories of order reduction techniques are: 
Singular Value Decomposition (SVD) based methods and 
the moment matching based techniques. The SVD-based 
methods have a guaranteed upper bound for the 
approximation error and they usually preserve the stability of 
the original model in the reduction process. The moment 
matching based methods are usually computationally more 
efficient, but they do not preserve the stability of the original 
systems and have no guaranteed error bound [1],[14]. From 
another viewpoint, model reduction methods can be 
categorized into two categories: the relative error model 
reduction methods and the absolute error model reduction 
techniques. In the family of relative error model reduction 
methods, the order of dynamical systems are reduced while 
the relative error of the approximation is kept small and in 
the second category the model is reduced while the absolute 
approximation error is kept small. The Balanced Stochastic 
Truncation (BST) method is the method from the relative 
error family [10]. This method provides the reduced order 
approximation with smooth approximation error and 
preserves phase information. This is the main advantage of 
this method in comparison with absolute error methods like 
the Balanced Truncation (BT) [4]. For modeling, simulation 
and control, it often happens that we are more interested in a 
specific time /frequency range and the behavior of the 
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systems is not very important outside of this range. This 
problem leads to so-called time /frequency weighted 
balancing methods. In these methods, some weights are 
given to the system in model reduction to compute the 
reduced order model to reach a small error. The frequency 
weighted balanced truncation was first proposed in [6]. This 
method has been explored extensively in the literature and 
has been improved and extended from different viewpoints 
[2]. However, despite some researches which have addressed 
the time domain counterpart of this method, which is ‘Time 
Weighted Balanced Truncation (TWBT)’ [8], there are 
problems which remain open in this context. In this paper we 
focus our attention on the extension of the method to the 
family of the relative error model reduction methods. In this 
paper, based on the BST and TWBT a new method for 
relative error model reduction is proposed. The method is 
“Time-Weighted Balanced Stochastic Truncation 
(TWBST)”. This technique shows to provide more accurate 
results in terms of weighted norms and also keeps good 
properties of the ordinary BST. The method would be 
reduced to a novel reduction method which is ‘Hilbert-
Schmidt-Hankel BST’ for a particular choice of the time 
weight.     

The paper is organized as follows. In section ІІ, we 
introduce some definitions, notations and concepts related to 
BST. Section ІІІ presents TWBT algorithm and its 
properties. In section ІV, the TWBST method is presented. 
The method is applied to a practical CD player benchmark 
example in section V and the results are shown. Finally, the 
last section concludes the paper. The notation used in this 
paper is as follows: *M denotes transpose of matrix if 

n mM   and complex conjugate transpose if n mM  . 
The standard notation , ( , )    is used to denote the 
positive (negative) definite and semidefinite ordering of 
matrices.  

II. MODEL REDUCTION VIA BALANCED STOCHASTIC 

TRUNCATION (BST) 

  Consider ( )G s a MIMO square transfer matrix with a 

minimal sate space realization : ( , , , )G A B C D and of order 

n . If det( D ) ≠ 0 it is possible to compute the left spectral 

factor ( )s of *( ) ( )G s G s  satisfying: 

                     
* *( ) ( ) ( ) ( ).s s G s G s                                                  (1) 

                        
The state space realization of G  is called a balanced 
stochastic realization if: 

1( ,..., ),G
nP Q diag                                                 (2) 
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where  GP  is the controllability gramian of ( )G s , the matrix 

Q  is the observability gramian of ( )s  and i is the thi  

Hankel singular value of the stable part of the so-called 
“phase matrix” * 1( ) ( ( )) ( )F s s G s   . The singular values 

in (2) are in decreasing order [3],[9],[11],[15]. 
 
The reduced model is achieved by omitting the states related 
to the lowest set of singular values. The reduced model is 
stable and satisfies the relative error bound [3],[9],[12]: 
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III. TIME-WEIGHTED BALANCED TRUNCATION MODEL 

REDUCTION METHOD 

Over the last two decades, the balanced model reduction 
method received a lot of attention and has been improved 
and extended from different viewpoints. The time-weighted 
balanced truncation is among the methods which improves 
the accuracy of the approximation and reduces the error by a 
piecewise polynomial function [8],[16]. In the sequel this 
method for both continues and discrete time systems are 
presented.  
 
 This method was first proposed in [8]. For the linear time-
invariant continuous-time systems with state space 
realization ( , , , )A B C D the reachability and observability 

gramians are given by: 
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0
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
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 which are the solutions of the Lyapunov equations: 
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These gramians generalized to expressions of the type  

**

0
: ( ) A A

fP f t e BB e d  


  , 

 
* *

0
: ( ) ,A A

fQ f t e C Ce d  


   

where ( )f t is any desired weighting function.  

 
In particular: 
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A recursive algorithm for computation of these gramians 
was proposed by Schelfnout, and Moor [8]. It was shown 
that gramians for the linear time-invariant continuous-time 
systems with the definition:  
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                           (6) 

The weighted gramians can be obtained recursively using the 
Lyapunov equations bellow:  
 

*
1 1
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1 1
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r r r
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                                    (7) 

where: 
* ,oP BB  

* .oQ C C  

 
Similarly the weighted gramians for a linear time-invariant 
discrete-time system are defined as follows:  
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which are the solutions of the Lyapunov equations: 
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1 1

*
1 1

, 0,1,2,... ,

, 0,1, 2,... ,

r r r
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where: 

* ,oP BB  
* .oQ C C  

 
The rest of the method is very similar to the ordinary 
balanced truncation. At this point an appropriate similarity 
transformation which transforms the system into time 
weighted balanced structure needs to be computed. In the 
time-weighted balanced realization: 
 

1 1 * *
1 1

1 2 1

( )

( , ,..., , ,..., ),
r r

k k n

T P T T Q T

diag     

 
 






                                   (10) 

where: 

1 2 1... ... 0.k k n            

 
The transformed system needs to be partitioned: 

11 12 11 1

21 22 2

1 2
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           

 



 

where the dimension of the 11A is equal to the dimension of 

1 2 1( , ,..., , ,..., ).k k ndiag       

 

The realization  1 1, ,T AT T B CT   is known as the time 

weighted balanced realization and the reduced order model 
which is of order k  is given by: 
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The reduced model is stable and satisfies the relative error 
bound [8],[16]: 

1

( ) ( ) ,
n

r i
i k

G s G s  


 

                                               (11) 

where 1 1
max max2 ( ) ( )R B C S     and R and S  are 

Cholesky factors: 
* *

1 1, .r rP RR Q S S    

In the case which  1r  , the method would be an absolute 
error Hilbert-Schmidt-Hankel model reduction.  

  

IV. TIME-WEIGHTED BALANCED STOCHASTIC TRUNCATION 

In this section, a new method for model reduction is 
proposed. The stability and computational issues of the 
algorithm are also discussed. 
 
 

A. TWBST Algorithm 

 
   TWBST keeps the advantages of BST plus reducing an 
error norm weighted by a piecewise polynomial function in 
the time domain. Numerical results in the next section show 
the accuracy enhancement of the proposed method. In 
TWBST algorithm similar to BST, at first we should find the 
left spectral factor ( )s of *( ) ( )G s G s  satisfying (1). The 

inner-outer factorization is applied to compute the left 
spectral factor of G  to factorize the state space realization: 

 * * * 1 *( , , ( ) , )G GN A P C BD B P D   , 

in the form ( ) ( )iN s s where ( )iN s is the inner factor and 

( )s is the outer and the left spectral factor [4],[5],[9].  

 
 The next step is to compute the time weighted 
controllability gramian of the system G  and the time 
weighted observability gramian of the left spectral factor

( )s . The system will be transformed into the time 

weighted balanced stochastic realization. In time-weighted 
balanced stochastic realization, the time weighted 
controllability gramian of the system G  and the time 
weighted observability gramian of the left spectral factor 

( )s  are equal and diagonal with decreasing diagonal 

elements i. e. 
 

1 1 1( ,..., ).G
r r nP Q diag                                              (12) 

                                                          
The reduced model is obtained by the truncation of the states 
which have the least effect on the input-output behavior of 
the original system (those which related to the lowest set of 
the singular values). Fig. 1 shows the overall algorithm of 
TWBST method. When 1r  , the method is reduced to a 
relative error Hilbert-Schmidt-Hankel model reduction.  

 
 

B. On Stability and Numerical Implementation 

 
Balanced transformation can be numerically ill-conditioned 
when dealing with systems having some nearly 
uncontrollable or some nearly unobservable modes. 
Difficulties associated with computation of the required 
balanced transformation in [3] drew some attention toward 
devising alternative numerical methods [13]. Balancing can 
be badly conditioned even when some states are significantly 
more controllable than observable or vice versa. In this case, 
it is suggested to reduce the system in the gramian based 
framework without balancing. The Schur method and square 
root algorithms provide projection matrices to apply 
balanced reduction without balanced transformation [1],[13]. 
This method can be easily extended to other gramian based 
method. In TWBST, we can use the same algorithm by 
plugging time weighted controllability gramian of the 
system G  and the time weighted observability gramian of 
the left spectral factor ( )s . Fig. 2 shows the overall 

algorithm of TBST method by using square root algorithm. 
  
It is important to keep the main features and key properties 
of the original systems in the reduction process.  One of 
these important properties is the stability of the original 
system. In the following proposition we show that the 
proposed framework for model reduction is a stability 
preserving method. In other words, the proposed method 
always reduces a stable system into a stable system.       
   
  

Proposition 1. Let the system with minimal realization 
: ( , , , )G A B C D be stable and the system is reduced by 

TWBST, the reduced order model is quadratically stable. 
 
Proof:  
In the proposed method using square root algorithm, we 

have:  
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which is a projected system (reduced order model). The 
outcome of the proposed square root algorithm for projection 
[1]:  1 1

G
rP W V    and 1 1rQ V W

   , where 1
k k  is 

diagonal and positive definite. Since 1
G

rP  is the time 

controllability gramian of the system G , we have: 
*

1 1 0G G G
r r rAP P A P     , which implies:  

 
* *

1 1( ) 0,G G
r rW AP P A W    

 
on the other hand, 
 

* * * * *
1 1 1 1

* * * * *
1 1 1 1

( )

ˆ ˆ .

G G G G
r r r rW AP P A W W AP W W P A W

W AV V A W A A

     

       
 

 
   Hence:   

*
1 1

ˆ ˆ 0A A    ,                                                        (14) 

where  1
k k  is positive definite.  

                 
Hence, the reduced order model is guaranteed to be 

quadratically stable with Lyapunov function ( )V x for which 

we have: 
*

1

* *
1 1

( ) 0,

ˆ ˆ( ) ( ) 0

V x x x

V x x A A x

  

      

  
 
 

Inputs: System matrices ( , , , )A B C D   

Outputs: Reduced system matrices ( , , , )r r r rA B C D  

 
1- Form: 

* * * 1 *( , , ( ) , )G GN A P C BD B P D    

2- Apply inner-outer factorization and find the left 
spectral factor ( )s  

3- Compute the time weighted controllability 
gramian of ( , , , )A B C D system  

4- Compute the time weighted observability 
gramian of the left spectral factor ( )s  

5-  Find the similarity transform T for time 
weighted stochastic balancing and balance the 
system. 

6- Eliminates the states relates to the lowest set of 
singular value and find ( , , , )r r r rA B C D  

 
Fig. 1.  TWBST model reduction algorithm. 

 
 
 
 

Inputs: System matrices ( , , , )A B C D and time interval 

1 2[ , ]t t  

Outputs: Reduced system matrices ( , , , )r r r rA B C D  

 
1- Form: 

* * * 1 *( , , ( ) , )G GN A P C BD B P D    

2- Apply inner-outer factorization and find the left 
spectral factor ( )s  

3- Compute the time domain controllability gramian 
of ( , , , )A B C D system within a time interval 

1 2[ , ]t t  

4- Compute the time domain observability gramian 
of the left spectral factor ( )s within the time 

interval 1 2[ , ]t t  

5- Find the projection matrices V and W via square 
root or Schur algorithm. 

6- Compute ( , , , )r r r rA B C D  

Fig. 2. TWBST model reduction algorithm using square root algorithm. 

 

V.  NUMERICAL EXAMPLE 

  In this section the proposed method is applied to a practical 
CD player benchmark example and the results are discussed. 
The model is of order 120. The CD player model is reduced 
by applying both BST and TWBST. The relative errors for 
reduction of the system to the 31st order model by BST and 
by TBST with 1r  are shown in Fig. 3. The step responses 
are shown in Fig. 4. As it can be seen, TWBST provides 
more accurate results compared to BST.  
The CD player model is also reduced to 73th order model by 
applying BST and to 70th order model by TWBST. The 
relative errors for reduction of the system with 1r  are 
shown in Fig. 5. The step responses are shown in Fig. 6. As 
it can be seen, TWBST provides more accurate results 
compared to BST while it reduces the system even more.  
   
    

 



 

Fig. 3.  TWBST model reduction relative error (solid lines) and BST model 
reduction relative error (dotted). 

 
Fig. 4.  Step response of the original system (solid lines), TWBST reduced 
order model (dotted) and BST reduced order model. 

 

 
Fig. 5.  TWBST model reduction relative error (solid lines) and BST model 
reduction relative error (dotted). 

 
 

 
Fig. 6.  Step response of the original system (solid lines), TWBST reduced 
order model of order 73 (dotted) and BST reduced order model of order 70. 

 

VI. CONCLUSION 

A new relative error model reduction technique based on 
time-weighted stochastic balancing is proposed in this paper. 
Inner-Outer factorization is used as an accurate and an 
efficient numerical approach in the numerical algorithm of 
the method. The proposed method is proven to preserve 
stability and it shows advantages in terms of accuracy and 
efficiency which are suitable for the practical relative error 
model reduction.    
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