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ABSTRACT respectively. The problem is then to estimate the fundamental fre-

In this paper, we formulate the multi-pitch estimation problem andduencies{ws}, or the pitches, from a set of measured samples,
propose a number of methods to estimate the set of fundamental fr&(72)- In the present work, we assume that the number of soufCes,
quencies. The methods, which are based on nonlinear least-squariSsknown and that the number of harmoniés of each source is also
MUltiple Signal Classification (MUSIC) and the Capon principles, known and equal for all sources. This may seem like a restrictive as-
have in common the fact that the multiple fundamental frequencieSUmption, but for many practical speech and audio applications, it
are estimated by means of a one-dimensional search. The statistican0t always required that the order be known precisely. Provided

properties of the methods are evaluated via Monte Carlo simulationd?t the order does not vary too much, itis often sufficient to simply
know the average order. The role of an order estimate is mainly to

Index Terms— Acoustic signal analysis, spectral analysis, fre- ayoid ambiguities in the cost functions that may cause spurious esti-
quency estimation mates aty/g times the true fundamental frequency (withy € N)
such as the well-known problems of halvings and doublings.

In this paper, we propose and evaluate a humber of estimators
for finding the fundamental frequencié¢s).} based on principles
The problem of finding the fundamental frequency or the pitch offrom statistical signal processing. In particular, we propose an ap-
a periodic waveform occurs in many signal processing applicationgroximate nonlinear least-squares (NLS) method, a MUItiple Slg-
for example in applications involving speech and audio signals. Fonal Classification (MUSIC) based method as well as a Capon-based
instance, in audio processing the fundamental frequency plays a kegethod. The proposed methods all have the following simple form:
role in automatic transcription and classification of music [1]. Given
the importance of the problem, a wide variety of fundamental fre-
quency estimation methods have been developed in the literature,
e.g., [1-4]. In most cases, these methods are based on a model

where only a single set of harmonically related sinusoids are presefeaning that an estimate of the set of fundamental frequencies can
at the same time. Indeed, the multi-pitch estimation problem, i.e e gptained by evaluating a cost functidtw;) for variousw;, and

the problem of estimating the fundamental frequencies of multiplgnap, picking the highest peaks, i.e., costly multi-dimensional sear-
sets of periodic waveforms, is a difficult one, and one that has regnag are avoided.

ceived much less attention than the single-pitch case, though notable Tne rest of the paper is organized as follows: first, in Section 2

exceptions can be found in [1,5, 6]. The multi-pitch scenarios 0Cye jntroduce some notation and definitions. In Section 3, we present
cur regularly in music signals, perhaps even more frequently thaghe hroposed multi-pitch estimators along with the assumptions they
the single-pitch case, and often also in speech processing. Typicallyre hased on. Then, in Section 4, we analyze the performance of the

the situation occurs whenever multiple instruments or speakers agimators using synthetic signals and Monte Carlo simulations and,
present at the same time or when multiple tones are being playqq]a”y we conclude the work in Section 5.

on a musical instrument. The multi-pitch estimation problem can
be defined as follows: consider a signal consisting of severalsay
sets of harmonics (hereafter referred to as sources) with fundamen

1. INTRODUCTION

K
{on} = argmax y I (wr), @
R p=1

2. PRELIMINARIES

frequenciesvy, for k = 1,..., K, that is corrupted by an additive We bedin by introduci ful notation. definii d
white complex circularly symmetric Gaussian noisgp), having ?t elg'mt y Intro _ucmgo some u]sve ulnoTa |o(;1, _e ni |%ns and re-
variances?, forn=0,...,N — 1, i.e., sults. First, usinge = [z(0) --- (N —1)]% andw = [w(0) - --

K L
z(n) = Z Z akvlejw"'l" + w(n), 1)

k=1 1=1

whereay; = Ay e??5t, with Ay, > 0 and¢y; being the ampli-
tude and the phase of thih complex harmonic of thé'th source,
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w(N — 1) |7, with (-)T denoting the transpose, we note that the
signal model in (1) can be written as

K
X = Z Ziap +w, ©))
k=1

whereZy, = [z(wy) --- z2(wpL) |, z2(w) = [167 - BT

with B = N anday, = [ax,1 --- ax,z |7. Next, we define the co-
variance matrix aR = E {x(n)x" (n)} wherex(n) is a signal
vector formed fromM consecutive samples of the observed signal,



i.e.,%(n) =[z(n) --- z(n+M—1)]". Here,E{-} and(-)” de-  where the inner producZ;’x can be implemented efficiently for
note the statistical expectation and the conjugate transpose, respechinear grid search ovev, using a fast Fourier transform (FFT).
tively. We note thatk can be written similarly toc in (3) but with  The NLS method can be extended to deal with an unknown order
B = M. In practice, the covariance matrix is unknown and is re-for the single-pitch case and colored Gaussian noise in a compu-
placed by the sample covariance matrix. For a single source andtationally efficient manner [9]. An alternative interpretation of the
high number of samples, i.€N > 1, the (asymptotic) Cramér-Rao approximate NLS estimator is that (10) can be writter/és;,) =

lower bound (CRLB), can be shown to be [4] S5, llz(wkl) " x(|3 which is the periodogram power spectral den-
9 sity estimate ofk evaluated at and summed over the harmonic fre-
CRLBy = — %7 (4)  quenciesu;l.

N3 Yo AR 12
The CRLB can be seen to depend on the pseudo signal-to-noise raﬁoz' MUSIC-based Method
(PSNR), defined as We proceed to examine a subspace approach based on the orthogo-
. na!ity principle of MUSIC (see, e.g., [10]), i.e., that the signgl and
PSNRy = 101og e Akl [dB] ) noise subspaces are orthogonal. In [4], it was shown that high res-
10 o2 ' olution fundamental frequency estimates can be obtained using this
%inciple, along with an accurate order estimate, and in [11] the ap-

harmonic frequencies are distinct, (4) can also be expected to ho ach was generalized to the multi-pitch estimation problem. We

hy guenci IStinct, (%) can Xp ill here briefly review these ideas in the context of this paper, i.e.,
appro>_<|ma_¢tely for the problem of estimating the fundamental fre'for the case of known order and number of sources. Assuming
quencies in (1). However, for a low number of samples, the exa

CRLB f fund tal f il d don th A at the phases of the harmonics are independent and uniformly dis-
or a fundamental frequency will depenad on the parametery;, ;o on the interval—m, 7|, the covariance matrix and its eigen-
of other sources as well.

value decomposition (EVD) can be written as

Under the assumption that the sources are independent and that

3. SOME ESTIMATORS LS
R =UAU" =) " 7P, Z}] + 071, (11)

3.1. Approximate NLS-based Method k=1

The first estimator is based on the nonlinear least-squares methodhereU is formed from thel/ orthonormal eigenvectors &, i.e.,
Under the assumption of white Gaussian noise the NLS method & = _[ u; --- uy ], Ais a diagonal matrix with the eigenvalues on
equivalent to the maximum likelihood method which is well-known the diagonal an®;, = diag ([ A%, --- A7 1 ]). First, note that

to have excellent performance: it attains the CRLB provided that the

number of samples is sufficiently high [7]. For the sinusoidal esti- K -

mation problem, the NLS method has also been shown to achieve the rank Z ZiPiZy | = KL,
asymptotic CRLB for largéV in the colored Gaussian noise case [8],

and, therefore, the NLS can be expected to be robust to the color gh |etG: be the noise subspace formed from the eigenvectors corre-
the noise. The NLS estimates are obtained as the set of fundamengﬁonding to thel — K L least significant eigenvalues. Then, it can
frequencies that minimizes the 2-norm of the difference between thge shown that the noise subspace spanne@ hwill be orthogonal

(12)

k=1

observed signal and the signal model, i.e., to the Vandermonde matricé&,. } which span the signal subspace
X 5 formed by the eigenvectors corresponding to Hi& most signifi-
(%} = arg min ||x — Z Zras ©) cant eigenvalues. Therefore, the set of fundamental frequeceies
’ {wr) Pt , ’ be found as [11]
K
where|| - |2 denotes the 2-norm. Assuming that all the frequencies Ay . H H H2
in {Zk”} a”re distinct and well separated and tat>> 1, (6) can {on} = are ?Eﬁ ; 2 G F’ (13)
be well-approximated by finding the fundamental frequency of the -
individual sources, i.e., where|| - || » denotes the Frobenius norm. Finally, we define the cost
function to be maximized for each individual source as
W = arg mwin % — Zra| - ) )
' T(wr) = > (14)
Minimizing (7) with respect to the complex amplitudes gives 1Z{ Gl
. ~ —1 . . .
the estimates, = (Z3'Zx)  Zi'x, which, when inserted in (7). \yhich can be evaluated efficiently using the FFT (see [4] for further
yields details). Note that while the NLS methods is based on an asymptotic
. . -1 assumption that facilitates finding individual fundamental frequen-
W = argmax X Zg (Zk Zk) Z;x (8)  cies independently, there is no such approximation in the MUSIC
“r . " approach. The covariance matrix decomposition in the MUSIC ap-
~ arg I{IfZXX 2,72y x 9) proach, however, is dependent on the distribution of the phases and

the whiteness of the noise, while the NLS approach is still asymp-
where the last line follows from the assumption thats>- 1. Castin  totically efficient for colored noise. It should also be noted that the
the framework of (2), the resulting cost function is MUSIC approach is the only method, among those considered here,
that requires a priori knowledge about the number of sources for the
J(wr) = [|1Z&']]3, (10)  evaluation of the cost function.
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Fig. 1. Example of the cost functions for two sources having five har- Fig. 2. RMSE as a function of PSNR fa¥ = 400 for one source.
monics each and true fundamental frequencies of 0.1650 and/.393

for N =160 andPSNR = 40 dB.
for a signal of lengthV = 160 consisting of K = 2 sources hav-

ing five unit amplitude harmonics each withS NR = 40 dB. The
3.3. Capon-based Method two sources have fundamental frequencies 0.1650 and 0.3937, re
Finally, we introduce an estimator based on the Capon approaciPectively. As can be seen, the cost functions have distinct peaks at
(see, e.g., [10]), which relies on the design of a set of filters thaf10Se frequencies with the MUSIC- and Capon-based method hav-
pass power undistorted at specific frequencies, here the harmorled narrower peaks than the approximate NLS. Also worth noting
frequencies, while minimizing the power at all other frequencies!S the multi-modal nature of the cost functions with a number of
Defining the filter bank matrifI?, consisting of filters of length ~ fairly sharp false peaks. Indeed, this shows why the fundamental

M, the filter design problem can be stated as the optimization prog_requency estimation problem is a difficult one. Atfirst sight, this ap-
lem: pears to be less of an issue for the MUSIC-based approach, but upon

min Tr [HHRH] subjectto H?Z, =1 (15) ~ Closer inspection, it can be observed that MUSIC generally suffers
H o _ 7 ] from this problem too. We proceed to evaluate the proposed esti-
wherel is the L x L identity matrix. The set of filter# solving  mators using Monte Carlo simulations by generating signals accord-

(15) are given by (see, e.g., [10]) ing to the model (1) with the phases and the noise being randomized
. e 1 ~1 over realizations. In the first experiment, the estimators are evaluated
H=R 'Z (Zk R Zk) : (16)  for two sources with well-separated fundamental frequencies, again

. ' 0.1650 and 0.3937, and with = 3. We compare the root mean
This data and frequency dependent filter bank can then be used to €uare estimation error (RMSE) of the estimators with the asymp-
timate the fundamental frequencies by maximizing the power of th q ymp

%otic CRLB given i joi
o - " : . : ; given in (4). The RMSEs are calculated jointly over
S:t:](rj: output, i.e.,Tr [H RH]' Inserting (16) into this expression both sources. In order to have the same CRLB for both fundamen-

1 tal frequencies, we set all amplitudes to unity, i, = 1, Vk,I.
@ = argmax Tr {(ZkHR‘IZk) ] , (17)  The estimates are obtained as follows: First, the cost functions (10),
) “k ~ (14), and (18) are evaluated on a coarse grid. Then, these csarse e
which can be seen to depend only on the Vandermonde nirix  timates are used to initialize gradient-based methods that are used to

and the inverse covariance matRx . DefiningY = Z,{?UA*%, obtain refined estimates. For the MUSIC- and Capon-based meth-

the cost function can be evaluated for differentas ods, the gradients of (14), and (18) are used whereas for NLS, the
1 gradient for the approximate cost function (10) was found not to

J(wk) = Tr {(YYH) } ) (18)  produce high resolution estimates. Instead, the gradient was de-

rived for this case based on (8). For the MUSIC-based method, we
whereY can be computed using the FFT once the EVIRohas  chooseM = |N/2| while for the Capon-based method we used
been evaluated. The form (18) is preferred over, e.g., a Cheleskyy/ = [2N/5]%. We note that the cost function (8) is approximate,
based implementation because numerical issues can easily be tging based on the negligence of the inner products between the
solved. Alternatively, the filter bank design in (15) can be formu-sources. The experiments are run for a fixed number of obsersation
lated as the design of a single filter which is subjedt twonstraints, N = 400, and varying PSNRs for one harmonic source and two har-
one for each harmonic. Interestingly, such an approach has sonmgonic sources, respectively. The signals are generated as ddscribe
conceptual similarities with the comb-filtering approach of [12].  in the previous experiment and for all combinations of parameters,

100 Monte Carlo trials are run. The RMSE are shown in Figures

4. NUMERICAL RESULTS 1These values were found empirically to result in good perfoimeaThe

In this section, we evaluate the performance of the introduced estgﬁss%?];?tmgvt'g%h(gfgfgigtg ;(é[r.the two methods is that they exhibit differ-

mators. Figure 1 shows the cost functions of the proposed estimators
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Fig. 3. RMSE versus the PSNR fd¥ = 400 for two sources.

2 and 3. It can be seen that for the case of one harmonic source,

——MUSIC
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Fig. 4. RMSE versus the difference between the fundamental fre-
guencies of two sources fof = 160 andPSNR = 40 dB.

all estimators perform well for all tested PSNRs with NLS having [2] H. Li, P. Stoica, and J. Li, “Computationally efficient param-

the best performance. For one harmonic source, the NLS method
is exact, meaning that there is no approximation in the estimate (8).
For two sources, however, the NLS method can be seen to saturatgg]
at PSNRs above 20 dB while both the MUSIC- and Capon-based
methods follow the CRLB closely. It can also be observed that all
methods exhibit thresholding effects below 10 dB. Similar observa-
tions can be made about the behavior of the estimators as a functio

of the number of observationd]. In a final experiment, the RMSE

is studied as a function of the difference between the fundamental

frequencies of two harmonic sources, i.A,= |wi1 — w2, for a

PSNR 0f40 dB andN = 160. The results are shown in Figure 4.
It can be seen that the Capon-based approach performs the best fo
closely spaced harmonics and that the approximate NLS performs

[6] A. Klapuri, “Multiple fundamental frequency estimation based

the worst.

5. CONCLUSIONS

rior to that of the MUSIC-based method.
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