
 

  

 

Aalborg Universitet

The Multi-Pitch Estimation Problem: Some New Solutions

Christensen, Mads G.; Stoica, Petre; Jakobsson, Andreas; Jensen, Søren Holdt

Published in:
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

DOI (link to publication from Publisher):
10.1109/ICASSP.2007.367063

Publication date:
2007

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Christensen, M. G., Stoica, P., Jakobsson, A., & Jensen, S. H. (2007). The Multi-Pitch Estimation Problem:
Some New Solutions. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, 3, 1221-1224. https://doi.org/10.1109/ICASSP.2007.367063

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 30, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60491911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICASSP.2007.367063
https://vbn.aau.dk/en/publications/60996000-9c2c-11db-8ed6-000ea68e967b
https://doi.org/10.1109/ICASSP.2007.367063


THE MULTI-PITCH ESTIMATION PROBLEM: SOME NEW SOLUTIONS

Mads Græsbøll Christensen1 , Petre Stoica2, Andreas Jakobsson3, and Søren Holdt Jensen1

1 Dept. of Electronic Systems
Aalborg University, Denmark
{mgc,shj}@es.aau.dk

2 Dept. of Information Technology
Uppsala University, Sweden

peter.stoica@it.uu.se

3 Dept. of Electrical Engineering
Karlstad University, Sweden

andreas.jakobsson@kau.se

ABSTRACT

In this paper, we formulate the multi-pitch estimation problem and
propose a number of methods to estimate the set of fundamental fre-
quencies. The methods, which are based on nonlinear least-squares,
MUltiple SIgnal Classification (MUSIC) and the Capon principles,
have in common the fact that the multiple fundamental frequencies
are estimated by means of a one-dimensional search. The statistical
properties of the methods are evaluated via Monte Carlo simulations.

Index Terms— Acoustic signal analysis, spectral analysis, fre-
quency estimation

1. INTRODUCTION

The problem of finding the fundamental frequency or the pitch of
a periodic waveform occurs in many signal processing applications,
for example in applications involving speech and audio signals. For
instance, in audio processing the fundamental frequency plays a key
role in automatic transcription and classification of music [1]. Given
the importance of the problem, a wide variety of fundamental fre-
quency estimation methods have been developed in the literature,
e.g., [1–4]. In most cases, these methods are based on a model
where only a single set of harmonically related sinusoids are present
at the same time. Indeed, the multi-pitch estimation problem, i.e.,
the problem of estimating the fundamental frequencies of multiple
sets of periodic waveforms, is a difficult one, and one that has re-
ceived much less attention than the single-pitch case, though notable
exceptions can be found in [1, 5, 6]. The multi-pitch scenarios oc-
cur regularly in music signals, perhaps even more frequently than
the single-pitch case, and often also in speech processing. Typically,
the situation occurs whenever multiple instruments or speakers are
present at the same time or when multiple tones are being played
on a musical instrument. The multi-pitch estimation problem can
be defined as follows: consider a signal consisting of several, sayK,
sets of harmonics (hereafter referred to as sources) with fundamental
frequenciesωk, for k = 1, . . . , K, that is corrupted by an additive
white complex circularly symmetric Gaussian noise,w(n), having
varianceσ2, for n = 0, . . . , N − 1, i.e.,

x(n) =
K
X

k=1

L
X

l=1

ak,le
jωkln + w(n), (1)

whereak,l = Ak,le
jφk,l , with Ak,l > 0 andφk,l being the ampli-

tude and the phase of thel’th complex harmonic of thek’th source,
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respectively. The problem is then to estimate the fundamental fre-
quencies{ωk}, or the pitches, from a set ofN measured samples,
x(n). In the present work, we assume that the number of sources,K,
is known and that the number of harmonics,L, of each source is also
known and equal for all sources. This may seem like a restrictive as-
sumption, but for many practical speech and audio applications, it
is not always required that the order be known precisely. Provided
that the order does not vary too much, it is often sufficient to simply
know the average order. The role of an order estimate is mainly to
avoid ambiguities in the cost functions that may cause spurious esti-
mates atq/g times the true fundamental frequency (withq, g ∈ N)
such as the well-known problems of halvings and doublings.

In this paper, we propose and evaluate a number of estimators
for finding the fundamental frequencies{ωk} based on principles
from statistical signal processing. In particular, we propose an ap-
proximate nonlinear least-squares (NLS) method, a MUltiple SIg-
nal Classification (MUSIC) based method as well as a Capon-based
method. The proposed methods all have the following simple form:

{ω̂k} = arg max
{ωk}

K
X

k=1

J(ωk), (2)

meaning that an estimate of the set of fundamental frequencies can
be obtained by evaluating a cost functionJ(ωk) for variousωk and
then picking theK highest peaks, i.e., costly multi-dimensional sear-
ches are avoided.

The rest of the paper is organized as follows: first, in Section 2,
we introduce some notation and definitions. In Section 3, we present
the proposed multi-pitch estimators along with the assumptions they
are based on. Then, in Section 4, we analyze the performance of the
estimators using synthetic signals and Monte Carlo simulations and,
finally, we conclude the work in Section 5.

2. PRELIMINARIES

We begin by introducing some useful notation, definitions and re-
sults. First, usingx = [ x(0) · · · x(N −1) ]T andw = [ w(0) · · ·-
w(N − 1) ]T , with (·)T denoting the transpose, we note that the
signal model in (1) can be written as

x =
K
X

k=1

Zkak + w, (3)

whereZk = [ z(ωk) · · · z(ωkL) ], z(ω) = [ 1 ejω · · · ejω(B−1) ]T ,
with B = N andak = [ ak,1 · · · ak,L ]T . Next, we define the co-
variance matrix asR = E

˘

x̃(n)x̃H(n)
¯

wherex̃(n) is a signal
vector formed fromM consecutive samples of the observed signal,



i.e., x̃(n) = [ x(n) · · · x(n + M − 1) ]T . Here,E {·} and(·)H de-
note the statistical expectation and the conjugate transpose, respec-
tively. We note that̃x can be written similarly tox in (3) but with
B = M . In practice, the covariance matrix is unknown and is re-
placed by the sample covariance matrix. For a single source and a
high number of samples, i.e.,N ≫ 1, the (asymptotic) Cramér-Rao
lower bound (CRLB), can be shown to be [4]

CRLBk =
6σ2

N3
PL

l=1 A2
k,ll

2
. (4)

The CRLB can be seen to depend on the pseudo signal-to-noise ratio
(PSNR), defined as

PSNRk = 10 log10

PL

l=1 A2
k,ll

2

σ2
[dB]. (5)

Under the assumption that the sources are independent and that the
harmonic frequencies are distinct, (4) can also be expected to hold
approximately for the problem of estimating the fundamental fre-
quencies in (1). However, for a low number of samples, the exact
CRLB for a fundamental frequency will depend on the parameters
of other sources as well.

3. SOME ESTIMATORS

3.1. Approximate NLS-based Method

The first estimator is based on the nonlinear least-squares method.
Under the assumption of white Gaussian noise the NLS method is
equivalent to the maximum likelihood method which is well-known
to have excellent performance: it attains the CRLB provided that the
number of samples is sufficiently high [7]. For the sinusoidal esti-
mation problem, the NLS method has also been shown to achieve the
asymptotic CRLB for largeN in the colored Gaussian noise case [8],
and, therefore, the NLS can be expected to be robust to the color of
the noise. The NLS estimates are obtained as the set of fundamental
frequencies that minimizes the 2-norm of the difference between the
observed signal and the signal model, i.e.,

{ω̂k} = arg min
{ωk}

‚

‚

‚

‚

‚

x −
K
X

k=1

Zkak

‚

‚

‚

‚

‚

2

2

, (6)

where‖ · ‖2 denotes the 2-norm. Assuming that all the frequencies
in {Zk} are distinct and well separated and thatN ≫ 1, (6) can
be well-approximated by finding the fundamental frequency of the
individual sources, i.e.,

ω̂k = arg min
ωk

‖x − Zkak‖
2
2 . (7)

Minimizing (7) with respect to the complex amplitudesak gives
the estimateŝak =

`

Z
H
k Zk

´−1
Z

H
k x, which, when inserted in (7),

yields

ω̂k = arg max
ωk

x
H
Zk

“

Z
H
k Zk

”−1

Z
H
k x (8)

≈ arg max
ωk

x
H
ZkZ

H
k x (9)

where the last line follows from the assumption thatN ≫ 1. Cast in
the framework of (2), the resulting cost function is

J(ωk) = ‖ZH
k x‖2

2, (10)

where the inner productZH
k x can be implemented efficiently for

a linear grid search overωk using a fast Fourier transform (FFT).
The NLS method can be extended to deal with an unknown order
for the single-pitch case and colored Gaussian noise in a compu-
tationally efficient manner [9]. An alternative interpretation of the
approximate NLS estimator is that (10) can be written asJ(ωk) =
PL

l=1 ‖z(ωkl)H
x‖2

2 which is the periodogram power spectral den-
sity estimate ofx evaluated at and summed over the harmonic fre-
quenciesωkl.

3.2. MUSIC-based Method

We proceed to examine a subspace approach based on the orthogo-
nality principle of MUSIC (see, e.g., [10]), i.e., that the signal and
noise subspaces are orthogonal. In [4], it was shown that high res-
olution fundamental frequency estimates can be obtained using this
principle, along with an accurate order estimate, and in [11] the ap-
proach was generalized to the multi-pitch estimation problem. We
will here briefly review these ideas in the context of this paper, i.e.,
for the case of known order and number of sources. Assuming
that the phases of the harmonics are independent and uniformly dis-
tributed on the interval(−π, π], the covariance matrix and its eigen-
value decomposition (EVD) can be written as

R = UΛU
H =

K
X

k=1

ZkPkZ
H
k + σ2

I, (11)

whereU is formed from theM orthonormal eigenvectors ofR, i.e.,
U = [ u1 · · · uM ], Λ is a diagonal matrix with the eigenvalues on
the diagonal andPk = diag

`ˆ

A2
k,1 · · · A2

k,L

˜´

. First, note that

rank

 

K
X

k=1

ZkPkZ
H
k

!

= KL, (12)

and letG be the noise subspace formed from the eigenvectors corre-
sponding to theM − KL least significant eigenvalues. Then, it can
be shown that the noise subspace spanned byG will be orthogonal
to the Vandermonde matrices{Zk} which span the signal subspace
formed by the eigenvectors corresponding to theKL most signifi-
cant eigenvalues. Therefore, the set of fundamental frequenciescan
be found as [11]

{ω̂k} = arg min
{ωk}

K
X

k=1

‚

‚

‚
Z

H
k G

‚

‚

‚

2

F
, (13)

where‖ · ‖F denotes the Frobenius norm. Finally, we define the cost
function to be maximized for each individual source as

J(ωk) =
1

‖ZH
k G‖

2

F

, (14)

which can be evaluated efficiently using the FFT (see [4] for further
details). Note that while the NLS methods is based on an asymptotic
assumption that facilitates finding individual fundamental frequen-
cies independently, there is no such approximation in the MUSIC
approach. The covariance matrix decomposition in the MUSIC ap-
proach, however, is dependent on the distribution of the phases and
the whiteness of the noise, while the NLS approach is still asymp-
totically efficient for colored noise. It should also be noted that the
MUSIC approach is the only method, among those considered here,
that requires a priori knowledge about the number of sources for the
evaluation of the cost function.
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Fig. 1. Example of the cost functions for two sources having five har-
monics each and true fundamental frequencies of 0.1650 and 0.3937
for N = 160 andPSNR = 40 dB.

3.3. Capon-based Method

Finally, we introduce an estimator based on the Capon approach
(see, e.g., [10]), which relies on the design of a set of filters that
pass power undistorted at specific frequencies, here the harmonic
frequencies, while minimizing the power at all other frequencies.
Defining the filter bank matrixHH , consisting ofL filters of length
M , the filter design problem can be stated as the optimization prob-
lem:

min
H

Tr
h

H
H
RH

i

subject to H
H
Zk = I, (15)

whereI is theL × L identity matrix. The set of filtersH solving
(15) are given by (see, e.g., [10])

H = R
−1

Zk

“

Z
H
k R

−1
Zk

”−1

. (16)

This data and frequency dependent filter bank can then be used to es-
timate the fundamental frequencies by maximizing the power of the
filter’s output, i.e.,Tr

ˆ

H
H
RH

˜

. Inserting (16) into this expression
yields

ω̂k = arg max
ωk

Tr

»

“

Z
H
k R

−1
Zk

”−1
–

, (17)

which can be seen to depend only on the Vandermonde matrixZk

and the inverse covariance matrixR
−1. DefiningY = Z

H
k UΛ

− 1

2 ,
the cost function can be evaluated for differentωk as

J(ωk) = Tr

»

“

YY
H
”−1

–

, (18)

whereY can be computed using the FFT once the EVD ofR has
been evaluated. The form (18) is preferred over, e.g., a Cholesky-
based implementation because numerical issues can easily be re-
solved. Alternatively, the filter bank design in (15) can be formu-
lated as the design of a single filter which is subject toL constraints,
one for each harmonic. Interestingly, such an approach has some
conceptual similarities with the comb-filtering approach of [12].

4. NUMERICAL RESULTS

In this section, we evaluate the performance of the introduced esti-
mators. Figure 1 shows the cost functions of the proposed estimators
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Fig. 2. RMSE as a function of PSNR forN = 400 for one source.

for a signal of lengthN = 160 consisting ofK = 2 sources hav-
ing five unit amplitude harmonics each withPSNR = 40 dB. The
two sources have fundamental frequencies 0.1650 and 0.3937, re-
spectively. As can be seen, the cost functions have distinct peaks at
those frequencies with the MUSIC- and Capon-based method hav-
ing narrower peaks than the approximate NLS. Also worth noting
is the multi-modal nature of the cost functions with a number of
fairly sharp false peaks. Indeed, this shows why the fundamental
frequency estimation problem is a difficult one. At first sight, this ap-
pears to be less of an issue for the MUSIC-based approach, but upon
closer inspection, it can be observed that MUSIC generally suffers
from this problem too. We proceed to evaluate the proposed esti-
mators using Monte Carlo simulations by generating signals accord-
ing to the model (1) with the phases and the noise being randomized
over realizations. In the first experiment, the estimators are evaluated
for two sources with well-separated fundamental frequencies, again
0.1650 and 0.3937, and withL = 3. We compare the root mean
square estimation error (RMSE) of the estimators with the asymp-
totic CRLB given in (4). The RMSEs are calculated jointly over
both sources. In order to have the same CRLB for both fundamen-
tal frequencies, we set all amplitudes to unity, i.e.,Ak,l = 1, ∀k, l.
The estimates are obtained as follows: First, the cost functions (10),
(14), and (18) are evaluated on a coarse grid. Then, these coarse es-
timates are used to initialize gradient-based methods that are used to
obtain refined estimates. For the MUSIC- and Capon-based meth-
ods, the gradients of (14), and (18) are used whereas for NLS, the
gradient for the approximate cost function (10) was found not to
produce high resolution estimates. Instead, the gradient was de-
rived for this case based on (8). For the MUSIC-based method, we
chooseM = ⌊N/2⌋ while for the Capon-based method we used
M = ⌊2N/5⌋1. We note that the cost function (8) is approximate,
being based on the negligence of the inner products between the
sources. The experiments are run for a fixed number of observations,
N = 400, and varying PSNRs for one harmonic source and two har-
monic sources, respectively. The signals are generated as described
in the previous experiment and for all combinations of parameters,
100 Monte Carlo trials are run. The RMSE are shown in Figures

1These values were found empirically to result in good performance. The
reason for having differentM for the two methods is that they exhibit differ-
ent sensitivity to the choice ofM .



0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

PSNR [dB]

R
M

S
E

 

 

MUSIC
CRLB
Capon
NLS

Fig. 3. RMSE versus the PSNR forN = 400 for two sources.

2 and 3. It can be seen that for the case of one harmonic source,
all estimators perform well for all tested PSNRs with NLS having
the best performance. For one harmonic source, the NLS method
is exact, meaning that there is no approximation in the estimate (8).
For two sources, however, the NLS method can be seen to saturate
at PSNRs above 20 dB while both the MUSIC- and Capon-based
methods follow the CRLB closely. It can also be observed that all
methods exhibit thresholding effects below 10 dB. Similar observa-
tions can be made about the behavior of the estimators as a function
of the number of observations,N . In a final experiment, the RMSE
is studied as a function of the difference between the fundamental
frequencies of two harmonic sources, i.e.,∆ = |ω1 − ω2|, for a
PSNR of40 dB andN = 160. The results are shown in Figure 4.
It can be seen that the Capon-based approach performs the best for
closely spaced harmonics and that the approximate NLS performs
the worst.

5. CONCLUSIONS

We have considered the problem of estimating the fundamental fre-
quencies of superpositions of periodic waveforms, also known as
the multi-pitch estimation problem. We have proposed a number
of estimators that are based on one-dimensional evaluations of cost
functions, namely the approximate nonlinear least-squares, MUSIC-
and Capon-based techniques. The basic assumptions for these meth-
ods to work for the multi-pitch estimation problem have been out-
lined and their finite sample performance has been evaluated using
Monte Carlo simulations. It has been found that the MUSIC- and
Capon-based methods have good statistical performance for both
the multi- and single-pitch cases, following the Cramér-Rao lower
bound closely. The approximate NLS, however, has excellent per-
formance for the single-pitch case but does not perform well for the
multi-pitch case. For closely spaced fundamental frequencies the
Capon-based approach has been found to have a performance supe-
rior to that of the MUSIC-based method.
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