

Aalborg Universitet

User-Centered Design of GPU-Based Shader Programs

Kraus, Martin

Published in:
Proceedings of the International Conference on Computer Graphics Theory and Applications

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Kraus, M. (2012). User-Centered Design of GPU-Based Shader Programs. In R. Richard, & J. Braz (Eds.),
Proceedings of the International Conference on Computer Graphics Theory and Applications: GRAPP 2012 (pp.
248-253). Institute for Systems and Technologies of Information, Control and Communication.
http://www.grapp.visigrapp.org/GRAPP2012/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 30, 2020

https://vbn.aau.dk/en/publications/7a74d8c8-5c34-4ae1-abc6-6102e5e4ac4c
http://www.grapp.visigrapp.org/GRAPP2012/

USER-CENTERED DESIGN OF GPU-BASED SHADER PROGRAMS

Martin Kraus
Department of Architecture, Design and Media Technology

Aalborg University, Niels Jernes Vej 14, 9220 Aalborg Øst, Denmark
martin@create.aau.dk

Keywords: GPU, shader, user-centered design, user interface

Abstract: In the context of game engines with graphical user interfaces, shader programs for GPUs (graphics processing
units) are an asset for game development that is often used by artists and game developers without knowledge
of shader programming. Thus, it is important that non-programmers are enabled to explore and exploit the
full potential of shader programs. To this end, we develop principles and guidelines for the design of user-
centered graphical interfaces for shaders. With the help of several examples, we show how the requirements of
a user-centered interface design influence the choice of widgets as well as the choice of the underlying shader
parameters.

1 INTRODUCTION

In recent years, game engines with graphical user
interfaces (e.g. Blender (Blender Foundation, 2011)
or Unity (Unity Technologies, 2011)) gained popu-
larity and enabled non-programmers to develop full-
fledged, three-dimensional games with a minimum of
scripting. In this context, vertex and pixel shaders for
GPUs (graphics processing units) are just one kind
of assets among others (e.g. meshes, animations, tex-
ture images, etc.), which are combined and manipu-
lated by game developers and artists who often have
very little (if any) knowledge of shader programming.
In order to allow non-programmers to take full ad-
vantage of these GPU-based shaders, it is therefore
important that shader programmers implement appro-
priate user interfaces for their shaders. This aspect of
shader programming has received very little attention
until recently although it is presumably crucial for the
usability and commercial success of shader programs.

This work focuses on the user-centered design of
interfaces for GPU-based vertex and pixel shaders in
game engines and is, therefore, partly based on the
principles for artist-friendly controls of Renderman
shaders proposed by Sadeghi et al. (Sadeghi et al.,
2010), which are reviewed in Section 2. However,
we also take the actual user interface (including the
choice and design of widgets) into account. This re-
sults in additional requirements, which are based on
principles of user-centered design. We discuss these
requirements and principles in Section 3.

Based on these principles, several more specific
guidelines for the design of user interfaces of shader
programs are developed in Section 4 — specifically
for the choice and design of widgets.

In order to illustrate the principles and guidelines
and to compare the resulting shader parameters with
more traditional parameters, several examples are dis-
cussed in Section 5. In Section 6, conclusions and
future work are described.

2 RELATED WORK

Surprisingly little work has been published on the de-
sign of user interfaces for shader programs. One rea-
son is that the interface between the main applica-
tion and shader programs often is an internal, tech-
nical interface that is only necessary because of the
graphics API (application programming interface) to
program GPUs, e.g. OpenGL or Direct3D; therefore,
both sides of the interface are usually implemented by
one and the same programmer. If a user interface is
necessary to control a shader program, this interface is
usually considered part of the application’s user inter-
face; therefore, it is considered an issue of user inter-
face design instead of an issue of graphics program-
ming.

On the other hand, some game engines, e.g. Unity
(Unity Technologies, 2011), automatically generate
graphical user interfaces for shader parameters from
the source code of the shader definition. For example,

Figure 1: User interface for shader parameters in Unity.

the following shader code defines the user interface
shown in Figure 1 for three shader parameters in the
game engine Unity:
Properties {

_MyFloat ("my number", Float) = 0.5
_OtherFloat ("my slider", Range(0,1)) = 0.5
_MyColor ("my color", Color) = (1,1,1,1)

}

Thus, parameters of shaders can be manipulated
by game developers and technical artists with little or
no knowledge of shader programming. In contrast to
traditional systems, this approach puts the responsi-
bility for the design of the shaders’ interface on the
shader programmer, who might lack the knowledge
and skills to design an appropriate user interface.

One of the very few publications concerned with
the design of user interfaces for shaders is the work by
Sadeghi et al. (Sadeghi et al., 2010), who identified
three requirements for artist-friendly control parame-
ters:
• intuitive behavior, i.e. “control parameters should

correspond to visually distinct features and be-
have predictably”.

• decoupling, i.e. “changes to one visually distinct
feature (e.g. brightness of primary highlight, color
of the secondary highlight) should not affect other
visually distinct features”.

• going beyond reality, i.e. “controls which cover
the physically correct domain, but which extend
seamlessly into the non-physical domain”.

However, Sadeghi et al. mention cases where the cou-
pling of parameters is desirable to define one parame-
ter relative to others. Furthermore, they describe one
case where the coupling of parameters is useful but
should optionally be broken later in the artistic pro-
cess to allow for the independent manipulation of all
parameters.

It is notable that these principles are only con-
cerned with the choice of numeric parameters while
the design of the actual user interface (i.e. the wid-
gets to specify these numeric parameters or their cou-
pling) are of no concern. This might be due to the
fact that Sadeghi et al. are only concerned with Ren-
derman shaders.

Sadeghi et al. also discuss a procedure to define
artist-friendly controls for the specification of pseudo
scattering functions; however, several of these steps

are specific to the particular shaders. The gener-
ally applicable steps are: examination of the physical
model; decomposition into visually distinct features
(e.g. highlights, glints, and rim light); and definition
of artist-friendly controls (e.g. color, intensity, size,
shape, and position) for each distinct feature.

3 PRINCIPLES OF
USER-CENTERED DESIGN OF
SHADER INTERFACES

In this section, we apply results of user-centered de-
sign as presented by Norman (Norman, 2002, Chap-
ter 7), who proposed seven principles for transform-
ing difficult tasks into simple ones (Norman, 2002,
pages 188-189): 1) use both knowledge in the world
and knowledge in the head; 2) simplify the structure
of tasks; 3) make things visible: bridge the gulfs of
execution and evaluation; 4) get the mappings right;
5) exploit the power of constraints, both natural and
artificial; 6) design for error; 7) when all else fails,
standardize.

Based on these principles, we extended the three
principles proposed by Sadeghi et al. (Sadeghi et al.,
2010) and include three additional principles. Thus,
our six principles for the user-centered design of in-
terfaces to control parameters of shaders are:

1. Intuitive behavior: parameters should control vi-
sually distinct features, which can be identified
by the user by means of comprehensible labels;
changes of quantitative parameters should corre-
spond to appropriately scaled changes in the ap-
pearance of features; the behavior of widgets to
manipulate parameters should be known to users.

2. Decoupling: each parameter should control one
and only one visually distinct feature; (optional)
exceptions should be communicated to the user.

3. Artistic freedom: parameters should neither be
constrained by the limits of physical models nor
should their availability be constrained, i.e. any
parameter may be manipulated at any time.

4. Visible parameter values: the current parameter
settings, and — for quantitive parameters — de-
fault values, extreme values, and all possible val-
ues should be represented graphically.

5. Interactive feedback: the effect of user-specified
parameters should be displayed interactively
while the parameters are manipulated in order to
encourage interactive exploration; users should be
able to apply shaders to any appropriate model
or system-provided default models; furthermore,

feedback should be given in the case of “implicit”
couplings where one parameter becomes ineffec-
tive for specific settings of other parameters.

6. Design for error: changes of parameters should
be reversible at any time by manipulation, undo-
ing the most recent manipulation, or reverting to a
saved set of parameters.

In the following, we discuss how Norman’s gen-
eral principles of user-centered design manifest them-
selves in the proposed principles.

External and internal knowledge: External
knowledge is employed by the labeling of parameters
in Principle 1, the communication of coupled parame-
ters in Principle 2, the visual representation of default
and extreme values in Principle 4, and the feedback
in Principle 5. Principle 1 also employs internal
knowledge since the labels rely on knowledge of the
denoted features. Furthermore, internal knowledge is
also required by Principle 1 to use the widgets that
control the shader parameters.

Simplified tasks: Practically all principles are de-
signed to simplify various tasks associated with the
manipulation of shader parameters; however, Prin-
ciples 1 and 2 are particularly important simplifica-
tions since the systematic manipulation of unintuitive,
coupled parameters can be an extremely difficult and
cumbersome process that mainly consists of trial and
error. A further fundamental simplification can be
achieved by offering a library of ready-made parame-
ter presets. The possibility of such presets is required
by Principle 6.

Visibility for execution: Users often require sup-
port to determine which actions are required to
achieve certain intentions. The visual feedback of the
applied shader in Principle 5 helps users to determine
which visual feature they want to change. The cor-
respondence of visual distinct features to a single pa-
rameter (Principles 1 and 2) helps them to identify the
parameter that should be manipulated to change the
feature. Principle 3 makes sure that this parameter can
be manipulated at any time and Principle 4 supports
users in determining what kind of change is likely to
be appropriate by communicating the current value,
the default value and extreme values. Note that the
appropriate rate of change of appearance required by
Principle 1 also helps to estimate the required change.
In case the change turns out to be ineffective, the feed-
back required by Principle 5 should support the user
to identify the parameter that has to be changed to
achieve the intended effect.

Visibility for evaluation: Apart from Principles 1
and 2, the main means to support visibility for evalua-
tion is interactive visual feedback by applying the pa-
rameterized shader to a user-specified model in Prin-
ciple 5; however, the graphical representation of cur-
rent values of parameters in Principle 4 and the feed-
back about ineffective parameters is also crucial to en-
able users to evaluate their actions.

Good mappings: Norman summarizes different
kinds of mappings (Norman, 2002, page 199). In our
case, Principles 1 and 3 ensure a good mapping be-
tween intentions to change specific visual features and
possible actions. Furthermore, Principles 1, 2, and 4
ensure a good mapping between actions and their ef-
fects. Moreover, the graphical representation of the
current settings in Principle 4 ensures a good mapping
between the actual system state and what is displayed.
Finally, the visual feedback required by Principle 5,
ensures that the system state can be compared to the
intentions and expectations of the user.

Constraints: Principles 1 and 2 constrain the user
to changes of parameters that are limited to certain vi-
sually distinct features. Furthermore, Principle 4 will
not only constrain users to the appropriate range of
parameter values but usually also to an appropriate
minimum change since each allowed parameter value
is often represented by at least one pixel.

Design for Error: Principle 6 was included partic-
ularly to support design for error.

Standards: Principle 1 — and in practice also Prin-
ciple 4 — encourages the use of standard widgets.
Moreover, Principle 1 results in a set of standard fea-
tures such as identified by Sadeghi et al.: color (in-
cluding opacity), intensity, shape, position, etc.

4 GUIDELINES FOR USER
INTERFACES OF SHADERS

The six principles that were proposed in the previ-
ous section are illustrated by several examples in Sec-
tion 5. It is, however, useful to develop some more
specific guidelines based on these principles — in
particular with respect to the choice and design of
the widgets to manipulate shader parameters, ways to
communicate couplings of parameters, and the com-
putation of parameters of GPU-based shaders from
user-specified parameters.

4.1 Color Selection

One or more colors are usually among the visual dis-
tinct features of a surface shader. Appropriate col-
ors should potentially (i.e. under very specific circum-
stances) appear in a rendered image exactly as speci-
fied by the user. This is implied by Principle 1, which
requires parameters that control visual features: a
color that cannot appear in a rendered image would
not be a visual feature. Moreover, this requirement
tends to make it possible to pick specific colors in
photos or artwork.

Principle 1 encourages the use of standard widgets
in order to guarantee an intuitive behavior of widgets.
Thus, the standard color selector is usually the best
way to specify colors. This includes opacities of fea-
tures if their specification is supported by the standard
color selector; otherwise a slider should be used as
discussed below.

If a default value of a color is available, it should
not only be used as initial value for the color selector
but it should always be represented graphically in the
widget as suggested by Principle 4. Alternatively, a
button might be added that allows the user to select
the default color.

4.2 Sliders

Sliders are often the best widget to interactively spec-
ify scalar numbers such as intensities, opacities, sizes,
translations in a certain direction, etc. The behavior of
a standard slider widget is very likely to be familiar to
users in accordance with Principle 1.

Moreover, most sliders visualize the current set-
ting as well as the extreme values and, in fact, all pos-
sible values as required by Principle 4. If the default
value is not one of the extreme values, it is often pos-
sible to define the parameter such that the center posi-
tion of the slider represents the default value, which is
conveyed to users even without any explicit labels if
the default value is also the initial value of the widget.

In Western culture, Principle 1 suggests that a
slider movement to the right or up should correspond
to an increase of the parameter. Furthermore, changes
should correspond to appropriately scaled changes in
appearance. Specifically, the perceived “sensitivity”
of the slider (i.e. the change of appearance per dis-
tance moved by the slider) should be appropriate over
the whole range of possible values, i.e. the sensitivity
should not be too high, which would make it diffi-
cult — or even impossible — to choose a sufficiently
good approximation to a particular value, nor should
it be too low, which would require large movements of
the slider for visible changes of the appearance of the

shader and therefore might appear to the user as if the
slider was ineffective. In order to satisfy this require-
ment, it is often necessary to introduce a non-linear
mapping from user-specified parameters to low-level
GPU-shader parameters. For example, the range from
0 to 1 of a user-defined parameter can be mapped to
the range from 0 to infinity of a low-level parameter
by the mapping x 7→ ((1−x)−c1−1)c2 with two posi-
tive real numbers c1 and c2, which can be adjusted by
the programmer to provide an appropriate sensitivity.

4.3 Couplings of Parameters

While Principle 2 encourages decoupled parameters,
there are various cases in which coupled parameters
are actually more user-friendly. One reason for the
coupling of parameters is to offer users alternative
ways of specifying the same (low-level) parameters.
An example is the specification of a color either in the
RGB or the HSV space. In these cases, the coupling
should be clearly communicated to the user, for ex-
ample by displaying only one set of independent pa-
rameters (e.g. either the RGB coordinates or the HSV
coordinates) at a time.

As discussed by Sadeghi et al. (Sadeghi et al.,
2010), it is sometimes useful to optionally couple pa-
rameters; for example, in order to allow users to find
an initial solution by manipulating only a subset of
all parameters and automatically computing further,
coupled parameters. Novice users who are not famil-
iar with all parameters would particularly benefit from
such a coupling. However, later in the artistic process,
some users might want to fine tune these additional
parameters separately without the coupling between
parameters. Some expert users might even prefer to
always use the decoupled version.

Thus, a shader interface should allow the user to
enable or disable the coupling of shader parameters.
This can be achieved with the help of a checkbox or
similar widgets. In fact, the concept of optionally cou-
pled parameters is familiar to many users; for exam-
ple, several image editing tools allow to fix the as-
pect ratio of an image when specifying a new width
or height.

In some cases, couplings are unavoidable; for ex-
ample, highlights become invisible if their color is
set to black; thus, other parameters, e.g. the size of
the highlight, become ineffective as the highlight no
longer exists. This is problematic if users don’t un-
derstand the reason for the apparent ineffectiveness
of a parameter. A possible solution is to add a text la-
bel next to the control of an ineffective parameter that
refers to the parameter setting that caused the param-
eter to become ineffective.

4.4 Preprocessing of Parameters

There are several situations that require preprocess-
ing of parameters outside of GPU-based shaders; for
example, the computation of low-level shader pa-
rameters from artist-friendly parameters; see Sec-
tion 5. Similarly, some shaders require the computa-
tion of textures (e.g. for lookup tables) based on user-
specified parameters. Therefore, it is often useful to
include an additional preprocessing step to map user-
specified parameters to the low-level shader parame-
ters of a GPU-based shader. In some game engines,
this can be accomplished with the help of a script that
processes user-specified parameters and sets shader
parameters accordingly.

5 EXAMPLES

This section discusses the application of the proposed
principles and guidelines to actual examples.

5.1 Phong Reflection Model

Most shader implementations of the Phong reflection
model (Phong, 1975) employ color parameters for the
reflectance coefficients of diffuse and specular reflec-
tion. These colors correspond to actual visible colors
under particular lighting conditions. Moreover, they
are decoupled and they are not restricted by a physi-
cal model. In other words, they fulfill Principles 1, 2,
and 3, which probably has contributed to the tremen-
dous success of the Phong reflection model in com-
puter graphics.

Furthermore, Phong introduced an exponent n be-
tween 0 and infinity, which models the dependency
of the specular reflection on the angle s between the
direction of the reflected light and direction from the
surface point to the camera by the term (cos(s))n. The
parameter n is sometimes described as “shininess”
since larger values correspond to smaller highlights,
i.e. shinier surfaces. Unfortunately, it is difficult to
control this parameter by a slider since the sensitiv-
ity of the changes in appearance vary dramatically:
values between 0 and about 20 correspond to signifi-
cantly different sizes of highlights while larger values
have less and less influence.

In order to determine the low-level parameter n
by a slider parameter x for the size of highlights, we
could employ a non-linear mapping, e.g. n = (x−2−
1)× 20. This mapping allows users to change n be-
tween infinity and 0 with reasonable sensitivity by
manipulating the slider parameter x between 0 and 1.
The center value x = 0.5 corresponds to a reasonable

default value n = 60. Using an interactive slider with
this mapping to control the size of highlights would
satisfy Principles 1 to 5 and therefore is very likely to
provide a significantly improved experience for users
of the shader.

It should also be noted that this mapping is a good
example for the benefits of a preprocessing step since
n has to be computed only once for each material in-
stead of once per vertex or fragment.

5.2 Schlick’s Fresnel Factor

For many materials, the specular reflectance coeffi-
cients depend on the angle between incident and re-
flected light. For wavelength λ, the Fresnel factor
Fλ(u) models this dependency on the cosine u of the
angle between the direction to the camera and the
halfway vector (i.e. the normalized sum of the nor-
malized directions to the camera and the light source).
Schlick (Schlick, 1994) proposed the approximation

Fλ(u) = fλ +(1− fλ)(1−u)5 (1)

for this factor. In actual shader implementations, three
values fλ for red, green, and blue wavelengths are
usually combined in one color parameter. Since u is
not a parameter, Schlick’s Fresnel factor has only one
color parameter. It is noteworthy that this color pa-
rameter is in fact visible in images if the camera, the
light source and the surface normal vector are aligned;
thus, Principle 1 is satisfied. The factor is also de-
coupled from other parameters and therefore satisfies
Principle 2. However, Schlick’s approximation does
not provide any artistic freedom beyond the specifica-
tion of fλ.

In order to provide artists with more control over
the Fresnel factor as suggested by Principle 3, the
power 5 in Equation 1 could be replaced by another
decoupled, user-specified shader parameter p. Since
the effect becomes very subtle for larger powers than
5, a suitable range for the parameter p is from 0 to
10 such that the value at the center of the slider cor-
responds to the value 5 in Schlick’s approximation.
In this way, the default value and reasonable extreme
values are communicated to the user in accordance
with Principle 4. Furthermore, since the effect be-
comes less visible for larger powers p, a mapping
p = 10× (1− x) for a slider parameter x between 0
and 1 is useful such that a larger slider parameter cor-
responds to a stronger visual effect in accordance with
Principle 1.

5.3 Ward’s Anisotropic Reflection

Ward’s anisotropic reflection model (Ward, 1992) in-
troduces two parameters αx and αy (see Equation 5a

in (Ward, 1992)), which are the standard deviations
of the surface slope in an x and y direction, which are
orthogonal to the surface normal direction. The pa-
rameters are sometimes described as the “roughness”
of the surface in the two directions and therefore de-
termine the extent of specular highlights in those di-
rections. As noted by Ward, the two parameters are
uncorrelated, i.e. decoupled. Moreover, the extent of
highlights in two directions can be considered visu-
ally distinct features.

However, both parameters are coupled with a third
parameter, namely the specular reflectance coeffi-
cient, which is divided by αx and αy in the cited
equation. Together, these three parameters determine
the maximum intensity of specular highlights in a
way to guarantee energy conservation. This coupling
is particularly problematic because it makes it ex-
tremely difficult to change the size of highlights with-
out changing their maximum intensity since this task
would require users to manipulate these three param-
eters at the same time in a nonlinear way. On the other
hand, the task of changing the size of a highlight with-
out changing its color is easily accomplished in the
Phong reflection model.

Apart from avoiding the most important cou-
plings, it is also necessary to identify those parame-
ters which are most easily understood and controlled
by users. As mentioned in Section 4, there might
be more than one set of decoupled parameters, e.g.
either HSV or RGB coordinates. However, in the
case of Ward’s anisotropic reflection model, the most
artist-friendly set of parameters probably consists of
the maximum color of the specular highlight (corre-
sponding to the specular reflectance coefficient but
without the division by αx and αy in Equation 5a of
(Ward, 1992)) and two parameters to control the size
and shape of highlights. Specifically, the two parame-
ters could correspond to the sum αx +αy and the dif-
ference αx−αy. The latter is a good measure of the
anisotropy of the reflection as a difference of 0 corre-
sponds to an isotropic highlight (which is therefore a
good default value). If the difference is kept constant,
the sum αx +αy controls only the size of highlights
(in both directions).

Note that it would be possible to compute the
original parameters of Ward’s anisotropic reflection
model from the proposed artist-friendly parameters
in a preprocessing step and then implement Ward’s
model in a shader. However, this would not result in
the most efficient solution since it would include the
division by αx and αy in the shader.

6 CONCLUSIONS

The examples in the previous section illustrate how to
construct artist-friendly shader parameters from the
six principles and the guidelines proposed in Sec-
tions 3 and 4. Not only can these principles and guide-
lines serve as a checklist for specific sets of parame-
ters, but they can also guide shader programmers to
find more artist-friendly parameters in order to pro-
vide a better user experience.

The principles and guidelines were derived by ap-
plying results from research on user-centered design
to GPU-based shader programming. One of the im-
portant results is how user-centered design influences
the choice and mappings of shader parameters. Fur-
thermore, the examples show that an additional pre-
processing step is useful in many cases in order to
map user-specified parameters to low-level shader pa-
rameters. For best performance, however, changes to
the shader programs are inevitable even if such a pre-
processing step is employed.

Future work has to experimentally validate the
proposed principles and guidelines by applying them
to more shaders and conducting appropriate user tests.

REFERENCES

Blender Foundation (2011). Blender 3d content cre-
ation suite. Web site: http://www.blender.org.

Norman, D. A. (2002). The Design of Everyday
Things. Basic Books, New York, reprint paper-
back edition.

Phong, B. T. (1975). Illumination for computer gen-
erated pictures. Commun. ACM, 18:311–317.

Sadeghi, I., Pritchett, H., Jensen, H. W., and Tamstorf,
R. (2010). An artist friendly hair shading system.
ACM Trans. Graph., 29:56:1–56:10.

Schlick, C. (1994). An inexpensive brdf model for
physically-based rendering. Computer Graphics
Forum, 13(3):233–246.

Unity Technologies (2011). Unity game engine. Web
site: http://www.unity3d.com.

Ward, G. J. (1992). Measuring and modeling
anisotropic reflection. SIGGRAPH Comput.
Graph., 26:265–272.

