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LAUSANNE AIHR-CONGRESS - IAHR 

STORM SEWAGE DILUTION IN SMALLER STREAMS 

Kristian Vestergaard & Torben Larsen 
University of Aalborg 

Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

SUMMARY: A numerical model has been used to show how dilution in smaller 
streams can be affected by unsteady hydraulic conditions caused by a storm 
sewage overflow . 
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The discharge from storm overf lows into smaller streams cause significant un­
steady hydraulic phenomena, which can lead to an important influence on the 
transport and dilution of discharged matter. The storm overflow discharge will 
cause a deceleration of the basic flow and an upstream storage of water will 
occur. As long as this storage takes place a weaker dilution than predicted by 
a steady state assumption will be a reality. 

This phenomenon has been simulated with a one dimensional integrated hydraulic­
transport/dispersion model. The model is based on the Saint-Venant equations 
and the one-dimensional transport/dispersion equation, which with standard sym­
bols (ref. 1) can be written: 

Conservation of volume: 

Conservation of momentum: ~ at 
a ah 

+ - (U·Q) + g·A(- - S ) + g·A·S - q ·u ax ax 0 f - i i 

Conservation of matter: 
a ac 

- (A· K ·-) + source ax X ax 

The model set-up and the most important data can be seen on Fig. 1. In Fig. 2 
the difference between a steady state assumption and a dynamic simulation is 
shown just downstream the overflow. In Fig. 3 the simulated flow and contratibn 
are shown in two stations downstream the overflow, and it can be seen that the 
dilution is significant weaker than predicted by a steady state model. Fig. 3 
also shows another important unsteady phenomenon. In agreement with the theory 
a marked difference in wave celerity occurs between the flow and the transport 
of matter. 

Conclusions: With this brief description it is shown that unsteady hydraulic 
phenomena caused by storm water overflows into a smaller stream 
can lead to a significant weaker dilution of discharged matter 
than predicted by a steady state assumption. 

Reference: J.A. CUnge, F.M. Holly & A. Verwey, Pitman 1980: 
Practical Aspects of Computational River Hydraulics. 
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Fig. 1. Model set-up and the most important data. 
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Fig. 2. Flow and oxygen concentration at st. 1 just downstream the over­
flow. A complete mixing across the cross section is assumed . 
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Fig. 3. Flow and oxygen concentration at st. 2 and 3. The concentration is 
still lower than the steady-state prediction at st. 1. The figure 
also shows that between st. 2 and 3 the wave celerity for flow is 
about three times greater than the wave celerity for transport of 
matter. 


