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Abstract. The Farey sequences can be used [1] to create the Eulers totient 
function φ(n), by identifying the fractions for number n that did not occur in all 
Farey sequences up to n-1. This function creates, when divided by n-1, what is 
here called the Primety measure, which is a measure of how close to being a 
prime number n is. P(n)=φ(n)/(n-1) has maximum 1 for all prime numbers and 
minimum that decreases non-uniformly with n. Thus P(n) is the Primety 
function, which permits to designate a value of Primety of a number n. If 
P(n)==1, then n is a prime. If P(n)<1, n is not a prime, and the further P(n) is 
from n, the less n is a prime. φ(n) and P(n) is generalized to real numbers 
through the use of real numbered Farey sequences. The corresponding 
numerical sequences are shown to have interesting mathematical and artistic 
properties.  
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1 Introduction 

The quest for (large) prime numbers is one of the important problems in 
mathematics, with repercussions into fundamental mathematics as well as 
contemporary society, with the use of prime numbers in coding and security systems. 
With the unpredictability of prime numbers, only brute force methods are guaranteed 
to render a result as to if a number is prime or not. Many mathematicians will find the 
mathematics involved in prime numbers beautiful, or even artistic in its own right. [2] 
states it Mathematics, as I have been describing it, is an art form. The words 
ambiguity and metaphor are much more acceptable in the arts than they are in the 
sciences. But ambiguity and metaphor are the mechanisms through which that 
ultimate ambiguity, the one that divides the objective from the subjective, the natural 
world from the mind, is bridged.  

In addition to art in mathematical problem solving, the numbers can represent art in 
itself. Certainly, the Golden Ratio, and the accompanying Fibonacci numbers are 
found in many art works [3]. Another mathematic area of interest with artistic 
outcomes is fractals. Fractals are objects that are self-similar (i.e. details looks like the 
whole). Fractals are divided into exact or statistic self-similar objects, full or partial 
fractals, natural and mathematic fractals, etc. A common natural fractal is the 



coastline that was used as an example by the ‘father’ of fractal geometry, Benoit 
Mandelbrot [5]. Common examples of mathematic fractals are the Cantor set, the 
Koch curve, and the Mandelbrot set. Fractals have two possible definitions [6], both 
proposed by Mandelbrot, the first saying that the Hausdorff dimension strictly 
exceeds the topological dimensions, and the second saying that the fractal is a shape 
made of parts similar to the whole in some way. Often, fractals are created using some 
kind of feedback mechanism, in which the input of the next step is a function 
including the output of the current step. 

Larry Austin composed several music pieces based on natural fractal shapes [7], 
including Maroon Bells (1976), based in part on a mountain range, and Canadian 
Coastlines (1981), based on actual coastlines. 

This work proposes to investigate the Farey sequence, in particular in the case of 
real numbers, and show some interesting and aesthetic outcomes of these sequences. 

2   Mathematical Development 

The Farey sequence [1] for a number n consists of [0/n, 1/1, 1/2, 1/3, 2/3, …, 1/n, 
..., n-1/n]. For n=0, it is the empty set [], for n=1, it is [0,1], for n=2, it is [0,1/2,1], for 
n=3 it is [0,1/3,1/2,2/3,1], etc. If all unique elements up to n-1 are retained, then for 
n=1, 2 there is one new element and for n=3 there are two new elements. For n=4, 
there are 2 new elements [1/4, 3/4], etc. The number of new element is 
[1,1,2,2,4,2,6,4,6,4,...] and it corresponds [1] to the Euler totient function φ(n). φ(n) 
has the property [2] that φ(p)=(p-1) for p primes, and that φ(n)≤(n-1), equal only in 
the case of n prime.  

 
Figure 1. The Primety for numbers 1 to 100. 



 

 

 
Therefore,  

€ 

P(n) =φ (n) n −1 (1) 

is here set as the Primety function, i.e. a numerical indication of how close to being 
prime a number is. The Primety values are shown in figure 1 for the numbers 1 to 
100. The Prime numbers, for which P(n)=1, are denoted with a ring. 
Now, if we use real numbers in the construction of the Farey sequence, [0/r, 1/r, …, 
r/r, …, 1/(r+δ), …, (r)/(r+δ),…], and then find all new unique rations for each 
incremental δ, it is possible to show that the Primety function for real numbers, 

€ 

P(r) =φ (r) r −1 (2) 

where φ(r) is calculated as the new unique element in the Farey sequence for 
increasing real numbers (r). P(r) follows a simple rule, as is shown in figure 2. 

 
Figure 2. The Primety values for real numbers between 1 and 100. The integer 

numbers are shown in the figure, and the primes are denoted with ‘o’. The eq. 
(2) is shown, for low numbers (2≤k≤10), in dashed. 

The Primety values are always found on one of the curves; 

€ 

ck = k x , (3) 



where k is an integer, and x>0 is an arbitrary value. P(r) jumps between the 
different ck, as r is increasing, so it is not possible to predict P(r) from it. Nonetheless, 
this seems like a promising area of further research. For instance, the eq. (3) gives an 
absolute minimum for the value of P(r). The maximum value seems to be equal to 
one for all values of x, with the exceptions of r=1. For r<1, O(r)=0. All integer 
values approaches full Prime number Primety value; P(r)→1 as r→n-. It is not clear 
how this relates to the fact that many of these integer numbers has Primety values less 
than 1. 

This is investigated further by transforming P(r), so that the shape of it, according 
to eq. (3) is visible. By identifying the values of P(r) that correspond to each ck, and 
then multiply the found values by x a constant function is obtained. The result is 
shown in figure 3. It is clear that P(r’)·r’, where r’ corresponds to the values where 
P(r)==ck, is a constant function equal to k. The min and max index values shown in 
the right of figure 3 indicates that the minimum index is equal to k, and the maximum 
index is fluctuating slowly. 

The first index corresponds to P(r)→1 as r→n. The last index fluctuates slowly, in 
a non-predictable way, it seems. The Primety function for real numbers has the 
appearance to bring new findings in the quest for the understanding of prime 
numbers, but more work is necessary in order to assert this further. Hopefully this will 
allow more inspiring and artistically ambiguous mathematic development and further 
the art of mathematics and the mathematic art. Some initial investigations of the latter 
are made in the next section. 

 
Figure 3. Transformed real value Primety function (left) with corresponding 

min and max index values (right). 



 

 

3   Fractal behaviour 

This section will show some of the fractal behaviours of the Primety function, and the 
related Farey sequence. First, we calculate the Primety for all numbers up to a large 
number, and show the scatterplot, i.e. the following Primety value as a function of the 
current value, as seen in figure 4. 

 
Figure 4. Next Primety values as function of current Primety value for 

integers (black) and real numbers (grey). Context going from next Primety 
(upper left corner) to nine values after (lower right corner). The first 8 integer 
values are denoted with a ring, and the corresponding value of n.  

Some initial conclusions can be made from figure 4. First, except for very low 
numbers, all integer Primety values are found above the half-circle - P(n)-
1)2+(P(n+1)-1)2=z. Furthermore, except for a few low numbers, all high Primety 
values – P(n)>0.5 gives P(n+1)<0.5 and vice-versa. There is a systematic shift from 
high to low values. Thus, all even numbered Primety values are found below 0.5 and 
all odd numbered values are found above 0.5. Furthermore, a majority of P(n) are 
found at or close to small integer fractions. Inside, the hole visible above P(n)=1/3, 
P(n+1)=2/3, a shape very similar to the full plot is visible. If it is a fractal shape, it is 
a very slow one, i.e. the fractals only show up in detail after many numbers. Each 
scatterplot reveals interesting and informative aspects of the Primety values. 

For the real numbered Primety values, P(r), even though the scatterplots place the 
real Primety values in the vicinity of the integer values, the situation is different, as it 
seems the scatterplot reveals lines; P(n+k)=(l/m)*P(n), where l and m are low 



integers. For instance, (for the next value scatterplot), for the line leading to the ‘2’, 
l=m=1, for ‘3’ l=2, m=3, for ‘4’, l=3, m=2, etc.  

More fractal behaviour is coming from the Farey sequences. The difference signal 
of the integer Farey sequence has a characteristic shape, which is independent on the 
size of the Farey sequence. Furthermore, this same shape is exactly replicated inside 
the larger shape (assuming n is large). These findings are shown in figure 5 for three 
different sizes, n=100 (left), n=1000, and n=10000 (right). All three sizes have the 
same shape, albeit the small sequence (left) is coarser. The peaks of the differences 
are found on small integer ratios, (1/2, 1/3, 3/8, 2/5, 5/12, etc) 

 
Figure 5. Difference of Farey sequence for three sizes (top), and three 

different details of the large size (bottom). The different sizes show how the 
Farey difference signal always retains the same shape, and the different details 
show how the outer shape is copied in the details. 

Figure 5 show the fractal behaviour of the Farey difference signal, both for 
different sizes (top), and for different details (bottom), and for different details 
(bottom). 

In addition to this, the real signal Primety function P(r) exposes an interesting 
behaviour. In figure 6, the real values Primety function is show for 0<r<10, along 
with the first to third difference signals (top) and spectrograms (bottom). It is 
interesting to observe how the difference signals look similar to the Primety signal 
itself, although with larger values for each difference, and also clearly changing shape 
at each integer value for higher difference signals. Treated as an audio signal, this 



 

 

function exposes a characteristic toned and rhythmic sound that eventually blends into 
a noisy signal. The sound is very similar across the Primety difference signals. 

 
Figure 6. Real value Primety function and first three difference signals (top), 

and spectrograms (bottom). 

It is certain that the nature contains vast amount of at least statistic self-similarities 
fractals [5]. Many artists have, consciously or not, integrated fractal shapes in their 
art. Among audio signals to potentially be used in music, as shown above, fractals 
have a long tradition for quasi-artistic qualities. While the figures shown here are not 
necessary polished enough, or do not contain the aesthetic or otherwise qualities to be 
used in artwork, it is still possibly to envision such a use.  

4   Conclusions 

The Farey sequence of real numbers, along with the introduction of the Primety value 
permits to expose a certain number of laws that governs prime numbers. Among these 
are that the Primety values are always found on functions of the shape ck=k/x, which 
enables to assert a (low) lowest possible value of the Primety function. Furthermore, 
all even Primety values are less than one half, and all odd are more than one half. 

Three interesting visual results from this research are; 1) the k/x shape of the 
Primety function, 2) the almost fractal scatterplot of the Primety function, and the 
complete fractal shape of the Farey difference signal. Some interesting visual and 
sonic results are obtained from these signals. 



Fractals and related mathematic results, as presented here, are placed in a double 
art context, first, because the quest for the mathematic results leads to ambiguity, one 
of art's most potent aesthetic functions [2], secondly, because the end result, graphics, 
plots, music, represents art in itself. 
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