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Abstract—Random Linear Network Coding (RLNC) provides
a theoretically efficient method for coding. The drawbacks associ-
ated with it are the complexity of the decoding and the overhead
resulting from the encoding vector. Increasing the field size and
generation size presents a fundamental trade-off between packet-
based throughput and operational overhead. On the one hand,
decreasing the probability of transmitting redundant packets is
beneficial for throughput and, consequently, reduces transmission
energy. On the other hand, the decoding complexity and amount
of header overhead increase with field size and generation
length, leading to higher energy consumption. Therefore, the
optimal trade-off is system and topology dependent, as it depends
on the cost in energy of performing coding operations versus
transmitting data. We show that moderate field sizes are the
correct choice when trade-offs are considered. The results show
that sparse binary codes perform the best, unless the generation
size is very low.

I. INTRODUCTION

Network Coding (NC) is a promising paradigm that breaks

with the existing store-and-forward paradigm in computer

networks [1]. NC enables coding on the fly at the individual

node in the communication network, and thus is fundamentally

different from the end-to-end approach of channel and source

coding. Thus packets are no longer treated as atomic entities as

the number of incoming and outgoing packets per node, is not

necessarily equal and data may be combined and re-combined

at any point in the network. This new feature can provide

advantages over traditional routing in meshed networks, and

fits perfectly with the ideas of cooperative and distributed

networks.

A promising popular approach, introduced in [2], is RLNC.

In RLNC coding is performed at random which minimizes the

need for signaling, compared to deterministic codes. Because

coding is performed randomly there is a non-zero probability,

that a received coded symbol is linearly dependent on already

received symbols, and thus unusable. Figure 1 illustrates

the benefits of coding. When no coding is used nodes can

only forward symbols, and as the relays must forward two

different packet for the sink to decode. If binary coding is

used an additional symbol can be created, A⊕B, and thus

the probability that the relays forward two different symbols

increases. If coding is performed over a higher field many

more symbols can be created, αA⊕βB, and the probability

that the relays forward two different symbols increases.
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Fig. 1: Example network with and without coding, s is the

source, t is the sink, r1 and r2 are relays.

This probability result in the linear dependence overhead.

The parameters; generation size, field size and density in-

fluence this overhead, and are often assumed to be high

as this decreases the probability of linear dependence. To

decode a received symbol a sink needs the coding vector of

the symbol, which describes the coding operation performed

during encoding. This information must be included as header

information when the coded symbol is transmitted, which

results in an additional header overhead.

Unfortunately, when coding is performed on a computa-

tional device, the parameters also affect the coding throughput,

which is the rate at which coding is performed [Mb/s].

Higher values generally result in lower coding throughput [3]–

[6]. However, the coding throughput also depends on less

deterministic parameters e.g. the hardware platform, program-

ming language, and implementation optimizations. Recently

[7] have shown that a systematic code with a RLNC-based

redundancy can achieve low computational complexity while

remaining binary, but only over a single-hop system.

The objective of this work is to increase the coding through-

put without significantly increasing the linear dependence

overhead. Our contribution is two fold. In Section II we ana-

lyze the impact of changing the field size, generation size, and

density, and provide bounds for the resulting linear dependence

overhead. In Section III we consider the representation of the

coding vector, the resulting header overhead.



II. CODING

The data, of size B that is to be transferred from a source

to one or more sinks is divided into generations of size g ·m,

a generation is sometimes also referred to as a source block

or a batch. Each generation constitutes g symbols of size m,

where g is called the generation size. The g original symbols

of length m in one generation, are arranged in the matrix

M = [m1;m2; . . . ;mg], where mi is a column vector. In

an application the block of data can be a file or a part of a

media stream, and is divided into ⌈B
m
⌉ pieces, called symbols.

Generation number 0 constitutes the first g symbols, or the

first g ·m bytes of data, there are ⌈ B
g·m

⌉ such generations.

To encode a new symbol x from a generation at the

source, M is multiplied with a randomly generated coding

vector g of length g, x = M × g. In this way we can

construct g + r coded symbols and coding vectors, where r

is any number of redundant symbols as the code is rateless.

When a coded symbol is transmitted on the network it is

accompanied by its coding vector, and together they form a

coded packet. A practical interpretation is that each coded

symbol, is a combination or mix of the original symbols

from one generation. The benefit is that nearly infinite coded

symbols can be created.

Coded packet
︷ ︸︸ ︷

Existing header Coding vector Coded symbol

In order for a sink to successfully decode a generation,

it must receive g linearly independent symbols and coding

vectors from that generation. All received symbols are placed

in the matrix X̂ = [x̂1; x̂2; . . . ; x̂g] and all coding vectors

are placed in the matrix Ĝ = [ĝ1; ĝ2; . . . ; ĝg], we denote

Ĝ the decoding matrix. The original data M can then be

decoded as M̂ = X̂×Ĝ
−1

. To spread the computational load

this can be performed with an on-the-fly version of Gaussian

elimination. In practice if approximately any g symbols from

a generation are received the original data in that generation

can be decoded. This is a much looser condition, compared to

when no coding is used, where exactly all g unique original

symbols must be collected [8].

Any node that have received g′, where g′ = [2, g] is the

number of received linearly independent symbols from a gen-

eration and is equal to the rank of Ĝ, can recode. All received

symbols are placed in the matrix X̂ = [x̂1; x̂2; . . . ; x̂g′ ] and
all coding vectors in the matrix Ĝ = [ĝ1; ĝ2; . . . ; ĝg′ ]. To
recode a symbol these matrices are multiplied with a randomly

generated vector h of length g′, g̃ = Ĝ×h, x̃ = X̂×h. In this

way we can construct r′ randomly generated recoding vectors

and r′ recoded symbols. r′ > g′ is possible, however a node

can never create more than g′ independent symbols. Note that

h is only used locally and that there is no need to distinguish

between coded and recoded symbols. In practice this means

that a node that have received more than one symbol can

recombine those symbols into recoded symbols, similar to the

way coded symbols are constructed at the source.

A. Generation Size

The generation size g is the number of symbols over which

encoding is performed, and defines the maximal number of

symbols that can be combined into a coded symbol. Data is

decoded on a per generation level, thus at least g symbols

must be received before decoding is possible. Hence the size

of a generation g · m dictates the decoding delay which is

the minimum amount of data that must be received before

decoding is possible.

From a linear dependence overhead point of view g should

be high, especially in multiple-sink broadcast networks, where

a low g increases the amount of expected transmissions

per symbol, due to erasures [5]. From a practical point of

view, decoding delay and coding throughput must also be

considered. For bulk downloads the decoding delay is not

important. But for streaming services and Voice over Internet

Protocol (VoIP) in particular it is critical, and g must be

chosen with care. Additionally a high g generally decreases

the coding throughput, thus g must be chosen low enough to

ensure satisfactory coding throughput on the given platform.

To achieve reliability in a practical system some signaling

is necessary for each generation. A simple form could be to

acknowledge when each generation is successfully decoded.

Thus the benefits of NC in terms of reduced signaling dimin-

ish, when the generation size is decreased, as the number of

generations necessary to represent some fixed amount of data

increases. This overhead is protocol and topology dependent,

and therefore outside the scope of this work.

B. Field Size

The field size, q, defines the size of the finite field over

which all coding operations are performed, and thus the

number of unique field elements. A necessary but insufficient

condition for decoding is that all rows have at least one non-

zero scalar. This probability can be found from the probability

of receiving a symbol where at least one scalar in the coding

vector, that corresponds to a symbol for which the decoder has

not yet identified a pivot element, is non-zero. The following

bound for linear independence, when each scalar in the coding

vector is drawn uniformly, is assumed in an alternative form

in [9], [10] and is said to hold when q is high.

Pindependent ≤ 1−
1

qg−g′
(1)

In [5] we observed the probability of generating g symbols

that are not all independent, given by Equation (2), is a good

approximation even at low values of q.

1−

g−1
∏

g′=0

(

1−
1

qg−g′

)

(2)

Thus as g′ goes towards g it becomes increasingly more

difficult to receive useful symbols, because the coding vector

must be non-zero in at least one of the g − g′ corresponding

scalars. This yields the following transition probabilities.

Pg′→g′ =
1

qg−g′
Pg′→g′+1 = 1−

1

qg−g′



P =









1
qg

0 · · · 0

(1− 1
qg
) 1

qg−1

...

...
. . . 0

0 · · · (1− 1
q1
) 1









Thus the expected amount of overhead for a generation can

be found by evaluating the probability that the rank is not

full after k transmissions, p(g′ 6= g). Initially no symbols are

received and therefore the starting pmf s is, s = [1, 0, ...].
When less than g symbols are received, p(g′ = g) = 0, and
hence the overhead can be evaluated as.

α ≥

∞∑

k=g′

pk(g′ 6= g), pk = (Pk × s) (3)

This can be rewritten to the form in Equation (4).

α(q, g) ≥

g−1
∑

g′=0

((

1−
1

qg−g′

)−1

− 1

)

=

g−1
∑

g′=0

(
1

qg−g′ − 1

)

(4)

It might be expected that a decreased density would impact

this directly. However as decoding progresses the not-decoded

remainder of the coding vectors will go towards a uniform

drawn distribution, due to the fill-in effect. Therefor a separate

contribution to the overhead stems from the density.

C. Density

The ratio of non-zero scalars in a coding vector is often

referred to as the density. The density of a coding vector h

with a generation size g is defined by Equation (5).

d(h) =

∑g

k=1(hk 6= 0)

g
(5)

A necessary but insufficient condition for decoding is that

all columns have at least one non-zero scalar. For a generation

a receiving node can have j = [0, g] non-zero columns. The

probability that a scalar is non-zero in a received symbol

is d. Before the transition there are j non-zero columns,

after the transition there are j′. Thus the number of possible

combinations for the transition is given by
(
g−j
g−j′

)
. j′ − j

columns becomes non-zero with probability d. g− j′ columns

remain all-zero with probability 1−d. Thus the probability of

transition from state j to state j′, where j′ ≥ j, is.

Oj→j′ = dj
′
−j · (1 − d)g−j′ ·

(
g − j

g − j′

)

(6)

O =









(1− d)g 0 · · · 0

d · (1 − d)g−1
(

g
g−1

)
(1− d)g−1

...

...
. . . 0

dg · · · d 1









Initially all columns in the decoding matrix consist of zero

vectors. Therefore the starting pmf s is, s = [1, 0, ...]. At
least g symbols must be received for decoding to be possible.

Hence the estimated number of symbols that must be received

in addition to g before all columns contain non-zero values

can be evaluated as.

β ≥

∞∑

k=g

tk(j 6= g), tk = (Ok × s) (7)

The probability that one column is the zero vector is

the probability that one scalar is zero to the power of the

number of received symbols. From this we can determine the

probability that at least one additional packet is needed when

k symbols have been received.

β(d, g) ≥

∞∑

k=g

(

1−
(
1− (1 − d)k

)g
)

(8)

for 0 < d ≤ 1− q−1

D. Linear Dependence Overhead

The total overhead of a given code is given by the expected

number of redundant symbols necessary.

α+ β

g
(9)

To verify Equations (4), (8), and (9) we compare with

measured overhead obtained from a high number of runs of

our own implementation of RLNC. The results are plotted on

Figure 2, where g is on the x-axis and the resulting overhead

is on the y-axis.

Fig. 2: Linear dependence overhead, analytical values are

plotted as lines, measured values are marked with triangles.

On Figure 2, triangles denote measured overhead, which

show that the analytical results are a good approximation of

the measured values, the error is below 6 % for all measured

settings. As g increases the overhead decreases, and when g

becomes sufficiently high, d can be decreased with no penalty

to the overhead.



III. CODING VECTOR REPRESENTATION

To decode a received symbol, a node must in addition

to the symbol, hold the corresponding coding vector which

results in the header overhead. It has been suggested to use a

predefined pseudo random function to generate coding vectors

based on a seed, and then include the seed instead of the

coding vector itself, e.g. in [11]. This reduces the overhead to

the size of the seed, but also reduces the number of unique

coding vectors to the size of the seed. This approach is not

suitable for recoding [12]. The reason is that during recoding

the coding vector is not drawn randomly but instead computed

as g̃ = ĝ × h where h is random. As g̃ can take qg values,

not all possible g̃ can be constructed from the seed. Even if

this was possible there is the challenge of identifying which

seed produces the wanted coding vector.

We assume that recoding is a requirement, and thus the

pseudo random function approach cannot be used, Instead

we consider some other representations. A simple but naive

approach is to construct the coding vector from all the scalars.

s0 s1 . . . sg

Each scalar can be represented by log2(q) bits, and there

are g such scalars. We denote this overhead introduced by the

coding vector γ.

γ1 = log2(q) · g (10)

If the density is low, the coding vector will be sparse, and

will mostly consist of 0’s. Hence the naive approach will be

very inefficient. Instead we can represent each non-zero scalar

by an index-scalar pair. It is also necessary to append the

number of index-scalars pairs, as this can vary.

t i0 so i1 s1 . . . it st

The number of index-scalar pairs, t, takes up at most log2(g)

bits, as the maximal number of non-zero scalars is g. Each

index takes log2(g) bits and each scalar takes log2(q) bits, and

on average there are g · d such pairs. For q = 2 it is only

necessary to include the indices’s as there is only one non-

zero scalar.

γ2 = log2(g) + (log2(g) + log2(q)) · g · d (11)

The coding vector can also be represented by a bit array,

that indicates which scalars are non-zero, and the values of

these scalars.

a0 a1 . . . ag sx sy . . . sz

The bit array can be represented by g bits. Each of the

scalars takes log2(q) bits, and on average there are g · d such

scalars for each encoded symbol. If the bit array is compressed

with an optimal code, the amount of bits necessary to represent

it can be reduced from g to the entropy of the bit vector,H(a),
which can be calculated from d and g.

γ3 = H(a) + log2(q) · g · d (12)

A. Total Overhead

The total overhead constitutes the linear dependence and

header overhead, divided by the size of a generation g ·m

(α+ β) ·m+ (g + α+ β) · γ

g ·m
(13)

Three examples of the contributions to the total overhead is

illustrated on Figure 3. On the x-axis in the range [10−3, 1], on
the y-axis is the resulting overhead, and the minimal overhead

is marked with a vertical line. On the figure, four contributions

from Equation (13) are stacked, α
g
from the field size, β

g
from

the density, γ
m

from the coding vector representation, and the

remainder
(α+β)·γ

g·m
.

On Figure 3 it can be seen that the contribution from α is

constant. On Figure 3a the contribution from β is dominating

until the density reaches approximately 0.1. When g is larger,

in Figure 3b, the contribution from α decreases, and the

contribution from β decreases faster. However, the contribution

from γ becomes bigger, for high densities. For a higher q, in

Figure 3c, the contribution from α is significantly reduced.

However, for high densities the contribution from γ dominates.

The interesting result is the minimal obtainable overhead

for a given value of g. Therefore we have identified this for

different values of g, the result of this search is plotted on

Figure 4, where g is on the x-axis and lowest total obtainable

overhead is on the y-axis.

Fig. 4: Lowest total overhead obtainable for different ap-

proaches when g is varied.

Interestingly the result shows that q = 232 should never be

used. The reason is that the increased entropy of the coding

vector is much larger compared to the benefit from the high q-

value. For g < 256 the lowest overhead can be obtained when

q = 28. For g > 256, q = 2 can give the lowest overhead.



(a) q = 2, g = 64 (b) q = 2, g = 1024 (c) q = 28, g = 1024

Fig. 3: Examples of the total overhead, that is a function of the field size, the density, and the coding vector representation.

One might conclude that a very low generation size would

be the best choice. However, it is important to remember the

consequences of a low generation size, see Section II-A. Since

the index approach is much simpler to implement compared to

the array approach, it may still be useful as the performance

when q = 2 is similar for the two approaches.

Remark that all evaluations are performed at m = 1500 B.

This fits well with bulk data distribution or very high rate

media streaming over Wireless Local Area Network (WLAN)

networks. To evaluate settings where m is significantly differ-

ent, see [13] for a small script to evaluate the overhead for

different setting.

IV. CONCLUSION

In this paper we have analyzed the transmission overhead

of RLNC, as a function of the generation size, field size, den-

sity, and coding vector representation. The results have been

verified with measurements from our own implementation of

RLNC. The results show that generally, in the case where

recoding must be supported, a field size of 2 and a low density

should be used. If the field size and density is increased, the

bits necessary for coding vector representation increases faster

than the improvement obtained from the lower amount of

linearly dependent packets. However, if the generation size

is very low a larger field size than 2 provides the lowest

overhead. From a transmission overhead point-of-view, if

the recoding operation is not required, the generation size,

field size, and density should be chosen as high as possible.

However, these parameters also impact the coding through-

put, therefore they must be chosen with care in practical

applications. As the coding throughput is implementation and

topology dependent, no single set of optimal values exists.

The results in this work can be used when RLNC is deployed

in a real application. The practical performance in terms

of coding throughput and energy consumption of the used

RLNC implementation, can be compared with the transmission

overhead obtained for given parameters. Hence a good trade-

off in terms of coding throughput, transmission overhead, and

energy can be determined, for a given application and network

topology.

ACKNOWLEDGMENT

This work was partially financed by the CONE project

(Grant No. 09-066549/FTP) granted by Danish Ministry of

Science, Technology and Innovation, and the ENOC project

in collaboration with NOKIA, Oulu.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, 2000.

[2] T. Ho, R. Koetter, M. Médard, D. Karger, and M. ros, “The benefits
of coding over routing in a randomized setting,” in Proceedings of the

IEEE International Symposium on Information Theory, ISIT ’03, June 29
- July 4 2003. [Online]. Available: citeseer.ist.psu.edu/ho03benefits.html

[3] H. Shojania and B. Li, “Parallelized progressive network coding with
hardware acceleration,” in Quality of Service, 2007 Fifteenth IEEE

International Workshop on, June 2007, pp. 47–55.
[4] X. Chu, K. Zhao, and M. Wang, “Massively parallel network coding

on gpus,” in Performance, Computing and Communications Conference,

2008. IPCCC 2008. IEEE International, December 2008, pp. 144–151.
[5] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Network coding

for mobile devices - systematic binary random rateless codes,” in The

IEEE International Conference on Communications (ICC), Dresden,
Germany, 14-18 June 2009.

[6] H. Shojania, B. Li, and X. Wang, “Nuclei: Gpu-accelerated many-core
network coding,” in The 28th Conference on Computer Communications

(INFOCOM 2009), April 2009.
[7] D. Lucani, M. Médard, and M. Stojanovic, “Systematic network coding

for time-division duplexing,” jun. 2010, pp. 2403 –2407.
[8] W. Feller, An Introduction to Probability Theory and Its Applications,

Volume 1. Wiley, 1968.
[9] A. Eryilmaz, A. Ozdaglar, and M. Médard, “On delay performance gains

from network coding,” Information Sciences and Systems, 2006 40th

Annual Conference on, pp. 864–870, March 2006.
[10] D. E. Lucani, M. Stojanovic, and M. Médard, “Random linear

network coding for time division duplexing: When to stop talking
and start listening,” CoRR, vol. abs/0809.2350, 2008, informal
publication. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr0809.html#abs-0809-2350

[11] C.-C. Chao, C.-C. Chou, and H.-Y. Wei, “Pseudo random network
coding design for ieee 802.16m enhanced multicast and broadcast
service,” in Vehicular Technology Conference (VTC 2010-Spring), may.
2010, pp. 1 –5.

[12] Z. Liu, C. Wu, B. Li, and S. Zhao, “Uusee: Large-scale operational on-
demand streaming with random network coding,” in IEEE International

Conference on Computer Communications, 2010, pp. 2070–2078.
[13] M. V. Pedersen, J. Heide, and F. H. Fitzek. (2011, Feb.) The

cone project homepage. [Online]. Available: http://mobdevtrac.es.aau.
dk/cone/wiki/CodeOverhead


