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Learning Markov models for stationary system
behaviors

Yingke Chen, Hua Mao, Manfred Jaeger,
Thomas D. Nielsen, Kim G. Larsen, and Brian Nielsen

Dept. of Computer Science, Aalborg University, Denmark
{ykchen,huamao,jaeger,tdn,kgl,bnielsen}@cs.aau.dk

Abstract. Establishing an accurate model for formal verification of an
existing hardware or software system is often a manual process that
is both time consuming and resource demanding. In order to ease the
model construction phase, methods have recently been proposed for au-
tomatically learning accurate system models from data in the form of
observations of the target system. Common for these approaches is that
they assume the data to consist of multiple independent observation
sequences. However, for certain types of systems, in particular many
running embedded systems, one would only have access to a single long
observation sequence, and in these situations existing automatic learning
methods cannot be applied. In this paper, we adapt algorithms for learn-
ing variable order Markov chains from a single observation sequence of
a target system, so that stationary system properties can be verified us-
ing the learned model. Experiments demonstrate that system properties
(formulated as stationary probabilities of LTL formulas) can be reliably
identified using the learned model.

1 Introduction

Model-driven development (MDD) is increasingly used for the development of
complex embedded software systems. An important component in this process
is model checking [1], where a formal system model is checked against a spec-
ification given by a logical expression. Often, the complexity of a real system
and its physical components, unpredictable user interactions, or even the use of
randomized algorithms make the use of complete, deterministic system models
infeasible. In these cases, probabilistic system models and methods for proba-
bilistic verification are needed.

However, constructing accurate models of industrial systems is hard and time
consuming, and is seen by industry as a hindrance to adopt otherwise powerful
MDD techniques and tools. Especially, the necessary accurate, updated and
detailed documentation rarely exist for legacy software or 3rd party components.
We therefore seek an experimental approach where an accurate high-level model
can be automatically constructed or learned from observations of a given black-
box embedded system component.

Sen et al. [12] proposed to learn system models for verification purposes,
based on the Alergia algorithm for learning finite, deterministic, stochastic au-
tomata [2]. In [8] we developed a learning approach related to that of [12], and



established strong theoretical and experimental consistency results: if a sufficient
amount of data, i.e., observed execution runs of the system to be modeled, is
available, then the results of model-checking probabilistic linear-time temporal
logic (PLTL) properties on the learned model will be good approximations of
the results that would be obtained on the true model. Both [12] and [8] assume
that learning is based on data consisting of many independent finite execution
runs, each starting in a distinguished, unique initial state of the system. In many
situations, it will be difficult or impossible to obtain data of this kind: we may
not be able to run the system under laboratory conditions where we are free
to restart it any number of times, nor may we be able to reset the system to a
well-defined unique initial state.

In this paper, therefore, we investigate learning of system models by pas-
sively observing a single, ongoing execution of the system, i.e., from data that
consists of a single, long observation sequence, which may start at any point in
the operation of the system. This scenario calls for different types of models and
learning algorithms than used in previous work. The probabilistic system models
we are going to construct are Probabilistic Suffix Automata (PSAs) [10]. This is
a special type of probabilistic finite automaton, in which states can be identified
with finite histories of past observations. Since we are constructing models only
for the long-run, stationary behavior of a system, we must also limit the model
checking of the learned system to such properties as only refer to this long-run
behavior, and not to any initial transitions from a distinguished start state. We
therefore define Stationary Probabilistic Linear Time Temporal Logic (SPLTL)
as the specification language for system properties. Roughly speaking, a SPLTL
property S(ϕ) specifies the probability that a system run which we start observ-
ing at an arbitrary point in time during the stationary, or steady-state, operation
of the system satisfies the LTL property ϕ.

The main contributions of this paper are: we introduce the problem of learn-
ing models for stationary system behavior, and adapt an existing learning al-
gorithm for PSAs [10] to this task. We formally define syntax and semantics
of SPLTL properties. We conduct experiments which demonstrate that model-
checking SPLTL properties on learned models provides good approximations for
the results that would be obtained on the true (but in reality unknown) model.

The paper is structured as follows: in Section 2 we introduce the necessary
concepts relating to Markov system models, their stationary distributions, and
SPLTL. Section 3 describes our method for learning PSAs and Labeled Markov
chains (LMCs). Section 4 contains our experimental results. Section 5 includes
conclusion and future work.

2 Preliminaries

2.1 Strings and Suffixes

Let Σ denote a (finite) alphabet, and let Σ∗ and Σω denote the set of all finite,
respectively infinite strings over Σ. The empty string is denoted by e. For any
string s = σ1 · · ·σi, where σi ∈ Σ, we use the following notation:
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– The longest suffix of s different from s is denoted by suffix(s) = σ2 . . . σi.
– suffix∗(s) = {σk . . . σi|k = 1 . . . i} ∪ {e} is the set of all suffixes of s.
– A set of strings S is suffix free, if for all s ∈ S, suffix∗(s) ∩ S = {s}.

2.2 Markov System Models

A Labeled Markov chain (LMC) is a tuple M = 〈Q,Σ, π, τ, L〉, where

– Q is a finite set of states,
– π : Q→ [0, 1] is an initial probability distribution such that

∑
q∈Q π(q) = 1,

– τ : Q × Q → [0, 1] is the transition probability function such that for all
q ∈ Q,

∑
q′∈Q τ(q, q′) = 1.

– L : Q→ Σ is a labeling function

Labeling functions that assign to states a subset of atomic propositions AP can
also be accommodated in our framework by assigning Σ = 2AP . Since a Markov
chain defines a probability distribution over sequences of states, an LMC M with
alphabet Σ induces a probability distribution PπM over Σω through the labeling
of the states.

A subset T of Q in LMC M is called strongly connected if for each pair (qi, qj)
of states in T there exists a path q0q1 . . . qn such that qk ∈ T for 0 ≤ k ≤ n,
τ(qk, qk+1) > 0, q0 = qi, and qn = qj . If Q is strongly connected, then M is said
to be strongly connected. A distribution πsM is a stationary distribution for M
if it satisfies

πs(q) =
∑
q′∈Q

πs(q′)τ(q′, q). (1)

We abbreviate Pπ
s

M with P sM . If an LMC M is strongly connected, then M defines
a unique stationary distribution.

In this paper we focus on so-called probabilistic suffix automata (PSA). A
PSA is an LMC extended with a labeling function H : Q→ Σ≤N , which repre-
sents the history of the most recent visited states (a string over Σ with length
at most N). Given the labeling functions L and H, each state qi is associated
with a string si = H(qi)L(qi) such that, i) the set of strings labeling the states
is suffix free, and ii) for any two states q1 and q2, if τ(q1, q2) > 0, then H(q2) is a
suffix of s1. For example, for the PSA in Figure 1(b) the set of strings associated
with the states is suffix free. Furthermore, e.g., by considering the states qsa and
qaa we have that H(qsa) = s, H(qaa) = a, L(qsa) = a and L(qaa) = a which
represent past and current information respectively. Here H(qaa) = a is a suffix
of the string sa associated with qsa. The latter case implies that aa is sufficient
for identifying qaa rather than saa. Similarly, qs has two incoming transitions
with different histories, but s is sufficient for identifying qs. For a given N ≥ 0,
the collection of PSAs are denoted by N -PSA, where each state are labeled by a
string of at length most N . In the special case, where all strings in a N -PSA is
of length N , then the N -PSA is also called an N -order labeled Markov chain. An
LMC is called PSA-equivalent if there exists a PSA M ′, such that they define
the same distribution over Σω (P sM = P sM ′).
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Example 1. The LMC M and the PSA M ′ in Figures 1(a) and (b) are specified
over the same alphabet Σ = {s, a, b} and define the same probability distribution
over Σω. The LMC M is therefore PSA-equivalent, but it is not a PSA since the
set of strings associated with states can not be suffix free.
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Fig. 1. The LMC in (a) defines the same probability distribution over Σω as the 2-
PSA in (b). The probabilistic suffix tree in (c) corresponds to the PSA in (b). The next
symbol probabilities associated with the nodes follow the ordering s, a, and b.

The learning algorithm adapted in this paper attempts to find a PSA model
that best describes the observed sequence of output symbols generated by a sys-
tem. However, for the actual learning we will primarily consider an intermediate
structure called a prediction suffix tree (PST) [10]. A PST over an alphabet Σ is
a tree of degree |Σ|, where each outgoing edge of an internal node is labeled by
a symbol in Σ. The nodes of the tree are labeled by pairs (s, γs); s is the string
defined by labels of the edges on the path from the node in question to the root
of the tree. If s′ is a descendant of s, then s ∈ suffix∗(s′). γs : Σ → [0, 1] is
the next symbol probability function such that

∑
σ∈Σ γs(σ) = 1. The probability

that a PST T generates a string str = σ1σ2 · · ·σn ∈ Σn is
∏n
i=1 γsi−1

(σi), where
s0 = e and si is the label of the deepest node reached by following the links
corresponding to σiσi−1 · · ·σ1 from the root. The PST T in Figure 1(c) shows a
representation of the PSA M in Figure 1(b); the node corresponding to the suffix
ba is not shown, since the probability of seeing ba is zero. Based on this PST we
can, e.g., calculate the probability of seeing the string sabsaa from the probabil-
ities of the individual symbols in the string. These probabilities can be found as
the next symbol probabilities of the deepest nodes in the tree that can be reached
by following (in reverse order) the symbols observed so far. For example, at the
root node labeled with the empty string e we have that γe(s) = 1/3. After seeing
the string s, the probability of seeing an a is encoded at the node labeled s, where
we have γs(a) = 1. The probability of seeing the symbol b following the string sa
is encoded at the node labeled sa, where γsa(b) = 1/2. Given the string sab, the
probability of seeing an s is encoded at the node labeled b, which is the deepest
node in the tree reached by following the links corresponding to the symbols bas
from the root. By following this procedure for each symbol in the string we get
P (sabsaa) = γe(s) · γs(a) · γsa(b) · γb(s) · γs(a) · γsa(a) = 1

3 · 1 ·
1
2 · 1 · 1 ·

1
2 . See

also [10] for further discussion about PSAs and PSTs.
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2.3 Stationary Probabilistic LTL

Linear time temporal logic (LTL) [1] over the vocabulary Σ is defined as usual
by the syntax

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (σ ∈ Σ)

For better readability, we also use the derived temporal operators � (always)
and ♦ (eventually).

Let ϕ be an LTL formula over Σ. For s = σ0σ1σ2 . . . ∈ Σω, s[j . . .] =
σjσj+1σj+2 . . . is the suffix of s starting with the (j + 1)st symbol σj . The LTL
semantics for infinite words over Σ are as follows:

– s |= true
– s |= σ, iff σ = σ0
– s |= ϕ1 ∧ ϕ1, iff s |= ϕ1 and s |= ϕ2

– s |= ¬ ϕ, iff s 2 ϕ
– s |= © ϕ, iff s[1 . . .] |= ϕ
– s |= ϕ1Uϕ2, iff ∃j ≥ 0. s[j . . .] |= ϕ2 and s[i . . .] |= ϕ1, for all 0 ≤ i < j

The syntax of stationary probabilistic LTL (SPLTL) now is defined as by the
rule:

φ ::= S./r(ϕ) (./ ∈ ≥, ≤, =; r ∈ [0, 1]; ϕ ∈ LTL)

The syntax of SPLTL, thus, is essentially the same as standard probabilistic
LTL (PLTL). However, the semantics will be defined in a slightly different man-
ner. Seen as a PLTL formula, S./r(ϕ) would be satisfied by a LMC if traces of the
Markov chain satisfy φ with probability ./ r, when initial states of the system
are sampled according to the initial state distribution π. In the SPLTL seman-
tics, the unique initial distribution π is replace with the set of all stationary
distributions of the Markov chain, and we define for an LMC M :

M |= S./r(ϕ) iff for all stationary distributions πs for M :
Pπ

s

M ({s ∈ Σω|s |= ϕ}) ./ r

Note, in particular, that the satisfaction relation |= now only depends on the
transition probabilities τ of M , but not on the the initial distribution π.

The reason for this design of SPLTL is that we are interesting in analyzing
behaviors of systems that are characterized by an open-ended mode of operation,
and which we observe during their ongoing operation. Think, for example, of an
elevator control program, a network router, or an online web-service. It will then
typically be the case that the system (which may originally have started from
some special initial configuration) has reached a terminal strongly connected
component of states, and has converged to one of its stationary distributions.
Starting to observe the system at a random point in time then corresponds to
starting the observation at a state sampled from a stationary distribution. The
real-world meaning of M |= S./r(ϕ) then is: assuming that we start observing
M at a random point in time, but when M is already past a possible initial
“burn-in” phase, then the probability that we see the further execution of M
having property φ is ./ r.
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3 Learning Labeled Markov Chains

Our algorithm for learning PSAs is a modified version of the method described
in [10]. The modifications mostly relate to the fact that the data is to be gen-
erated by a strongly connected model. As in [10], for a given sample sequence
Seq = σ1σ2 . . . σn, we learn a PSA by firstly constructing a PST T , and then
translating T into a PSA. The PSA may be considered as an LMC after removing
the labeling function H(qi) (representing past observations), and the resulting
model can then directly be used in probabilistic model checker (PRISM [6] here).
The translation from a PST to a PSA is performed as described in [10], and will
not be discussed further. The key part in the learning process is the construction
of T , which takes the form of a top-down tree-growing procedure. At any point
in time, the algorithm maintains a current tree, and a set S of strings (repre-
senting suffixes) that are candidates for inclusion in the tree. In one iteration,
the algorithm

(1) selects a string s ∈ S, and decides whether to add s as a node to T (which
may require the addition of intermediate nodes to T that connect s to the
leaf in the current T that represents the longest suffix of s contained in T ).

(2) (regardless of whether s was added to T ) for all σ ∈ Σ, decide whether to
add σs to S.

The crucial question, now, is how exactly to define the decision criteria for
(1) and (2). In [10], the decision criteria depend on a parameter as well as a prior
specification of both the memory length of the PSA and an upper bound on the
number of states of the PSA. The authors prove probably approximately correct-
ness results for the learning algorithm, but the requirement of prior knowledge
about model size and memory length is not compatible with our setting. Here we
are going to adjust the original criteria by combining parameters and removing
prior constraints. As in most statistical learning approaches, a central tool in
our learning approach is the likelihood of a PST T given the data Seq, i.e., the
conditional probability of the data given the model T :

L(T | Seq) = P (Seq | T ). (2)

We now base both decisions on a single parameter ε ≥ 0 that is given as input
to the PST learning algorithm, and which represents the minimal improvement
in likelihood that we want to obtain when adding an extra node to the PST.

For step (1) it is straightforward to compute precisely the improvement in
likelihood one will obtain using a tree T containing s as a leaf, compared to
the tree T ′ in which suffix(s) is a leaf (T and T ′ otherwise being equal), i.e.,
line 4, in Algorithm 1. We add s to the tree if the improvement is at least ε.
Exactly the same criterion can not be used in step (2), since here we need to
include σs into the candidate set not only when adding σs itself to T leads
to a likelihood improvement, but also when this may happen only for some
further extension s′σs of σs. However, one can derive a global upper bound
on the maximal likelihood improvement obtainable by adding any such s′σs,

6



and we add σs to S if this bound is at least ε, i.e., line 5, in Algorithm 1. The
learning algorithm is described in Algorithm 1, where the empirical (conditional)
probabilities P̃ (·) are calculated based on the sample sequence Seq.

Algorithm 1 Learn PSA

Require:
A sample sequence Seq, and the ε

Ensure:
A PST T̄

1: Initialize T̄ and S: let T̄ consist of a single root node (corresponding to e), and let
S = {σ | σ ∈ Σ and P̃ (σ) ≥ ε}

2: while S 6= ∅ do
3: (A) Pick any s ∈ S and remove s from S
4: (B) If

P̃ (s) ·
∑

σ∈Σ
P̃ (σ|s) · log

P̃ (σ|s)
P̃ (σ| suffix(s))

≥ ε

then add s and all its suffixes which are not in T̄ to T̄
5: (C)If P̃ (s) ≥ ε, then for every σ′ ∈ Σ, if P̃ (σ′s) ≥ 0, then add σ′s to S
6: end while
7: Extend T̄ by adding all missing sons s of internal nodes if P̃ (s) > 0
8: For each s ∈ T̄ , let

γ̂s(σ) = P̃ (σ|s′)
where s′ is the longest suffix of s in T̄

The learned tree, thus, depends on the value of ε. Smaller ε lead to the con-
struction of larger trees, and as ε→ 0, the size of the tree will typically approach
the size of the dataset (because the tree degenerates into a full representation
of the data). In Machine Learning terminology, the learned tree then overfits
the data. In order to avoid overfitting, and to learn an accurate model of the
data source, rather than an accurate model of the data itself, one often employs
a penalized likelihood score to evaluate a model. These scores evaluate candi-
date models based on likelihood, but subtract a penalty term for the size of the
model. Common penalized likelihood scores are Minimum Description Length
[9] and the Bayesian Information Criterion (BIC) [11]. The BIC score of a PSA
A relative to data Seq is defined as

BIC(A | Seq) := log(L(A | Seq))− 1/2 |A | log(|Seq |), (3)

where |Seq | is the length of Seq, and |A | is the number of free parameters which
represents the size of model, i.e. |A |=|QA | ·(|Σ | −1). Using a golden section
search [14, Section E.1.1] we systematically search for an ε value optimizing the
BIC score of the learned model.

4 Experiments

In order to test the proposed algorithm we have generated observation sequences
from three different system models. We applied the learning algorithm on each
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single sampled sequence, and validated resulting models by comparing with the
known generating models in terms of their SPLTL properties. For the actual
comparison of the models, we considered relevant system properties expressed by
LTL formulas as well as a set Φ of randomly generated LTL formulas. Formulas
were generated using a stochastic context-free grammar, and each formula was
restricted to a maximum length of 30.

In order to avoid generating un-interesting formulas (especially tautologies
or unsatisfiable ones), we constructed a dummy model Md with one state for
each symbol in the alphabet, and with uniform transition probabilities. For each
generated LTL formula ϕ ∈ Φ we tested whether the formula was indistinguish-
able by the learned model Ml, the generating model Mg, and the dummy model
Md in the sense that P sMg

(ϕ) = P sMl
(ϕ) = P sMd

(ϕ). If that was the case, then ϕ
was removed from Φ.

We compute stationary probabilities of LTL properties using the PRISM
model checker [6]; in the experiments performed, all the learned models are
strongly connected. PRISM provides algorithms to compute the stationary dis-
tribution over the states, and for a given LTL property ϕ, the probability of ϕ
at any given start state. Combined, this allows us to compute P sM (ϕ).

We evaluate the learned models by comparing P sMg
(ϕ) and P sMl

(ϕ) for certain
properties ϕ that are of interest for the individual systems, as well as by the mean
absolute difference for the random formulas in Φ:

D =
1

|Φ|
∑

ϕ∈Φ
|P sMg

(ϕ)− P sMl
(ϕ)| (4)

The mean absolute difference between Mg and Md is calculated analogously.
It is denoted Dd, and reported as a reference baseline.

We distinguish experiments in which the data was generated by a PSA-
equivalent model, and experiments where the generating model is not exactly
representable by a PSA.

4.1 Learning models of PSA-equivalent systems

Phone Model For our first experiment we use a toy model for a telephone. We
consider observable state labels i (the phone is idle), r (ringing), t (talking), h
(phone is hung up), and p (receiver picked up). The PSA model in Fig. 2 encodes
that the probability of a ringing phone being picked up depends on the elapsed
time since it has been used last (which can indicate that the phone owner has
left in the meantime). To this end, the model has a limited memory for how
many time units the phone has been idle since it has last been hung up (or
since it has last been ringing without being answered), and, e.g., the probability
P (p|hr) is higher than P (p|hir). The model has a memory of histories of at most
length 4, but in many cases only a shorter history is relevant for determining the
transition probabilities. For example, once the phone is picked up (transition to
the state with suffix label p), the previous history becomes irrelevant.
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Fig. 2. The phone model. States are labeled by (i)dle,(r)ing, (p)ick-up,(h)ang-up and
(t)alk.

Experimental results for this model are summarized in Table 1. The first four
columns in the table show: |Seq|: the length of the sequence (generated by the
model from Figure 2) from which the model was learned; time: time in seconds
for the full learning process, including multiple learning runs with different ε
parameters, and golden section search for optimizing the BIC score; order: the
order of the learned model, i.e., the maximal length of a suffix label in the model;
|Ql|: number of states in LMC.

The results show that for smaller data sizes a too simple model consisting
of a simple Markov chain over the 5 symbols in the alphabet is learned. With
more data, the correct structure of the model with its order 4 and 14 states is
identified.

Columns 5-10 of Table 1 show the accuracy obtained for checking SPLTL for-
mulas. Column D shows the average error (refer to Equation 4) for 507 random
formulas. For comparison: Dd = 0.1569. The remaining columns show the sta-
tionary probabilities for selected properties of interest. Column t simply contains
P sM (t), i.e., the long-run frequency of the phone being busy. Column rp | r shows
the stationary conditional probability for the LTL formula ϕ = r ∧ ©p, given
that r holds, i.e., the stationary probability that the ringing phone is picked up.
Similarly, the next two columns show the probability that the phone is picked
up, given that it is ringing, and has been idle for (at least) one, respectively two,
time intervals before. Finally, ♦� i is the (unbounded) property that eventually
the phone will be idle forever. The results show that the learned models provide
very good approximations for the SPLTL properties of the generating model.

Randomized Self-stabilizing Protocol Consider now the randomized self-
stabilizing protocol by [4]. This algorithm is designed for ring networks with an
odd number of processes, and where each process pi is equipped with a Boolean
variable Xi. The protocol operates synchronously such that if Xi = Xi−1, then pi
makes a uniform random choice about the next value of Xi; otherwise it sets Xi

to the current value of Xi−1. Each pair of neighboring processes with the same
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Table 1. Experimental results for the phone model

|Seq| time(sec) order |Ql| D t rp|r irp|ir iirp|iir ♦� i

80 9.1 1 5 0.0551 0.253 0.333 0.333 0.333 0

160 4 1 5 0.0096 0.370 0.407 0.407 0.407 0

320 6.2 1 5 0.0281 0.344 0.310 0.309 0.309 0

640 6.13 1 5 0.0094 0.392 0.424 0.424 0.424 0

1280 7.5 1 5 0.0064 0.385 0.446 0.446 0.446 0

2560 11.9 1 5 0.0089 0.366 0.447 0.447 0.447 0

5120 36.9 3 10 0.0020 0.379 0.490 0.490 0.490 0

10240 225.2 4 14 0.0014 0.381 0.506 0.477 0.409 0

20480 456.5 4 14 0.0005 0.378 0.515 0.489 0.414 0

Mg 4 14 0.378 0.512 0.488 0.424 0

value assigned to their Boolean variables generates a “token”. The network is
stable if it only contains a single token. In order to obtain a strongly connected
model we have modified the original protocol: after reaching a stable state each
process will set its Boolean variable to 0, thus returning to an unstable state.

Using the protocol above we have analyzed the behavior of the learning
algorithm by varying the number of processes and the length of the observed
sample sequence as well as by changing the level of abstraction. In the first
experiment, symbols in the sample sequence correspond to a value assignment
to all the Boolean variables associated with processes. Thus, with N processes,
there are 2N symbols in Σ. In the second experiment, we replaced the symbols
in the sequence with more abstract labels that only represent the number of
tokens defined by the value assignments. For N processes, the alphabet Σ then
only contains N symbols.

The results of the experiments are given in Figure 3 and Table 2. Figure 3
shows the probability P sM (trueU≤L stable|token = N) of reaching a stable con-
figuration within L steps conditional on being in a (starting) configuration where
all processes assign the same value to the Boolean variables. In general, we ob-
serve a very good fit between the probability values computed for the different
models (having the same number of processes). One notable difference is the
probability values calculated for the full 7 processes model compared to the ab-
stract and the real 7 processes models. We believe that this discrepancy is due
to the length of the sample sequence being insufficient for learning an accurate
full model. This hypothesis is supported by the results in Table 2. The table
lists the learning time (time), the order of the learned PSA (order), the number
of iterations performed by the golden section search (iter), the number of states
in LMC (|Ql|), and the average difference in probability (D) calculated accord-
ing to Equation 4 using 503 random LTL formulas. In particular, we see that
with 10240 symbols, the learned full model only contains a single state, whereas
the abstract model has four states and a lower average difference in probability.
Note, however, that with 50000 symbols the algorithm learns the correct order
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Fig. 3. Left: Experiment results for 3 processes and 7 processes. Right: Experiment
results for 11 processes and 19 processes. For 3, 7 and 11 processes, both full and
abstract models were learned from 10240 symbols; the abstract 19 process model was
learned from 20480 symbols

and number of states for the full model and the average difference in probability
becomes significantly smaller.

From Table 2, we also see (as expected) that the time complexity of learning
an abstract model is significantly lower than that of learning a full model. Note
that due to time complexity, we have not learned full models for networks with
11 and 21 processes.

Since the abstract models are often significantly smaller than the generating
models, the time required for model checking using the abstract models is also
expected to be lower. We have analyzed this hypothesis further by measuring the
time complexity for evaluating the SPLTL property P sM (trueU≤L stable|token =
N) for 19 and 21 processes. For the generating model, the total time is calculated
as the time used for compiling the PRISM model description to the internal
PRISM representation as well as the time used for the actual model checking.
For the abstract model, the total time is calculated as the time used for model
learning (which produces a model in the PRISM file format), model compilation,
and model checking. Fig. 4 shows the time used by both approaches as a function
of L. The time complexity of using the abstract models is close to constant.
It consists of a constant time (253 sec. and 284 sec., respectively) for model
learning and model compilation, and a negligible additional linear time for model
checking.

4.2 Learning models of non PSA-equivalent systems

Consider the LMC in Figure 5(a), which is a modified version of the model by
Knuth and Yao [5] that uses a fair coin to simulate the toss of a six-sided die.
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Table 2. Experimental results for the self-stabilizing protocol with 7 processes. D is
based on 503 random LTL formulas. For reference: Dd = 0.1669.

Full model Abstract model

|Seq| time(sec) order iter |Ql| D time(sec) order iter |Ql| D

80 73.0 0 30 1 0.0192 1.6 1 38 4 0.0172

160 49.4 0 23 1 0.0325 2.1 1 41 4 0.0079

320 162.9 0 29 1 0.0292 3.3 1 41 4 0.0369

640 34.3 0 19 1 0.0234 2.3 1 23 4 0.0114

1280 37.2 0 19 1 0.0193 4.1 1 32 4 0.0093

2560 42.0 0 19 1 0.0204 5.0 1 23 4 0.0054

5120 47.9 0 19 1 0.0182 8.9 1 23 4 0.0018

10240 59.3 0 19 1 0.0390 16.3 1 23 4 0.0013

20480 80.7 0 19 1 0.0390 31.4 1 23 4 0.0016

50000 1904.4 1 25 128 0.00034 152.42 1 23 4 0.0011

100k 3435.5 1 25 128 0.00071 308.9 1 23 4 0.0007
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Fig. 4. The time for calculating P sM (trueU≤L stable |token = N) ( N is the number
of process in each model) in the generating model and abstract model. Both abstract
models for 19 and 21 processes are learned from a single sequence with 20480 symbols.

For example, start, H, H, H, T, h2 corresponds to a die toss of 2. Compared to
the original model, the model in Figure 5(a) makes a transition back to the start
state after having simulated the outcome of a toss.

In this LMC we see that the next symbol probabilities for the two states
labeled H on the top branch differ. Specifically, we have that the next sym-
bol probability depends on whether or not we have seen an even or an odd
number of Hs, which implies that the model in Figure 5 cannot be represented
by any N -order Markov chain and, in particular, any N -PSA. Note that this
also implies that the dice model is not PSA-equivalent. An example of a model
that was learned from a sample sequence with 1440 observations can be seen in
Figure 5(b).

The results of all the experiments are summarized in Table 3. From the
table we see that the learned models provide very good approximations for the
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Fig. 5. Dice model. Dash lines will lead to the ‘S’ state. (a) The generating model. (b)
A model learned from a sequence with 1440 symbols.

Table 3. The experiment results for dice model. See table 2 for a description of the
columns in the left part of the table. For the right part of the table, D is the mean
absolute difference of the learned model and the generating model for stationary prob-
abilities of 501 randomly generated LTL formulas, and P sM (i) denotes the stationary
probability of getting a i in the next dice toss, and the stationary probability is 1/6
for each number in the generating model.

|Seq| time(sec) order |Ql| |D| P sM (1) P sM (2) P sM (3) P sM (4) P sM (5) P sM (6)

360 11.4 2 13 0.0124 0.137 0.17 0.182 0.103 0.205 0.203

720 14.4 2 13 0.0043 0.188 0.174 0.174 0.149 0.168 0.147

1440 16.9 2 13 0.0023 0.184 0.166 0.169 0.143 0.153 0.185

2880 57.4 4 17 0.0023 0.173 0.166 0.159 0.142 0.176 0.184

5760 90.5 4 17 0.0016 0.173 0.165 0.153 0.161 0.174 0.174

11520 159.4 5 19 0.00094 0.162 0.17 0.176 0.157 0.168 0.167

20000 318.4 6 21 0.00092 0.164 0.173 0.171 0.166 0.164 0.162

stationary probabilities of the randomly generated LTL formulas. For example,
for the model learned from 20000 observations the mean absolute difference in
probability is 0.00092 for 501 random LTL formulas; in comparison, the difference
in probability is 0.1014 for the dummy model. A similar behavior is observed for
the probability P s(i) of getting i in the next dice toss.

Finally, we note that the size of the learned model grows as the length of
the data sequence increases. This behavior is a consequence of the generating
model not being representable by any N -order Markov chain. To illustrate the
effect, Figure 6 shows the structure of the model that was learned from 20000
observations. Notice that the differences between the learned model and the
generating model relates to the part of the model encoding the number of times
we have seen an even number of Hs.
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5 Conclusion

In this paper we proposed to use methods for learning Probabilistic Suffix Au-
tomata to learn a formal model for the stationary behavior of a system from a
single observation sequence. Compared to previous approaches of learning sys-
tem models for verification purposes, this extends the scope of applications to
scenarios where one can easily obtain data by passively observing a system in
its ongoing operation, but where it is difficult to obtain multiple, independent
runs under laboratory conditions.

The analysis of the learned model must be restricted to properties that only
concern the observed stationary behavior of the system, for which purpose we
have introduced SPLTL properties as a suitable specification language. Exper-
imental results show that model-checking SPLTL properties on learned models
provides a good approximation to model-checking the true, data-generating sys-
tem. This can often even be the case when the true system itself is not exactly
equivalent to a PSA, in which case the learned model can only be an approxi-
mation to the true model.

As in the learning from multiple sequences setting, one could also in the
single sequence setting consider methods of statistical model checking [15, 13,
7] as an alternative to model learning. While existing statistical model check-
ing approaches are also based on the assumption that data consists of multiple
independent system runs, they could be easily adapted to the single sequence
case. As discussed in [8], model learning offers several advantages over statistical
model checking: learned models also support the model checking of unbounded
properties, whereas statistical model checking is limited to bounded properties.
Moreover, learned models can support additional analysis and design processes
beyond model-checking.

For learning deterministic stochastic automata from multiple sample strings
strong consistency results guarantee that in the large sample limit the learned
and the true system agree on the probabilities of LTL formulas [2, 8]. Similar
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results are not yet established for learning PSAs from a single sequence. Existing
results on the consistency of the BIC selection criterion for learning variable order
Markov chains [3] strongly indicate that such consistency properties also hold
for our learning method, but a full analysis is subject of further work.
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