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Abstract

In this thesis we investigate the use of first-order convex optimization methods
applied to problems in signal and image processing. First we make a general
introduction to convex optimization, first-order methods and their iteration com-
plexity. Then we look at different techniques, which can be used with first-order
methods such as smoothing, Lagrange multipliers and proximal gradient meth-
ods. We continue by presenting different applications of convex optimization and
notable convex formulations with an emphasis on inverse problems and sparse
signal processing. We also describe the multiple-description problem. We finally
present the contributions of the thesis.

The remaining parts of the thesis consist of five research papers. The first
paper addresses non-smooth first-order convex optimization and the trade-off
between accuracy and smoothness of the approximating smooth function. The
second and third papers concern discrete linear inverse problems and reliable
numerical reconstruction software. The last two papers present a convex opti-
mization formulation of the multiple-description problem and a method to solve
it in the case of large-scale instances.
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Resumé

I denne afhandling undersøger vi brugen af førsteordens konvekse optimeringsme-
toder, anvendt p̊a problemer indenfor signal- og billedbehandling. Først giver vi
en general introduktion til konveksoptimering, førsteordensmetoder og deres ite-
rationskompleksitet. Herefter ser vi p̊a forskellige teknikker, som kan benyttes i
sammenspil med førsteordensmetoder, f.eks. udglatning, Lagrangemultiplikator-
og proksimale gradientmetoder. I de efterfølgende afsnit præsenteres forskel-
lige applikationer af konveksoptimering, samt vigtige formuleringer og algorit-
mer med hovedvægt p̊a inverse problemer og sparse signalbehandling. Desuden
præsenteres flerbeskrivelses problemet. Til sidst i introduktionen præsenteres
bidragene af denne afhandling.

Efter introduktionen følger fem artikler. Den første artikel adresserer bru-
gen af førsteordens konveksoptimering for ikke glatte funktioner samt forholdet
mellem nøjagtighed og glathed af den tilnærmede glatte funktion. Den anden
og tredje artikel omhandler diskrete lineære inverse problemer samt numerisk
rekonstruktionssoftware. De sidste to artikler omhandler en konveksoptimerings
formulering af flerbeskrivelses problemet, hvor vi diskuterer formuleringen og en
metode til at løse storskala problemer.
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Chapter 1

Introduction

There are two main fields in convex optimization. First, understanding and for-
mulating convex optimization problems in various applications such as in esti-
mation and inverse problems, modelling, signal and image processing, automatic
control, statistics and finance. Second, solving convex optimization problems.
In this thesis we will address both fields. In the remaining part of Chapter 1 we
describe methods for solving convex optimization problems with a strong em-
phasis on first-order methods. In Chapter 2 we describe different applications
of convex optimization.

1 Convex Optimization

We shortly review basic results in convex optimization, following the notation
in [1]. A constrained minimization problem can be written as

minimize f0(x)
subject to fi(x) ≤ 0, ∀ i = 1, · · · ,m

hi(x) = 0, ∀ i = 1, · · · , p ,
(1.1)

where f0(x) : Rn 7→ R is the objective function, fi(x) : Rn 7→ R are the
inequality constraints and hi(x) : R

n 7→ R are the equality constraints. We call a
problem a convex problem if fi, ∀ i = 0, · · · ,m, are convex and hi, ∀ i = 1, · · · , p,
are affine. Convex problems are a class of optimization problems which can be
solved using efficient algorithms [2].

An important function in constrained optimization is the Lagrangian

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

νihi(x), (1.2)

1



2 INTRODUCTION

where (λ, ν) ∈ Rm×Rp are called the Lagrange multipliers or the dual variables.
Define the dual function by

g(λ, ν) = inf
x
L(x, λ, ν) . (1.3)

The (Lagrange) dual problem is then given as

maximize g(λ, ν)
subject to λi ≥ 0, ∀ i = 1, · · · ,m .

(1.4)

For a convex problem, necessary and sufficient conditions for primal and dual
optimality for differentiable objective and constraint functions are given by the
Karush-Kuhn-Tucker (KKT) conditions






fi(x
⋆) ≤ 0, ∀ i = 1, · · · ,m

hi(x
⋆) = 0, ∀ i = 1, · · · , p
λ⋆i ≥ 0, ∀ i = 1, · · · ,m

λ⋆i fi(x
⋆) = 0, ∀ i = 1, · · · ,m

∇f0(x⋆) +
∑m

i=1 λ
⋆
i∇fi(x⋆) +

∑p
i=1 ν

⋆
i∇hi(x⋆) = 0.

(1.5)

1.1 Methods

The above formulation is a popular approach, but for convenience we will write
this as

minimize f(x)
subject to x ∈ Q (1.6)

where f(x) = f0(x) and

Q = {x | fi(x) ≤ 0, ∀ i = 1, · · · ,m; hi(x) = 0, ∀ i = 1, · · · , p }. (1.7)

Methods for solving the problem (1.6) are characterized by the type of struc-
tural information, which can be evaluated.

• Zero-order oracle: evaluate f(x).

• First-order oracle: evaluate f(x) and ∇f(x).

• Second-order oracle: evaluate f(x), ∇f(x) and ∇2f(x).

To exemplify, an exhaustive search in combinatorial optimization employs a
zero-order oracle. The classic gradient method or steepest descent [3], conjugate
gradient [4], quasi-Newton [5–10], heavy ball [11] employ a first-order oracle.
Newtons method and interior-point methods (where f is a modified function)
[2, 12–14] employ a second-order oracle.
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Since only a minor set of problems can be solved using closed-form solutions
with an accuracy given by the machine precision, it is common to say that to
solve a problem is to find an approximate solution with a certain accuracy ǫ [15].
We can now define the two complexity measures:

• Analytical complexity The number of calls of the oracle which is required
to solve the problem up to accuracy ǫ.

• Arithmetical complexity The total number of arithmetic operations to solve
the problem up to accuracy ǫ

For an iterative method, if an algorithm only calls the oracle a constant
number of times in each iteration, the analytical complexity is also referred to
as the iteration complexity.

Since zero-order methods have the least available structural information of
a problem, we would expect zero-order methods to have higher analytical com-
plexity than first- and second-order methods. Equivalently, first-order methods
are expected to have higher analytical complexity than second-order methods.
However, the per-iteration arithmetic complexity is expected to operate in an
opposite manner, second-order methods have higher per-iteration complexity
than first-order methods an so forth. So, if we are interested in which method is
the most “efficient” or “fastest”, we are interested in the arithmetical complexity
which is a product of the iteration (analytical) complexity and the per-iteration
arithmetical complexity. We will discuss this trade-off between higher and lower
iteration complexity and per-iteration arithmetical complexity for specific first-
and second-order methods in Sec. 4.

2 First-Order Methods

We will review first-order methods in the following subsections. To this end, we
present some important definitions involving first-order inequalities [15].

Definition 2.1. A function f is called convex if for any x, y ∈ dom f and
α ∈ [0, 1] the following inequality holds

f(αx+ (1− α)y) ≤ αf(x) + (1 − α)f(y) . (1.8)

For convenience, we will denote the set of general convex functions C, and closed
convex functions C̄.

Definition 2.2. Let f be a convex function. A vector g(y) is called a subgradient
of function f at point y ∈ dom f if for any x ∈ dom f we have

f(x) ≥ f(y) + g(y)T (x − y) . (1.9)
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The set of all subgradients of f at y, ∂f(y) is called the subdifferential of function
f at point y.

For convenience, we will denote the set of subdifferentiable functions G, i.e.,
functions for which (1.9) hold for all y ∈ dom f .

Definition 2.3. The continuously differentiable function f is said to be µ-
strongly convex if there exists a µ ≥ 0 such that

f(x) ≥ f(y) +∇f(y)T (x− y) + 1
2µ‖x− y‖22 , ∀x, y ∈ Rn. (1.10)

The function f is said to be L-smooth if there exists an L ≥ µ such that

f(x) ≤ f(y) +∇f(y)T (x− y) + 1
2L‖x− y‖22 , ∀x, y ∈ Rn. (1.11)

The set of functions that satisfy (1.10) and (1.11) is denoted Fµ,L. The ratioQ =
L/µ, is referred to as the “modulus of strong convexity” [16] or the “condition
number for f” [15] and is an upper bound on the condition number of the Hessian
matrix. For twice differentiable functions

Q ≥ maxx λmax(∇2f(x))

minx λmin(∇2f(x))
. (1.12)

In particular, if f is a quadratic function, f(x) = 1
2x

TAx+bTx, then Q = κ(A).

2.1 Complexity of First-Order Black-Box Methods

Important theoretical work on the complexity of first-order methods was done
in [16]. However, optimal first-order methods for smooth problems were not
known at the time [16] was written. An optimal first-order methord was first
given in [17]. In this light, the material [16] is not up to date. On the other
hand, the material in [15] includes both the complexity analysis based on [16]
and optimal first-order methods for smooth problems and it is therefore possible
to give a better overview of the field. This is the reason we will make most use
of the material presented in [15].

In a historical perspective, it is interesting to note that complexity analyses
of first-order methods [16] as well as the optimal methods [17] were forgotten
in many years, although the same authors continued publishing in the field
[11, 18, 19]. As noted in [15], research in polynomial-time algorithms was soon
to set off based on [12]. The advent of polynomial-time algorithms might have
left no interest in optimal first-order methods or knowledge of their existence
(many of the publications above first appeared in Russian).

A first-order method is called optimal for a certain class if there exist a
single problem in the class for which the complexity of solving this problem
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coincides with the first-order methods worst-case complexity for all problems in
the class. Note that this means that there may be problems in the class for
which a first-order method has lower complexity. The definition of optimality
also involves two important assumptions. First, for smooth problems, optimal
complexity is only valid under the assumption that the number of iterations is
not too large compared to the dimensionality of the problem [15]. Specifically,
it is required that k ≤ 1

2 (n − 1), where k is the number of iterations and n is
the dimension of the problem. This is not a significant issue when dealing with
large-scale problems since even for n = 10000, the optimality definition holds
up to k ≤ 4999. There is a special case, where it has been shown that the
Barzilai-Borwein strategy exhibits superlinear convergence for strictly quadratic
problems in the case of n = 2 [20], i.e., the optimality condition does not hold
for k ≥ 1. For larger dimensions, the strongest results for strictly quadratic
problems show that the Barzilai-Borwein strategy has the same complexity as
the gradient method [21]1. Second, we need to restrict ourselves to “black-
box schemes”, where the designer is not allowed to manipulate the structure
of the problem; indeed, it has been shown that for subdifferentiable problems,
non black-box schemes can obtain better complexity than the optimal black-box
complexity [23–25]. The same idea underlines polynomial time path-following
interior-point methods [2, 12–14].

One question naturally arises – why do we consider optimal first-order meth-
ods? Why not use all the specialized algorithms developed for special problems?
First, since we are considering a range of problems occurring in image and sig-
nal processing, it is interesting to investigate a relatively small set of algorithms
which are provably optimal for all the problems. Besides, optimal first-order
methods should not be compared to specialized algorithms but with the twin
method: the gradient-/steepest descent method. As discussed in Sec. 3 on differ-
ent techniques to construct complete algorithms, many techniques can be used
with both the gradient method and the optimal/accelerated first-order method.

Following [15], we will define a first-order black-box method as follows:

Definition 2.4. A first-order method is any iterative algorithm that selects

x(k) ∈ x(0) + span
{
∇f(x(0)),∇f(x(1)), · · · ,∇f(x(k−1))

}
(1.13)

for differentiable problems or

x(k) ∈ x(0) + span
{
g(x(0)), g(x(1)), · · · , g(x(k−1))

}
(1.14)

for subdifferentiable problems.

1In [22] it was argued that “[i]n practice, this is the best that could be expected from the
Barzilai and Borwein method.”
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ID Function Analytical complexity

A f ∈ G O
(

1
ǫ2

)

B f(x) = h(x) + Ψ(x), h ∈ F0,L, Ψ ∈ G O
(√

L
ǫ

)
+O

(
1
ǫ2

)

C f ∈ F0,L O
(√

L
ǫ

)

D f ∈ Fµ,L O
(√

L
µ log 1

ǫ

)

Table 1.1: Worst-case and optimal complexity for first-order black-box methods.

ad A: An optimal method for f ∈ G is the subgradient method.

ad B: An optimal method was given in [26].

ad C, D: An optimal method for the last two function classes was
first given in [17], other variants exists [15, 19, 23], see the
overview in [27].

Consider the problem
minimize f(x)
subject to x ∈ Rn ,

(1.15)

which we will solve to an accuracy of f(x(k))−f⋆ ≤ ǫ, i.e., x(k) is an ǫ-suboptimal
solution. The optimal complexity for different classes are reported in Table 1.1.

For quadratic problems with f ∈ Fµ,L, the conjugate gradient method
achieves the same iteration complexity [16] as optimal first-order methods achieve
for all f ∈ Fµ,L.

2.2 Complexity for First-Order Non Black-Box Methods

In the case of optimal methods, we restricted ourself to black-box schemes.
However, “[i]n practice, we never meet a pure black box model. We always
know something about the structure of the underlying objects” [23]. In the case
we dismiss the black-box model, it is possible to obtain more information of the
problem at hand and as a consequence decrease the complexity. Complexity for
non black-box first-order methods are reported in Table 1.2.
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ID Function Analytical complexity

E f(x) = maxu∈U u
TAx, f ∈ C O

(
1
ǫ

)

F f(x) = h(x) + Ψ(x), h ∈ F0,L, Ψ ∈ C̄ O
(√

L
ǫ

)

G f(x) = h(x) + Ψ(x), h ∈ Fµ,L, Ψ ∈ C̄ O
(√

L
µ log 1

ǫ

)

Table 1.2: Worst-case complexity for certain first-order non black-box methods.

ad E: A method for non-smooth minimization was given in [23],
which can be applied to more general models. The extra gra-
dient method [28] was shown to have the same complexity [29]
and the latter applies to the more general problem of variational
inequalities. Some f ∈ G can be modelled as this max-type func-
tion. This method does not apply to all functions f ∈ C but only
those that can me modelled as a max-type function.

ad F: A method for this composite objective function was given
in [24, 25].

ad G See [24].

If we compare Tables 1.1 and 1.2, we note similarities between C-F and D-G.
This comes from a modified first-order method, which handles the more general
convex function using the so-called proximal map, see Sec. 3.2. This essentially
removes the complexity term which give the worst complexity.

2.3 Algorithms

We will now review two important first-order methods: the classic gradient
method and an optimal method. The gradient method is given below.
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Gradient method

Given x(0) ∈ Rn

for k = 0, · · ·
x(k+1) = x(k) − tk∇f(x(k))

Traditional approaches for making the gradient method applicable and effi-
cient are based on selecting the stepsize tk appropriate.

Stepsize selection techniques include [15, 30]:

• Constant stepsize.

• Minimization rule/exact line search/full relaxation.

• Backtracking line search with Armijo rule.

• Goldstein-Armijo rule.

• Diminishing stepsize.

• Barzilai-Borwein strategy [20].

The line searches can also be limited and/or include non-monotonicity. Despite
the efforts it has not been possible to obtain better theoretical convergence rate
than that of the constant stepsize tk = 1

L [15, 21].
An optimal method is given below [15].

Optimal first-order method

Given x(0) = y(0) ∈ Rn and 1 > θ0 ≥
√

µ
L

for k = 0, · · ·
x(k+1) = y(k) − 1

L∇f(y(k))
θk+1 positive root of θ2 = (1− θ)θ2k + µ

Lθ

βk = θk(1−θk)
θ2
k
+θk+1

y(k+1) = x(k+1) + βk
(
x(k+1) − x(k)

)

For the case µ = 0, it is possible to select βk = k
k+3 and for µ > 0 it

is possible to select βk =
√
L−√

µ√
L+

√
µ

[15, 27]. The optimal gradient method has

a close resemblance to the heavy ball method [31]. In fact, the heavy ball
method [11, Sec. 3.2.1] and the two step method [32] are both optimal for
unconstrained optimization for f ∈ Fµ,L (compare with the analysis in [15]).
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3 Techniques

In this section we will give an overview of techniques used to solve different
optimization problems.

3.1 Dual Decomposition

An approach to handle problems with intersecting constraints/intersections,
sometimes referred to as complicating or coupling constraints, is the dual decom-
position [30, 33]. This approach is only applicable when the primal objective is
separable. The dual problem is then solved using a sub-/gradient method. This
idea is exploited in Chambolle’s algorithm for total variation denoising [34], see
also [35] for total variation deblurring, routing and resource allocation [36, 37],
distributed model predictive control [38] and stochastic optimization [39].

3.2 Proximal Map

The gradient map [16] was defined to generalize the well-known gradient from
unconstrained to constrained problems. This idea can be extended to other
more complicated functions using the proximal map. If the objective has the
form f(x) = h(x) + Ψ(x), h ∈ Fµ,L, Ψ ∈ C, then we can use the proximal map
defined by Moreau [40] to handle the general convex function Ψ in an elegant
way. The proximal map is defined as

proxΨ(x) = argmin
u

(
Ψ(u) +

1

2
‖u− x‖22

)
.

The proximal map generalizes the projection operator in the case Ψ is the
indicator function of the constrained set Q. In the case Ψ(x) = ‖x‖1, it was
shown how to use the proximal map to form proximal gradient algorithms for
linear inverse problems [41–44] in which case the proximal map becomes the
soft-threshold or shrinkage operator [45, 46]. In the case of the Nuclear norm
Ψ(X) = ‖X‖∗ the proximal map is the singular value threshold [47]. These
algorithms can be seen in the view of forward-backward iterative schemes [48, 49]
with the forward model being a gradient or Landweber iteration. The proximal
map may have a closed form solution [25] or require iterative methods [50].
The mirror descent algorithm [16] is also closely related to the proximal map
framework [51]. The proximal map can be combined with optimal methods for
smooth problems to obtain accelerated proximal gradient methods [24, 25, 52],
see [53–55] for nuclear norm minimization or the overview work in [27, 56].
The extra gradient method of Nemirovskii also relies on the proximal map [29],
see [57] for applications in image processing.
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3.3 Smoothing

The convergence rate for non-smooth problems may be too low for certain prob-
lems in which case a solution is to make a smooth approximation of the consid-
ered non-smooth function. The motivation is that a smooth problem has better
convergence properties as reported in Sec. 2.1. This is, e.g., used for smoothing
total-variation problems [58, 59].

Smoothing can also be used to obtain one order faster convergence for non-
smooth problems compared to the sub-gradient method [23]. The idea is to
form a smooth approximation with known bounds and subsequently apply an
optimal first-order method to the smooth function. Following the outline in [31],
consider a possible non-smooth convex function on the form2

f(x) = max
u∈U

uTAx .

We can then form the approximation

fµ(x) = max
u∈U

uTAx− µ 1
2‖u− ū‖22

with

∆ = max
u∈U

1
2‖u− ū‖22 .

Then the approximation fµ(x) bounds f(x) as

fµ(x) ≤ f(x) ≤ fµ(x) + µ∆

and fµ(x) is Lipschitz continuous with constant Lµ =
‖A‖2

2

µ . If we select µ = ǫ
2∆

and solve the smoothed problem to accuracy ǫ/2 we have

f(x)− f⋆ ≤ fµ(x)− f⋆
µ + µ∆ ≤ ǫ

2
+
ǫ

2
= ǫ

so we can achieve an ǫ-suboptimal solution for the original problem in

O
(√

Lµ

ǫ/2

)
= O



√

2‖A‖22
µǫ


 = O

(√
4∆‖A‖22

ǫ2

)
= O

(
2
√
∆‖A‖2
ǫ

)

iterations if we use an optimal first-order method to solve the smoothed problem.
This approach has motivated a variety works [35, 60–65]. Another way to handle
the non-smoothness of, e.g., the ‖x‖1-norm, is to make an equivalent smooth and
constrained version of the same problem [66, 67], using standard reformulation
techniques.

2More general models of the function f is given in [23].
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3.4 Lagrange Multiplier Method

This method is sometimes also known as the augmented Lagrangian method or
the method of multipliers. Initially suggested in [68, 69], see [70] for a more
complete consideration of the subject. The idea is to augment a quadratic
function to the Lagrangian to penalize infeasible points and then solve a series of
these augmented Lagrangian problems – updating the dual variables after each
approximate solution. It is important that the augmented Lagrange problem
is sufficiently easy to solve and that we can benefit from warm start to make
the Lagrange multiplier method efficient. The Lagrange multiplier method is
equivalent to applying the gradient method to a Moreau-Yoshida regularized
version of the dual function [71, 72]. To see this, consider for simplicity the
following convex problem

minimize f(x)
subject to Ax = b

(1.16)

with the Lagrange dual function g(v) = −f∗(−AT v) − vT b, where f∗(y) =
supx∈domf x

T y − f(x) is the conjugate function. The dual problem is then

maximize g(v)

which is equivalent to the Moreau-Yoshida regularized version

maximizev gµ(v), gµ(v) = supz

(
g(z)− 1

2µ‖z − v‖22
)

(1.17)

for µ > 0. To solve the original problem (1.16), we will solve the above problem
(1.17) by maximizing gµ(v). Note that gµ(v) is smooth with constant L = 1

µ .

To evaluate gµ(v) and ∇gµ(v), we note that the dual problem of

maximizez g(z)− 1
2µ‖z − v‖22

is
minimizex,y f(x) + vT y + µ

2 ‖y‖22
subject to Ax− b = y

and ∇gµ(v) = Ax̂(v)−b [31], where x̂(v) is the minimizer in the above expression
for a given v. If we then apply the gradient method for maximizing gµ(v) with
constant stepsize t = 1

L = µ, we obtain the algorithm

for k = 1, 2, · · ·
x(k) = argmin

x
f(x) + v(k−1)T (Ax− b) + µ

2
‖Ax− b‖22

v(k) = v(k−1) + µ(Ax(k) − b) .
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The above algorithm is the Lagrange multiplier method [70] for the problem
(1.16). Further, the Lagrange multiplier method is the same as the Bregman
iterative method in certain cases [73], e.g., for (1.16) with f(x) = ‖x‖1 (see also
[74] for total variation problems). The Lagrange multiplier method is applied in
many algorithms, e.g., [54, 75, 76].

A related approach in the case of coupled variables in the objective is to apply
alternating minimization [77]. Alternatively, we can first apply variable split-
ting [75, 76, 78–80] and then apply alternating minimization and/or Lagrange
multiplier method on the new problem. Splitting and alternating minimization
can also be combined with accelerated methods and smoothing [81].

3.5 Continuation and Restart

For a specific parameter setting of an algorithm, the convergence may be slow.
The idea in continuation/restart/re-initialization is then to adapt the parameter
settings, and instead run a series of stages for which we approach the requested
parameter setting – utilizing warm-start at each stage. Even though such a
scheme requires several stages, the overall efficiency may be better if the warm-
start procedure provides a benefit. A well-known example is the barrier method
where the barrier parameter is the setting under adaptation [1, 82].

One application is in case of regularized problems in unconstrained form,
where it is noted that the regularization parameter determines the efficiency of
the method, in which case continuation has successfully been applied in [67, 83].
The observation that the regularization parameter determines the efficiency of
a first-order method can also be motivated theoretically since the Lipschitz con-
stant of the gradient function is a function of the regularization parameter [84].
Continuation has also motivated the approach in [62] and the use of accelerated
continuation in [85].

There are limited theoretical results on the continuation scheme presented
above. However, in the case of strongly convex functions it is possible to obtain
guarantees. For smooth problems, it can be used to obtain optimal complexity
[16, 17]. In some cases we have functions which are not strongly convex but
show a similar behaviour [61]. A permutation using a strongly convex functions
can also be used to obtain theoretical results in case the original problem is not
strongly convex [86].

4 When are First-Order Methods Efficient?

It is interesting to discuss when first-order methods are efficient compared to
second-order methods such as interior-point methods. A good measure of ef-
ficiency is the arithmetical complexity of those methods. In the following we
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will discuss three important parameters which determine the favourable choice
of first-order versus second-order methods.

4.1 When the dimension of the problem is sufficiently large

Second-order methods employing direct methods scale as O
(
n3
)
in the dimen-

sions to obtain the step direction3. However, additional structure in the problem
can be utilized to reduce the arithmetic complexity. The most expensive opera-
tion for first-order methods is often the multiplication with a matrix A ∈ Rq×n

to obtain the step direction, which scale as O(qn) in the dimensions. Second-
order methods employing iterative methods scales as O(qn), but efficient use
usually requires preconditioning. Empirical analysis of arithmetic complexity
for the well structured basis pursuit denoising problem using an interior-point
method and preconditioned conjugate gradient with q = 0.1n and approximately
3n nonzero elements in A, show no better complexity than O

(
n1.2

)
when solved

to moderate accuracy [67, 88]. Many of the other second-order methods show no
better than O

(
n2
)
complexity. But even at small problems n = 104, a first-order

method based on the Barzilai-Borwein strategy is more efficient than the second-
order method. Results on total variation denoising in constrained form using an
interior-point method showed empirical O

(
n2 logn

)
to O

(
n3
)
complexity with

nested dissection [89] and a standard second-second order cone solver [90]. Anal-
ysis in [91] also shows that a second-order method [92] using direct methods (the
conjugate gradient method was not efficient on the investigated examples) scaled
worse in the dimensions than the investigated first-order methods. In [93] it is
shown that for low accuracy solutions, a first-order method scales better than
an interior-point method using preconditioned conjugate gradient, and is more
efficient for the investigated dimensions. To conclude, both theory and empirical
data shows that first-order methods scale better in the dimension, i.e., first-order
methods are the favourable choice for sufficiently large problems.

4.2 When the proximal map is simple

In the case of constrained problems, the proximal map becomes the projection
operator. If the projection can be calculated efficiently then the arithmetical
complexity is not significantly larger than that of an unconstrained problem.
This includes constraints such as box, simplex, Euclidean ball, 1-norm ball,
small affine sets or invertible transforms and simple second-order cones [15, 31].
The same holds for the proximal map when based on, e.g., the Euclidean norm,
1-norm, ∞-norm, logarithmic barrier, or the conjugate of any of the previous
functions, see [56] for an extensive list. On the other hand, if we need to rely

3The worst-case analytical complexity scales as O
(√

m
)

for path-following interior-point
methods, but in practice it is much smaller or almost constant [87].



14 INTRODUCTION

on more expensive operations to solve the proximal map, the arithmetical com-
plexity may be significantly larger. This can occur with affine sets involving a
large/dense/unstructured matrix, large/unstructured positive semidefinite cones
or nuclear norms such that the singular value decomposition is arithmetically ex-
pensive to compute. For the case of inaccurate calculation of the proximal map,
different behaviour for the gradient and optimal/accelerated first-order method
can be expected. It is shown that the gradient method only yields a constant
error offset [94]. The case for optimal/accelerated methods is more complicated
depending on the proximal map error definition. Under the most restrictive
proximal map error definition [94], the optimal/accelerated first-order method
only shows a constant error offset [95, 96], but under less restrictive definitions
the optimal/accelerated method must suffer from accumulation of errors [94].
An example of this is in total variation regularization using the proximal map
where it is required to solve a total variation denoising problem in each iteration
to obtain an approximate proximal map. For an insufficient accurate proximal
map, the overall algorithm can diverge and suffer from accumulation of errors
as shown in [50]. If the proximal map error can be chosen, which happens in
most practical cases, it is possible to obtain ǫ accuracy with the same analytical
complexity as with exact proximal map calculations [94]. Whether to choose the
gradient or an optimal/accelerated first-order method in the case of inaccurate
proximal map depends on the arithmetical complexity of solving the proximal
map to a certain accuracy [94]. Such two level methods with gradient updates
are used in [50, 97]. The use of inaccurate proximal maps combined with other
techniques is also presented and discussed in [79, 98].

4.3 When the problem class is favourable compared to the

requested accuracy

First-order methods are sensitive to the problem class. Compare, e.g., non-
smooth problems with iteration complexity O(1/ǫ) using smoothing techniques
with strongly-convex smooth problems with iteration complexityO

(√
L/µ log 1/ǫ

)
.

Clearly, if we request high accuracy (small ǫ) the latter problem class has a
much more favourable complexity. On the other hand, for low accuracy (large
ǫ) the difference between the two problem classes might not be that significant.
Second-order methods scale better than first-order methods in the accuracy, e.g.,
quadratic convergence of the Newton method in a neighbourhood of the solu-
tion. This means that for sufficiently high accuracy, second-order methods are
the favourable choice, see [88, 91].



Chapter 2

Applications

The application of convex optimization has expanded greatly in recent years and
we will therefore not try to make a complete coverage of the field but only address
a few applications and only focus on areas closely related to this thesis. To be
specific, we will discuss inverse problems, sparse signal processing and multiple
descriptions (MDs) in the following sections. For more overview literature on
convex optimization for signal processing, we refer to [99–103] and for image
processing (imaging) to [59, 104].

1 Inverse Problems

In signal and image processing, an inverse problem is the problem of determining
or estimating the input signal which produced the observed output. Inverse
problems arise frequently in engineering and physics, where we are interested
in the internal state (input) of a system which gave cause to the measurements
(output). Applications are, e.g., geophysics, radar, optics, tomography and
medical imaging.

An important concept in inverse problems is whether the specific problem is
well-posed or ill-posed – a concept defined by Hadamard. For our purpose, it is
adequate to state that a problem is ill-posed if,

a) the solution is not unique, or

b) the solution is not a continuous function of the data.

Even in the case of a solution being a continuous function of the data, the
sensitivity can be high, i.e., almost discontinuous, in which case it is said to
be ill-conditioned. An engineering interpretation of the latter statement is that

15
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small permutations in the measurement data can lead to large permutations of
the solution [105].

A popular estimation method is maximum likelihood (ML) estimation. How-
ever, for ill-conditioned problems this approach is not suitable [106] in which
case one can use maximum a posteriori (MAP) estimation where additional
information of the solution is included to stabilize the solution [105]. The ad-
ditional information introduces the regularizer. The problem can also be seen
from a statistical point of view where the regularizer is introduced to prevent
overfitting.

Classic approaches to obtain a faithful reconstruction of the unknown vari-
ables are Tikhonov regularization [107], truncated singular value decomposi-
tion [108, 109] and iterative regularization methods using semiconvergence, us-
ing e.g., the conjugate gradient method [110, 111]. Tikhonov regularization is a
MAP estimator if the unknown signal and noise have a Gaussian distribution.
Tikhonov regularization applies Euclidean norm regularization/l2-norm regular-
ization. Another important type of regularization (or corresponding prior) is
the l1-norm [43, 112–114]. Total variation regularization [59, 115] can be seen
as a l1-norm regularization of the gradient magnitude field. These approaches
can be combined or generalized to form other regularization methods, such as
the general-form Tikhonov regularization.

To balance the fit and the regularization and obtain a meaningful reconstruc-
tion it is necessary to make a proper selection of the regularization parameter.
This can be complicated and there exist several approaches. In the case of (ap-
proximately) known noise norm, the discrepancy principle [116] tries to select
the regularization parameter such that the norm of the evaluated fit is of the
order of the noise norm. There also exist methods for unknown noise norm. The
generalized cross-validation [117, 118] tries to minimize the (statistical) expected
fit to the noise free observation (the prediction error). The L-curve method [119]
is based on a log-log plot of the fit and solution norm for a range of regular-
ization parameters and it is advocated to select the regularization parameter
corresponding to the point of maximum curvature. Note that in some cases the
regularization parameter is implicitly given, such as for multiple-input multiple-
output detection using the minimum mean squared error measure. In this case
the resulting problem is a Tikhonov regularized problem with the inverse signal-
to-noise-ratio as the regularization parameter.

2 Sparse Signal Processing

Sparse methods are important in modern signal processing and have been applied
to different applications such as transform coding [120, 121], estimation [122],
linear prediction of speech [123], blind source separation [124] and denoising
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[45, 46]. Compressed/compressive sensing [125, 126] is a method which can be
used in a variety of applications. See [127] for an overview on sparse signal
processing. The use of sparse methods in signal processing requires that the
signal of interest can be represented, in e.g., a basis, where the representation is
sparse or almost sparse. Further, maintaining the most significant components in
the representation yields accurate approximations of the original signal. Notable
methods include the Fourier, cosine, wavelet and Gabor representations.

An important problem in sparse signal processing is how to incorporate the
use of a sparse representation into an appropriate algorithm and/or problem
formulation. Many attempts have been proposed, including greedy algorithms,
convex relaxation, non-convex optimization and exhaustive search/brute force –
we will shortly review the two first attempts since they are the most common.

Greedy algorithms are iterative methods which in each iteration perform a
locally optimal choice. The basic greedy algorithm for sparse estimation is the
matching pursuit (MP) algorithm [128, 129]. Attempts to offset the suboptimal
performance of MP are algorithms such as orthogonal matching pursuit (OMP)
[130–132] which includes a least-squares minimization over the support in each
iteration and for compressive sensing the compressive sampling matching pursuit
(CoSaMP) [133] which can extend and prune the support by more than one index
in each iteration.

Convex relaxation is an approach to model difficult or high worst-case com-
plexity optimization problems to a more convenient convex optimization prob-
lem. A minimum cardinality problem can be relaxed to a minimum l1-norm
problem. In fact, this is the closest convex approximation in case of equally
bounded coefficients, or in a statistical framework, equally distributed coeffi-
cients. Minimum l1-norm problems can also result from Bayesian estimation
with Laplacian prior. Notable approaches in l1-norm minimization are formu-
lations such as least absolute shrinkage and selection operator (LASSO) [134],
basis pursuit (denoising) (BPDN) [135] and the Dantzig selector [136].

Many of the above convex problem formulations refer to both the constrained
and unconstrained Lagrange formulations of the same problems, since the prob-
lems are equivalent [137, Thm. 27.4]. For comparison among constrained and
unconstrained problems, the relation between the regularization in constrained
and unconstrained form can be found to obtain a reliable comparison, see [64, 89]
for some total variation problems. However, in this case we assume that the reg-
ularization parameter in constrained and unconstrained form are equivalently
easy to obtain – but it is argued that the regularization parameter in constrained
form is more convenient, see e.g., the discussions in [62, 76].
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3 Multiple Descriptions

Multiple descriptions (MDs) is a method to enable a more stable transmission
scheme by exploiting channel diversity. The idea is to divide a description of a
signal into multiple descriptions and send these over separate erasure channels
[138]. Only a subset of the transmitted descriptions are received which then can
be decoded. The problem is then to construct the descriptions such that they
individually provide an acceptable approximation of the source and furthermore
are able to refine each other. Notice the contradicting requirements associated
with the MD problem; in order for the descriptions to be individually good, they
must all be similar to the source and therefore, to some extent, the descriptions
are also similar to each other. However, if the descriptions are the same, they
cannot refine each other. This is the fundamental trade-off of the MD problem.
This is different from successive refinement, where one of the descriptions forms
a base layer, and the other description forms a refinement layer, which is no
good on its own.

A simple MD setup with two channels is given in Fig. 2.1 with the descriptions
z1, z2, rate function R(·) and the decoding functions g1(·), g2(·), g{1,2}(·).

MD

Encoder

y

z1

z2

g1(z1)

g2(z2)

g{1,2}(z{1,2})

g1

g2

g{1,2}

R(z1)

R(z2)

Fig. 2.1: The MD problem for two channels.

The application of MD is in the area of communication over unreliable chan-
nels where the erasure statistics of the channels are sufficiently independent such
that we can explore channel diversity [139, 140]. We must also accept various
quality levels and the different quality levels are distinguishable such that central
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decoding is more valuable than side decoding, which is more valuable than no de-
coding [139]. Finally, we must have close to real-time play-out requirement such
that retransmission and excess receiver side buffering is impossible [140]. These
conditions can occur for real-time/two-way speech, audio and video applications.

Traditionally MD approaches try to characterize the rate-distortion region
in a statistical setup [138]. The MD region in the case of two descriptions,
Euclidean fidelity criterion and Gaussian sources is known and the bound is
tight [141]. For the general J-channel case, J ≥ 2, a MD achievable region is
known but it is not known if these bounds are tight [142, 143].

Deterministic MD encoders are also known for speech [144, 145], audio [146,
147] and video [148–151] transmission. The MD image coding problem is also
studied [152–155]. These approaches are specific for the certain application,
but more general MD encoders exist. The MD scalar quantizer [156] for J =
2 channels which uses overlapping quantization regions. There are different
approaches to MD vector quantization such as MD lattice vector quantization
[157–159]. The MD l1-compression formulation presented in paper D and E of
this thesis can also be applied to a range of applications.
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Chapter 3

Contributions

The applications presented in this thesis are broad, as also indicated in the title
of the thesis and in the previous chapters. The unifying concept is the use of
(optimal) first-order methods for convex optimization problems. Paper A is on
a technique for addressing the trade-off between smoothness and accuracy using
a smoothing technique for non-smooth functions. In paper B and C we design
algorithms and software for solving known total variation problems. Paper D
and E is on a new formulation of the MD problem.

Paper A: In this paper, we consider the problem of minimizing a non-smooth,
non-strongly convex function using first-order methods. We discuss restart
methods and the connection between restart methods and continuation.
We propose a method based on applying a smooth approximation to an
optimal first-order method for smooth problems and show how to reduce
the smoothing parameter in each iteration. The numerical comparison
show that the proposed method requires fewer iterations and an empirical
lower complexity than reference methods.

Paper B: This paper describes software implementations for total variation im-
age reconstruction in constrained form. The software is based on applying
a smooth approximation of the non-smooth total variation function to an
optimal first-order method for smooth problems. We use rank-reduction
for ill-conditioned image deblurring to improve speed and numerical sta-
bility. The software scales well in the dimensions of the problem and only
the regularization parameter needs to be specified.

Paper C: In this paper we discuss the implementation of total variation tomog-
raphy regularized least-squares reconstruction in Lagrangian form with
box-constraints. The underlying optimal first-order method for smooth

21
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and strongly convex objective requires the knowledge of two parameters.
The Lipschitz constant of the gradient is handled by the commonly used
backtracking procedure and we give a method to handle an unknown
strong convexity parameter and provide worst-case complexity bounds.
The proposed algorithm is competitive with state-of-the-art algorithms
over a broad class of problems and superior for difficulty problems, i.e.,
ill-conditioned problems solved to high accuracy. These observations also
follow from the theory. Simulations also shows, that in the case of prob-
lems that are not strongly convex, in practice the proposed algorithm still
achieves the favourable convergence rate associated with strong convexity.

Paper D: In this paper, we formulate a general multiple-description framework
based on sparse decompositions. The convex formulation is flexible and
allows for non-symmetric distortions, non-symmetric rates, different de-
coding dictionaries and an arbitrary number of descriptions. We focus on
the generated sparse signals, and conclude that the obtained descriptions
are non-trivial with respect to both the cardinality and the refinement.

Paper E: We extend the work in D, by elaborating more on the issue of par-
tially overlapping information corresponding to enforcing coupled con-
straints, and discuss the use of non-symmetric decoding functions. We
show how to numerical solve large-scale problems and describe the solu-
tion set in terms of (non)-trivial instances. The sparse signals are encoded
using a set partitioning in hierarchical trees (SPIHT) encoder and com-
pared with state-of-the-art MD encoders. We also give examples for both
video and images using respectively two and three channels.
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[110] Å. Björck and L. Eldén, “Methods in numerical algebra and ill-posed
problems,” 1979, report, LiTH-MAT-R33-1979, Dept. of Mathematics,
Linköping University, Sweden.



32 INTRODUCTION

[111] J. A. Scales and A. Gersztenkorn, “Robust methods in inverse theory,”
Inverse Prob., vol. 4, pp. 1071 – 1091, 1988.

[112] J. Claerbout and F. Muir, “Robust modelling of erratic data,” Geophysics,
vol. 38, pp. 826–844, 1973.

[113] H. Taylor, S. Banks, and F. McCoy, “Deconvolution with the ℓ1 norm,”
Geophysics, vol. 44, pp. 39–52, 1979.

[114] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint,” Commun.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

[115] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D, vol. 60, pp. 259–268, 1993.

[116] V. A. Morozov, “On the solution of functional equations by the method
of regularization,” Soviet Math. Dokl., vol. 7, pp. 414 – 417, 1966.

[117] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing a good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215–223, 1979.

[118] G. Wahba, “Practical approximate solutions to linear operator equations
when the data are noisy,” SIAM J. Numer. Anal., vol. 14, pp. 651–667,
1979.

[119] P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regulariza-
tion of discrete ill-posed problems,” SIAM J. Sci. Comput., vol. 14, no. 6,
pp. 1487–1503, 1993.

[120] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-
cients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–3462, Dec
1993.

[121] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, no. 3, pp. 243–250, 1996.

[122] R. Gribonval and E. Bacry, “Harmonic decomposition of audio signals
with matching pursuit,” IEEE Trans. Signal Process., vol. 51, no. 1, pp.
101–111, 2003.

[123] D. Giacobello, M. G. Christensen, J. Dahl, S. H. Jensen, and M. Moonen,
“Sparse linear predictors for speech processing,” in Proc. Ann. Conf. Int.
Speech Commun. Ass. (INTERSPEECH), Brisbane, Australia, Sep. 2008,
pp. 1353–1356.



REFERENCES 33

[124] M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse
decomposition in a signal dictionary,” Neural Comp., vol. 13, no. 4, pp.
863–882, 2001.

[125] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[126] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp. 1289–1306, Apr. 2006.

[127] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Aca-
demic Press, 2009.

[128] S. Mallat and S. Zhang, “Matching pursuit in a time-frequency dictionary,”
IEEE Trans. Signal Process., vol. 41, pp. 3397–3415, 1993.

[129] S. Qian and D. Chen, “Signal representation using adaptive normalized
Gaussian functions,” Signal Process., vol. 36, pp. 329–355, 1994.

[130] S. Chen, S. A. Billings, and W. Lou, “Orthogonal least squares methods
and their application to non-linear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873–1896, 1989.

[131] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. Asilomar Conf. on Signal, Systems and Comput-
ers, Nov. 1993, pp. 40–44.

[132] G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-frequency decomposi-
tions,” Opt. Eng., vol. 33, no. 7, pp. 2183–2191, 1994.

[133] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26,
no. 3, pp. 301–321, May. 2009.

[134] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc., Ser. B, vol. 58, pp. 267–288, 1994.

[135] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, Aug. 1998.

[136] E. Candès and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Ann. Stat., vol. 35, no. 6, pp. 2313–2351, De-
cember 2007.

[137] R. T. Rockafellar, Convex Analysis. Princeton Univ. Press, 1970.



34 INTRODUCTION

[138] A. A. E. Gamal and T. M. Cover, “Achievable rates for multiple descrip-
tions,” IEEE Trans. Inf. Theory, vol. 28, no. 6, pp. 851 – 857, Nov. 1982.

[139] V. K. Goyal, “Multiple description coding: Compression meets the net-
work,” IEEE Signal Process. Mag., vol. 18, no. 5, pp. 74–93, Sep. 2001.

[140] M. H. Larsen, “Multiple description coding and applications,” Ph.D. dis-
sertation, Multimedia Information and Signal Processing, Aalborg Univer-
sity, 2007.

[141] L. Ozarow, “On a source-coding problem with two channels and three
receivers,” Bell Syst. Tech. J., vol. 59, pp. 1909 – 1921, Dec. 1980.

[142] R. Venkataramani, G. Kramer, and V. K. Goyal, “Multiple description
coding with many channels,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp.
2106–2114, 2003.

[143] R. Purit, S. S. Pradhan, and K. Ranchandram, “n-channel symmetric
multiple descriptions-part ii: An achievable rate-distortion region,” IEEE
Trans. Inf. Theory, vol. 51, no. 4, pp. 1377–1392, 2005.

[144] A. Ingle and V. Vaishampayan, “DPCM system design for diversity sys-
tems with applications to packetized speech,” IEEE Trans. Speech Audio
Processing, vol. 3, no. 1, pp. 48–58, Jan. 95.

[145] W. Jiang and A. Ortega, “Multiple description speech coding for robust
communication over lossy packet networks,” in Proc. IEEE Int. Conf. Mul-
timedia and Expo, 2000, pp. 444–447.

[146] R. Arean, J. Kovacevic, and V. K. Goyal, “Multiple description percep-
tual audio coding with correlating transforms,” IEEE Trans. Speech Audio
Process., vol. 8, no. 2, pp. 140–145, Mar. 2000.

[147] G. Schuller, J. Kovacevic, F. Masson, and V. K. Goyal, “Robust low-
delay audio coding using multiple descriptions,” IEEE Trans. Speech Audio
Process., vol. 13, no. 5, pp. 1014–1024, Sep. 2005.

[148] T. Nguyen and A. Zakhor, “Matching pursuits based multiple description
video coding for lossy environments,” in Proc. Int. Conf. Image Process.
(ICIP), Barcelona, Spain, Sep. 2003, pp. 57–60.

[149] H. Chan and C. Huang, “Multiple description and matching pursuit coding
for video transmission over the internet,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), Hong Kong, Apr. 2003, pp. 425–428.

[150] Y. Wang, A. R. Reibman, and S. Lin, “Multiple description coding for
video delivery,” in Proc. IEEE, vol. 93, 2005, pp. 57 – 70.



REFERENCES 35

[151] Y. Zhang, S. Mei, Q. Chen, and Z. Chen, “A multiple description im-
age/video coding method by compressed sensing theory,” in IEEE Int.
Symp. on Circuits and Systems (ISCAS), Seattle, Washington, May. 2008,
pp. 1830–1833.

[152] P. A. Chou, S. Mehrotra, and A. Wang, “Multiple description decoding
of overcomplete expansions using projections onto convex sets,” in Proc.
IEEE Data Comp. Conf. (DCC), Snowbird, Utah, Mar. 1999, pp. 72 – 81.

[153] T. Petrisor, B. Pesquet-Popescu, and J.-C. Pesquet, “A compressed sensing
approach to frame-based multiple description coding,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), Honolulu, Hawaii, Apr.
2007, pp. 709–712.

[154] T. Tillo, M. Grangetto, and G. Olmo, “Multiple description image coding
based on Lagrangian rate allocation,” IEEE Trans. Image Process., vol. 16,
no. 3, pp. 673–683, 2007.

[155] U.-S. G. Sun, J. Liang, C. Tian, C. Tu, and T.-D. Tran, “Multiple descrip-
tion coding with prediction compensation,” IEEE Trans. Image Process.,
vol. 18, no. 5, pp. 1037–1047, 2009.

[156] V. A. Vaishampayan, “Design of multiple description scalar quantizers,”
IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 821–834, 1993.

[157] S. D. Servetto, V. A. Vaishampayan, and N. J. A. Sloane, “Multiple de-
scription lattice vector quantization,” in Proc. IEEE Data Comp. Conf.
(DCC), 1999, pp. 13–22.

[158] V. A. Vaishampayan, N. J. A. Sloane, and S. D. Servetto, “Multiple-
description vector quantization with lattice codebooks: design and analy-
sis,” IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1718–1734, 2001.

[159] J. Østergaard, R. Heusdens, and J. Jensen, “n-channel asymmet-
ric entropy-constrained multiple-description lattice vector quantization,”
IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6354–6375, Dec. 2010.



36 INTRODUCTION



Paper A

Iterated Smoothing for Accelerated Gradient
Convex Minimization in Signal Processing

T. L. Jensen, J. Østergaard and S. H. Jensen

This paper is published in
Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing

(ICASSP),
Dallas, Texas, pp. 774–777, May 2010.



38 PAPER A

c© 2010 IEEE
The layout is revised.

Minor spelling, gramma and notation errors have been corrected.



1. INTRODUCTION 39

Abstract

In this paper, we consider the problem of minimizing a non-smooth convex prob-
lem using first-order methods. The number of iterations required to guarantee a
certain accuracy for such problems is often excessive and several methods, e.g.,
restart methods, have been proposed to speed-up the convergence. In the restart
method a smoothness parameter is adjusted such that smoother approximations
of the original non-smooth problem are solved in a sequence before the original,
and the previous estimate is used as the starting point each time. Instead of ad-
justing the smoothness parameter after each restart, we propose a method where
we modify the smoothness parameter in each iteration. We prove convergence
and provide simulation examples for two typical signal processing applications,
namely total variation denoising and ℓ1-norm minimization. The simulations
demonstrate that the proposed method require fewer iterations and show lower
complexity compared to the restart method.

1 Introduction

Recently there has been a renewed interest in optimal first-order methods even
though these methods have been known for some time [1, 2], see also [3] for a
unified framework. The inspiration for the current interest in first-order methods
appears to come from a recent method that guarantee linear complexity for non-
smooth problems with certain structures [4].

The motivation for using first-order methods is usually in the case of large
scale problems, where second-order methods might scale poorly or problems
where moderate accuracy of the solution is sufficient. Such problems occur in
image processing [5, 6], but also compressed sensing recovery applies first-order
methods [7–9]. These methods have also been used for robust numerical software
packages [9, 10].

One method to minimize a non-smooth function is by minimizing a smooth
approximation of the original non-smooth function. The effectiveness of such
an approach is dependent upon the choice of a smoothness parameter, which
also determines the accuracy of the smooth approximation. A large smoothness
parameter yields a very smooth problem and in the early iterations of the algo-
rithm, the function value will quickly decrease. However, the algorithm might
not converge because the smooth approximation is not accurate enough. On
the other hand, a sufficiently small smoothness parameter, gives a less smooth
but more accurate approximation. In this case the function value will slowly
decrease but convergence within the required accuracy is guaranteed. To de-
crease the number of iterations, and thereby speed up the algorithm, one may
use restart methods. The idea is to combine the fast decreasing function value
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in the early iterations for a very smooth problem with a sufficiently well ap-
proximated smooth function to ensure convergence in the final iterations. The
algorithm starts by solving a much smoother problem than the original problem
and then subsequently solve lesser smooth problems, using the previous esti-
mate as the starting point at each restart, see [9, 11] and references therein.
Such an approach is considered a heuristic except for the case of strongly convex
functions where there are interesting theoretical results [11], or [12, §5.1.2] for
composite objective functions.

In this paper, we will consider convex (but not strongly convex) non-smooth
functions. For this case the results indicate that continuation or restart are
practical efficient methods to decrease the number of iterations and yet reach
the required accuracy [9]. We first review the restart method [9, 11] and relate
this approach to the continuation method, see [7, 13] and references therein. We
also demonstrate via simulations that restart methods reduce the complexity
compared to an approach with a fixed smoothness parameter. Then, inspired
by [7, 9, 11, 13] we propose a new method where we decrease the smoothness
parameter in each iteration and prove that it converges. Our bound is, how-
ever, loose and the actual complexity is in practice much better than what the
bound suggests. Simulation examples for two typical signal processing applica-
tions, namely total variation denoising and ℓ1-norm minimization, show that the
proposed method yield lower complexity compared to both the fixed smoothing
approach and the restart approach.

2 A Smoothing Method

Let us consider the following optimization problem

minimize f(x)
subject to x ∈ Qp

(A.1)

with the dual problem
maximize g(u)
subject to u ∈ Qd

(A.2)

where f is a non-smooth, non-strongly, convex function and Qp, Qd are convex
sets. Let x⋆ and u⋆ be solutions to the problems (A.1) and (A.2), respectively.
The complexity estimate for problem (A.1) is O(1/ǫ2), where ǫ is the accuracy
of the objective value

f(x)− f(x⋆) ≤ f(x)− g(u) ≤ ǫ, x ∈ Qp, u ∈ Qd .

In [4] it was, however, shown that for problems with certain structures it is
possible to obtain the complexity O(1/ǫ), which is one order faster than the
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sub-gradient method. The idea is to exploit the structure of the non-smooth
problem. This is done by making a smooth approximation of the non-smooth
function and then subsequently minimize the smooth approximation using an
optimal first-order method for the class of smooth problems.

In the following we review the steps required for approximating a non-smooth
function by a smooth function. A more general approach is given in [4], but this
reduced form will be sufficient for our simulations in Sec. 5. Let the function f
have the form

f(x) = max
u∈Qd

uTAx , (A.3)

where we now assume Qd is a closed and bounded convex set. We then approx-
imate f by fµ where

fµ(x) = max
u∈Qd

uTAx − µdd(u) ,

with µ>0 called the smoothness parameter and dd(u) ≥ 1
2‖u−û‖22. The function

fµ satisfy
fµ(x) ≤ f(x) ≤ fµ(x) + µ∆d , ∆d = max

u∈Qd

dd(u) . (A.4)

The approximation function is also smooth, i.e., it has Lipschitz continuous
gradient

‖∇fµ(x)−∇fµ(x̃)‖2 ≤ Lµ‖x− x̃‖2, x, x̃ ∈ Qp

with

Lµ =
‖A‖22
µ

. (A.5)

It was shown in [4] that the optimal selection of a fixed µ for achieving an
ǫ-accuracy is

µ =
ǫ

2∆d
, (A.6)

which results in an ǫ/2 approximation of f , i.e.,

fµ(x) ≤ f(x) ≤ fµ(x) +
ǫ

2
. (A.7)

We now apply the smooth approximation to an optimal first-order method with
complexity estimate O(

√
L/ǫ) [14] where L is the Lipschitz constant of the gra-

dient of the objective function. Using (A.5) and (A.6) we obtain the complexity
O(1/ǫ) for non-smooth problems.
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3 Restart

As indicated in (A.6), a fixed µ is selected so small that the approximation ac-
curacy in (A.7) would be smaller than the required accuracy. Another approach
is to select µ large in the early iterations because the smooth approximation
converges like O(

√
Lµ/ǫ) and then in the final iterations select µ small enough to

ensure the smooth approximation comes within the required accuracy. This idea
is used in [9, 11], where the main algorithm is restarted several times with first
a large µ, and then subsequently a smaller and smaller µ. Note that in [7, 13],
they solve composite problems of the form

min
x
ψ(x) +

1

µ
h(x) ,

where h(x) is smooth and ψ(x) is non-smooth. The smoothness, or the Lipschitz
constant of 1

µ∇h(x), is L = 1
µL(∇h(x)) where L(f) is the Lipschitz constant of

the function f . For small µ we will then have a large Lipschitz constant of the
gradient function. The continuation idea in [7, 13] is then similar to the restart
approaches in [9, 11] because the sequence of problems solved in the continuation
strategy becomes less and less smooth, as in the restart approach.

For strongly convex functions, it is possible to guarantee that the previous
estimate is useful as a starting point, i.e., warm start, and then show the advan-
tage of applying a restart method. Let φ be a strongly convex max-type function
with strong convexity parameter σ, but φ does not have a Lipschitz continuous
gradient. We then have [14, Corollary 2.3.1]

σ

2
‖y − y⋆‖22 ≤ φ(y)− φ(y⋆), y ∈ Q

where y⋆ is the solution that minimize φ(y) for y ∈ Q. It was shown in [11]
that the restart algorithm has the complexity O(1/log(ǫ)) for strongly convex
non-smooth functions. Warm start approaches for first-order methods are also
studied in [15] and in [12, §5.1.2]. The restart algorithm from [11] is given below.

The function NESTEROV is not shown, but is the algorithm presented
in [4, §3.11], which outputs a primal and dual ǭj-optimal solution after k̄(j+1)

iterations with the starting point x̄(j) and using the smoothness parameter µ =
ǭj

2∆d
.

4 Iterated Smoothing

In the previous section we reviewed a restart algorithm where the smoothness
parameter was decreased before a restart. The idea proposed in this section is to
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Algorithm: Restart [11]

Given a x̄(0),ū(0), γ > 0, k = 0 and ǫ

Repeat for j = 0, 1, 2, . . .

ǭj = max
(

f(x̄(j))−g(ū(j))
γ , ǫ

)

x̄(j+1), ū(j+1), k̄(j+1) = NESTEROV(x̄(j), ǭj)

k = k + k̄(j+1)

if f(x̄(j+1))− g(ū(j+1)) ≤ ǫ then break

decrease the smoothness parameter in each iteration instead of only after each
restart, using an optimal first-order method as base.

We will study the convergence properties of such an algorithm. Let
{(x(j), y(j), z(j), θj)} be generated by Algorithm 1 or Algorithm 2 from [3], and
use the smooth approximation fµj

(x) (with a variable smoothness parameter
µj). We then have

fµj
(x(j+1)) ≤ (1− θj)fµj

(x(j)) + θjfµj
(x⋆)

+θ2jLµj
(12‖x⋆ − z(j)‖22 − 1

2‖x⋆ − z(j+1)‖22)
for the iterations j = 0, 1, ... Using the approximation in (A.4), we obtain

f(x(j+1))− µj∆d ≤(1− θj)f(x(j)) + θjf(x
⋆)

+θ2jLµj
(12‖x⋆ − z(j)‖22 − 1

2‖x⋆ − z(j+1)‖22).

With θk = 2
k+2 , we select µj = αθ2j as a quadratically decreasing function.

This will ensure that the approximation error converges to a constant. We then
obtain

f(x(j+1))− f(x⋆)− (1− θj)(f(x(j))− f(x⋆))

≤ ‖A‖
2
2

α

(
1
2‖x⋆ − z(j)‖22 − 1

2‖x⋆ − z(j+1)‖22
)
+ θ2jα∆d .

Adding the inequalities from j = 0, 1, . . . , k − 1, gives

f(x(k))− f(x⋆) +
k−1∑

j=1

θj(f(x
(j))− f(x⋆))

≤ ‖A‖
2
2

α
(12‖x⋆ − z(0)‖22 − 1

2‖x⋆ − z(k)‖22) +
k−1∑

j=0

θ2jα∆d .
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We then obtain the lower bound

f(x(k))− f(x⋆) +
k−1∑

j=1

θj(f(x
(j))− f(x⋆))

≥ min
i=1,...,k

{
f(x(i))− f(x⋆)

}(
1 +

k−1∑

j=1

θj

)
.

For θk = 2
k+2 , we have

k−1∑

j=1

θj ≥ 2 loge(k + 1)− 3,

k−1∑

j=0

θ2j ≤
∞∑

j=0

θ2j =
2

3
π2 − 4 .

It is important that the sum of the approximation errors is bounded by a con-
stant. This is achieved for quadratically decreasing functions, which motivated
our selection µj = αθ2j . For k ≥ 2,

min
i=1,...,k

{
f(x(i))− f(x⋆)

}

≤ 1

2 loge(k+1)−2

(‖A‖22
2α
‖x⋆ − x(0)‖22 + α∆d

(
2

3
π2 − 4

))
.

The algorithm converges, although the upper bound decreases slowly. The pa-
rameter α works as a tradeoff between the two terms in the brackets. Since
‖x⋆−x(0)‖22 is unknown in practice and the bound above is loose, we are instead
inspired by (A.6) and set

α =
f(x(0))− g(u(0))

2∆dc
,

where c is a scaling reflecting that g(u(0)) might severely underestimate f(x⋆).
The algorithm Smooth implements the iteratively decreasing smoothness pa-
rameter studied in this section and is applied to Algorithm 1 in [3], with the
smoothing technique presented in [4]. The function PQ(x) is the projection of x
onto Q,

PQ(x) = argmin
y∈Q

‖x− y‖22.

5 Simulations

In this section, we compare the three algorithms, Fixed (as in [4, §3.11] with a
fixed µ selection), Restart and Smooth for solving two different problems on
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the form (A.1) and (A.3). For algorithms Fixed and Smooth we record the
number of iterations k required to reach the duality gap

f(x(k))− g(u(k)) ≤ ǫ, x(k) ∈ Qp, u
(k) ∈ Qd

Algorithm: Smooth

Given a x(0), u(0) and ǫ, set α= f(x(0))−g(u(0))
2∆dc

, z(0)=x(0)

Repeat for k = 0, 1, 2, . . .

y(k) = (1− θk)x(k) + θkz
(k), θk = 2

k+2

µk = αθ2k

ũ(y(k)) = argmax
u∈Qd

{
uTAy(k) − µkdd(u)

}

u(k) = (1− θk)u(k) + θkũ(y
(k))

if f(x(k))− g(u(k)) ≤ ǫ then break

∇fµk
(y(k)) = AT ũ(y(k))

z(k+1) = PQp

(
zk − 1

θkLµk

∇fµk
(y(k))

)

x(k+1) = (1− θk)x(k) + θkz
(k+1)

where x(k) ∈ R
N×1. For the algorithm Restart, we record the total number of

inner iterations k. As primal and dual prox-function we use dp(x) =
1
2‖x−x(0)‖22

and dd(u) = 1
2‖u‖22 as in [9] (û = 0). By choosing the center of the primal

prox-function as the starting point for the new iterations, we obtain a good
initial/warm starting point in each restart [9]. For a fixed accuracy, it was
suggested in [9] to use a fixed number of restarts. However, since we sweep over
a large range of accuracies it is more appropriate to allow a variable number of
restarts. We therefore select γ as suggested in [11].

5.1 Total Variation Denoising

Our first example is the total variation denoising problem [10, 16],

minimize

m∑

i=1

n∑

j=1

‖Dijx‖2

subject to ‖x− b‖2 ≤ δ
where Dijx is an approximation of the gradient at pixel i, j, and m,n is the
image dimensions with the number of variables N = mn. We observe b = x0 + e
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with x0 the original image and e being i.i.d. Gaussian noise. As initialization
we use x(0) = x̄(0) = b and

u(0) = ū(0) = argmax
u∈Qd

uTAx(0) − ǫ

2∆d
dd(u) (A.8)

with A = [D11, D12, · · · , Dmn]. For the total variation denoising problem we
obtain the simulation results shown in Fig. A.1. We observe that the algorithm
Fixed with fixed µ converges approximately linear O(1/ǫ). If we, however, apply
Restart then the algorithm is faster and the complexity is lower (the slope is
closer to that of O(1/√ǫ) compared to O(1/ǫ)). The proposed approach Smooth

with decreasing µ for each iteration converges faster and shows slightly better
complexity, approximately O(1/√ǫ).
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Fig. A.1: Simulation results for a total variation denoising example of a noisy image of Lenna
(512 × 512). We report the number of iterations k required to reach the relative accuracy ǫ

N
.

As a reference, we also show the complexity functions O
(

1
ǫ

)

and O
(

1√
ǫ

)

.

5.2 ℓ1-norm Minimization

For the second example, we will consider the problem of finding a sparse repre-
sentation of an image b in an overcomplete dictionary B:

minimize ‖z‖1
subject to ‖Bz − b‖2 ≤ δ (A.9)
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where B = [B1;B2] and B1 is the 2-dimensional discrete cosine transform and
B2 is a Symlet16 wavelet transform with 3 levels. As shown in [17], the problem
(A.9) can be posed as an equivalent problem with simpler projection constraints

minimize ‖Wx‖1
subject to ‖x1 − b‖2 ≤ δ

where W =

[
B1 −B1B

−1
2

0 I

]
, x =

[
x1
x2

]
.

We initialize the algorithms with x(0) = x̄(0) = [b; 0] and u(0) = ū(0) as in (A.8)
with A = W . For this problem we obtain the simulation results shown in Fig.
A.2, where we again observe that the approach Fixed with fixed µ converges
approximately linear O(1/ǫ). For the Restart approach, the convergence rate is
closer to O(1/√ǫ) for high accuracy (small ǫ) but approximately O(1/ǫ) for low
accuracy. The proposed algorithm Smooth with decreasing µ for each iteration
converges faster and shows lower complexity than the other two methods. We
also generated 100 problems with the vector b ∈ R

1282×1 being i.i.d. Gaussian.
For these simulations we observe similar results as reported in Fig. A.2 for the
relative convergence speed and complexity.
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Fig. A.2: Simulation results for an ℓ1-norm minimization example using the image of Lenna
(512 × 512). We report the number of iterations k required to reach the relative accuracy ǫ

N
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6 Conclusions

We presented a new method to speed up the convergence for non-smooth prob-
lems using accelerated gradient methods for convex minimization. We provided
a proof of convergence, which resulted in a loose bound on the complexity. In
fact, practical simulations revealed that the complexity is lower than what the
bound suggests. For comparison, we studied and simulated existing methods.
The simulations showed that the proposed method has both faster convergence
and lower complexity compared to the existing methods.
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Abstract

This paper describes new algorithms and related software for total variation (TV)
image reconstruction, more specifically: denoising, inpainting, and deblurring.
The algorithms are based on one of Nesterov’s first-order methods, tailored to
the image processing applications in such a way that, except for the mandatory
regularization parameter, the user needs not specify any parameters in the algo-
rithms. The software is written in C with interface to Matlab (version 7.5 or
later), and we demonstrate its performance and use with examples.

1 Introduction

Image reconstruction techniques have become important tools in computer vi-
sion systems and many other applications that require sharp images obtained
from noisy and otherwise corrupted ones. At the same time the total variation
(TV) formulation has proven to provide a good mathematical basis for several
basic operations in image reconstruction [5], such as denoising, inpainting, and
deblurring. The time is ripe to provide robust and easy-to-use public-domain
software for these operations, and this paper describes such algorithms along
with related Matlab and C software. To our knowledge, this is the first public-
domain software that includes all three TV image reconstruction problems. The
software is available from http://www.netlib.org/numeralgo in the file na28, the
Matlab files have been tested on Matlab versions 7.5–7.8, and they require ver-
sion 7.5 or later.

We note that some Matlab codes are already available in the public domain,
see the overview in Table B.1. In §7 we compare the performance of our al-
gorithms with those in Table B.1; such a comparison is not straightforward as
these codes solve slightly different problems and do not use comparable stop-
ping criteria. Our comparisons show that our algorithms indeed scale well for
large-scale problems compared to the existing methods.

The optimization problems underlying the TV formulation of image restora-
tion cannot easily be solved using standard optimization packages due to the
large dimensions of the image problems and the non-smoothness of the objec-
tive function. Many customized algorithms have been suggested in the literature,
such as subgradient methods [1, 7], dual formulations [4, 24], primal-dual meth-
ods [6, 16, 21], graph optimization [9], second-order cone programming [13], etc.
However, the implementation of all these methods for large-scale problem is not
straightforward.

Our algorithms are based on recently published first-order methods developed
by Nesterov [17–20], but tailored specifically to the problems in image restoration
that we consider. The new first-order methods have O(1/ǫ) complexity, where ǫ
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is the accuracy of the solution. These methods show promising potential in large-
scale optimization but have, so far, been used only scarcely for image processing
algorithms – except for very recent work in [2] and [22].

Compared to [22], we provide practical complexity bounds and stopping cri-
teria, we included inpainting into Nesterov’s framework, and we use rank reduc-
tion to improve the speed and numerical stability of the deblurring algorithm.
Our approach allows us to choose all necessary parameters in the algorithms in
a suitable fashion, such that only the regularization parameter must be specified
by the user. More experienced users can set additional parameters if needed.
Our algorithms and implementations are robust, user friendly, and suited for
large problems.

Our paper starts with a brief summary of the notation in §2. We then
present our three methods for TV-based denoising, inpainting, and deblurring
in §3–§5; the presentation follows that of Nesterov, but with a simplified notation
tailored to our image processing applications. Next, in §6 we illustrate the use
of our methods and software with three examples, and in §7 we demonstrate the
performance and the computational complexity of our methods. Brief manual
pages for the Matlab functions are given in the appendix.

2 Notation

In this package we consider m × n grayscale images, represented by the image
arrays B (the noisy/corrupted image) and X (the reconstructed image). For our
mathematical formulation it is convenient to represent the images by the two
vectors x and b of length mn, given by

x = vec(X), b = vec(B),

where “vec” denotes column-wise stacking.
Associated with each pixel Xij is a 2×1 gradient vector, and we approximate

this gradient via finite differences. To set the notation, we first define two
m×n arrays X ′

c and X ′
r with the finite-difference approximations to the partial

derivatives in the directions of the columns and rows:

X ′
c = DmX, X ′

r = XDT
n ,

where the two matrices Dm and Dn hold the discrete approximations to the
derivative operators, including the chosen boundary conditions. Then we write
the gradient approximation for pixel ij as the 2× 1 vector

D(ij) x =

(
(X ′

c)ij
(X ′

r)ij

)
∈ R

2×1, (B.1)
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Table B.1: Freely available Matlab codes for TV reconstruction.

Code: tvdenoise – denoising.
Author: Pascal Getreuer, Dept. of Mathematics, UCLA, Los Angeles.
Comments: Chambolle’s algorithm [4] (dual formulation), stopping criterion,

very fast, also treats color images.
Availability: Matlab Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16236
Code: perform_tv_denoising – denoising.
Author: Gabriel Peyré, CNRS, CEREMADE, Université Paris Dauphine.
Comments: Chambolle’s algorithm [4] (dual formulation), no stopping criterion, fast.
Availability: Toolox – A Toolbox for General Purpose Image Processing:

www.ceremade.dauphine.fr/∼peyre/matlab/image/content.html
Code: TVGP – denoising.
Authors: M. Zhu, Dept. of Mathematics, UCLA, Los Angeles.

S. Wright, Dept. of Computer Sciences, Univ. of Wisconsin, Madison.
T. F. Chan, Dept. of Mathematics, UCLA, Los Angeles.

Comments: Gradient projection algorithm for the dual formulation, software, stopping
criterion, very fast. Described in [24].

Availability: TV-Regularized Image Denoising Software:
www.cs.wisc.edu/∼swright/TVdenoising

Code: SplitBregmanROF – denoising.
Authors: Tom Goldstein and Stanley Osher, Dept. of Mathematics,

UCLA, Los Angeles.
Comments: Bregman iterations, C++ code with Matlab mex interface, stopping cri-

terion, very fast. Described in [14].
Availability: Split Bregman Denoising:

www.math.ucla.edu/∼tagoldst/code.html
Code: tv dode 2D – inpainting.
Author: Carola-Bibiane Schönlieb, Centre for Mathematical Sciences,

Cambridge University, UK.
Comments: Script with built-in stopping criterion, no interface, slow. Described in [11].
Availability: Domain Decomposition for Total Variation Minimization:

homepage.univie.ac.at/carola.schoenlieb/webpage tvdode/tv dode numerics.htm
Code: Fixed pt and Primal_dual – deblurring.
Author: Curtis R. Vogel, Dept. of Mathematical Sciences,

Montana State University, Bozeman.
Comments: Scripts with no stopping criteria or interface. Described in [21].
Availability: Codes for the book Computational Methods for Inverse Problems:

www.math.montana.edu/∼vogel/Book/Codes/Ch8/2d
Code: FTVdG – deblurring.
Authors: Junfeng Yang, Nanjing University, China.

Yin Zhang, Wotao Yin, and Yilun Wang, Dept. of Computational and
Applied Mathematics, Rice University, Houston.

Comments: Script with stopping criteria, fast, treats color images. Described in [23].
Availability: FTVd: A Fast Algorithm for Total Variation based Deconvolution.

www.caam.rice.edu/∼optimization/L1/ftvd/v3.0
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where the notation (ij) for the subscript denotes that we operate on the pixel
with index ij, andD(ij) is a matrix of dimensions 2×mn. For one-sided difference
approximations at the “inner pixels”, we have

D(ij) =
[
ei+1+(j−1)m − ei+(j−1)m , ei+jm − ei+(j−1)m

]T
,

in which ek denotes the kth canonical unit vector of length mn. We also define
the matrix D (of dimensions 2mn × mn) obtained by stacking all the D(ij)

matrices:

D =



D(11)

...
D(mn)


 . (B.2)

In Appendix B we show that the 2-norm of this matrix satisfies ‖D‖22 ≤ 8. The
approximation to the gradient norm satisfies ‖D(ij) x‖22 = (X ′

c)
2
ij + (X ′

r)
2
ij .

We also need to introduce the vector u ∈ R
2mn of dual variables, and similar

to before we use the notation u(ij) for the 2-element sub-vector of u that conforms
with Eq. (B.2) and corresponds to pixel ij.

The total variation (TV) of a function f(s, t) in a domain Ω is defined as
the 1-norm of the gradient magnitude, i.e.,

∫
Ω ‖∇f‖2 ds dt in which ‖∇f‖22 =

(∂f/∂s)2+(∂f/∂t)2. For our discrete problem, we define the analogous discrete
TV function associated with the image X as

T (x) =
m∑

i=1

n∑

j=1

‖D(ij) x‖2, (B.3)

i.e., the sum of all the 2-norms of the gradient approximations.
In our algorithms we need to extract elements of a vector x ∈ R

N specified
by an index-set I = {i1, i2, . . . , i|I|} with indices ik between 1 and N . Here,
|I| denotes the number of elements in I. If all the elements in I are distinct
(i.e., ik 6= il when k 6= l), then the complementary set is Ic := {1, . . . , N} \ I =
{j1, j2, . . . , jN−|I|} again with indices jk between 1 and N .

3 Denoising

Given a noisy image B = Xexact + noise, the discrete TV denoising problem
amounts to minimizing T (x) subject to a constraint on the difference between
the reconstruction x and the data b. This ensures that the reconstructed image
is closely related to the noisy image, but “smoother” as measured by the TV
function (B.3). The discrete TV denoising problem can thus be formulated as

minimize
∑m

i=1

∑n
j=1 ‖D(ij) x‖2

subject to ‖x− b‖2 ≤ δ,
(B.4)
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which is a second-order cone programming problem (SOCP) [3]. The dual prob-
lem is also a SOCP, given by

maximize −δ ‖DTu‖2 + bTDTu

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . ,m, j = 1, . . . , n,
(B.5)

where u ∈ R
2mn is the dual variable. The two problems have the same optimal

value, because Slater’s constraint qualification is satisfied, cf. [3]. The SOCP in
Eq. (B.4) can, in principle, be solved using standard interior-point algorithms,
but the large dimensions typically render such an approach intractable.

3.1 The First-Order Method

Instead of using interior point algorithms, we adapt a first-order algorithm devel-
oped by Nesterov [17, 18] (similar to the approaches in [2] and [22]). Nesterov’s
algorithm is an efficient scheme for minimization of saddle point problems over
bounded convex sets. The basic idea of this algorithm is to make a smooth O(ǫ)-
approximation with Lipschitz continuous derivatives to the non-differentiable TV
function, and then subsequently minimize this approximation using an optimal
first-order method for minimization of convex functions with Lipschitz continu-
ous derivatives.

To adapt the TV denoising problem to Nesterov’s method, we follow [3, §5.4]
and rewrite Eq. (B.4) as a saddle point problem of the form

min
x∈Qp

max
u∈Qd

uTDx,

where we have defined the primal and dual feasible sets

Qp = {x | ‖x− b‖2 ≤ δ},
Qd = {u | ‖u(ij)‖2 ≤ 1, i = 1, . . . ,m, j = 1, . . . , n}.

To each set Qp and Qd we associate a so-called prox-function, which we choose
as, respectively,

fp(x) =
1
2‖x− b‖22 and fd(u) =

1
2‖u‖22.

These functions are bounded above as

∆p = max
x∈Qp

fp(x) =
1
2δ

2 and ∆d = max
u∈Qd

fd(u) =
1
2mn.

As a smooth approximation for T (x) we then use an additive modification of
T (x) with the prox-function associated with Qd:

Tµ(x) = max
u∈Qd

{uTDx− µ fd(u)}. (B.6)



58 PAPER B

The approximation Tµ(x) then bounds T (x) as Tµ(x) ≤ T (x) ≤ Tµ(x) + µ∆d,
meaning that if we set µ = ǫ/(2∆d) = ǫ/(mn) then we have an (ǫ/2)-approximation
of T (x). Furthermore, following [18], it can be shown that Tµ(x) has Lipschitz
continuous derivatives with constant

Lµ = µ−1‖D‖22 ≤ 8/µ,

and its gradient is given by

∇Tµ(x) = DTu,

where u is the solution to (B.6) for a given x.

Given data b and a tolerance ǫ.

Set x[0] = b (a feasible starting point), µ = ǫ
2∆d

, and Lµ =
‖D‖2

2

µ .

For k = 0, 1, 2, . . .

1) Evaluate g[k] = ∇Tµ(x[k]).

2) Find y[k] = argminx∈Qp

{
(x− x[k])T g[k] + 1

2Lµ‖x− x[k]‖22
}
.

3) Find z[k] = argminx∈Qp

{
Lµ fp(x) +

∑k
i=0

i+1
2 (x − x[i])T g[k]

}
.

4) Update x[k+1] = 2
k+3 z

[k] + k+1
k+3 y

[k].

Fig. B.1: Nesterov’s first-order method for discrete TV denoising. We stop the iterations
when the duality gap is less than ǫ.

Nesterov’s optimal first-order method for minimizing the convex function
Tµ(x) with Lipschitz continuous derivatives is listed in Fig. B.1. We terminate
the algorithm when the duality gap satisfies

m∑

i=1

n∑

j=1

‖D(ij) x‖2 + δ‖DTu‖2 − uTD b < ǫ.

When the iterations are stopped by this criterion, leading to the solution xǫ,
then we are ensured that the found solution is close to the exact solution x⋆ in
the sense that T (xǫ)− T (x⋆) < ǫ. We remark that with our formulation of the
problem it is difficult to relate the parameter ǫ to the error ‖xǫ − x⋆‖2 a priori
(while this is possible in the dual formulation in [24] where the primal variable
is a function of the dual variable).
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By specifying the threshold ǫ for the duality gap, we can determine the
parameter µ = ǫ/(mn) used in the TV denoising algorithm to evaluate Tµ(x)
(B.6). Nesterov showed in [18] that at most

N =
4‖D‖2
ǫ

√
∆p ∆d (B.7)

iterations are required to reach an ǫ-optimal solution. For the discrete TV
denoising algorithm we obtain the bound

Ndenoise =
2‖D‖2
ǫ

δ
√
mn ≤ 4

√
2mn

ǫ
δ. (B.8)

We return to the choice of ǫ in Section 7.

3.2 Efficient Implementation

The key to an efficient implementation of our algorithm is to evaluate g[k] in step
1) and solve the two subproblems 2) and 3) efficiently. This is ensured by our
choice of prox-functions fp and fd. By a simple change of variables it turns out
that all three quantities can be written as the solution to a simple quadratically
constrained problem of the form

minimize 1
2 θ

T θ − θT c

subject to ‖θ‖2 ≤ η,

whose solution is simply given by θ = c /max{1, ‖c‖2/η} . In step 1) we must
evaluate g[k] = ∇Tµ(x[k]) and it is easy to show that the gradient is given by
∇Tµ(x[k]) = DTu[k], where u[k] is given by

u[k] = arg max
u∈Qd

uTDx[k] − µ

2
‖u‖22.

The mn sub-vectors u
[k]
(ij) of u

[k] are thus given by

u
[k]
(ij) = D(ij)x

[k] /max{µ, ‖D(ij)x
[k]‖2}.

In step 2) it follows from a simple variable transformation that

y[k] =
(
Lµ (x[k] − b)− g[k]

)
/ max

{
Lµ,

∥∥Lµ (x[k] − b)− g[k]
∥∥
2
/ δ
}
+ b,

and in step 3) we similarly obtain

z[k] = −w[k]/ max
{
Lµ,

∥∥w[k]
∥∥
2
/ δ
}
+ b,
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where we have introduced w[k] =
∑k

i=0
1
2 (i+ 1) g[i].

The computations in each of the steps 1) to 4) are done efficiently in O(mn)
operations. If needed, the algorithm is also very easy to parallelize; the sub-
problem 1) can be divided in several separate problems, and steps 2) and 3)
can be executed in parallel. The memory requirements are also very modest,
requiring only memory for storing the five mn-vectors g[k], w[k], x[k], y[k], z[k],
plus a temporary mn-vector – which is equivalent to the storage for 6 images in
total. By exploiting the structure of D, it is not necessary to store the vector

u[k] but only u
[k]
(ij).

4 Inpainting

In this section we extend the total-variation denoising algorithm to include in-
painting, i.e., the process of filling in missing or damaged parts of a (possibly
noisy) image, cf. [5]. The basic idea is still to compute a reconstruction that is
“smooth” in the TV sense, and identical to the data in all the non-corrupted
pixels (or close to these data if they are noisy).

Specifically, let I be the index set for x corresponding to the corrupted pixels
in X . The complementary index set Ic is the set of non-corrupted pixels. The
basic TV inpainting problem can then be formulated as

minimize
∑m

i=1

∑n
j=1 ‖D(ij) x‖2

subject to ‖ (x− b)Ic‖2 ≤ δ,

with the dual problem

maximize −δ‖(DTu)Ic‖2 + bTIc
(DTu)Ic

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . ,m, j = 1, . . . , n

(DTu)I = 0.

In this primal-dual formulation, the dual feasible set is not simple because of the
equality constraint (DTu)I = 0 and hence the subproblem in step 1) of Fig. B.1
will be complicated. Instead we bound the primal feasible set by adding an
artificial norm-constraint on the pixels in the inpainting region, leading to the
revised formulation

minimize
∑m

i=1

∑n
j=1 ‖D(ij) x‖2

subject to ‖(x− b)Ic‖2 ≤ δ
‖(x− d)I‖2 ≤ γ,

(B.9)

for some suitable vector d and parameter γ > 0. The dual problem corresponding
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to (B.9) is then

maximize −δ ‖(DTu)Ic‖2 + bTIc
(DTu)Ic − γ ‖(DTu)I‖2 + dTI (D

Tu)I

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . ,m, j = 1, . . . , n ,
(B.10)

and now we have simple constraints (similar to the denoising problem).
It is important that d and γ in (B.9) are chosen such that ‖(x − d)I‖2 < γ

holds for the solution of the original problem. The pixel intensity in the inpainted
region is always bounded by the intensity of the non-corrupted pixels, i.e., the
vector of inpainted pixels satisfies

x⋆I ∈ P =

{
z | min

i∈Ic

bi ≤ zj ≤ max
i∈Ic

bi, ∀j ∈ I
}
.

If we then set the elements of the vector d to

dj =
1
2

(
max
i∈Ic

bi +min
i∈Ic

bi

)
∀ j ∈ I,

i.e., d is the midpoint in the set P , then we have

‖(x⋆ − d)I‖2 ≤ max
xI∈P

‖xI − dI‖2 =
1

2

(
max
i∈Ic

bi −min
i∈Ic

bi

)√
|I| := γ,

which we then select as our γ. These settings guarantee that we have an artificial
norm-constraint that is inactive at the solution. The primal set is now Q′

p =
{x | ‖(x− b)Ic‖2 ≤ δ, ‖(x− d)I‖2 ≤ γ}, and as the prox-function for this set we
use

f ′
p(x) =

1
2‖(x− b)Ic‖22 + 1

2‖(x− d)I‖22 (B.11)

with upper bound ∆′
p = 1

2 (γ
2 + δ2). As prox-function for Qd (which is un-

changed) we again use fd(u) =
1
2‖u‖22 and µ is chosen similarly as in §3.

Regarding the implementation issues, only step 2) and step 3) in the algo-
rithm from Fig. B.1 change in the TV inpainting algorithm. Note that the two
cone constraints in (B.9) are non-overlapping and that the norms in the prox-
function (B.11) are partitioned in the same way as the constraints. Hence, the
two index sets of y[k] in step 2) can be computed separately, and they are given
by

y
[k]
Ic

=
(
Lµ(x[k] − b)− g[k]

)
Ic
/max

{
Lµ, ‖

(
Lµ(x[k] − b)− g[k]

)
Ic
‖2 / δ

}
+ bIc

y
[k]
I =

(
Lµ(x[k] − d)− g[k]

)
I/max

{
Lµ, ‖

(
Lµ(x[k] − d)− g[k]

)
I‖2 / γ

}
+ dI .

Similarly in step 3) we have

z
[k]
Ic

= −w[k]
Ic
/ max

{
Lµ, ‖w[k]

Ic
‖2/δ} + bIc ,

z
[k]
I = −w[k]

I / max
{
Lµ, ‖w[k]

I ‖2/γ
}
+ dI .
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The upper bound for the number of iterations in the discrete TV inpainting
algorithm becomes

Ninpaint = 2‖D‖2
√
(γ2 + δ2)mn · 1

ǫ
≤ 4
√
2mn

ǫ

√
γ2 + δ2. (B.12)

Note that γ enters the bound in the same way as δ. However, while δ is typically
small – of the same size as the errors in the data – the parameter γ is of the
same size as the norm of the inpainted pixels xI . This illustrates the difficulty
of the inpainting problem, in terms of computational complexity – compared
to the denoising problem – when using Nesterov’s method with our choices of
prox-functions.

Similarly to §3, the complexity of each of the subproblem is O(mn) with the
same memory requirement.

5 Deblurring for Reflexive Boundary Conditions

In addition to denoising and inpainting, it is natural to consider TV deblurring
of images, where the blurring is modelled by a linear operator, i.e., the blurred
image is given by

b = K xexact + noise,

in which K ∈ R
mn×mn is a known matrix that represents the linear blurring in

the image B [15]. TV deblurring then amounts to computing a reconstruction
which is, once again, “smooth” in the TV sense and fits the noisy data b within
a tolerance δ that acts as the regularization parameter. Hence the discrete TV
deblurring problem can be formulated as

minimize
∑m

i=1

∑n
j=1 ‖D(ij) x‖2

subject to ‖Kx− b‖2 ≤ δ.

Here we only consider spatially invariant blurring with a doubly symmetric point
spread function and reflexive boundary conditions, for which the matrix K can
be diagonalized by a two-dimensional discrete cosine transform (DCT) [15]. The
algorithm is easily extended to other matrices K that can be diagonalized effi-
ciently by an orthogonal or unitary similarity transform (e.g., the discrete Fourier
transform for general point spread functions and periodic boundary conditions),
or by singular value decomposition of smaller matrices, such as is the case for
separable blur where K is a Kronecker product.

We thus assume that K can be diagonalized by an orthogonal similarity
transform,

CKCT = Λ = diag(λi), (B.13)
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where the matrix C represents the two-dimensional DCT, and Λ is a real diagonal
matrix with the eigenvalues of K. Then by a change of variables x̄ = Cx and
b̄ = Cb we obtain the equivalent TV deblurring problem in the DCT basis

minimize
∑m

i=1

∑n
j=1 ‖D(ij)C

T x̄‖2
subject to ‖Λ x̄− b̄‖2 ≤ δ.

We note that multiplications with C and CT are implemented very efficiently
by means of the DCT algorithm with complexity mn log(max{m,n}). In our
software we use the C package FTTW [10], [12], and it is needed only for TV de-
blurring. FFTW is known as the fastest free software implementation of the Fast
Fourier Transform algorithm. It can compute transforms of real- and complex-
valued arrays (including the DCT) of arbitrary size and dimension, and it does
this by supporting a variety of algorithms and choosing the one it estimates or
measures to be preferable in the particular circumstance.

5.1 Rank Reduction

Often Λ is singular – either exactly or within the accuracy of the finite-precision
computations – in which case the feasible set {x | ‖Λ x̄− b̄‖2 ≤ δ} is unbounded,
and as such the problem cannot be solved using Nesterov’s method. Moreover,
when the condition number cond(Λ) = maxi |λi|/mini |λi| is large (or infinite),
we experience numerical difficulties and slow convergence of the algorithm.

To overcome these difficulties we apply the well-known approach of rank
reduction and divide the eigenvalues into two partitions: One set with sufficiently
large values indexed by I = { i | |λi| > ρ‖K‖2}, and the complementary set
indexed by Ic. Here, ‖K‖2 = maxj |λj |, and ρ is a parameter satisfying 0 < ρ <
1. We also define the diagonal matrix Λρ whose diagonal elements are given by

(Λρ)ii =

{
λi if i ∈ I
0 else,

and we note that Λρ is the closest rank-|I| approximation to Λ. The default
value of ρ in our software is ρ = 10−3

We then solve a slightly modified deblurring problem obtained by replacing
the matrix K with the implicitly defined rank-deficient approximation

Kρ = CTΛρC .

The corresponding rank-reduced TV deblurring problem is thus

minimize
∑m

i=1

∑n
j=1 ‖D(ij)C

T x̄‖2
subject to ‖(Λ x̄− b̄)I‖2 ≤ δ

‖x̄Ic‖2 ≤ γ,
(B.14)
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where x̄Ic should be considered as unconstrained variables. The parameter γ
must therefore be chosen sufficiently large such that the constraint ‖x̄Ic‖2 ≤ γ
is inactive at the solution. The extra constraint is added for the same reason as
in the inpainting problem, namely, to keep the dual feasible set simple.

In addition to improving the numerical stability and reducing the number of
iterations, rank-reduced deblurring can also be seen as another way of imposing
regularization on the ill-posed problem by reducing the condition number for
the problem from cond(Λ) to cond(Λρ) ≤ 1/ρ.

Choosing γ to guarantee that the γ-bound is inactive is difficult without
making γ too large and thereby increasing the number of iterations. We assume
without loss of generality that we can scale K such that ‖xexact‖2 ≈ ‖b‖2. This
means that a solution which is properly regularized will also have ‖x̄‖2 = ‖x‖2 ≈
‖b̄‖2 ≈ ‖b‖2. Our software therefore scales K and selects

γ =
√
mn‖b‖∞,

which guarantees that γ is sufficiently large. If the artificial γ-bound in (B.14)
is active at the solution, then this is a sign that the problem might not be
sufficiently regularized due to a too large value of δ.

We remark that the first inequality constraint in problem (B.14) is infeasible
unless ‖(Λ x̄)I − b̄I‖22 + ‖b̄Ic

‖22 ≤ δ2, i.e., δ must always be large enough to
ensure that ‖b̄Ic

‖2 ≤ δ, which is checked by our software. This is no practical
difficulty, because δ must always be chosen to reflect the noise in the data. The
requirement ‖b̄Ic

‖2 ≤ δ simply states that δ must be larger than the norm of
the component of b in the null space of Kρ, and according to the model (B.13)
this component is dominated by the noise.

With the notation ΛI = diag(λi)i∈I , the dual problem of (B.14) is

maximize −δ ‖Λ−1
I (CDTu)I‖2 − γ‖(CDTu)Ic

‖2 + b̄TIΛ
−1
I (CDTu)I

subject to ‖u(ij)‖2 ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.
(B.15)

As the prox-function for the primal set Q′′
p = {x̄ | ‖(Λ x̄− b̄)I‖2 ≤ δ, ‖x̄Ic

‖2 ≤ γ}
we use

f ′′
p (x̄) =

1
2‖x̄‖22.

The corresponding upper bound ∆′′
p = maxx̄∈Q′′

p
f ′′
p (x̄) can be evaluated numer-

ically as the solution to a trust-region subproblem discussed below. We can
bound it as

∆′′
p ≤ 1

2

(
‖Λ−1

I b̄I‖22 + γ2
)
≤ 1

2

( ‖b‖22
ρ2‖K‖22

+ γ2
)
.

The upper bound for the number of iterations is

Ndeblur =
√
8‖D‖2

√
∆′′

pmn ·
1

ǫ
≤ 4
√
2mn

( ‖b‖22
ρ‖K‖22

+mn‖b‖2∞
)
· 1
ǫ
. (B.16)
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5.2 Implementation

Compared to the TV denoising algorithm from §3 there are a few changes in the

implementation. In step 1) the computation of u
[k]
(ij) now takes the form

u
[k]
(ij) = D(ij)C

T x̄[k]/ max
{
µ, ‖D(ij)C

T x̄[k]‖2
}
,

which is computed in mn log(max{m,n}) complexity. For the computations in
steps 2) and 3), first note that the two cones in Q′′

p are non-overlapping because
I ∩Ic = ∅, and the subproblems can therefore be treated as two separated cases

as we had for the inpainting algorithm in §4. The minimizers y
[k]
I and z

[k]
I can

be found (via simple changes of variables) as the solution to the well-studied
trust-region subproblem [8], i.e., as the solution to a problem of the form

minimize 1
2 θ

T θ − cT θ
subject to ‖L θ− y‖2 ≤ η

(B.17)

where L = diag(ℓi) is a diagonal matrix. We first check whether c satisfies the
constraint, i.e., if ‖L c − y‖2 ≤ η then θ = c. Otherwise, we find the global
minimum of the problem, using Newton’s method to compute the unique root
λ > −mini{ℓi} of the so-called secular equation [8, §7.3.3]

qT (L−2 + λ I)−2q =

mn∑

i=1

q2i
(ℓ−2

i + λ)2
= η,

where I is the identity matrix and

q = L−1c− L−2y .

Once the root λ has been found, the solution to (B.17) is given by

θ = L−1
(
b+

(
L−2 + λ

)−1
q
)
.

As the starting value for λ in Newton’s method, we can use the solution from
the previous (outer) iteration in Nesterov’s method. Our experience is that this
limits the number of Newton iterations in the trust-region method to just a few
iterations each with complexity O(mn), i.e., in practice the cost of computing
the solution to steps 2) and 3) is still O(mn).

The minimizers y
[k]
Ic

and z
[k]
Ic

are both computed as the solution to the quadratic
constrained problems. For step 2) we obtain

y
[k]
I = θ in (B.17) with c = x

[k]
I − g

[k]
I L−1

µ , L = ΛI , and η = δ,

y
[k]
Ic

=
(
Lµ x[k]Ic

− g[k]Ic

)
/ max

{
Lµ, ‖(Lµ x[k]Ic

− g[k]Ic
)‖2 / γ

}
,
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and in step 3) we similarly have

z
[k]
I = θ in (B.17) with c = −w[k]

I L−1
µ , L = ΛI , and η = δ,

z
[k]
Ic

= −w[k]
Ic
/ max

{
Lµ, ‖w[k]

Ic
‖2 / γ} .

The bound ∆′′
p on the primal set can be obtained a priori as

∆′′
p = 1

2

(
‖θ‖22 + γ2

)
,

where θ here is the solution to the problem

minimize − 1
2 θ

TΛIΛIθ + bTIΛIθ

subject to ‖θ‖2 ≤ η

which can be solved using the same method as the previous trust region problem.
The complexity of step 1) in the TV deblurring algorithm increases, com-

pared to the previous two algorithms, since we need to compute a two-dimensi-
onal DCT of the current iterate x[k] as well as an inverse two-dimensional DCT
of g[k], i.e., the complexity per iteration of the algorithm is thus dominated by
these mn log(max{m,n}) computations. The memory requirements of the al-
gorithm is increased by the vectors holding q, q element-wise squared, and the
diagonal elements of L−2 to avoid re-computation, plus and an extra temporary
vector, leading to a total memory requirement of about 10mn.

6 Numerical Examples

In this section we give numerical examples that illustrate the three TV algo-
rithms from the previous sections. All the algorithms are implemented in the
C programming language, and the examples are run on a 2 GHz Intel Core 2
Duo computer with 2 GB of memory running the Linux operating system and
using a single processor. We provide the three m-files TVdenoise, TVinpaint,
and TVdeblur such that the C functions can be used from Matlab, and we also
provide corresponding demo Matlab scripts that generate the examples in this
section.

In the first example we consider the TV denoising algorithm from §3.
The top images in Fig. B.2 show the pure 512× 512 image and the same image
corrupted by additive white Gaussian noise with standard deviation σ = 25,
leading to a signal-to-noise ratio 20 log10(‖X‖F/‖X − B‖F) = 15 dB. For our
TV reconstructions, we choose the parameter δ such that it reflects the noise
level in the image [13],

δ = τ
√
mnσ , (B.18)
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Original clean image Noisy image

TV denoised image,  τ = 0.85 TV denoised image,  τ = 1.2

Fig. B.2: Example of TV denoising. Top: clean and noisy images of size 512×512. Bottom:
TV reconstructions for two different choices of the parameter τ in Eq. (B.18).

where σ is the standard deviation of the noise, and τ is factor close to one. The
two bottom images in Fig. B.2 show TV reconstructions for τ = 0.85 and 1.2;
the first choice leads to a good reconstruction, while the second choice is clearly
too large, leading to a reconstruction that is too smooth in the TV sense (i.e.,
large domains with the same intensity, separated by sharp contours).

In the second example we illustrate the TV inpainting algorithm from
§4, using the same clean image as above. Figure B.3 shows the damaged image
and the TV reconstruction. The white pixels in the corrupted image show the
missing pixels, and we also added noise with standard deviation σ = 15 to the
intact pixels. There is a total of |I| = 27, 452 damaged pixels, corresponding to
about 10% of the total amount of pixels. In the reconstruction we used

δ = τ
√
|Ic|σ, (B.19)

which is a slight modification of (B.18) to reflect the presence of corrupted pixels.
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Noisy and corrupted image TV inpainted image,  τ = 0.85

Fig. B.3: Example of TV inpainting: damaged and noisy 512×512 image (same clean image
as in Fig. B.2), and the TV reconstruction.

In the example we used τ = 0.85.
The third example illustrates the TV deblurring algorithm from §5, again

using the same clean image. Figure B.4 shows the blurred and noise image and
three TV reconstructions. We use Gaussian blur with standard deviation 3.0,
leading to a coefficient matrix K with a numerically infinite condition number,
and the standard deviation of the Gaussian noise is σ = 3. The regularization
parameter δ is chosen by the same equation (B.18) as in denoising.

For τ = 0.2, Fig. B.4 shows that we obtain an under-regularized solution
dominated by inverted noise. The choice τ = 0.45 gives a sufficiently piecewise-
smooth image with satisfactory reconstruction of details, while τ = 1.0 leads to
an over-regularized image with too few details.

The computations associated with the blurring use the algorithm given in
[15], and from the same source we use the Matlab functions dcts2, idcts2, and
dctshift for the associated computations with the DCT.

7 Performance Studies

The choice of ǫ obviously influences the computing time, and we choose to design
our software such that the number of iterations remains unchanged when the
image size is scaled – i.e., we want the bounds Ndenoise (B.8), Ninpaint (B.12),
and Ndeblur (B.16) to be independent of the problem sizemn. In order to achieve
this, instead of setting an absolute ǫ in the stopping criterion we use a relative
accuracy ǫrel (with default value ǫrel = 10−3 for denoising and inpainting and
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Noisy and blurred image TV deblurred image,  τ = 0.2

TV deblurred image,  τ = 0.45 TV deblurred image,  τ = 1

Fig. B.4: Example of TV deblurring: blurred and noisy 512× 512 image (same clean image
as in Fig. B.2), and TV reconstructions with three different values of τ .

ǫrel = 10−2 for deblurring), and then we set

ǫ =

{
‖b‖∞mnǫrel, for denoising and deblurring

‖bIc‖∞mnǫrel, for inpainting.
(B.20)

This choice, together with (B.18) and (B.19), leads to the bounds

Ndenoise ≤ 4
√
2

ǫrel

τ σ

‖b‖∞

Ninpaint ≤ 4
√
2

ǫrel

√(
τ σ

‖bIc‖∞

)2 |Ic|
mn

+

(
maxi∈Ic bi −mini∈Ic bi

2 ‖bIc‖∞

)2 |I|
mn

Ndeblur ≤ 4
√
2

ǫrel

√

1 +

(
1

ρmaxi |λi|

)2

≈ 4
√
2

ǫrel

1

ρmaxi |λi|
.
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For denoising, the bound is proportional to the relative noise level, as desired.
For inpainting, the situation is more complex, but if the noise dominates then we
have the same bound as in denoising, and otherwise the bound is proportional
to the square root of the fraction of missing pixels. For deblurring, the bound
is dominated by the term involving the smallest eigenvalue ρmaxi |λi| in the
rank-deficient approximation.
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Fig. B.5: The number of iterations in TVdenoise needed to compute an ǫ-accurate solution to
the TV denoising problem, for varying image dimensions and three values of the parameter τ .
The standard deviation of the image noise is σ = 25, and as stopping criterion we used the
default value ǫrel = 10−3. For the tree values of τ , the bounds for Ndenoise are 278, 472, and
666, respectively.

To demonstrate the computational performance of our TV denoising al-

gorithm, we created several smaller problems by extracting sub-images of the
original clean image, and in each instance we added Gaussian white noise with
standard deviation σ = 25 (similar to the previous section). We then solved
these TV denoising problems using the default parameter ǫrel = 10−3 and for
three different values of τ , and the actual number of iterations needed to solve
the problem to ǫ-accuracy are shown in Fig. B.5. We see that with the choice of
ǫ in (B.20), the actual number of iterations is indeed almost independent of the
problem size (except for unrealistic large τ). We also see that the actual number
of iterations is approximately proportional to τ , and the bounds for Ndenoise are
somewhat pessimistic overestimates.

While the number of iterations is almost independent of the problem size,
the computing time increases with the problem size because each iteration has
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perform tv denoising

TVdenoise

TV GPBBsafe

tvdenoise

SplitBregmanROF

O(mn) reference

O((mn)1.3) reference

Fig. B.6: The computing times (in seconds) for our TV denoising algorithm TVdenoise as a
function of problem size mn, for the case σ = 25, τ = 0.85, and ǫrel = 10−3. The dashed refer-
ence line without markers confirms that the computing time for TVdenoise is approximately lin-
ear in the problem size. We also show the computing times tvdenoise, perform tv denoising,
TV GPBBsafe (from TVGP) and SplitBregmanROF listed in Table B.1. The dotted reference line
without markers shows that the computing time for first two of the mentioned algorithms is
approximately O((mn)1.3), whereas SplitBregmanROF scales approximately linear.

O(mn) complexity. Figure B.6 shows the computing time for our TV denoising
algorithm TVdenoise, and the dashed reference line confirms that the computing
time is approximately linear in the problem size mn.

We compared our code with the codes tvdenoise, perform tv denoising,
TV GPBBsafe (from TVGP) and SplitBregmanROF from Table B.1 (TV GPBBsafe

was chosen because it is the fastest method from TVGP for which convergence is
guaranteed). These codes solve the Lagrange formulation of the TV denoising
by minimizing problems on the form

T (x) + 1

2λ
‖x− b‖22 . (B.21)

There is equivalence between the regularized and the constrained TV denoising
formulations. If we set

δ = λ ‖DTu⋆‖2, (B.22)

where u⋆ is the solution to the dual problem (B.5), then the two problems (B.4)
and (B.21) are equivalent [13].
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First we solved (B.5) to high accuracy with ǫrel = 10−6 for 100 different
noise realizations, and then used (B.22) to obtain the corresponding Lagrange
multiplier λ. We then picked the highest number of iterations for tvdenoise,
perform tv denoising, and TV GPBBsafe such that these codes returned a so-
lution xR slightly less accurate than the solution x from our code, i.e.,

Rdenoise(x) ≤ Rdenoise(xR)

where

Rdenoise(x) =
m−1∑

i=2

n−1∑

j=2

‖D(ij) x‖2 +
1

2λ
‖(x− b)J ‖22 , (B.23)

where J is the index set of all inner pixels. The image boundaries are removed in
(B.23) to reduce the effect of the boundary conditions imposed by the different
algorithms.

The average computing times are shown in Fig. B.6, and we see that the
codes tvdenoise, perform tv denoising, and TV GPBBsafe (for larger images)
have a complexity of about O((mn)1.3) as confirmed by the dotted reference
line. For large images perform tv denoising is the slowest of these codes,
while tvdenoise and TV GPBBsafe are faster. The code SplitBregmanROF is
the fastest and it scales with a complexity of about O(mn). For the image
dimensions shown, our code is faster than perform tv denoising but slower
than tvdenoise, TV GPBBsafe, and SplitBregmanROF. However, due to the
lower complexity our algorithm scales as good as SplitBregmanROF.

For the TV inpainting algorithm the computing times depend on image
dimensions and noise level as well as on the number and distribution of the
missing pixels. We illustrate this with an example with noise level σ = 15 (similar
to Fig. B.3, and with the parameters τ = 0.85 and ǫrel = 10−3). The problem
shown in Fig. B.3 (with the text mask) is solved in 28.1 seconds. However, if
we generate a mask with same number of missing pixels located in a circle (of
radius 93 pixels) in the middle of the image, then the computing time is only
6.8 seconds. Finally, with no missing pixels the problem reduces to the denoising
problem, and it is solved in 3.2 seconds.

For comparison we also used the script tv dode 2D from Table B.1, which
solves the problem in 729.5 seconds using default parameters. The Lagrange
multiplier λ was selected such that the two components in (B.23) for TVinpaint
were slightly smaller than those for tv dode 2D.

Table B.2 lists the computing times, the actual number of iterations, and the
upper bound Ninpaint for the three variations of the inpainting problem. We see
that Ninpaint is indeed an upper bound for the number of iterations, and that it
can be very pessimistic if the problem is “easy.”

For the TV deblurring algorithm the computing times depend on image
dimensions, the noise level σ, and the parameters τ and ρ. The performance
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Table B.2: Performance studies for inpainting, using our software TVinpaint and the script
tv dode 2D from Table B.1.

Time Its. Ninpaint

TVdenoise

Inpaint text 28.1 s 751 954
Inpaint circle 6.8 s 190 958
Denoise 3.2 s 93 283
tv dode 2D

Inpaint text 729.5 s 142

Table B.3: Performance studies for deblurring of the image in Fig. B.4.

τ Time Its. Ndeblur

0.20 15.7 s 174 1767
0.45 13.7 s 152 1766
1.00 19.4 s 222 1764

results for the examples in Fig. B.4, obtained with the default ρ = 10−3, are
listed in Table B.3. The bound Ndeblur is extremely pessimistic, because it is
independent of δ (and thus τ), and we see that the actual number of iterations
depends on τ .

It follows from the complexity bound forNdeblur that the number of iterations
also depends on the relative threshold ρ in our rank reduction. Table B.4 reports
the performance results for the same deblurring problem as above with varying ρ
and fixed τ = 0.6. As expected we see that the computing time depends on ρ.
The smaller the ρ the more ill conditioned the problem and therefor the longer
the computing time.

The last column shows the relative error Rρ = ‖xρ − x10−7‖2/‖x10−7‖2 in
the solutions for ρ = 10−1, 10−2, . . . , 10−6 compared to the solution for ρ =
10−7. Interestingly, the relative error between the reconstructions computed for
ρ = 10−3 and 10−7 is only about 3% (the images are virtually identical to the
eye), while there is a factor of almost 10 in computing time. Hence we choose
the default value ρ = 10−3 to allow fast experiments with the factor τ ; when
a suitable τ has been found the user may choose a smaller ρ to improve the
accuracy of the solution. (For ρ ≥ 10−2 the rank reduction has a substantial
and undesired regularizing effect on the solution.)

We compared our code with the code FTVdG from Table B.1, which solves
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Table B.4: Performance studies for deblurring when varying the rank reduction threshold ρ
and using τ = 0.6.

ρ Time Its. Ndeblur Rρ

10−1 11.6 s 138 6.2 · 102 0.042
10−2 11.7 s 134 6.4 · 102 0.037
10−3 15.6 s 173 1.7 · 103 0.033
10−4 25.8 s 308 1.6 · 104 0.028
10−5 48.5 s 552 1.6 · 105 0.021
10−6 83.0 s 945 1.7 · 106 0.012
10−7 143.2 s 1574 1.7 · 107

the TV deblurring problem by minimizing

T (x) + 1

2λ
‖K̃x− b‖22, (B.24)

where the matrix K̃ represents spatial invariant blurring with periodic boundary
conditions. Using the default settings, we first select λ such that the TV –
ignoring boundary elements – of the FTVdG solution xFTVdG is approximately the
same as for our solution xTVdeblur. The solutions are shown in Fig. B.7 and the
corresponding results are summarized in Table B.5, where

R̃(x) =
m−1∑

i=2

n−1∑

j=2

‖D(ij) x‖2 +
1

2λ
‖K̃x− b‖22.

These results demonstrate that although we can reproduce the value of the
TV with the default settings of FTVdG, we are not able to obtain the same
reconstruction, reflected in the fact that R̃(xFTVdG) > R̃(xTVdeblur).

The table also shows results for a test with modified FTVdG settings β = 216

and ǫ = 10−5, cf. [23]. Here we needed to use a slightly different λ such that
the above-mentioned TV requirement still holds. Table B.5 shows that even
with the modified settings, we are not able to obtain a much better solution as
measured by R̃(xFTVdG). In fact, it was not possible to adjust the settings for

FTVdG such that R̃(xFTVdG) < 1.1 R̃(xTVdeblur).

8 Conclusion

Total variation (TV) formulations provide a good basis for reconstruction of
noisy, corrupted, and blurred images. In this paper we present easy-to-use public
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TV deblurred image using FTVdG TV deblurred image using TVdeblur

Fig. B.7: Example of TV deblurring of the noisy and blurred image from Fig. B.4 using
FTVdG (left) and TVdeblur (right) with ρ = 10−3.

Table B.5: Comparison of the deblurring algorithms TVdeblur and FTVdG. The parameters
are chosen such that the solutions have the same TV equal to 106.

‖K̃x− b‖22 R̃(x) Time (s)

TVdeblur 4.66 · 103 1.63 · 106 13.7

FTVdG (default) 5.81 · 103 1.95 · 106 10.6

FTVdG (modified) 5.79 · 103 1.99 · 106 27.9

domain software for TV denoising, inpainting, and deblurring, using recently
developed first-order optimization algorithms with complexity O(1/ǫ), where ǫ
is the accuracy of the solution. Each iteration in our algorithms only requires
moderate computation, of the order O(mn) for denoising and inpainting, and
O(mn logmax{m,n}) for deblurring. Image deblurring often involves highly ill-
conditioned matrices, and to improve both speed and numerical stability we use
the technique of rank-reduction for such problems.

Our codes are written in C with Matlab interfaces, and they are available
from http://www.netlib.org/numeralgo in the file na28. The codes are robust,
user friendly (they require no extra parameters), and they are suited for large
problems. The Matlab files have been tested on Matlab versions 7.5–7.8, and
they require version 7.5 or later.
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Appendix A: The Matlab Functions

TVdenoise

X = TVdenoise(B,delta)

[X,info] = TVdenoise(B,delta,eps_rel)

This function solves the TV denoising problem

minimize TV(X) subject to ‖X− B‖F ≤ delta

where B is a noisy image, X is the reconstruction, and delta is an upper bound
for the residual norm. The TV function is the 1-norm of the gradient magnitude,
computed via neighbor pixel differences. At the image borders, we imposed
reflexive boundary conditions for the gradient computations.

The parameter delta should be of the same size as the norm of the image
noise. If the image is m×n, and σ is the standard deviation of the image noise in
a pixel, then we recommend to use delta = τ

√
mnσ, where τ is slightly smaller

than one, say, τ = 0.85.
The function returns an ǫ-optimal solution X, meaning that if X⋆ is the exact

solution, then our solution X satisfies

TV(X)− TV(X⋆) ≤ ǫ = max(B(:))mn eps rel,

where eps rel is a specified relative accuracy (default eps rel = 10−3). The
solution status is returned in the stuct info; write help TVdenoise for more
information.

TVinpaint

X = TVinpaint(B,M,delta)

[X,info] = TVinpaint(B,M,delta,eps_rel)

This function solves the TV inpainting problem

minimize TV(X) subject to ‖X(Ic)− B(Ic)‖F ≤ delta

where B is a noisy image with missing pixels, Ic are the indices to the intact
pixels, X is the reconstruction, and delta is an upper bound for the residual



8. CONCLUSION 77

norm. The TV function is the 1-norm of the gradient magnitude, computed via
neighbor pixel differences. At the image borders, we imposed reflexive boundary
conditions for the gradient computations.

The information about the intact and missing pixels is given in the form of
the mask M, which is a matrix of the same size as B, and whose nonzero elements
indicate missing pixels.

The parameter delta should be of the same size as the norm of the image
noise. If the image is m×n, and σ is the standard deviation of the image noise in
a pixel, then we recommend to use delta = τ

√
mnσ, where τ is slightly smaller

than one, say, τ = 0.85.
The function returns an ǫ-optimal solution X, meaning that if X⋆ is the exact

solution, then our solution X satisfies

TV(X)− TV(X⋆) ≤ ǫ = max(B(Ic))mn eps rel,

where eps rel is the specified relative accuracy (default eps rel = 10−3). The
solution status is returned in the stuct info; write help TVinpaint for more
information.

TVdeblur

X = TVdeblur(B,PSF,delta)

[X,info] = TVdeblur(B,PSF,delta,eps_rel,rho,gamma)

This function solves the TV deblurring problem

minimize TV(X) subject to ‖PSF ⋆ X− B‖F ≤ δ

where B is a blurred noisy image, X is the reconstruction, and delta is an upper
bound for the residual norm. The TV function is the 1-norm of the gradient
magnitude, computed via neighbor pixel differences. At the image borders, we
imposed reflexive boundary conditions for the gradient computations.

PSF⋆X is the image X convolved with the doubly symmetric point spread func-
tion PSF using reflexive boundary conditions. In the code, the blurring matrix
that represents PSF is replaced by a rank-deficient well-conditioned approxima-
tion obtained by neglecting all eigenvalues smaller than rho times the largest
eigenvalue (default rho = 10−3).

The parameter delta should be of the same size as the norm of the image
noise. If the image is m× n, and σ is the standard deviation of the image noise
in a pixel, then we recommend to use δ = τ

√
mnσ, where τ is smaller than one,

say τ = 0.55.
The parameter gamma is a an upper bound on the norm of the solution’s

component in the subspace corresponding to the neglected eigenvalues. The
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default value is gamma =
√
mn max(B(:)) which should be sufficient for most

problems.
The function returns an ǫ-optimal solution X, meaning that if X⋆ is the exact

solution, then our solution X satisfies

TV(X)− TV(X⋆) ≤ ǫ = max(B(:))mn eps rel,

where eps rel is a specified relative accuracy (default eps rel = 10−2). The
solution status is returned in the stuct info; write help TVdeblur for more
information.

Appendix B: The Norm of the Derivative Matrix

The matrix D defined in Eq. (B.2) can always be written as [15]

D = Π


In ⊗ Lm

Ln ⊗ Im


 ,

where Π is a permutation matrix, Ip is the identity matrix of order p, and Lp is
the chosen p× p first-derivative matrix with SVD Lp = UpΣpV

T
p . We note that

since Lp is a sparse matrix with 1 and −1 as the only two nonzero elements per
row, it follows that ‖Lp‖∞ = 2. The 2-norm of D satisfies ‖D‖22 = λmax(D

TD),
the largest eigenvalue of DTD, and hence we consider this matrix:

DTD = (In ⊗ Lm)T (In ⊗ Lm) + (Ln ⊗ Im)T (Ln ⊗ Im)

= In ⊗ LT
mLm + LT

nLn ⊗ Im
= VnV

T
n ⊗ VmΣ2

mV
T
m + VnΣ

2
nV

T
n ⊗ VmV T

m

= (Vn ⊗ Vm)(In ⊗ Σ2
m +Σ2

n ⊗ Im)(Vn ⊗ Vm)T

Since the middle matrix is diagonal, it follows that

λmax(D
TD) = λmax(Σ

2
m)+λmax(Σ

2
n) = ‖Lm‖22+‖Ln‖22 ≤ ‖Lm‖2∞+‖Ln‖2∞ = 8.

We note that a completely different proof is given in [4, Thm. 3.1].
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Abstract
We present a practical implementation of an optimal first-order method, due to
Nesterov, for large-scale total variation regularization in tomographic reconstruc-
tion, image deblurring, etc. The algorithm applies to µ-strongly convex objective
functions with L-Lipschitz continuous gradient. In the framework of Nesterov
both µ and L are assumed known – an assumption that is seldom satisfied in
practice. We propose to incorporate mechanisms to estimate locally sufficient µ
and L during the iterations. The mechanisms also allow for the application to
non-strongly convex functions. We discuss the convergence rate and iteration
complexity of several first-order methods, including the proposed algorithm, and
we use a 3D tomography problem to compare the performance of these meth-
ods. In numerical simulations we demonstrate the advantage in terms of faster
convergence when estimating the strong convexity parameter µ for solving ill-
conditioned problems to high accuracy, in comparison with an optimal method
for non-strongly convex problems and a first-order method with Barzilai-Borwein
step size selection.

1 Introduction
Large-scale discretizations of inverse problems [1] arise in a variety of applications
such as medical imaging, non-destructive testing, and geoscience. Due to the
inherent instability of these problems, it is necessary to apply regularization in
order to compute meaningful reconstructions, and this work focuses on the use of
total variation which is a powerful technique when the sought solution is required
to have sharp edges (see, e.g., [2, 3] for applications in image reconstruction).

Many total variation algorithms have already been developed, including time
marching [3], fixed-point iteration [4], and various minimization-based methods
such as sub-gradient methods [5, 6], interior-point methods for second-order
cone programming (SOCP) [7], methods exploiting duality [8–10], and graph-
cut methods [11, 12].

The numerial difficulty of a problem depends on the linear forward operator.
Most methods are dedicated either to denoising, where the operator is simply the
identity, or to deblurring where the operator is represented by a fast transform.
For general linear operators with no exploitable matrix structure, such as in
tomographic reconstruction, the selection of algorithms is not as large. Further-
more, the systems that arise in real-world tomography applications, especially
in 3D, are so large that memory-requirements preclude the use of second-order
methods with quadratic convergence.

Recently, Nesterov’s optimal first-order method [13, 14] has been adapted
to, and analyzed for, a number of imaging problems [15, 16]. In [16] it is shown
that Nesterov’s method outperforms standard first-order methods by an order
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of magnitude, but this analysis does not cover tomography problems. A draw-
back of Nesterov’s algorithm (see, e.g., [17]) is the explicit need for the strong
convexity parameter and the Lipschitz constant of the objective function, both
of which are generally not available in practice.

This paper describes a practical implementation of Nesterov’s algorithm,
augmented with efficient heuristic methods to estimate the unknown Lipschitz
constant and strong convexity parameter. The Lipschitz constant is handled us-
ing backtracking, similar to the technique used in [18]. To estimate the unknown
strong convexity parameter – which is more difficult – we propose a heuristic
based on adjusting an estimate of the strong convexity parameter using a local
strong convexity inequality. Furthermore, we equip the heuristic with a restart
procedure to ensure convergence in case of an inadequate estimate.

We call the algorithm UPN (Unknown Parameter Nesterov) and compare
it with two versions of the well-known gradient projection algorithm; GP: a
simple version using a backtracking line search for the stepsize and GPBB: a
more advanced version using Barzilai-Borwein stepsize selection [19] and the
nonmonotone backtracking procedure from [20].

We also compare with a variant of the proposed algorithm, UPN0, where the
strong convexity information is not enforced. UPN0 is optimal among first-order
methods for the class of Lipschitz smooth, convex (but not strongly convex)
functions. There are several other variants of optimal first-order methods for
Lipschitz smooth problems, see, e.g., [13, 14, 18, 21–25] and the overview in
[25, 26], but they all share similar practical convergence [26, §6.1]. We therefore
consider UPN0 to represent this class of methods. We have implemented the
four algorithms in C with a MEX interface to MATLAB, and the software is
available from www.imm.dtu.dk/~pch/TVReg/.

Our numerical tests demonstrate that the proposed method UPN is signifi-
cantly faster than GP, as fast as GPBB for moderately ill-conditioned problems,
and significantly faster for ill-conditioned problems. Compared to UPN0, UPN
is consistently faster, when solving to high accuracy.

We start with introductions to the discrete total variation problem, to smooth
and strongly convex functions, and to some basic first-order methods in Sections
2, 3, and 4, respectively. Section 5 introduces important inequalities while the
new algorithm is described in Section 6. Finally, in Section 7 we report our
numerical experiments with the proposed method applied to an image deblurring
problem and a tomographic reconstruction problem.

Throughout the paper we use the following notation. The smallest singular
value of a matrix A is denoted σmin(A). The smallest and largest eigenvalues of
a symmetric semi-definite matrixM are denoted by λmin(M) and λmax(M). For
an optimization problem, f is the objective function, x⋆ denotes a minimizer,
f⋆ = f(x⋆) is the optimum objective, and x is called an ǫ-suboptimal solution
if f(x)− f⋆ ≤ ǫ.
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2 The Discrete Total Variation Reconstruction

Problem

The Total Variation (TV) of a real function X (t) with t ∈ Ω ⊂ R
p is defined as

T (X ) =
∫

Ω

‖∇X (t)‖2 dt. (C.1)

Note that the Euclidean norm is not squared, which means that T (X ) is non-
differentiable. In order to handle this we consider a smoothed version of the
TV functional. Two common choices are to replace the Euclidean norm of the
vector z by either (‖z‖22 + β2)1/2 or the Huber function

Φτ (z) =





‖z‖2 − 1

2 τ if ‖z‖2 ≥ τ,
1
2τ ‖z‖22 else.

(C.2)

In this work we use the latter, which can be considered a prox-function smoothing
[14] of the TV functional [27]; thus, the approximated TV functional is given by

Tτ (X ) =
∫

Ω

Φτ (∇X ) dt. (C.3)

In this work we consider the case t ∈ R
3. To obtain a discrete version of the

TV reconstruction problem, we represent X (t) by an N = m × n × l array X ,
and we let x = vec(X). Each element or voxel of the array X , with index j, has
an associated matrix (a discrete differential operator) Dj ∈ R

3×N such that the
vector Dj x ∈ R

3 is the forward difference approximation to the gradient at xj .
By stacking all Dj we obtain the matrix D of dimensions 3N ×N :

D =




D1

...

DN


 . (C.4)

We use periodic boundary conditions in D, which ensures that only a constant
x has a TV of 0. Other choices of boundary conditions could easily be imple-
mented.

When the discrete approximation to the gradient is used and the integration
in (C.3) is replaced by summations, the discrete and smoothed TV function is
given by

Tτ (x) =

N∑

j=1

Φτ (Djx). (C.5)
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The gradient ∇Tτ (x) ∈ R
N of this function is given by

∇Tτ (x) =
N∑

j=1

DT
j Dj x/max{τ, ‖Djx‖2}. (C.6)

We assume that the sought reconstruction has voxel values in the range [0, 1],
so we wish to solve a bound-constrained problem, i.e., having the feasible region
Q = {x ∈ R

N | 0 ≤ xj ≤ 1 ∀ j }. Given a linear system Ax ≈ b where A ∈ R
M×N

and N = mnl, we define the associated discrete TV regularization problem as

x⋆ = argmin
x∈Q

φ(x), φ(x) = 1
2‖Ax− b‖22 + αTτ (x), (C.7)

where α > 0 is the TV regularization parameter. This is the problem we want to
solve, for the case where the linear system of equations arises from discretization
of an inverse problem.

3 Smooth and Strongly Convex Functions

To set the stage for the algorithm development in this paper, we consider the
convex optimization problem minx∈Q f(x) where f is a convex function and Q
is a convex set. We recall that a continuously differentiable function f is convex
if

f(x) ≥ f(y) +∇f(y)T (x− y), ∀x, y ∈ R
N . (C.8)

Definition 3.1. A continuously differentiable convex function f is said to be
strongly convex with strong convexity parameter µ if there exists a µ > 0 such
that

f(x) ≥ f(y) +∇f(y)T (x− y) + 1
2µ‖x− y‖22, ∀x, y ∈ R

N . (C.9)

Definition 3.2. A continuously differentiable convex function f has Lipschitz
continuous gradient with Lipschitz constant L, if

f(x) ≤ f(y) +∇f(y)T (x− y) + 1
2L‖x− y‖22, ∀x, y ∈ R

N . (C.10)

Remark 3.3. The condition (C.10) is equivalent [13, Theorem 2.1.5] to the
more standard way of defining Lipschitz continuity of the gradient, namely,
through convexity and the condition ‖∇f(x)−∇f(y)‖2 ≤ L‖x−y‖2, ∀x, y ∈ R

N .

Remark 3.4. Lipschitz continuity of the gradient is a smoothness requirement
on f . A function f that satisfies (C.10) is said to be smooth, and L is also
known as the smoothness constant.
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The set of functions that satisfy (C.9) and (C.10) is denoted Fµ,L. It is clear
that µ ≤ L and also that if µ1 ≥ µ0 and L1 ≤ L0 then f ∈ Fµ1,L1 ⇒ f ∈ Fµ0,L0 .
Given fixed choices of µ and L, we introduce the ratio Q = L/µ (sometimes
referred to as the “modulus of strong convexity” [28] or the “condition number
for f” [13]) which is an upper bound for the condition number of the Hessian
matrix. The number Q plays a major role for the convergence rate of the opti-
mization methods we will consider.

Lemma 3.5. For the quadratic function f(x) = 1
2‖Ax − b‖22 with A ∈ R

M×N

we have

L = ‖A‖22, µ = λmin(A
TA) =





σmin(A)
2 if rank(A) = N,

0, else,

(C.11)
and if rank(A) = N then Q = κ(A)2, the square of the condition number of A.

Proof. Follows from f(x) = f(y)+(Ay−b)TA(x−y)+ 1
2 (x−y)TATA(x−y), the

second order Taylor expansion of f about y, where equality holds for quadratic
f .

Lemma 3.6. For the smoothed TV function (C.5) we have

L = ‖D‖22/τ, µ = 0, (C.12)

where ‖D‖22 ≤ 12 in the 3D case.

Proof. The result for L follows from [14, Thm. 1] since the smoothed TV func-
tional can be written as [15, 27]

Tτ (x) = max
u

{
uTDx− τ

2
‖u‖22 : ‖ui‖2 ≤ 1, ∀ i = 1, . . . , N

}

with u = (uT1 , . . . , u
T
N)T stacked according to D. The inequality ‖D‖22 ≤ 12

follows from a straightforward extension of the proof in the Appendix of [15]. For
µ pick y = αe ∈ R

N and x = βe ∈ R
N , where e = (1, . . . , 1)T , and α 6= β ∈ R.

Then we get Tτ (x) = Tτ (y) = 0, ∇Tτ (y) = 0 and obtain

1
2µ‖x− y‖22 ≤ Tτ (x)− Tτ (y)−∇Tτ (y)T (x− y) = 0,

and hence µ = 0.

Theorem 3.7. For the function φ(x) defined in (C.7) we have a strong convexity
parameter µ = λmin(A

TA) and Lipschitz constant L = ‖A‖22 + α ‖D‖22/τ . If
rank(A) < N then µ = 0, otherwise µ = σmin(A)

2 > 0 and

Q = κ(A)2 +
α

τ

‖D‖22
σmin(A)2

, (C.13)

where κ(A) = ‖A‖2/σmin(A) is the condition number of A.



90 PAPER C

Proof. Assume rank(A) = N and consider f(x) = g(x) + h(x) with g ∈ Fµg ,Lg

and h ∈ Fµh,Lh
. Then f ∈ Fµf ,Lf

, where µf = µg+µh and Lf = Lg+Lh. From
µf and Lf and using Lemmas 3.5 and 3.6 with g(x) = 1

2‖Ax− b‖22 and h(x) =
αTτ (x) we obtain the condition number for φ given in (C.13). If rank(A) < N
then the matrix ATA has at least one zero eigenvalue, and thus µ = 0.

Remark 3.8. Due to the inequalities used to derive (C.13), there is no guarantee
that the given µ and L are the tightest possible for φ.

4 Some Basic First-Order Methods

A basic first-order method is the gradient projection method of the form

x(k+1) = PQ
(
x(k) − pk∇f(x(k))

)
, k = 0, 1, 2, . . . . (C.14)

where PQ is the Euclidean projection onto the convex set Q [13]. The following
theorem summarizes the convergence properties.

Theorem 4.1. Let f ∈ Fµ,L, pk = 1/L and x⋆ ∈ Q be the constrained minimizer
of f , then for the gradient projection method (C.14) we have

f(x(k))− f⋆ ≤ L

2k
‖x(0) − x⋆‖22. (C.15)

Moreover, if µ 6= 0 then

f(x(k))− f⋆ ≤
(
1− µ

L

)k (
f(x(0))− f⋆

)
. (C.16)

Proof. The two bounds follow from [29] and [28, §7.1.4], respectively.

To improve the convergence of the gradient (projection) method, Barzi-
lai and Borwein [19] suggested a scheme in which the step pk∇f(x(k)) pro-
vides a simple and computationally cheap approximation to the Newton step
(∇2f(x(k)))−1∇f(x(k)). For general unconstrained problems with f ∈ Fµ,L, pos-
sibly with µ = 0, non-monotone line search combined with the Barzilai-Borwein
(BB) strategy produces algorithms that converge [30]; but it is difficult to give
a precise iteration complexity for such algorithms. For strictly quadratic uncon-
strained problems the BB strategy requires O

(
Q log ǫ−1

)
iterations to obtain an

ǫ-suboptimal solution [31]. In [32] it was argued that, in practice, O
(
Q log ǫ−1

)

iterations “is the best that could be expected”. This comment is also supported
by the statement in [13, p. 69] that all “reasonable step-size rules” have the same
iteration complexity as the standard gradient method. Note that the classic gra-
dient method (C.14) has O(L/ǫ) complexity for f ∈ F0,L. To summarize, when
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Algorithm 1: GPBB

input : x(0), K
output: x(k+1)

p0 = 1 ;1

for k = 0, 1, 2, . . . do2

// BB strategy3

if k > 0 then4

pk ← ‖x(k)−x(k−1)‖2
2(

x(k)−x(k−1)
)T (

∇f(x(k))−∇f(x(k−1))
) ;

5

β ← 0.95 ;6

x̄← PQ(x(k) − pk∇f(x(k))) ;7

f̂ ← max{f(x(k)), f(x(k−1)), . . . , f(x(k−K))} ;8

while f(x̄) ≥ f̂ − σ∇f(x(k))T (x(k) − x̄) do9

β ← β2 ;10

x̄← PQ(x(k) − βpk∇f(x(k))) ;11

x(k+1) ← x̄ ;12

using the BB strategy we should not expect better complexity than O(L/ǫ) for
f ∈ F0,L, and O

(
Q log ǫ−1

)
for f ∈ Fµ,L.

In Algorithm 1 we give the (conceptual) algorithm GPBB, which implements
the BB strategy with non-monotone line search [33, 34] using the backtracking
procedure from [20] (initially combined in [30]). The algorithm needs the real pa-
rameter σ ∈ [0, 1] and the nonnegative integer K, the latter specifies the number
of iterations over which an objective decrease is guaranteed.

An alternative approach is to consider first-order methods with optimal com-
plexity. The optimal complexity is defined as the worst-case complexity for a
first-order method applied to any problem in a certain class [13, 28] (there are
also more technical aspects involving the problem dimensions and a black-box
assumption). In this paper we focus on the classes F0,L and Fµ,L.

Recently there has been a great deal of interest in optimal first-order methods
for convex optimization problems with f ∈ F0,L [25, 35]. For this class it is pos-

sible to reach an ǫ-suboptimal solution within O(
√
L/ǫ) iterations. Nesterov’s

methods can be used as stand-alone optimization algorithm, or in a composite
objective setup [18, 24, 25], in which case they are called accelerated methods
(because the designer violates the black-box assumption). Another option is to
apply optimal first-order methods to a smooth approximation of a non-smooth
function leading to an algorithm with O(1/ǫ) complexity [14]; for practical con-
siderations, see [15, 27].
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Algorithm 2: Nesterov

input : x(0), µ, L, θ0
output: x(k+1)

y(0) ← x(0);1

for k = 0, 1, 2, . . . do2

x(k+1) ← PQ
(
y(k) − L−1∇f(y(k))

)
;3

θk+1 ← positive root of θ2 = (1 − θ)θ2k + µ
Lθ ;4

βk ← θk(1− θk)/(θ2k + θk+1) ;5

y(k+1) ← x(k+1) + βk(x
(k+1) − x(k)) ;6

Optimal methods specific for the function class Fµ,L with µ > 0 are also
known [13, 23]; see also [24] for the composite objective version. However, these
methods have gained little practical consideration; for example in [24] all the
simulations are conducted with µ = 0. Optimal methods require O

(√
Q log ǫ−1

)

iterations while the classic gradient method requires O
(
Q log ǫ−1

)
iterations [13,

28]. For quadratic problems, the conjugate gradient method achieves the same
iteration complexity as the optimal first-order method [28].

In Algorithm 2 we state the basic optimal method Nesterov [13] with known
µ and L; it requires an initial θ0 ≥

√
µ/L. Note that it uses two sequences

of vectors, x(k) and y(k). The convergence rate is provided by the following
theorem.

Theorem 4.2. If f ∈ Fµ,L, 1 > θ0 ≥
√
µ/L, and γ0 = θ0(θ0L−µ)

1−θ0
, then for

algorithm Nesterov we have

f(x(k))− f⋆ ≤ 4L

(2
√
L+ k

√
γ0)2

(
f(x(0))− f⋆ +

γ0
2
‖x(0) − x⋆‖22

)
. (C.17)

Moreover, if µ 6= 0, then

f(x(k))− f⋆ ≤
(
1−

√
µ

L

)k (
f(x(0))− f⋆ +

γ0
2
‖x(0) − x⋆‖22

)
. (C.18)

Proof. See [13, (2.2.19), Theorem 2.2.3] and Appendix 8 for an alternative proof.

Except for different constants Theorem 4.2 mimics the result in Theorem 4.1,
with the crucial differences that the denominator in (C.17) is squared and µ/L
in (C.18) has a square root. Comparing the convergence rates in Theorems 4.1
and 4.2, we see that the rates are linear but differ in the linear rate, (1 −Q−1)

and (1 −
√
Q−1), respectively. For ill-conditioned problems, it is important
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whether the complexity is a function of Q or
√
Q, see, e.g., [28, §7.2.8], [21].

This motivates the interest in specialized optimal first-order methods for solving
ill-conditioned problems.

5 First-Order Inequalities for the Gradient Map

For unconstrained convex problems the (norm of the) gradient is a measure of
how close we are to the minimum, through the first-order optimality condition,
cf. [36]. For constrained convex problems minx∈Q f(x) there is a similar quantity,
namely, the gradient map defined by

Gν(x) = ν
(
x− PQ

(
x− ν−1∇f(x)

))
. (C.19)

Here ν > 0 is a parameter and ν−1 can be interpreted as the step size of a
gradient step. The gradient map is a generalization of the gradient to constrained
problems in the sense that if Q = R

N then Gν(x) = ∇f(x), and the equality
Gν(x

⋆) = 0 is a necessary and sufficient optimality condition [29]. In what
follows we review and derive some important first-order inequalities which will
be used to analyze the proposed algorithm. We start with a rather technical
result.

Lemma 5.1. Let f ∈ Fµ,L, fix x ∈ Q, y ∈ R
N , and set x+ = PQ(y−L̄−1∇f(y)),

where µ̄ and L̄ are related to x, y and x+ by the inequalities

f(x) ≥ f(y) +∇f(y)T (x− y) + 1
2 µ̄‖x− y‖22, (C.20)

f(x+) ≤ f(y) +∇f(y)T (x+ − y) + 1
2 L̄‖x+ − y‖22. (C.21)

Then

f(x+) ≤ f(x) +GL̄(y)
T (y − x)− 1

2 L̄
−1‖GL̄(y)‖22 − 1

2 µ̄‖y − x‖22. (C.22)

Proof. Follows directly from [13, Theorem 2.2.7].

Note that if f ∈ Fµ,L, then in Lemma 5.1 we can always select µ̄ = µ and
L̄ = L to ensure that the inequalities (C.20) and (C.21) are satisfied. However,
for specific x, y and x+, there can exist µ̄ ≥ µ and L̄ ≤ L such that (C.20)
and (C.21) hold. We will use these results to design an algorithm for unknown
parameters µ and L.

The lemma can be used to obtain the following lemma. The derivation of the
bounds is inspired by similar results for composite objective functions in [24],
and the second result is similar to [13, Corollary 2.2.1].
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Lemma 5.2. Let f ∈ Fµ,L, fix y ∈ R
N , and set x+ = PQ(y − L̄−1∇f(y)). Let

µ̄ and L̄ be selected in accordance with (C.20) and (C.21) respectively. Then

1
2 µ̄‖y − x⋆‖2 ≤ ‖GL̄(y)‖2. (C.23)

If y ∈ Q then

1
2 L̄

−1‖GL̄(y)‖22 ≤ f(y)− f(x+) ≤ f(y)− f⋆. (C.24)

Proof. From Lemma 5.1 with x = x⋆ we use f(x+) ≥ f⋆ and obtain

1
2 µ̄‖y − x⋆‖22 ≤ GL̄(y)

T (y − x⋆)− 1
2 L̄

−1‖GL̄(y)‖22 ≤ ‖GL̄(y)‖2‖y − x⋆‖2,
and (C.23) follows; Eq. (C.24) follows from Lemma 5.1 using y = x and f⋆ ≤
f(x+).

As mentioned in the beginning of the section, the results of the corollary say
that we can relate the norm of the gradient map at y to the error ‖y − x∗‖2 as
well as to f(y) − f∗. This motivates the use of the gradient map in a stopping
criterion:

‖GL̄(y)‖2 ≤ ǭ, (C.25)

where y is the current iterate, and L̄ is linked to this iterate using (C.21).
The parameter ǭ is a user-specified tolerance based on the requested accuracy.
Lemma 5.2 is also used in the following section to develop a restart criterion to
ensure convergence.

6 Nesterov’s Method With Parameter Estima-

tion

The parameters µ and L are explicitly needed in Nesterov. In case of an un-
regularized least-squares problem we can in principle compute µ and L as the
smallest and largest squared singular value of A, though it might be computa-
tional expensive. When a regularization term is present it is unclear whether
the tight µ and L can be computed at all. Bounds can be obtained using the
result in Theorem 3.7.

A practical approach is to estimate µ and L during the iterations. To this
end, we introduce the estimates µk and Lk of µ and L in each iteration k.
We discuss first how to choose Lk, then µk, and finally we state the complete
algorithm UPN and its convergence properties.

To ensure convergence, the main inequalities (C.43) and (C.44) must be
satisfied. Hence, according to Lemma 5.1 we need to choose Lk such that

f(x(k+1)) ≤ f(y(k)) +∇f(y(k))T (x(k+1) − y(k)) + 1
2Lk‖x(k+1) − y(k)‖22. (C.26)
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Algorithm 3: BT

input : y, L̄
output: x, L̃
L̃← L̄ ;1

x← PQ
(
y − L̃−1∇f(y)

)
;

2

while f(x) > f(y) +∇f(y)T (x− y) + 1
2 L̃‖x− y‖22 do3

L̃← ρLL̃ ;4

x← PQ
(
y − L̃−1∇f(y)

)
;

5

This is easily accomplished using backtracking on Lk [18]. The scheme, BT,
takes the form given in Algorithm 3, where ρL > 1 is an adjustment parameter.
If the loop is executed nUPNBT times, the dominant computational cost of BT
is nUPNBT + 2 function evaluations and 1 gradient evaluation.

For choosing the estimate µk we introduce the auxilliary variable µ⋆
k as the

value that causes Definition 3.1 (of strong convexity) for x⋆ and y(k) to hold
with equality

f(x⋆) = f(y(k)) +∇f(y(k))T (x⋆ − y(k)) + 1
2µ

⋆
k‖x⋆ − y(k)‖22. (C.27)

From (C.44) with Lemma 5.1 and (C.45) we find that we must choose µk ≤ µ⋆
k

to obtain a convergent algorithm. However, as x⋆ is, of course, unknown, this
task is not straightforward, if at all possible. Instead, we propose a heuristic
where we select µk such that

f(x(k)) ≥ f(y(k)) +∇f(y(k))T (x(k) − y(k)) + 1
2µk‖x(k) − y(k)‖22. (C.28)

This is indeed possible since x(k) and y(k) are known iterates. Furthermore, we
want the estimate µk to be decreasing in order to approach a better estimate
of µ. This can be achieved by the choice

µk = min{µk−1,M(x(k), y(k))}, (C.29)

where we have defined the function

M(x, y) =






f(x)−f(y)−∇f(y)T (x−y)
1
2‖x−y‖2

2
if x 6= y,

∞ else.
(C.30)

In words, the heuristic chooses the largest µk that satisfies (C.9) for x(k) and
y(k), as long as µk is not larger than µk−1. The heuristic is simple and com-
putationally inexpensive and we have found that it is effective for determining
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a useful estimate. Unfortunately, convergence of Nesterov equipped with this
heuristic is not guaranteed, since the estimate can be too large. To ensure con-
vergence we include a restart procedure RUPN that detects if µk is too large,
inspired by the approach in [24, §5.3] for composite objectives. RUPN is given
in Algorithm 4.

To analyze the restart strategy, assume that µi for all i = 1, . . . , k are small
enough, i.e., they satisfy µi ≤ µ⋆

i for i = 1, . . . , k, and µk satisfies

f(x⋆) ≥ f(x(0)) +∇f(x(0))T (x⋆ − x(0)) + 1
2µk‖x⋆ − x(0)‖22. (C.31)

When this holds we have the convergence result (using (C.46))

f(x(k+1))− f⋆ ≤
k∏

i=1

(
1−
√
µi/Li

)(
f(x(1))− f⋆ + 1

2γ1‖x(1) − x⋆‖22
)
. (C.32)

We start from iteration k = 1 for reasons which will presented shortly (see
Appendix 8 for details and definitions). If the algorithm uses a projected gradient
step from the initial x(0) to obtain x(1), the rightmost factor of (C.32) can be
bounded as

f(x(1))− f⋆ + 1
2γ1‖x(1) − x⋆‖22

≤ GL0(x
(0))T (x(0)−x⋆)− 1

2L
−1
0 ‖GL0(x

(0))‖22 + 1
2γ1‖x(1)−x⋆‖22

≤ ‖GL0(x
(0))‖2‖x(0)−x⋆‖2 − 1

2L
−1
0 ‖GL0(x

(0))‖22 + 1
2γ1‖x(0)−x⋆‖22

≤
(

2

µk
− 1

2L0
+

2γ1
µ2
k

)
‖GL0(x

(0))‖22. (C.33)

Here we used Lemma 5.1, and the fact that a projected gradient step reduces
the Euclidean distance to the solution [13, Theorem 2.2.8]. Using Lemma 5.2
we arrive at the bound

1
2 L̃

−1
k+1‖GL̃k+1

(x(k+1))‖22 ≤
k∏

i=1

(
1−
√
µi

Li

)(
2

µk
− 1

2L0
+

2γ1
µ2
k

)
‖GL0(x

(0))‖22,

(C.34)
where L̃k+1 is defined in Algorithm UPN. If the algorithm detects that (C.34)
is not satisfied, it can only be because there was at least one µi for i = 1, . . . , k
which was not small enough. If this is the case, we restart the algorithm with
a new µ̄ ← ρµµk, where 0 < ρµ < 1 is a parameter, using the current iterate
x(k+1) as initial vector.

The complete algorithm UPN (Unknown-Parameter Nesterov) is given in
Algorithm 5. UPN is based on Nesterov’s optimal method where we have in-
cluded backtracking on Lk and the heuristic (C.29). An initial vector x(0) and
initial parameters µ̄ ≥ µ and L̄ ≤ L must be specified along with the requested
accuracy ǭ. The changes from Nesterov to UPN are at the following lines:
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Algorithm 4: RUPN

γ1 = θ1(θ1L1 − µ1)/(1 − θ1);1

if µk 6= 0 and inequality (C.34) not satisfied then2

abort execution of UPN;3

restart UPN with input (x(k+1), ρµµk, Lk, ǭ);4

Algorithm 5: UPN

input : x(0), µ̄, L̄, ǭ
output: x(k+1) or x̃(k+1)

[x(1), L0]← BT (x(0), L̄) ;1

µ0 = µ̄, y(1) ← x(1), θ1 ←
√
µ0/L0 ;2

for k = 1, 2, . . . do3

[x(k+1), Lk]← BT (y(k), Lk−1) ;4

[x̃(k+1), L̃k+1]← BT (x(k+1), Lk) ;5

if ‖GL̃k+1
(x(k+1))‖2 ≤ ǭ then abort, return x̃(k+1) ;6

if ‖GLk
(y(k))‖2 ≤ ǭ then abort, return x(k+1) ;7

µk ← min
{
µk−1,M(x(k), y(k))

}
;8

RUPN;9

θk+1 ← positive root of θ2 = (1 − θ)θ2k + (µk/Lk) θ ;10

βk ← θk(1− θk)/(θ2k + θk+1) ;11

y(k+1) ← x(k+1) + βk(x
(k+1) − x(k)) ;12

1: Initial projected gradient step to obtain the bound (C.33) and thereby the
bound (C.34) used for the restart criterion.

5: Extra projected gradient step explicitly applied to obtain the stopping crite-
rion ‖GL̃k+1

(x(k+1))‖2 ≤ ǭ.
6,7: Used to relate the stopping criterion in terms of ǭ to ǫ, see Appendix 8.

8: The heuristic choice of µk in (C.29).

9: The restart procedure for inadequate estimates of µ.

We note that in a practical implementation, the computational work involved
in one iteration step of UPN may – in the worst case situation – be twice that of
one iteration of GPBB, due to the two calls to BT. However, it may be possible
to implement these two calls more efficiently than naively calling BT twice. We
will instead focus on the iteration complexity of UPN given in the following
theorem.



98 PAPER C

Theorem 6.1. Algorithm UPN, applied to f ∈ Fµ,L under conditions µ̄ ≥ µ,

L̄ ≤ L, ǭ =
√
(µ/2) ǫ, stops using the gradient map magnitude measure and

returns an ǫ-suboptimal solution with iteration complexity

O
(√

Q logQ
)
+O

(√
Q log ǫ−1

)
. (C.35)

Proof. See Appendix 8.

The term O
(√
Q logQ

)
in (C.35) follows from application of several inequal-

ities involving the problem dependent parameters µ and L to obtain the overall
bound (C.34). Algorithm UPN is suboptimal since the optimal complexity is
O
(√
Q log ǫ−1

)
but it has the advantage that it can be applied to problems with

unknown µ and L.

7 Numerical Experiments

7.1 An Image Deblurring Example

We exemplify the use of the algorithm UPN to solve a total variation regularized
image deblurring problem, where the goal is to determine a sharp image x from
a blurred and noisy one b = Ax + e. The matrix A models linear motion blur,
which renders A sparse, and we use reflexive boundary conditions. For this
type of blur no fast transform can be exploited. We add Gaussian noise e with
relative noise level ‖e‖2/‖b‖2 = 0.01 and reconstruct using α = 5.0 and the
default setting of τ = 10−4 · 255, where [0, 255] is the dynamic pixel intensity
range. The result is shown in Fig. C.1. We recognize well-known features
of TV-regularized reconstructions: Sharp edges are well-preserved, while fine
texture has been over-regularized and has a “patchy” appearance.

To investigate the convergence of the methods, we need the true minimizer
x⋆ with φ(x⋆) = φ⋆, which is unknown for the test problem. However, for
comparison it is enough to use a reference solution much closer to the true
minimizer than the iterates. Thus, to compare the accuracy of the solutions
obtained with the accuracy parameter ǭ, we use a reference solution computed
with accuracy (ǭ · 10−2), and with abuse of notation we use x⋆ to denote this
reference solution.

In Fig. C.1 both UPN and UPN0 are seen to be faster than GP and GPBB,
and for a high-accuracy solution UPN also outperforms UPN0. For UPN, GP
and GPBB we observe linear rates of convergence, but UPN converges much
faster. UPN0 shows a sublinear convergence rate, however the initial phase is
steep enough that it takes UPN almost 1000 iterations to catch up. We note
that the potential of UPN seems to be in the case where a high-accuracy solution
is needed.
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Having demonstrated the performance of the proposed algorithm in an image
deblurring problem, we focus in the remainder on a 3D tomography test problem,
for which we further study the convergence behavior including the influence of
the regularization and smoothing parameters.

7.2 Experiments with 3D Tomographic Reconstruction

Tomography problems arise in numerous areas, such as medical imaging, non-
destructive testing, materials science, and geophysics [37–39]. These problems
amount to reconstructing an object from its projections along a number of spec-
ified directions, and these projections are produced by X-rays, seismic waves, or
other “rays” penetrating the object in such a way that their intensity is partially
absorbed by the object. The absorbtion thus gives information about the object.

The following generic model accounts for several applications of tomography.
We consider an object in 3D with linear attenuation coefficient X (t), with t ∈
Ω ⊂ R

3. The intensity decay bi of a ray along the line ℓi through Ω is governed
by a line integral,

bi = log(I0/Ii) =

∫

ℓi

X (t) dℓ = bi, (C.36)

where I0 and Ii are the intensities of the ray before and after passing through
the object. When a large number of these line integrals are recorded, then we
are able to reconstruct an approximation of the function X (t).

We discretize the problem as described in Section 2, such that X is ap-
proximated by a piecewise constant function in each voxel in the domain Ω =
[0, 1]× [0, 1]× [0, 1]. Then the line integral along ℓi is computed by summing the
contributions from all the voxels penetrated by ℓi. If the path length of the ith
ray through the jth voxel is denoted by aij , then we obtain the linear equations

N∑

j=1

aijxj = bi, i = 1, . . . ,M, (C.37)

where M is the number of rays or measurements and N is the number of voxels.
This is a linear system of equations Ax = b with a sparse coefficient matrix
A ∈ R

M×N .
A widely used test image in medical tomography is the “Shepp-Logan phan-

tom,” which consists of a number superimposed ellipses. In the MATLAB func-
tion shepplogan3d [40] this 2D image is generalized to 3D by superimposing
ellipsoids instead. The voxels are in the range [0, 1], and Fig. C.2 shows an
example with 43× 43× 43 voxels.

We construct the matrix A for a parallel-beam geometry with orthogonal
projections of the object along directions well distributed over the unit sphere.
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Fig. C.1: Example of total variation deblurring for motion blur with reflexive boundary
conditions. Methods are Gradient Projection (GP), Gradient Projection Barzilai-Borwein
(GPBB), Unknown Parameter Nesterov (UPN), and UPN with µk = 0 (UPN0). Both UPN

and UPN0 are much faster than GP and GPBB, and for a high-accuracy solution UPN also
outperforms UPN0.
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Fig. C.2: Left: Two orthogonal slices through the 3D Shepp-Logan phantom discretized on
a 433 grid used in our test problems. Middle: Central horizontal slice. Right: Example of
solution for α = 1 and τ = 10−4. A less smooth solution can be obtained using a smaller α.
Original voxel/pixel values are 0.0, 0.2, 0.3 and 1.0. Color range in display is set to [0.1, 0.4]
for better constrast.

The projection directions are the direction vectors of so-called Lebedev quadra-
ture points on the unit sphere, and the directions are evenly distributed over
the sphere; we use the MATLAB implementation getLebedevSphere [41]. For
setting up the tomography system matrix for a parallel beam geometry, we use
the Matlab implementation tomobox [42].

This section describes our numerical experiments with the four methods
UPN, UPN0, GP and GPBB applied to the TV regularization problem (C.7).
We use the two test problems listed in Table C.1, which are representative across
a larger class of problems (other directions, number of projections, noise levels,
etc.) that we have run simulations with. The smallest eigenvalue of ATA for T1

is 2.19 · 10−5 (as computed by Matlab’s eigs), confirming that rank(A) = N
for T1. We emphasize that this computation is only conducted to support the
analysis of the considered problems since – as we have argued in the introduction
– it carries a considerable computational burden to compute. In all simulations
we create noisy data from an exact object xexact through the forward mapping
b = Axexact + e, subject to additive Gaussian white noise of relative noise level
‖e‖2/‖b‖2 = 0.01. As initial point of the optimization algorithm we use the fifth
iteration of the conjugate gradient method applied to the least squares problem.

Table C.1: Specifications of the two test problems; the object domain consists of m × n× l
voxels and each projection is a p× p image. Any zero rows have been purged from A.

Problem m = n = l p projections dimensions of A rank

T1 43 63 37 99361× 79507 = 79507

T2 43 63 13 33937× 79507 < 79507
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Fig. C.3: Convergence histories (φ(x(k)) − φ⋆)/φ⋆ vs. k for T1 with α = 0.01, 0.1 and 1
and τ = 10−2, 10−4 and 10−6. Methods are Gradient Projection (GP), Gradient Projec-
tion Barzilai-Borwein (GPBB), Unknown Parameter Nesterov (UPN), and UPN with µk = 0
(UPN0). As the ratio α/τ increases, which implies an increased Q and a computationally more
difficult problem, UPN and UPN0 scale significantly better. For high accuracy solutions UPN

is always competetive.

We compare the algorithm UPN with GP (the gradient projection method
(C.14) with backtracking line search on the step size), GPBB and UPN0. The
latter is UPN with µi = 0 for all i = 0, · · · , k and θ1 = 1 and is optimal for the
class F0,L.

7.3 Influence of α and τ on the convergence

For a given A the theoretical modulus of strong convexity given in (C.13) varies
only with α and τ . We therefore expect better convergence rates (C.16) and
(C.18) for smaller α and larger τ . In Fig. C.3 we show the convergence histories
for T1 with all combinations of α = 0.01, 0.1, 1 and τ = 10−2, 10−4, 10−6.

For low α/τ ratios, i.e., small condition number of the Hessian, GPBB and
GP requires a comparable or smaller number of iterations than UPN and UPN0.
As α/τ increases, both GPBB and GP exhibit slower convergence, while UPN
is less affected. In all cases UPN shows linear convergence, at least in the final
stage, while UPN0 shows sublinear convergence. Due to these observations, we
consistently observe that for sufficiently high accuracy, UPN requires the lowest
number of iterations. This also follows from the theory since UPN scales as
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Fig. C.4: The µk, Lk histories for T1. Left: α = 100 and τ = 10−4. Right: α = 1 and
τ = 10−4.

O(log ǫ−1), whereas UPN0 scales at a higher complexity of O(
√
ǫ−1).

We conclude that for small condition numbers there is no gain in using UPN
compared to GPBB. For larger condition numbers, and in particular if a high-
accuracy solution is required, UPN converges significantly faster. Assume that
we were to choose only one of the four algorithms to use for reconstruction
across the condition number range. When UPN requires the lowest number
of iterations, it requires significantly fewer, and when not, UPN only requires
slightly more iterations than the best of the other algorithms. Therefore, UPN
appears to be the best choice. Obviously, the choice of algorithm also depends
on the demanded accuracy of the solution. If only a low accuracy, say (φ(k) −
φ⋆)/φ⋆ = 10−2 is sufficient, all four methods perform more or less equally well.

7.4 Restarts and µk and Lk histories

To ensure convergence of UPN we introduced the restart functionality RUPN.
In practice, we almost never observe a restart, e.g., in none of the experiments
reported so far a restart occurred. An example where restarts do occur is ob-
tained if we increase α to 100 for T1 (still τ = 10−4). Restarts occur in the
first 8 iterations, and each time µk is reduced by a constant factor of ρµ = 0.7.
In Fig. C.4, left, the µk and Lk histories are plotted vs. k and the restarts are
seen in the zoomed inset as the rapid, constant decrease in µk. From the plot
we also note that after the decrease in µk and an initial increase in Lk, both
estimates are constant for the remaining iterations, indicating that the heuristics
determine sufficient values.

For comparison the µk and Lk histories for T1 with α = 1 and τ = 10−4

are seen in Fig. C.4, right. No restarts occurred here, and µk decays gradually,
except for one final jump, while Lk remains almost constant.
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7.5 A non-strongly convex example

Test problem T2 corresponds to only 13 projections, which causes A to not
have full column rank. This leads to λmin(A

TA) = 0, and hence φ(x) is not
strongly convex. The optimal convergence rate is therefore given by (C.17);
but how does the lack of strong convexity affect UPN, which was specifically
constructed for strongly convex problems? UPN does not recognize that the
problem is not strongly convex but simply relies on the heuristic (C.29) at the
kth iteration. We investigate the convergence by solving T2 with α = 1 and
τ = 10−4. Convergence histories are given in Fig. C.5, left. The algorithm
UPN still converges linearly, although slightly slower than in the T1 experiment
(α = 1, τ = 10−4) in Fig. C.3. The algorithms GP and GPBB converge much
more slowly, while at low accuracies UPN0 is comparable to UPN. But the linear
convergence makes UPN converge faster for high accuracy solutions.

7.6 Influence of the heuristic

An obvious question is how the use of the heuristic for estimating µ affects UPN
compared to Nesterov, where µ (and L) are assumed known. From Theorem
3.7 we can compute a strong convexity parameter and a Lipschitz parameter
for φ(x) assuming we know the largest and smallest magnitude eigenvalues of
ATA. Recall that these µ and L are not necessarily the tightest possible, ac-
cording to Remark 3.8. For T1 we have computed λmax(A

TA) = 1.52 · 103 and
λmin(A

TA) = 2.19 ·10−5 (by means of eigs in Matlab). Using α = 1, τ = 10−4

and ‖D‖22 ≤ 12 from Lemma 3.6 we fix

µk = λmin(A
TA) = 2.19 · 10−5, Lk = λmax(A

TA) + 12
α

τ
= 1.22 · 105,

for all k, and solve test problem T1 using UPN with the heuristics switched off
in favor of these true strong convexity and Lipschitz parameters. Convergence
histories are plotted in Fig. C.5, right.

The convergence is much slower than using UPN with the heuristics switched
on. We ascribe this behavior to the very large modulus of strong convexity that
arise from the true µ and L. It appears that UPN works better than the actual
degree of strong convexity as measured by µ, by heuristically choosing in each
step a µk that is sufficient locally instead of being restricted to using a globally
valid µ.

Another question is how much is actually gained in using the heuristic for
µ in UPN compared to simply using a fixed “guess” throughout the iterations.
To answer that question we investigate the number iterations required to obtain
ǭ = 10−4, 10−6 and 10−8 solutions for T1 and T2 using only the backtracking
procedure on L and simply a fixed value µk ∈ [10−4, 104] for all iterations k, see
Fig. C.6.
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Fig. C.5: Left: Convergence histories of GP, GPBB, UPN and UPN0 on T2 with α = 1 and
τ = 10−4. Right: Convergence histories of UPN and UPN using true µ and L on T1 with
α = 1 and τ = 10−4.

The choice of fixed µk has a large impact on the required number of iterations,
and there is a distinct optimal choice between 1 and 10. Choosing a fixed µk

away from the optimal one leads to more iterations and the number of additional
iterations grows faster for more accurate solutions. For comparison the figure
also shows the corresponding number of iterations required by UPN plotted as
function of the final UPN-estimate for µ. For all three T1 cases UPN comes
very close to the optimal number of iterations, without demanding an accurate
guess of µ by the user. For T2 we observe similar trends, although UPN requires
slightly more iterations than with the optimal choice of fixed µk.

We conclude that there exists a choice of fixed µk that gives good perfor-
mance; however, for an inaccurate guess of this value, the number of iterations
will be much higher, in particular if an accurate solution is required. UPN avoids
the need for such a guess and provides the solution using a near-optimal number
of iterations. We emphasize that obtaining a true strong convexity parameter
µ is not of particular interest here, nor is the final UPN-estimate for µ, as the
goal is simply to obtain fast convergence.

8 Conclusion

We presented an implementation of an optimal first-order optimization algorithm
for large-scale problems, suited for functions that are smooth and strongly con-
vex. While the underlying algorithm by Nesterov depends on knowledge of two
parameters that characterize the smoothness and strong convexity, we have im-
plemented methods that estimate these parameters during the iterations, thus
making the algorithm of practical use.

We tested the performance of the algorithm and compared it with two vari-
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Fig. C.6: Number of iterations needed to obtain TV-solutions (α = 0.01) to tolerances
ǭ = 10−4, 10−6 and 10−8 using fixed µk, left T1, right T2. Also shown are the number of
iterations needed by UPN as function of the final estimate of µ. Choices of µk not equal to
the unknown optimal value lead to many more iterations. UPN needs a near-optimal number
of iterations without requiring the user to choose a value for µ.

ants of the gradient projection algorithm and a variant of an optimal/accelerated
algorithm. We applied the algorithms to total variation regularized tomographic
reconstruction of a generic threedimensional test problem. The tests show
that, with regards to the number of iterations, the proposed algorithm is com-
petitive with other first-order algorithms, and superior for difficult problems,
i.e., ill-conditioned problems solved to high accuracy. Simulations also show
that even for problems that are not strongly convex, in practice we achieve
the favorable convergence rate associated with strong convexity. The soft-
ware is available as a C-implementation with an interface to MATLAB from
www.imm.dtu.dk/~pch/TVReg/.
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Appendix A: The Optimal Convergence Rate

Here we provide an analysis of an optimal method for smooth, strongly convex
functions without the use of estimation functions as in [13]. This approach is
similar to the analysis of optimal methods for smooth functions in [25, 29]. The
motivation for the following derivations is to introduce the iteration dependent
Lk and µk estimates of L and µ. This will support the analysis of how Lk and
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µk should be selected. We start with the following relations to the “hidden”
supporting variables z(k) and γk [13, pp. 73–75, 89],

y(k) − x(k) = θkγk
γk+1

(z(k) − y(k)), (C.38)

γk+1 = (1− θk)γk + θkµk = θ2kLk (C.39)

γk+1z
(k+1) = (1− θk)γkz(k) + θkµky

(k) − θkGLk
(y(k)).

In addition we will make use of the relations

γk+1

2
‖z(k+1) − y(k)‖22 =

1

2γk+1

(
(1− θk)2γ2k‖z(k) − y(k)‖22

−2θk(1− θk)γkGLk
(y(k))T (z(k) − y(k))

+θ2k‖GLk
(y(k)))‖22

)
, (C.40)

(1− θk)
γk
2
− 1

2γk+1
(1 − θk)2γ2k =

(1− θk)γkθkµk

2γk+1
. (C.41)

which originate from (C.39). We will also later need the relation

(1 − θk)
γk
2
‖z(k) − y(k)‖22 −

γk+1

2
‖z(k+1) − y(k)‖22 + θkGLk

(y(k))T (y(k) − x⋆)

= (1 − θk)
γk
2
‖z(k) − y(k)‖22 −

γk+1

2
‖z(k+1) − y(k)‖22

+
(
−γk+1z

(k+1) + (1− θk)γkz(k) + θkµky
(k)
)T

(y(k) − x⋆)

=
(
(1− θk)

γk
2
− γk+1

2
+ θkµk

)
(y(k))T y(k) + (1− θk)

γk
2
(z(k))T z(k)

−γk+1

2
(z(k+1))T z(k+1) + γk+1(z

(k+1))Tx⋆ − (1 − θk)γk(z(k))Tx⋆

−θkµk(y
(k))Tx⋆

= (1 − θk)
γk
2

(
‖z(k) − x⋆‖22 − (x⋆)Tx⋆

)
− γk+1

2

(
‖z(k+1) − x⋆‖22 − (x⋆)Tx⋆

)

+
θkµk

2

(
‖y(k) − x⋆‖22 − (x⋆)Tx⋆

)

(
+(1− θk)

γk
2
− γk+1

2
+
θkµk

2

)
(y(k))T y(k)

= (1 + θk)
γk
2
‖z(k) − x⋆‖22 −

γk+1

2
‖z(k) − x⋆‖22 + θk

µk

2
‖y(k) − x⋆‖22, (C.42)
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where we again used (C.39). We can now start the analysis of the algorithm by
considering the inequality in Lemma 5.1,

(1− θk)f(x(k+1)) ≤ (1 − θk)f(x(k)) + (1− θk)GLk
(y(k))T (y(k) − x(k))

−(1− θk)
1

2Lk
‖GLk

(y(k))‖22, (C.43)

where we have omitted the strong convexity part, and the inequality

θkf(x
(k+1)) ≤ θkf(x

⋆) + θkGLk
(y(k))T (y(k) − x⋆)

−θk
1

2Lk
‖GLk

(y(k))‖22 − θk
µ⋆
k

2
‖y(k) − x⋆‖22. (C.44)

Adding these bounds and continuing, we obtain

f(x(k+1)) ≤ (1− θk)f(x(k)) + (1 − θk)GLk
(y(k))T (y(k) − x(k))

+ θkf
⋆ + θkGLk

(y(k))T (y(k) − x⋆)

−θk
µ⋆
k

2
‖x⋆ − y(k)‖22 −

1

2Lk
‖GLk

(y(k))‖22

= (1− θk)f(x(k)) + (1 − θk)
θkγk
γk+1

GLk
(y(k))T (z(k) − y(k))

+ θkf
⋆ + θkGLk

(y(k))T (y(k) − x⋆)

−θk
µ⋆
k

2
‖x⋆ − y(k)‖22 −

1

2Lk
‖GLk

(y(k))‖22

≤ (1− θk)f(x(k)) + (1 − θk)
θkγk
γk+1

GLk
(y(k))T (z(k) − y(k))

+ θkf
⋆ + θkGLk

(y(k))T (y(k) − x⋆)− θk
µ⋆
k

2
‖x⋆ − y(k)‖22

− 1

2Lk
‖GLk

(y(k))‖22 +
(1− θk)θkγkµk

2γk+1
‖z(k) − y(k)‖22

= (1− θk)f(x(k)) + (1 − θk)
θkγk
γk+1

GLk
(y(k))T (z(k) − y(k))

+ θkf
⋆ + θkGLk

(y(k))T (y(k) − x⋆)− θk
µ⋆
k

2
‖x⋆ − y(k)‖22

− 1

2Lk
‖GLk

(y(k))‖22

+

(
(1 − θk)

γk
2
− 1

2γk+1
(1 − θk)2γ2k

)
‖z(k) − y(k)‖22
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= (1− θk)f(x(k)) + (1− θk)
γk
2
‖z(k) − y(k)‖22 −

γk+1

2
‖z(k+1) − y(k)‖22

+ θkf
⋆ + θkGLk

(y(k))T (y(k) − x⋆)− θk
µ⋆
k

2
‖x⋆ − y(k)‖22

= (1− θk)f(x(k)) + θkf
⋆ − θk

µ⋆
k

2
‖x⋆ − y(k)‖22

+ (1− θk)
γk
2
‖z(k) − x⋆‖22 −

γk+1

2
‖z(k+1) − x⋆‖22

+θk
µk

2
‖y(k) − x⋆‖22,

where we have used (C.38), a trivial inequality, (C.41), (C.40), (C.39), and
(C.42). If µk ≤ µ⋆

k then

f(x(k+1))−f⋆+
γk+1

2
‖z(k+1)−x⋆‖22 ≤ (1−θk)

(
f(x(k))− f⋆ +

γk
2
‖z(k) − x⋆‖22

)

(C.45)
in which case we can combine the bounds to obtain

f(x(k))−f⋆+
γk
2
‖z(k)−x⋆‖22 ≤

(
k−1∏

i=0

(1 − θi)
)(

f(x(0))− f⋆ +
γk
2
‖z(0) − x⋆‖22

)
,

(C.46)
where we have also used x(0) = y(0) and (C.38) to obtain x(0) = z(0). For
completeness, we will show why this is an optimal first-order method. Let µk =
µ⋆
k = µ and Lk = L. If γ0 ≥ µ then using (C.39) we obtain γk+1 ≥ µ and θk ≥√
µ/L =

√
Q−1. Simultaneously, we also have

∏k−1
i=0 (1−θk) ≤ 4L

(2
√
L+k

√
γ0)

2 [13,

Lemma 2.2.4], and the bound is then

f(x(k))− f⋆ ≤ min



(
1−

√
Q−1

)k
,

4L
(
2
√
L+ k

√
γ0

)2




·
(
f(x(0))− f⋆ +

γ0
2
‖x(0) − x⋆‖22

)
. (C.47)

This is the optimal convergence rate for the class F0,L and Fµ,L simultaneously
[13, 28].

Appendix B: Complexity Analysis

In this Appendix we prove Theorem 6.1, i.e., we derive the complexity for reach-
ing an ǫ-suboptimal solution for the algorithm UPN . The total worst-case com-
plexity is given by a) the complexity for the worst case number of restarts and
b) the worst-case complexity for a successful termination.
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With a slight abuse of notation in this Appendix, µk,r denotes the kth iterate

in the rth restart stage, and similarly for Lk,r, L̃k,r, x
(k,r), etc. The value µ0,0

is the initial estimate of the strong convexity parameter when no restart has
occurred. In the worst case, the heuristic choice in (C.29) never reduces µk,
such that we have µk,r = µ0,r. Then a total of R restarts are required, where

ρRµ µ0,0 = µ0,R ≤ µ ⇐⇒ R ≥ log(µ0,0/µ)/ log(1/ρµ).

In the following analysis we shall make use of the relation

exp

(
− n

δ−1 − 1

)
≤ (1− δ)n ≤ exp

(
− n

δ−1

)
, 0 < δ < 1, n ≥ 0 .

Appendix B.1: Termination Complexity

After sufficiently many restarts (at most R), µ0,r will be sufficiently small in
which case (C.34) holds and we obtain

‖GL̃k+1,r
(x(k+1,r))‖22 ≤

k∏

i=1

(
1−

√
µi,r

Li,r

)(
4L̃k+1,r

µk,r
− 2L̃k+1,r

2L0,r
+

2L̃k+1,rγ1,r
µ2
k,r

)

·‖GL0(x
(0,r))‖22

≤
(
1−

√
µk,r

Lk,r

)k
(
4L̃k+1,r

µk,r
− 2L̃k+1,r

2L0,r
+

2L̃k+1,rγ1,r
µ2
k,r

)

·‖GL0,r(x
(0,r))‖22

≤ exp

(
− k√

Lk,r/µk,r

)(
4L̃k+1,r

µk,r
− L̃k+1,r

L0,r
+

2L̃k+1,rγ1,r
µ2
k,r

)

·‖GL0,r(x
(0,r))‖22,

where we have used Li,r ≤ Li+1,r and µi,r ≥ µi+1,r. To guarantee
‖GL̃k+1,r

(x(k+1,r))‖2 ≤ ǭ we require the latter bound to be smaller than ǭ2, i.e.,

‖GL̃k+1,r
(x(k+1,r))‖22 ≤ exp

(
− k√

Lk,r/µk,r

)(
4L̃k+1,r

µk,r
− L̃k+1

L0,r
+

2L̃k+1,rγ1,r
µ2
k,r

)

·‖GL0,r(x
(0,r))‖22 ≤ ǭ2.

Solving for k, we obtain

k = O
(√

Q logQ
)
+O

(√
Q log ǭ−1

)
, (C.48)

where we have used O
(√

Lk,r/µk,r

)
= O

(√
L̃k+1,r/µk,r

)
= O

(√
Q
)
.
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Appendix B.2: Restart Complexity

How many iterations are needed before we can detect that a restart is needed?
The restart detection rule (C.34) gives

‖GL̃k+1,r
(x(k+1,r))‖22 >

k∏

i=1

(
1−

√
µi,r

Li,r

)(
4L̃k+1,r

µk,r
− 2L̃k+1,r

2L0,r
+

2L̃k+1,rγ1,r
µ2
k,r

)

·‖GL0,r(x
(0,r))‖22

≥
(
1−

√
µ1,r

L1,r

)k
(
4L̃1,r

µ1,r
− 2L̃1,r

2L0,r
+

2L̃1,rγ1,r
µ2
1,r

)

·‖GL0,r(x
(0,r))‖22

≥ exp

(
− k√

L1,r/µ1,r − 1

)(
4L1,r

µ1,r
− 2L1,r

2L0,r
+

2L1,rγ1,r
µ2
1,r

)

·‖GL0,r(x
(0,r))‖22,

where we have used Li,r ≤ Li+1,r, Li,r ≤ L̃i+1,r and µi,r ≥ µi+1,r . Solving for
k, we obtain

k >

(√
L1,r

µ1,r
− 1

)(
log

(
4L1,r

µ1,r
− L1,r

L0,r
+

4γ1,rL1,r

µ2
1,r

)
+ log

‖GL0,r(x
(0,r))‖22

‖GL̃k+1,r
(x(k+1,r))‖22

)
.

(C.49)
Since we do not terminate but restart, we have ‖GL̃k+1,r

(x(k+1,r))‖2 ≥ ǭ. After

r restarts, in order to satisfy (C.49) we must have k of the order

O
(√

Qr

)
O
(
logQr

)
+O

(√
Qr

)
O
(
log ǭ−1

)
,

where

Qr = O
(
L1,r

µ1,r

)
= O

(
ρR−r
µ Q

)
.
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The worst-case number of iterations for running R restarts is then given by

R∑

r=0

O
(√

QρR−r
µ

)
O(logQρR−r

µ ) +O
(√

QρR−r
µ

)
O(log ǭ−1)

=

R∑

i=0

O
(√

Qρiµ

)
O(logQρiµ) +O

(√
Qρiµ

)
O(log ǭ−1)

= O
(√

Q
){ R∑

i=0

O
(√

ρiµ

) [
O
(
logQρiµ

)
+O

(
log ǭ−1

)]
}

= O
(√

Q
){ R∑

i=0

O
(√

ρiµ

) [
O(logQ) +O

(
log ǭ−1

) ]
}

= O
(√

Q
){
O(1)

[
O(logQ) +O

(
log ǭ−1

) ]}

= O
(√

Q
)
O(logQ) +O

(√
Q
)
O
(
log ǭ−1

)

= O
(√

Q logQ
)
+O

(√
Q log ǭ−1

)
, (C.50)

where we have used

R∑

i=0

O
(√

ρiµ

)
=

R∑

i=0

O
(√

ρµ
i
)
= O



1−
√
ρR+1
µ

1−√ρµ



 = O(1).

Appendix B.3: Total Complexity

The total iteration complexity of UPN is given by (C.50) plus (C.48):

O
(√

Q logQ
)
+O

(√
Q log ǭ−1

)
. (C.51)

It is common to write the iteration complexity in terms of reaching an ǫ-suboptimal
solution satisfying f(x) − f⋆ ≤ ǫ. This is different from the stopping criteria
‖GL̃k+1,r

(x(k+1,r))‖2 ≤ ǭ or ‖GLk,r
(y(k,r))‖2 ≤ ǭ used in the UPN algorithm.

Consequently, we will derive a relation between ǫ and ǭ. Using Lemmas 5.1 and
5.2, in case we stop using ‖GLk,r

(y(k,r))‖2 ≤ ǭ we obtain

f
(
x(k+1,r)

)
− f⋆ ≤

(
2

µ
− 1

2Lk,r

)
‖GLk,r

(y(k,r))‖22 ≤
2

µ
‖GLk,r

(y(k,r))‖22 ≤
2

µ
ǭ2,
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and in case we stop using ‖GL̃k+1,r
(x(k+1,r))‖2 ≤ ǭ, we obtain

f
(
x̃(k+1,r)

)
− f⋆ ≤

(
2

µ
− 1

2L̃k+1,r

)
‖GL̃k+1,r

(x(k+1,r))‖22

≤ 2

µ
‖GL̃k+1,r

(x(k+1,r))‖22 ≤
2

µ
ǭ2.

To return with either f(x̃(k+1,r))− f⋆ ≤ ǫ or f(x(k+1,r))− f⋆ ≤ ǫ we require the
latter bounds to hold and thus select (2/µ) ǭ2 = ǫ. The iteration complexity of
the algorithm in terms of ǫ is then

O
(√

Q logQ
)
+O

(√
Q log

(
(µǫ)−1

))
= O

(√
Q logQ

)
+O

(√
Q logµ−1

)

+O
(√

Q log ǫ−1
)

= O
(√

Q logQ
)
+O

(√
Q log ǫ−1

)
,

where we have used O(1/µ) = O(L/µ) = O(Q).
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Abstract

In this paper, we consider the design of multiple descriptions (MDs) using sparse
decompositions. In a description erasure channel only a subset of the transmit-
ted descriptions is received. The MD problem concerns the design of the de-
scriptions such that they individually approximate the source and furthermore
are able to refine each other. In this paper, we form descriptions using convex
optimization with l1-norm minimization and Euclidean distortion constraints on
the reconstructions and show that with this method we can obtain non-trivial de-
scriptions. We give an algorithm based on recently developed first-order method
to the proposed convex problem such that we can solve large-scale instances for
image sequences.

1 Introduction

Sparse decomposition is an important method in modern signal processing and
has been applied to different applications such as estimation and coding [1],
linear prediction [2] and blind source separation [3]. For estimation and encoding
the argument for sparse approaches has been to follow natural statistics, see
e.g., [4]. The advent of compressed sensing [5, 6] has further added to the interest
in sparse decompositions since the recovery of the latent variables requires a
sparse acquisition method.

One method to acquire a sparse decomposition with a dictionary is to solve a
convex relaxation of the minimum cardinality problem, that is the l1-compression
problem

min. ‖z‖1
s.t. ‖Dz − y‖2 ≤ δ ,

(D.1)

where D ∈ R
M×N is an overcomplete dictionary, δ > 0 is a selected reconstruc-

tion error level (distortion), (N ≥M), z ∈ R
N is the latent variable and y ∈ R

M

is the signal we wish to decompose into a sparse representation. There are sev-
eral other sparse acquisition methods, including approximations of minimum
cardinality and pursuit methods.

In this paper, we apply sparse decomposition to the multiple-description
(MD) problem [7]. The MD problem is on encoding a source into multiple
descriptions and each description is then transmitted over a different channel.
Unknown to the encoder, a channel may break which correspond to a descrip-
tion erasure such that only a subset of the transmitted descriptions is received.
The problem is to design the descriptions such that the decoded descriptions
approximate the source for all possible subsets of descriptions.
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An important concept for the MD problem is the trade-off associated with
the description design; in order for the descriptions to approximate the source,
they should be similar to the source, and consequently the descriptions need to
be similar to each other. But, if the descriptions are too similar to each other,
it is not possible to obtain any refinement when the individual descriptions are
combined.

Let J be the number of channels and let JJ = {1, . . . , J}. Then IJ =
{ℓ | ℓ ⊆ JJ , ℓ 6= ∅} describes the non-trivial subsets of descriptions which can
be received. Further, let zj, ∀j ∈ JJ , denote the jth description and define
zℓ = {zj | j ∈ ℓ}, ∀ℓ ∈ IJ . At the decoder, the descriptions zℓ, ℓ ∈ IJ , are used
to reconstruct an approximation of the source y via the reconstruction func-
tions gℓ(zℓ). The approximations satisfy the distortion constraint d(gℓ(zℓ), y) ≤
δℓ, ∀ℓ ∈ IJ , with d(·, ·) denoting a distortion measure. An example with J = 2
is presented in Fig. D.1.

MD

Encoder

y

z1

z2

g{1}(z{1})

g{2}(z{2})

g{1,2}(z{1,2})

g{1}

g{2}

g{1,2}

(D{1})

(D{2})

(D{1,2})

d(g{1}(z{1}), y) ≤ δ{1}

d(g{2}(z{2}}, y) ≤ δ{2}

d(g{1,2}(z{1,2}), y) ≤ δ{1,2}

(R(z1), ‖z1‖1)

(R(z2), ‖z2‖1)

Fig. D.1: The MD (l1-compression) problem for J = 2.

In a statistical setting, the MD problem is to design the descriptions zj , ∀j ∈
JJ , such that the total rate

∑
j∈JJ

R(zj) is minimized and the fidelity con-
straints are satisfied. This problem is only completely solved with the squared
error fidelity criterion, memoryless Gaussian sources and two descriptions [8].
Another direction is to form descriptions in a deterministic setting. Algorithms
specifically designed for video or image coding may be based on, e.g., Wiener
filters with prediction compensation [9], matching pursuit [10, 11] or compressed
sensing [12, 13].

The remaining part of the paper is organized as follows: in Sec. 2 we present
a method to obtain sparse decomposition using convex optimization with con-
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straints on the distortion. Sec. 3 is on a first-order method for solving the
proposed convex problem. We provide simulations in Sec. 4 and discussions in
Sec. 5.

2 Convex Relaxation

In this work, we cast the MD problem into a similar form as (D.1).1 Let zj ∈
R

M×1, ∀j ∈ JJ , be the descriptions and zℓ =Cj∈ℓ zj ∈ R
|ℓ|M×1, ∀ℓ ∈ IJ , be the

vector concatenation of the descriptions used in the decoding when the subset
ℓ ⊆ JJ is received. We then form the linear reconstruction functions gℓ(zℓ) =

Dℓzℓ, ∀ℓ ∈ IJ , see also [12]. The dictionaries are given as Dℓ =Cj∈ℓ D̄ℓ,j with
Dℓ ∈ R

M×|ℓ|M , ∀ℓ ∈ IJ , and D̄ℓ,j = ρℓ,jDj , ∀ℓ ∈ IJ , j ∈ ℓ. We choose:

• the reconstruction weight

ρℓ,j =





1 if |ℓ| = 1
∑

i∈ℓ\j δ2i
(‖ℓ‖−1)

∑
i∈ℓ δ

2
i

, otherwise
,

in order to weight the joint reconstruction relative to the distortion bound
of the individual distortions, see [15],

• Dj, ∀j ∈ JJ invertible, the reason for such will become clear in Sec. 3,

• the Euclidean norm as the measure d(x, y) = ‖x− y‖2.
With these choices we obtain the standard multiple-description l1-compression
(SMDL1C) problem

min.
∑

j∈JJ

λj‖Wjzj‖1

s.t. ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ ,
(D.2)

for δℓ > 0, ∀ℓ ∈ IJ , and λj > 0,Wj ≻ 0, ∀j ∈ JJ . The problem (D.2) is a
second-order cone program (SOCP) [16].

For Gaussian sources with the Euclidean fidelity criterion, it has been shown
that linear reconstruction functions are sufficient for achieving the MD rate-
distortion function, see [17, 18] and [19] for white and colored Gaussian sources,
respectively.

In (D.2) we have introduced Wj = diag(wj), ∀j ∈ IJ , to balance the cost of
the coefficients with small and large magnitude [20]. To find wj , the problem
(D.2) is first solved with wj = 1. Then wj is chosen approximately inversely

1This work was presented in part for the case of J = 2 in [14].
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proportional to the solution z⋆j of that problem, wj(i)← 1/(|z⋆
j (i)|+τ), for the ith

coordinate and with a small τ > 0. The problem (D.2) is then resolved with the
new weighting wj . This reweighting scheme can be iterated a number of times.
The parameter λj in (D.2) allows weighting of the l1-norms in order to achieve

a desired ratio
‖Wjzj‖1

‖Wj′ zj′‖1
, ∀j, j′ ∈ JJ .

For the SMDL1C problem there is always a solution. Since Djzj = y has a
solution then Dℓzℓ =

∑
j∈ℓ D̄ℓ,jzj =

∑
j∈ℓ ρℓ,jDjzj = y

∑
j∈ℓ ρℓ,j = y, ∀ℓ ∈ IJ .

This implies that there exists a strictly feasible point z with ‖Dℓzℓ − y‖2 = 0 <
δℓ, ∀ℓ ∈ IJ , such that Slater’s condition for strong duality holds [16].

3 A First-Order Method

We are interested in solving the SMDL1C problem for image sequences, that
is, large instances involving more than 106 variables. First-order methods have
proved efficient for large scale problems [21–23]. However, such methods require
projection onto the feasible set, which might prove inefficient because the pro-
jection on a set of coupled constraints requires yet another iterative method such
as alternating projection. Also, if we apply alternating projection then we will
only obtain a sub-optimal projection which might generate irregularity in the
first-order master method.

A problem with coupled constraints is when variable components are coupled
in different constraints. To exemplify the coupled constraints, note that in the
case where we let J = 2, we see that the constraints for ℓ = 1 or ℓ = 2 can
easily be fulfilled by simply thresholding the smallest coefficients to zero in the
transform domain Dℓ independently. This will, however, not guarantee the joint
reconstruction constraint ‖D{1,2}z{1,2}− y‖2 ≤ δ{1,2} which then corresponds to
the coupling of the variables z1 and z2.

3.1 Dual Decomposition

Dual decomposition is a method to decompose coupled constraints if the objec-
tive function is decoupled [24, 25]. A dual problem of (D.2) can be represented
as

max. −
∑

ℓ∈IJ

(
δℓ‖tℓ‖2 + yT tℓ

)

s.t. ‖uj‖∞ ≤ λj , ∀ j ∈ JJ , tℓ ∈ R
M×1, ∀ ℓ ∈ IJ\JJ

tj =−


D−T

j Wjuj +
∑

ℓ∈cj(IJ)\j
D−T

j D̄T
ℓ,jtℓ


, ∀j ∈ JJ ,

(D.3)
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with optimal objective g⋆ and

cj(I) = {ℓ | ℓ ∈ I, j ∈ ℓ} .

The equality constraints in (D.3) are simple because tℓ, ∀ℓ ∈ JJ , are isolated
on the left hand side, while the remaining variables tℓ, ∀ℓ ∈ IJ \JJ , are on the
right side. We could then make a variable substitution of tℓ, ∀ℓ ∈ JJ , in the
objective function. However, we choose the form (D.3) for clarity. The problem
(D.3) is then decoupled in the constraints but coupled in the objective function
which makes the problem (D.3) appropriate for first-order methods. Note that
if the dictionaries Dj , ∀j ∈ IJ are not invertible we could not easily make a
variable substitution and instead needed to handle the vector equality involving
the matrix dictionaries explicitly. Indeed a difficult problem for large scale MD
instances.

3.2 Primal recovery

Recovery of optimal primal variables from optimal dual variables can be ac-
complished if there is a unique solution to the minimization of the Lagrangian,
usually in the case of a strictly convex Lagrangian [16, §5.5.5]. Define the primal
variables hℓ = Dℓzℓ − y, ∀ℓ ∈ IJ , and xj = Wjzj , ∀j ∈ JJ , and the Lagrangian
at optimal dual variables is then given as

L(z, x, h, t⋆, u⋆, κ⋆) =
∑

j∈JJ

λj‖xj‖1 +
∑

ℓ∈IJ

κ⋆ℓ (‖hℓ‖2 − δℓ)

+
∑

ℓ∈IJ

t∗Tℓ (Dℓzℓ − y − hℓ) +
∑

j∈JJ

u∗Tj (Wjzj − xj) .

However the Lagrangian associated to the problem is not strictly convex in x
due to the ‖ · ‖1-norm. Instead, lets consider the Karush-Kuhn-Tucker (KKT)
conditions for the sub-differentiable problem (D.2) given as






h2(Dℓz
⋆
ℓ − y)κ⋆ℓ − t⋆ℓ ∋ 0, ∀ℓ ∈ IJ

κ⋆ℓ (‖Dℓz
⋆
ℓ − y‖2 − δℓ) = 0, ∀ℓ ∈ IJ (‖t⋆ℓ‖2 = κ⋆ℓ )∑

ℓ∈cj(IJ )

D̄T
ℓ,jt

⋆
ℓ +Wju

⋆
j = 0, ∀j ∈ JJ

‖Dℓz
⋆
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
⋆
j )− u⋆j ∋ 0, ∀j ∈ JJ
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with ha(x) = ∂‖x‖a. We can rewrite the above system using δℓ > 0, ∀ℓ ∈ IJ
and obtain the equivalent KKT optimality conditions





∑

ℓ∈cj(IJ)

‖t⋆ℓ‖2
δℓ

D̄T
ℓ,jDℓz

⋆
ℓ= rj , ∀j ∈ JJ (D.4.△)

‖Dℓz
⋆
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
⋆
j )− u⋆j ∋ 0, ∀j ∈ JJ

(D.4)

where

rj = −Wju
⋆
j +
∑

ℓ∈cj(IJ )

‖t⋆ℓ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ .

The equations (D.4.△) can solved with low complexity for invertible dictionaries.
However, the remaining equations are sub-differentiable and feasibility equations
and are too difficulty to handle. Especially for large scale problems. Also, for
a sub-optimal dual solution it is not possible to find a primal solutions that
fulfills (D.4), because this implies that the dual solution is in fact an optimal
dual solution. That is, for a sub-optimal dual solution we can only solve a subset
of the KKT system.

Let z⋆ ∈ Z be a solution to (D.4) and let z̄ ∈ Z̄ be a solution to the square
system (D.4.△). Then the following proposition shows that it is in fact possible
to recover optimal primal variables in certain cases.

Proposition 3.1. (Uniqueness) If the solution z̄ to the linear system (D.4.△)
is unique, then z⋆ = z̄ for the SMDL1C problem.

Proof. Since the SMDL1C problem has a solution and the system (D.4.△) is a
subsystem of (D.4) then ∅ 6= Z ⊆ Z̄. If |Z̄| = 1 then |Z| = 1 such that z̄ = z⋆.

In the first-order method, from the dual sub-optimal iterates
(
t(i), u(i)

)
, the

primal iterate z(i) is obtained as the solution to

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jDℓz

(i)
ℓ =−Wju

(i)
j +

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ .

The algorithm is halted if it is a primal-dual ǫ-solution

f(z(i))− g(t(i)) ≤ ǫ, z(i) ∈ Qp,
(
t(i), u(i)

)
∈ Qd ,

where Qp and Qd defines the primal and dual feasible set, respectively. We select
ǫ = MJǫr with ǫr = 10−3 to scale the accuracy ǫ in the dimensionality of the
primal variables.
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3.3 Complexity

The objective of the dual problem (D.3) is differentiable on ‖tℓ‖ > 0 and sub-
differentiable on ‖tℓ‖2 = 0. The objective in the dual problem (D.3) is hence not
smooth. A smooth function is a function with Lipschitz continuous derivatives
[26]. We could then apply an algorithm such as the sub-gradient algorithm with
complexity O(1/ǫ2) where ǫ is the accuracy in function value. However, it was
recently proposed to make a smooth approximation and apply an optimal first-
order method to the smooth problem and obtain complexity O(1ǫ ) [27]. We can
not efficiently apply the algorithm in [27], since this requires projections on both
the primal and dual feasible set. We will instead show how to adapt the results
of [27], similar to [28], using only projection on the dual set and still achieve
complexity O(1ǫ ). Consider

‖x‖2 = max
‖v‖2≤1

{
vTx

}

and the approximation

Ψµ(x) = max
‖v‖2≤1

{
vTx− µ

2
‖v‖22

}

=




‖x‖2 − µ/2, if ‖x‖2 ≥ µ
1
2µx

Tx, otherwise
,

where Ψµ(·) is a Huber function with parameter µ ≥ 0. For µ = 0 we have
Ψ0(x) = ‖x‖2. The function Ψµ(x) has for µ > 0 the (Lipschitz continuous)
derivative

∇Ψµ(x) =
x

max{‖x‖2, µ}
.

The dual objective is

g(t) = −
∑

ℓ∈IJ

(
δℓ‖tℓ‖2 + yT tℓ

)

and we can then form the smooth function gµ

gµ(t) = −
∑

ℓ∈IJ

(
δℓΨµ(tℓ) + yT tℓ

)
.

The Lipschitz constant of the gradient is L(∇Ψµ) =
1
µ and

Lµ = L(∇gµ) =
(
∑

ℓ∈IJ

δℓ
µ

+ 1

)
=
C

µ
+ |IJ | . (D.5)
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The smooth function has the approximation

gµ(t) ≤ g(t) ≤ gµ(t) + µC . (D.6)

Hence, the parameter µ both controls the level of smoothness (D.5) and the
approximation accuracy (D.6). Select µ = ǫ/(2C) and let the ith iteration t(i) of
a first-order method have the property

g⋆µ − gµ(t(i)) ≤
ǫ

2
,

where g⋆µ is the optimal objective for the smooth problem. Then we obtain

g⋆ − g(t(i)) ≤ g⋆µ + µC − gµ(t(i)) ≤ ǫ .

By using an optimal-first order algorithm for L-smooth problems with complex-

ity O
(√

L
ǫ

)
[26], then t(i) can be obtained in i iterations, where

i=O
(√

Lµ

ǫ

)
=O

(√
1

ǫ2
+
1

ǫ

)
≤ O

(√
1

ǫ2
+

√
1

ǫ

)
=O

(
1

ǫ

)
.

4 Simulations

For the simulations we will present an example of obtaining a sparse decompo-
sition in the presented MD framework. As the source we select the grayscale
image sequence of “foreman” with height m = 288 pixels and width n = 352
pixels. We jointly process k = 8 consecutive frames [29] and y is formed by
stacking each image and scaled such that y ∈ [0; 1]M , M = mnk. We select
J = 3 and as dictionaries

D1 : the three dimensional cosine transform,

D2 : a two dimensional Symlet16 discrete wavelet transform with 5 levels along
the dimensions associated to m,n and a one dimensional Haar discrete
wavelet transform with 3 levels along the dimension associated to k,

D3 : the three dimensional sine transform.

Let the peak signal-to-noise ratio (PSNR) measure be defined by

PSNR(δ) = 10 log10

(
1

1
M δ2

)
.

As distortion constraints we select PSNR(δℓ) = 30, ∀|ℓ| = 1, PSNR(δℓ) =
33, ∀|ℓ| = 2 and PSNR(δℓ) = 37, |ℓ| = 3 with ℓ ∈ IJ . Further we choose
equal weights λj = 1, ∀j ∈ JJ .
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If the primal variables were obtained from an algorithm using projection [21]
or a method employing a soft-thresholding operator [22], a sub-optimal solution
will contain coefficients which are exactly zero. The primal variables are in
this approach obtained as the solution to a linear system arising from sub-
optimal dual variables and hence there might be many small coefficients which
are not exactly zero. To handle this, the distortion requirement are changed
by δ̄ℓ = δℓ − |ℓ|σ, ∀ℓ ∈ IJ , with σ > 0 when the SMDL1C problem is solved
and the smallest coefficients are afterwards thresholded to zero using the slack
introduced by |ℓ|σ while ensuring the original distortion constraints δℓ. Let z(r)
be an ǫ-solution after r reweight iterations of the SMDL1C problem and set
ẑ = z(7).

4.1 Example

Define a frame extraction function s(y, i) which extract the ith frame from the
image sequence stacked in y. In Fig. D.2 we show a few examples of the decoded
6th frame for the subset ℓ = {1}, ℓ = {2, 3} and ℓ = {1, 2, 3}. This example is a
large scale problem with 10 · 106 primal-dual variables.

4.2 Reweighting

In Fig. D.3 we report the relative cardinality of z(r) as a function of the number
of applied reweight iterations r. We observe in Fig. D.3 that the cardinality is
significantly decreased for r ∈ {0, · · · , 3}, whereupon the decrease is less distinct.

4.3 Threshold Comparison

For comparison we will obtain sparse decompositions in each basis independently
using thresholding. We define the operation z = T (D, y, γ) as thresholding the
coefficients with the smallest magnitude in the basis D from the source y such
that PSNR(‖Dz − y‖2) ≈ γ. We report the relative cardinalities card(z)/M
and PSNR measures obtained by SMDL1C in Tab. D.1 and by independent
thresholding for each basis in Tab. D.2. When using SMDL1C we observe
that from |ℓ| = 1 to |ℓ| = 2 the descriptions obtain a refinement in the range
3.2−4.8 dB. For independent thresholding the refinement is smaller, in the range
0.7− 1.2 dB. This shows that the obtained refinement by the SMDL1C method
is non-trivial.

The PSNR measures for thresholding to same cardinality as using SMDL1C
are reported in Tab D.3. The descriptions are formed independently and refine-
ment is there not guaranteed, which we can observe when the reconstructions
at level |ℓ| = 2 are combined to reconstruction at level |ℓ| = 3.

The cardinalities for thresholding at PSNR 37.2 dB are given in Tab. D.4.
By comparing Tab. D.1 and D.4, we see that the cardinalities of SMDL1C are
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s(D{1}ẑ{1}, 6)

(30.0, 30.0)

s(y, 6)

s(D{1,2,3}ẑ{1,2,3}, 6)

(37.2, 37.0)

s(D{2,3}ẑ{2,3}, 6)

(34.8, 33.0)

Fig. D.2: Example using “foreman” (grayscale, 288×352). The images show the 6th frame
of the decoded images for ℓ = {1}, ℓ = {2, 3} and ℓ = {1, 2, 3}. Above the figures are
the actual distortion and the distortion bounds reported using the format (PSNR(‖Dℓẑℓ −
y‖2),PSNR(δℓ)).
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Fig. D.3: Example of reweighting an image sequence of “foreman” (grayscale, 288×352) by
jointly processing k=8 frames.

card(zj)/M PSNR(‖Dℓzℓ − y‖2)

j = 1 ℓ = {1} ℓ = {1, 2}
0.019 30.0 34.4

j = 2 ℓ = {2} ℓ = {1, 3} ℓ = {1, 2, 3}
0.025 30.0 33.2 37.2

j = 3 ℓ = {3} ℓ = {2, 3}
0.037 30.0 34.8

Table D.1: Cardinality and reconstruction PSNR for SMDL1C (z← ẑ), with card(z)/M =
0.081.

card(zj)/M PSNR(‖Dℓzℓ − y‖2)

j = 1 ℓ = {1} ℓ = {1, 2}
0.012 30.0 30.9

j = 2 ℓ = {2} ℓ = {1, 3} ℓ = {1, 2, 3}
0.006 30.0 30.7 31.3

j = 3 ℓ = {3} ℓ = {2, 3}
0.019 30.0 31.2

Table D.2: Cardinalities and reconstruction PSNRs for thresholding (z ←
Cj∈JJ

T (Dj , y, 30)), with card(z)/M = 0.037.



132 PAPER D

card(zj)/M PSNR(‖Dℓzℓ − y‖2)

j = 1 ℓ = {1} ℓ = {1, 2}
0.019 31.2 34.8

j = 2 ℓ = {2} ℓ = {1, 3} ℓ = {1, 2, 3}
0.025 34.7 32.5 34.5

j = 3 ℓ = {3} ℓ = {2, 3}
0.037 32.1 35.1

Table D.3: Cardinalities and reconstruction PSNRs for thresholding to same cardinality as
using SMDL1C.

smaller than that of simple tresholding at 37.2 dB. Also, by comparing Tab.
D.1 and D.2, we see that the cardinalities of SMDL1C are larger than that of
simple tresholding at 30.0 dB. These bounds are to be expected for non-trivial
descriptions. We also note that if we used the dictionary with the smallest
cardinality to achieve the requested PSNR (j = 2), it is not possible to duplicate
this description at the highest PSNR before the total cardinality exceeds that
of ẑ. This exemplifies that it is not possible to simply transmit the coefficients
T (D2, y, 37.2) over all channels and obtain a comparable cardinality as obtained
by the SMDL1C problem.

j = 1 j = 2 j = 3

card(zj)/M 0.107 0.048 0.122

Table D.4: Cardinalities using thresholding at the highest obtained PSNR by SMDL1C
(z←⋃

j∈JJ
T (Dj , y, 37.2)).

5 Discussion

We presented a multiple description formulation using convex relaxation. In
the case of large-scale problems we have proposed a first-order method for the
dual problem. The simulations showed that the proposed multiple description
formulation renders non-trivial descriptions with respect to both the cardinality
and the refinement.
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Abstract

Multiple descriptions (MDs) is a method to obtain reliable signal transmissions
on erasure channels. An MD encoder forms several descriptions of the signal and
each description is independently transmitted across an erasure channel. The
reconstruction quality then depends on the set of received descriptions. In this
paper, we consider the design of redundant descriptions in an MD setup using
l1-minimization with Euclidean distortion constraints. In this way we are able
to obtain sparse descriptions using convex optimization. The proposed method
allows for an arbitrary number of descriptions and supports both symmetric and
asymmetric distortion design. We show that MDs with partial overlapping in-
formation corresponds to enforcing coupled constraints in the proposed convex
optimization problem. To handle the coupled constraints, we apply dual decom-
positions which makes first-order methods applicable and thereby admit solutions
for large-scale problems, e.g., coding entire images or image sequences. We show
by examples that the proposed framework generates non-trivial sparse descrip-
tions and non-trivial refinements. We finally show that the sparse descriptions
can be quantized and encoded using off-the-shelf encoders such as the set par-
titioning in hierarchical trees (SPIHT) encoder, however, the proposed method
shows a rate-distortion loss compared to state-of-the-art image MD encoders.

1 Introduction

An important problem in signal processing is the multiple-description (MD)
problem [1]. The MD problem is on encoding a source into multiple descriptions,
which are transmitted over separate channels. The channels may occasionally
break down causing description erasures, in which case only a subset of the
descriptions are received. Which of the channels that are working at any given
time is known by the decoder but not by the encoder. The problem is then
to construct a number of descriptions, which individually provide an acceptable
quality and furthermore are able to refine each other. It is important to notice
the contradicting requirements associated with the MD problem; in order for
the descriptions to be individually good, they must all be similar to the source
and therefore, to some extend, the descriptions are also similar to each other.
However, if the descriptions are the same, they cannot refine each other.

Let J be the number of channels and let JJ = {1, . . . , J}. Then IJ =
{ℓ | ℓ ⊆ JJ , ℓ 6= ∅} describes the indices of the non-trivial subsets which can be
received. Further, let zj denote the jth description and define zℓ = {zj | j ∈
ℓ}, ∀ℓ ∈ IJ . At the decoder, the descriptions zℓ, ℓ ∈ IJ , approximate the source
y via their individual reconstructions gℓ(zℓ) which satisfy the fidelity constraint
d(gℓ(zℓ), y) ≤ δℓ, ∀ℓ ∈ IJ , with d(·, ·) denoting a distortion measure. An example
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with J = 2 is illustrated in Fig. E.1.

MD

Encoder

y

z1

z2

g{1}(z{1})

g{2}(z{2})

g{1,2}(z{1,2})

g{1}

g{2}

g{1,2}

(D{1})

(D{2})

(D{1,2})

d(g{1}(z{1}), y) ≤ δ{1}

d(g{2}(z{2}), y) ≤ δ{2}

d(g{1,2}(z{1,2}), y) ≤ δ{1,2}

(R(z1), ‖z1‖1)

(R(z2), ‖z2‖1)

Fig. E.1: The MD (l1-compression) problem for J = 2.

The traditional MD coding problem aims at characterizing the set of achiev-
able tuples(
R(z1), R(z2) · · · , R(zJ), δ{1}, · · · , δ{1,2··· ,J}

)
where R(zj) denotes the minimum

coding rate for description zj , ∀j ∈ JJ , required in order to approximate the
source y to within the distortion fidelities δℓ, ∀ℓ ∈ IJ [1]. The problem is then
to construct zℓ, ∀ℓ ∈ IJ , so that R(zj), ∀j ∈ JJ , are minimized and the fidelity
constraints are satisfied, cf., Fig. E.1. This well-known information theoretic
problem remains largely unsolved. In fact, it is only completely solved for the
case of two descriptions, with the squared error fidelity criterion and Gaussian
sources [2].

Another direction is to form descriptions in a deterministic setting, as op-
posed to the traditionally MD approach [1]. Algorithms designed for video and
image coding may be based on, e.g., Wiener filters with prediction compensa-
tion [3], matching pursuit [4, 5] or compressed sensing [6, 7]. Recovery of the
latent variables can in compressed sensing be obtained by sparsity driven meth-
ods such as l1-minimization with known guarantees [8]. There is also results in
the case of quantization [9–11].

In this paper we propose a convex problem, which can be used to obtain
sparse descriptions for MD problems using l1-minimization with Euclidean con-
strains on the distortion of the reconstruction. The proposed MD formulation
is flexible in terms of applications (e.g., speech, image and video compression),
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the number of channels J as well as supporting both symmetric and asymmetric
design. We show how to apply a first-order method to solve the proposed con-
vex optimization problem using dual decomposition and smoothing [12]. Let ǫ
be the desired accuracy of an approximate solution in function value, in which
case the first-order method has iteration complexity O

(
1
ǫ

)
. The combination of

a reasonable iteration complexity and the low complexity of a single iteration
in first-order methods makes it possible to apply the proposed MD method to
large scale problems such as for entire images or image sequences. The descrip-
tions are for example represented in discrete wavelet dictionaries but arbitrary
dictionaries are allowed in the original formulation. For encoding the sparse
descriptions it is possible to apply state-of-the-art methods for wavelet encod-
ing, e.g., set partitioning in hierarchical trees (SPIHT) [13]. However, we are
not able to obtain state-of-the-art rate-distortion descriptions by the two stage
approach of first forming sparse descriptions and then encode.

The organization of the paper is as follows: we will first propose the MD l1-
compression (MDl1C) problem in Sec. 2 and then analyze and discuss important
properties of the problem in Sec. 3. Then, in Sec. 4, we discuss algorithms
for solving the proposed convex problem, and present an efficient first-order
method. We analyze the sparse descriptions in Sec. 5 and extend the framework
to encoding of MD wavelet coefficient based on well known methods and provide
simulations on compression of images and image sequences in Sec. 6.

2 Problem Formulation

An interesting direction of research is in sparse estimation techniques for signal
processing based on l1-norm heuristics, where, e.g., compressive sampling [8, 14]
have gained much attention. The theory is by now well-established and much
is known about cases where the l1-minimization approach coincides with the
solution to the otherwise intractable minimum cardinality solution, see [15] and
references therein.

One way of obtaining a sparse approximation z of the source y is to solve
the so-called l1-compression problem

minimize ‖Wz‖1
subject to ‖Dz − y‖2 ≤ δ,

(E.1)

where δ > 0 is a given distortion bound, D ∈ R
M×N is an overcomplete dictio-

nary (N ≥ M), z ∈ R
N is the variable, and y ∈ R

M is the signal we wish to
decompose into a sparse representation. In a standard formulation W ∈ R

N×N

can be selected as W = I. To improve the l1-minimization approach for mini-
mizing the cardinality it has been proposed to select W = diag(w) to reduce the
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cost of large coefficients [16], see also [17]. To find w, the unscaled problem (E.1)
is solved first (i.e., with w = 1). Then w is chosen inversely proportional to the
solution z∗ of that problem, and (E.1) is solved again with the new weighting
w. This reweighting scheme can be iterated a number of times.

In this work, we cast the MD problem into the framework of l1-compression

(E.1).1 Let zj ∈ R
Ñj×1, ∀j ∈ JJ , be the descriptions of length Ñj. We will

define a concatenation operator

X = C
i∈S

Yi =




YS1

YS2

...

YSn




where Yi ∈ R
pi×q, S = {S1, S2, · · · , Sn} has n elements and X ∈ R

∑
i∈S pi×q.

Then zℓ = Cj∈ℓ zj ∈ R

∑
j∈ℓ Ñj×1, ∀ℓ ∈ IJ , is the vector concatenation of the

descriptions used in the decoding when the subset ℓ ⊆ JJ is received. For
simplicity we will use zj with the meaning z{j}, j ∈ JJ , which also applies to

other symbols with subscripted ℓ. The matrix Dℓ ∈ R
M×∑

j∈ℓ Ñj , ∀ℓ ∈ IJ , is
the dictionary associated with the description zℓ given as Dℓ =

(
Cj∈ℓ D̄

T
ℓ,j

)T

with D̄ℓ,j ∈ R
M×Ñj . Our idea is to form the multiple-description l1-compression

problem using linear reconstruction functions, i.e., gℓ(zℓ) = Dℓzℓ similar to
[6] since it preserves convexity [20], and the Euclidean norm as the distortion
measure, i.e., d(x, y) = ‖x−y‖2.2 Note that its possible to select other distortion
measures that is convex, but we choose ‖ · ‖2 since it relates to the well known
peak signal-to-noise-ratio (PSNR). The definition is given below.

Definition 2.1. An instance {y, {δℓ}ℓ∈IJ
, {Dℓ}ℓ∈IJ

, {Wj}j∈JJ
, {λj}j∈JJ

} of
the MDl1C problem is defined by

minimize
∑

j∈JJ

λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ ,
(E.2)

for δℓ > 0, ∀ℓ ∈ IJ , λj > 0, ∀j ∈ JJ and Wj ≻ 0, ∀j ∈ JJ . For simplicity
we sometime use f(z) =

∑
j∈JJ

λj‖Wjzj‖1 for the primal objective and Qp =
{z | ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ} for the primal feasible set.

1This work was presented in part [18, 19].
2Interestingly, in the Gaussian case and for the mean squared error fidelity criterion, it

has been shown that linear reconstruction functions are sufficient for achieving the MD rate-
distortion function, see [21, 22] and [23] for white and colored cases, respectively.
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The problem (E.2) amounts to minimize the number of non-zero coefficients
in the descriptions (using convex relaxation) under the constraint that any com-
bination of received descriptions allows a reconstruction error smaller than some
quantity. The idea is that the problem (E.2) can be used to obtain sparse coeffi-
cients which obeys certain bounds on the reconstruction error. Since it has been
shown that bit rate and sparsity is almost linearly dependent [24], the problem
formulation (E.2) can be used to form descriptions in a MD framework. In Sec.
6 we will discuss in detail how to encode the sparse coefficients. Note that since
|IJ | = 2J − 1, the number of possible received combinations grows exponential
in the number of channels, and thereby the number of constraints in problem
(E.2).

In Definition 2.1 we have introduced λ > 0 to allow weighting of the l1-

norms in order to achieve a desired ratio
‖Wjzj‖1

‖Wj′ zj′‖1
, ∀j, j′ ∈ JJ . Note that in the

case where we let D̄j,j , ∀j ∈ JJ , be orthogonal, we see that the constraints on
the side reconstructions can easily be fulfilled by simply truncating the smallest
coefficients zj = D̄j,j , ∀ j ∈ JJ , to zero separately for the coefficients of each side
description. This will, however, not guarantee the joint reconstruction constraint
‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\JJ . Thus, the problem at hand is non-trivial.

In the following sections we will analyse the MDl1C problem presented in
Definition 2.1 and give an algorithm to solve large scale instances of this problem.

3 Analysis of the Multiple-description l1-Com-

pression Problem

In this section we will review and discuss some important properties of the
proposed MDl1C problem.

Definition 3.1. (Solvable) The MDl1C problem is solvable if the problem has
at least one feasible point.

Remark (Definition 3.1) Since the MDl1C problem is always bounded below,
this is the same definition as in [20].

Proposition 3.2. (Solvable conditions) Let D̄ℓ,j = ρℓ,jD̄j,j , ∀ℓ ∈ IJ , j ∈ ℓ with
ρℓ,j ∈ R,

∑
j∈ℓ ρℓ,j = 1, ∀ℓ ∈ IJ . Furthermore, let y ∈ span(D̄j,j), ∀j ∈ JJ .

Then the MDl1C problem (E.2) is solvable.

Proof. There exists zj, ∀j ∈ JJ , such that D̄j,jzj = y, ∀j ∈ JJ . Then we also
have that Dℓzℓ =

∑
j∈ℓ D̄ℓ,jzj =

∑
j∈ℓ ρℓ,jD̄j,jzj = y

∑
j∈ℓ ρℓ,j = y, ∀ℓ ∈ IJ .

Hence, z = Cj∈JJ
zj ∈ Qp is a primal feasible solution and the problem (E.2)

is therefore solvable.
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One way to obtain the setup used in Proposition 3.2 is to use a standard
MDl1C setup.

Definition 3.3. (Standard MD ℓ1-compression problem) We denote an MDl1C
problem a standard MDl1C problem if

• D̄j,j, ∀j ∈ JJ , are invertible.

• ρℓ,j =





1 if |ℓ| = 1
∑

i∈ℓ\j δ2i
(|ℓ|−1)

∑
i∈ℓ δ

2
i

, otherwise
, to weight the contributions

• D̄ℓ,j = ρℓ,jDj, (combined with above D̄j,j = Dj , ∀j ∈ JJ ).

Remark (Definition 3.3) In the general asymmetric case, its common to
weight the reconstruction of the joint reconstructions relative to the distortion of
the individual reconstruction [25, 26]. Note that in the symmetric case, δℓ = δℓ′ ,
∀ℓ, ℓ′ ∈ IJ , |ℓ| = |ℓ′|, we have equal weight ρℓ,j = ρℓ,i, j, i ∈ ℓ.

Proposition 3.4. (Strong duality) Strong duality holds for the standard MDl1C
problem.

Proof. Since δℓ > 0, ∀ℓ ∈ IJ , span(Dj) ∈ y, ∀j ∈ JJ , and
∑

j∈ℓ ρℓ,j = 1, ∀ℓ ∈
IJ , there exists a strictly feasible ‖Dℓzℓ − y‖2 = 0 < δℓ, ∀ℓ ∈ IJ , point z such
that Slater’s condition for strong duality holds [20].

In Proposition 3.2 we assumed that D̄ℓ,j = ρℓ,jDj , ∀ℓ ∈ IJ , j ∈ ℓ. We
will, however, shortly discuss the case where D̄ℓ,j 6= ρℓ,jDj for at least one pair
(ℓ, j) ∈ IJ × JJ . The interpretation is that the dictionaries associated with the
same description may not be the same in all reconstruction functions. This can
be illustrated with an example where we will solve a small problem of sizeM = 2,
J = 2, with Dj, ∀j ∈ JJ , being the orthogonal discrete cosine transform. We
will construct another dictionary in the central reconstruction using a rotation
matrix

Rθ =



 cos θ − sin θ

sin θ cos θ





such that we solve problems on the form

minimize ‖z1‖1 + ‖z2‖1
subject to ‖D1z1 − y‖2 ≤ δ1

‖D2z2 − y‖2 ≤ δ2
‖ 12 (D1Rθz1 +D2z2)− y‖2 ≤ δ{1,2}

(E.3)
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with solution z̃∗θ . By considering different θ’s we obtain different central decoding
functions. In Fig. E.2 we show the optimal objective f(z̃∗θ ) from solving problem
(E.3). We investigate θ ∈ [−π/2; π/2] and only report f(·) and the cardinality
card(·) if the problem (E.3) is solvable. We choose δ1 = δ2 = {0.2, 0.02} and
δ{1,2} = 0.01. Observe that for both δ1 = δ2 = 0.2 and δ1 = δ2 = 0.02,
the objective f(·) can be reduced if we select θ 6= 0, i.e., if the dictionaries
associated to the different decoding functions are not equal. For δ1 = δ2 = 0.2
the cardinality can also be reduced from 3 at θ = 0 to cardinality 2 at θ ≈ −π/8.
If ‖D1z1 − y‖2 is required to be small, we would expect |θ| to be small because
D1z1 ≈ y and then D1Rθz1 ≈ y for θ ≈ 0. Note that if |θ| is too large, then the
problem is not solvable.

0.7
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1.1

 

 

f(z̃⋆θ)

θ

−π/2 −π/4 0 π/4 π/2
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Fig. E.2: (a): optimal objective f(z̃∗
θ
) and (b): the cardinality card(z̃∗

θ
) from solving the

problem (E.3) with M = 2. The distortion bounds are δ1 = δ2 = {0.2, 0.02}, δ{1,2} = 0.01
and D1 = D2: the discrete cosine transform. We only report f(·) and card(·) if the problem
(E.3) is solvable.

This example illustrates that it can be useful to have different dictionaries
in the decoder associated to the same description. To find such dictionaries
a-priori for different applications is signal dependent, and a separate research
topic, which will not be treated in this work.

4 Solving the MD l1-Compression Problem

The MDl1C problem (E.2) can be solved using general-purpose primal-dual inte-
rior point methods. To do so, we need to solve several linear systems of equations
of size O(K)×O(K), arising from linearizing first-order optimality conditions,
with K =M |IJ |+

∑
j∈JJ

Ñj . This practically limits the size of the problems we
can consider to small and medium size, except if the problem has a certain struc-
ture that can be used when solving the linear system of equations [27]. Another
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approach is to use first-order methods [12, 28–30]. Such first-order projection
methods have shown to be efficient for large scale problems [31–34]. However,
it is difficult to solve the MDl1C problem efficiently because the feasible set
‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ , is an intersection of Euclidean norm balls.

We are interested in solving large-scale instances of problem (E.2), and in
the following subsections 4.1 through 4.5, we will present an efficient first-order
method to handle problem (E.2).

4.1 Intersecting Euclidean Norm Balls

In order to illustrate the implications of the overlapping constraints on the fea-
sible set, consider the following simple example. Let D1=D2=W1=W2=λ1=
λ2 =1 so that D1z1 = z1 and D2z2 = z2. From the joint constraint it may be
noticed that z1 and z2 can be picked arbitrarily large but of different signs and
yet satisfy | 12 (z1 + z2)− y| ≤ δ{1,2}. However, due to the individual constraints
|z1 − y| ≤ δ1 and |z2 − y| ≤ δ2, the feasible set is bounded as illustrated in Fig.
E.3.

z1

z2

δ1

δ2

y

y

2δ{1,2}

Fig. E.3: An example of the feasible set (shaded region) in R
(1+1)×1. The thick line indicates

the optimal solutions for the problem of minimizing |z1|+ |z2|.

4.2 Dual Decomposition

An approach to handle problems with intersecting constraints, sometimes re-
ferred to as complicating or coupling constraints, is by dual decomposition
[29, 35].
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Proposition 4.1. (Dual problem) A dual problem of the standard MDl1C prob-
lem can be represented as

maximize −
∑

ℓ∈IJ

(
δℓ‖tℓ‖2 + yT tℓ

)

subject to ‖uj‖∞ ≤ λj , ∀ j ∈ JJ , tℓ ∈ R
M×1, ∀ ℓ ∈ IJ\JJ

tj = −


D̄−T

j,j Wjuj +
∑

ℓ∈cj(IJ )\j
D̄−T

j,j D̄
T
ℓ,jtℓ


 , ∀ j ∈ JJ ,

(E.4)

where g(t) is the dual objective and Qd the dual feasible set.

Proof. The dual function of (E.2) is given by

ḡ(t, κ) =





∑

j∈JJ

ḡj(t)−



∑

ℓ∈IJ

tTℓ y + δℓκℓ


 , if ‖tℓ‖2 ≤ κℓ, ∀ℓ ∈ IJ

−∞, else

,

(E.5)
where

t = {tℓ}ℓ∈IJ
, κ = {κℓ}ℓ∈IJ

,

ḡj(t) = inf
zj
g̃j(t) = inf

zj




λj‖Wjzj‖1 +




∑

ℓ∈cj(IJ)

tTℓ D̄ℓ,j


 zj




 ,

and
cj(I) = {ℓ | ℓ ∈ I, j ∈ ℓ} .

Note that the dual function is now decoupled in the functions gj(t) with the
implicit constraint ‖tℓ‖2 ≤ κℓ, ∀ℓ ∈ IJ . Furthermore,

ḡj(t) =






0, if ‖uj‖∞ ≤ λj , uj = −W−1
∑

ℓ∈cj(IJ )

D̄T
ℓ,jtℓ

−∞, else.

. (E.6)

At this point, we change the implicit domain in (E.5) and (E.6), to explicit
constraints and note that κ∗ℓ = ‖t∗ℓ‖2, ∀ℓ ∈ IJ , under maximization and thereby
obtain the dual problem (E.4).

The equality constraints in (E.4) are simple because the variables tj , ∀j ∈ JJ ,
associated with the side descriptions, only occurs on the left hand side, while
the rest of the variables tℓ, ∀ℓ ∈ IJ \JJ , associated with the joint description,
are on the right side. We can then make a variable substitution of tj , ∀j ∈ JJ ,
in the objective, but we choose the form (E.4) for readability.
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4.3 Smoothing

Since the dual problem has simple and non-intersecting constraints it is possible
to efficiently apply first-order projection methods. The objective of the dual
problem (E.4) is differentiable on ‖tℓ‖2 > 0 and sub-differentiable on ‖tℓ‖2 = 0.
The objective in the dual problem (E.4) is hence not smooth.3 We could then
apply an algorithm such as the sub-gradient algorithm with complexity O(1/ǫ2)
or form a smooth approximation and apply an optimal first-order method to
the smooth problem and obtain complexity O(1ǫ ), as proposed in [12]. The
primal feasible set has intersecting Euclidean norm ball constraints, so we cannot
efficiently follow the algorithm [12], since this approach requires projections in
both the primal and dual feasible set. We will next show how to adapt the
results of [12], in the spirit of [36], using only projection on the dual feasible set
and still achieve complexity O(1ǫ ). Consider

‖x‖2 = max
‖v‖2≤1

{
vTx

}
(E.7)

and the approximation

Ψµ(x) = max
‖v‖2≤1

{
vTx− µ

2
‖v‖22

}
=





‖x‖2 − µ/2, if ‖x‖2 ≥ µ
1
2µx

Tx, otherwise
,

(E.8)
where Ψµ(·) is a Huber function with parameter µ ≥ 0. For µ = 0 we have
Ψ0(x) = ‖x‖2. The function Ψµ(x) has for µ > 0 the (Lipschitz continuous)
derivative

∇Ψµ(x) =
x

max{‖x‖2, µ}
.

The dual objective is

g(t) = −
∑

ℓ∈IJ

(
δℓ‖tℓ‖2 + yT tℓ

)

and we can then form a smooth function gµ as

gµ(t) = −
∑

ℓ∈IJ

(
δℓΨµ(tℓ) + yT tℓ

)
.

The Lipschitz constant of the gradient is L(∇Ψµ(x)) =
1
µ and then

Lµ = L(∇gµ(t)) =
(
∑

ℓ∈IJ

δℓ
µ

+ 1

)
=
C

µ
+ |IJ | .

3A smooth function is a function with Lipschitz continuous derivatives [30].
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Also, g(t) can bounded as

gµ(t) ≤ g(t) ≤ gµ(t) + µC .

Now, fix µ = ǫ
2C and let the ith iteration t(i) of an algorithm have the property

g∗µ − gµ(t(i)) ≤
ǫ

2
. (E.9)

Then it follows that

g∗ − g(t(i)) ≤ g∗µ + µC − gµ(t(i)) ≤ ǫ . (E.10)

By using an optimal-first order algorithm for L-smooth problems with complex-

ity O
(√

L
ǫ

)
[30], then t(i) can be obtained in

i = O
(√

Lµ

ǫ

)
= O

(√
1
µǫ +

1
ǫ

)
= O

(√
1
ǫ2 + 1

ǫ

)

≤ O
(√

1
ǫ2 +

√
1
ǫ

)
= O

(
1
ǫ

)
+O

(√
1
ǫ

)
= O

(
1
ǫ

)
(E.11)

iterations.4

4.4 Recovering primal variables from dual variables

The primal variables can be recovered as a minimizer zj of g̃j(t), see [20, §5.5.5].
But since ‖ · ‖1 is not strictly convex there will in general be more than one
minimizer. We will instead consider a different approach.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the convex prob-
lem (E.2) are





h2(Dℓz
∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0, ∀ℓ ∈ IJ

κ∗ℓ (‖Dℓz
∗
ℓ − y‖2 − δℓ) = 0, ∀ℓ ∈ IJ (‖t∗ℓ‖2 = κ∗ℓ )∑

ℓ∈cj(IJ )

DT
ℓ,jt

∗
ℓ +Wju

∗
j = 0, ∀j ∈ JJ

‖Dℓz
∗
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
∗
j )− u∗j ∈ 0, ∀j ∈ JJ

(E.12)

with ha(x) = ∂‖x‖a. We have for δℓ > 0, ∀ℓ ∈ IJ ,




h2(Dℓz

∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0

‖t∗ℓ‖2(‖Dℓz
∗
ℓ − y‖2 − δℓ) = 0

⇔ t∗ℓ =
‖t∗ℓ‖2
δℓ

(Dℓz
∗
ℓ − y) if ‖t∗ℓ‖2 > 0 (E.13)

4See e.g., [37] for a definition of the big-O notation .
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for all ℓ ∈ IJ . The system




h2(Dℓz
∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0, ∀ℓ ∈ IJ

κ∗ℓ (‖Dℓz
∗
ℓ − y‖2 − δℓ) = 0, ∀ℓ ∈ IJ (‖t∗ℓ‖2 = κ∗ℓ )∑

ℓ∈cj(IJ )

DT
ℓ,jt

∗
ℓ +Wju

∗
j = 0, ∀j ∈ JJ

(E.14)

is then equivalent to

∑

ℓ∈cj(IJ)

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jDℓz

∗
ℓ = −Wju

∗
j +

∑

ℓ∈cj(IJ )

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ .

We can then obtain the equivalent KKT optimality conditions





∑

ℓ∈cj(IJ)

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jDℓz

∗
ℓ = −Wju

∗
j +

∑

ℓ∈cj(IJ)

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ (E.15.△)

‖Dℓz
∗
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
∗
j )− u∗j ∈ 0, ∀j ∈ JJ .

(E.15)
Let z∗ ∈ Z be a solution to (E.15) and let z̄ ∈ Z̄ be a solution to (E.15.△).

Proposition 4.2. (Uniqueness) If the solution z̄ to the linear system (E.15.△)
is unique and there exist a solution z∗ to problem (E.1), then z∗ = z̄.

Proof. We have from the assumption and the system (E.15) that ∅ 6= Z ⊆ Z̄. If
|Z̄| = 1 then |Z| = 1 such that z̄ = z∗.

Proposition 4.2 explains when it is interesting to solve the primal problem
by the dual problem and then recover the primal variables by (E.15.△). The
reason why we will focus on (E.15.△) is that the remaining equations in the
system (E.15) are sub-differentiable and feasibility equations. These are difficult
to handle - especially for large scale problems. On the other hand, the system
(E.15.△) is linear in z and can easily be solved for invertible Dj, ∀j ∈ JJ .

However, first we will analyze the implication of κ∗ℓ = 0. Let

ΩJ = {ℓ |κ∗ℓ = ‖t∗ℓ‖2 = 0, ℓ ∈ IJ},

with ΩJ ⊆ IJ . Then, solving the original primal problem (E.2) is equivalent to
solving [20]

minimize
∑

j∈JJ

λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\ΩJ ,

(E.16)
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where we can now remove constraints which are not strongly active. Similarly,
if there is an i ∈ JJ , such that

ci(IJ ) ⊆ ΩJ ,

then this corresponds to minimization over an unconstrained zi. Since by defini-
tion λi > 0 and Wi ≻ 0 then z∗i = 0. Solving the original primal problem (E.2)
is, hence, equivalent to solving [20]

minimize
∑

j∈JJ\i
λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\ΩJ

zi = 0 .

(E.17)

Definition 4.3. (Trivial instance) We will call an instance
{y, {δℓ}ℓ∈IJ

, {Dℓ}ℓ∈IJ
, {Wj}j∈JJ

, {λj}j∈JJ
} of the MDl1C problem a trivial in-

stance if it can be reformulated as an MDl1C problem without coupled constraints.

The reason why we call these trivial instances is because they do not include
coupled constraints and therefore do not include the trade-off normally associ-
ated with MD problems. All trivial instances can be solved straightforwardly by
a first-order primal method because they do not include any coupled constraints,
see [38].

Proposition 4.4. We have z∗ = z̄ for all non-trivial instances of the standard
MDl1C problem with J = 2.

Proof. Let us represent the system (E.15.△) by D̃Jz
∗ = ũ and consider the

determinant of this system to analyze under which conditions there is a unique
solution. By factorizing D̃J and using the multiplicative map of determinants
det(AB) = det(A) det(B), det(AT ) = det(A), det(αA) = αh det(A) for A ∈
Rh×h we obtain the determinant

det(D̃J) =




∏

j∈JJ

det(Dj)
2



 det






∑

ℓ∈IJ

i,j∈ℓ

ρℓ,jρℓ,i
κ∗ℓ
δℓ




i=1,··· ,J;j=1,··· ,J




M

,

(E.18)
for the standard MDl1C problem. For our example with J = 2 we have

det(D̃2) = det(D1)
2det(D2)

2

(
κ⋆{1}κ

⋆
{2}ρ

2
{1},1ρ

2
{2},2

δ{1}δ{2}
+
κ⋆{1}κ

⋆
{1,2}ρ

2
{1},1ρ

2
{1,2},2

δ{1}δ{1,2}

+
κ⋆{2}κ

⋆
{1,2}ρ

2
{2},2ρ

2
{1,2},2

δ{2}δ{1,2}

)M
.
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Since ρℓ,j > 0, ∀ℓ ∈ IJ , j ∈ ℓ, δℓ > 0, ∀ℓ ∈ IJ and det(Dj) 6= 0, ∀j ∈ JJ , the
condition det(D̃2) = 0 is determined by which ℓ, κ∗ℓ = 0. Let

O2 = {Ω2 | det(D̃2) = 0} .
Then O2 is given as

O2 = {{{1}, {2}}, {{1}, {2}, {1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}} .
Let us consider all the cases:

• {{1}, {2}}. No coupled constraints, which implies a trivial instance.

• {{1}, {1, 2}} or {{2}, {1, 2}}. Corresponds to z∗1 = 0 or z∗2 = 0. The primal
problem can be solved directly over z2 or z1 with no coupled constraints,
which implies a trivial instance.

• {{1}, {2}, {1, 2}}. Corresponds to an instance with z∗1 = 0 and z∗2 = 0 and
no coupled constraints, which implies a trivial instance.

Remark (Proposition 4.4): All the cases for J = 2 can be seen as two descrip-
tions transmitted as one description over one channel. It is not easy to analyze
OJ for J ≥ 3 in all cases and compare them to the definition of trivial instances.
However, we will make the following partial description on the number of active
constraints to ensure recovery of optimal primal variables.

Proposition 4.5. For a standard MDl1C problem, if

i) all side constraints are strongly active, κ∗j > 0, ∀j ∈ JJ , then z∗ = z̄

ii) there are no strongly active constraints κ∗ℓ = 0, ∀ℓ ∈ IJ , then z∗ = 0.

Proof. i) From (E.13) we have t∗ℓ =
‖t∗ℓ ‖2

δℓ
(Dℓz

∗
ℓ − y), ∀ℓ ∈ JJ , which gives

a unique solution to z∗ = Cj∈JJ
D−1

j

(
t∗j

δj
‖t∗j ‖2

+ y
)
. Since a subsystem

(JJ ⊆ IJ ) of (E.15.△) has exactly one point, then |Z̄| ≤ 1. A standard
MDl1C problem is solvable such that |Z̄| ≥ |Z| ≥ 1. Hence |Z̄| = 1 and
from Proposition 4.2 we then have z∗ = z̄.

ii) If κ∗ℓ = ‖t∗ℓ‖2 = 0, ∀ℓ ∈ IJ , then g(t∗) = 0 and f(z∗) = 0 according to
strong duality. From the definition, Wj ≻ 0, ∀j ∈ JJ and λj > 0, ∀JJ ,
then f(z∗) = 0⇔ z∗ = 0.

Remark (Proposition 4.5): It is always possible to make all the inactive side
distortion constraints strongly active by adjusting δj , j ∈ JJ , without signif-
icantly changing the original formulation. With this approach we can always
recover the primal variables as z∗ = z̄.
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4.5 Stopping Conditions

Since we implement a primal-dual first-order method and the problem has strong
duality, a primal-dual stopping criteria is interesting. From the dual iterates(
t(i), u(i)

)
we obtain the primal iterate z(i) as the solution to

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jDℓz

(i)
ℓ = −Wju

(i)
j +

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ .

We then stop the first-order method at iteration i if

f(z(i))− g(t(i))) ≤ ǫ, z(i) ∈ Qp,
(
t(i), u(i)

)
∈ Qd .

To ensure scalability in the dimensions of the problem, we select ǫ = JMǫr,
where for example we may choose to solve the problem to medium accuracy,
e.g., ǫr = 10−3.

5 Analyzing the Sparse Descriptions

In this section we will use an image example and analyze the sparse descriptions.
In particular, we show that it is possible to obtain a sparse representation which
has a lower cardinality for the same PSNR requirement, or better PSNR for
same cardinality, using the MDl1C approach compared to the simple approach
of thresholding.

For images, let y be the column major wise stacked version of a two-dimensional
image of dimension m × n, M = mn. The images are normalized such that
y ∈ [0; 1]M and the PSNR is

PSNR(δ) = 10 log10

(
1

1
M δ2

)
.

We define D = {Dℓ}ℓ∈IJ
, δ = {δℓ}ℓ∈IJ

, λ = {λj}j∈JJ
. We will denote

z̄ = ΦD(y, δ, λ) an ǫ-suboptimal solution of the problem (E.2) with z̄ = {zj}j∈JJ

after 4 reweight iterations. Note that in the single channel case J = 1 we
will obtain the problem (E.1). We will also define the function z̄ = TDj

(y, δ)

as the thresholding function of the smallest coefficients of D−1
j y such that

PSNR(‖DjTDj
(y, δ)− y‖2)≈δ.

We now select the two channel case J = 2, y the Pirate standard im-
age (Grayscale, 512 × 512) and as dictionaries D−1

1 : a 2-dimensional orthog-
onal Symlet16 discrete wavelet transform (DWT) with 7 levels, and D−1

2 : a
2-dimensional biorthogonal CDF 9/7 DWT with 7 levels. The results are re-
ported in Table E.1, where we for clarity will refer to different approaches using
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the numbering (1)-(4). First, we obtain z̄ = ΦD(y, δ, λ) (1) and then apply
thresholding to the same signal such that the side PSNRs are the same (2).
Notice that due to the independent thresholding, the refinement ℓ = {1, 2} is
not much better than the individual descriptions. Considering the same setup,
but where we select δ̃j such that the cardinality of each description is the same

card((ΦD(y, δ, λ))j) = card(TDj
(y, δ̃j)) (3). In this case, we have a better side

PSNR, but the refinement is still poor and the central distortion not as good
as in the case of the MDl1C approach. Finally, if we performed thresholding to
achieve the same PSNR on the side distortion as the central distortion (4) we see
that we need an excessive cardinality. We conclude that the MDl1C framework
is able to generate non-trivial descriptions in a MD framework with respect to
both the cardinality of the descriptions and the refinement.

ID Method
card(z̄j)/N PSNR(‖Dℓz̄ℓ − y‖2)
j = 1 j = 2 ℓ = {1} ℓ = {2} ℓ = {1, 2}

(1) z̄ = ΦD(y, δ, λ) 0.058 0.059 27.0 27.0 33.1

(2) z̄j = TDj
(y, δj) 0.030 0.026 27.0 27.0 27.9

(3) z̄j = TDj
(y, δ̃j) 0.058 0.059 29.3 30.0 30.8

(4) z̄j = TDj
(y, δ{1,2}) 0.128 0.112 33.1 33.1 34.4

Table E.1: Comparison between MDl1C (1), thresholding to same side PSNR (2) thresh-
olding to same cardinality (3) and thresholding to achieve the central distortion on each side
channel (4).

With the same setup as used in Table E.1, we also investigate the first-order
iteration complexity for obtaining a solution to the MDl1C problem, including
4 reweight iterations. Each reweight iteration has the worst-case iteration com-
plexity O

(
1
ǫ

)
given in (E.11) which results in an overall complexity of O

(
1
ǫ

)
.

The results are shown in Fig. E.4. In general, we obtain an empirical com-
plexity slightly (but not significantly) better than the theoretical worst-case
iteration complexity O

(
1
ǫ

)
. For obtaining an ǫ = ǫrJM -suboptimal solution

with ǫr = 10−3 and 4 reweight iterations requires approximately 700 first-order
iterations.

6 Simulation and Encoding of Sparse Descrip-

tions

In this section we will consider an application of the proposed scheme, where
the sparse descriptions are encoded to adapt the sparse MD framework to a
rate-distortion MD framework.
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Fig. E.4: Number of first-order iterations i including 4 reweight iterations as a function of
of the relative accuracy ǫr. We also plot the complexity function O

(

1
ǫ

)

for comparison.

A state-of-the-art method for encoding images is the SPIHT encoder [13],
which efficiently uses the tree structure of the DWT. We then denote the encod-
ing of the coefficients z̄ = D−1y as ẑ = ΓD(z̄, y, δ), such that ‖Dẑ − y‖2 ≤ δ.
The encoder applies baseline SPIHT encoding. We add half a quantization level
to all the significant wavelets transform coefficients when the stopping criteria
‖Dẑ − y‖2 ≤ δ is evaluated, see [39] or [40, Chapt. 6]. The quantized non-zero
coefficients and their locations are further entropy coded using the arithmetic
coder [41].

In order to illustrate the behaviour of encoding we will also obtain coefficients
from solving a series of reweighted l1-compression problems

minimize ‖Wz‖1
subject to ‖Dz − y‖2 ≤ δ .

An ǫ-optimal solution from the above problem is denoted z̄ = ΦD(y, δ, 1) (the
same notation in the case of J = 1).

The encoder can be used in two different ways ẑ = ΓD(D−1y, y, δ) or ẑ =
ΓD(ΦD(y, δ − γ, 1), y, δ). When encoding the coefficients z̄ = ΦD(y, δ − γ, 1),
this corresponds to letting SPIHT encode the (reconstructed) image Dz̄ ≈ y.
Note that we have introduced a modification of the distortion requirement with
the parameter γ. This is done because z̄ = ΦD(y, δ, 1) is on the boundary of
the ball ‖Dz̄ − y‖2 = δ unless z̄ = 0. However, quantization slightly degrades
the reconstruction quality and it is therefore difficult to ensures ‖Dẑ − y‖2 ≤ δ
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without requiring that the input z̄ to the encoder ensure ‖Dz̄ − y‖2 ≤ δ − γ,
γ > 0. We use γ = 0.05δ. It is possible to use any encoder which is based
on encoding the coefficients associated to a linear reconstruction function and
SPIHT is such an encoder.

In Fig. E.5 we illustrate the results from encoding coefficients obtained as
ẑ = ΓD(D−1y, y, δ) or ẑ = ΓD(ΦD(y, δ − γ, 1), y, δ). As test images we use
Lena and Boat (Grayscale, 512×512) and we select D−1 as a Symlet16 pyramid
wavelet transform with 7 levels.

For the simulations we choose different δ’s and report the PSNR, the corre-
sponding cardinality and the rate R(ẑ) [bits/pixel]. From Fig. E.5(a) we can see
that for the same rate the reconstruction using the l1-minimization approach ΦD

shows a smaller PSNR than with the standard approach. This is to be expected,
since for an orthogonal transform, SPIHT is designed to minimize the Euclidean
distortion ‖ẑ − z̄‖2 to the input vector z̄ = D−1y [13], and ‖ẑ − z̄‖2 is also our
quality criteria. For z̄ = ΦD(y, δ− γ, 1), which implies z̄ 6= D−1y in general, the
design argumentation is slightly distorted by the modified input but the quality
criteria remains the same. Further, by first forming a sparse coefficient vector
using convex relaxation technique and later encode is suboptimal which further
add to the loss. We also notice from Fig. E.5(b) that the cardinality and bit rate
behaves linearly in this setup for the l1-minimization approach as also observed
in other sparse decompositions, see e.g., [24].

6.1 Encoding for Multiple Descriptions

We use the following approach when applying encoding for multiple descriptions,
shown in Fig. E.6. First the sparse coefficients vectors are formed using the
function ΦD(y, δ−γ, λ) with γ = {γj}j∈JJ

and γj = 0.05mini∈JJ
δi, ∀j ∈ JJ .

That is, we aim for at least a 5% better reconstruction in the optimization
stage which we use to allow for a loss in the encoding stage. Each description
is independently coded using ΓDj

(D−1
j z̄j, y, δj − γ̃j) to generate the encoded

description vectors ẑj with the rate R(ẑj). The parameter γ̃j will be discussed
shortly. From the received descriptions ℓ, we then apply the decoding function
gℓ(ẑℓ) = Dℓẑℓ.

For the encoding function ΓDj
it is easy to ensure ‖Dj ẑj−y‖2 ≤ δj , ∀j ∈ JJ ,

since we can encode each description independently until the side distortion is
satisfied as we previously did in the example with J = 1. It is, however, more
complicated to ensure that the coupled constraints are satisfied without requiring
an excessive large rate. Setting R(ẑj) large, we can always satisfy the distortion
requirement, but by locating more appropriate points on the rate-distortion
function of ẑj , we can achieve a better rate-distortion trade-off. To handle this
problem we adjust γ̃j by applying the following algorithm:

• Encode the descriptions and independently ensure that ‖Dj ẑj − y‖2 ≤
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Fig. E.5: Encoding of the images Lena and Boat, (Grayscale, 512×512) using ẑ = ΓD(z̄, y, δ)
with different distortion requirement δ. In (a) PSNR versus rate and (b) cardinality versus
rate.
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δj, ∀j ∈ JJ .

• Check all the coupled distortion requirement ‖Dℓẑℓ−y‖2 ≤ δℓ, ∀ℓ ∈ IJ/JJ .

– For the first distortion requirement not fulfilled, check the first-order
approximation of the slope PSNR(‖Dj ẑj − y‖2)/R(ẑj) for j ∈ ℓ. In-
crease the rate (decrease γ̃j) of the description j with the largest slope
using bisection.

– If all distortion requirements of the encoded descriptions are satisfied
then decrease the rate (increase γ̃j) for the description j ∈ JJ with
the smallest slope PSNR(‖Dj ẑj − y‖2)/R(ẑj) using bisection.

The purpose of the above algorithm is to find a stable point of the Lagrange
rate-distortion function. The process of adjusting the description rate using
the description with highest or smallest slope respectively is also applied in [42].
The difference is that the above algorithm target distortion constraint (feasibility
ẑ ∈ Qp) while [42] targets a rate constraint.

6.2 MD Image Encoding

We perform comparison with state-of-the-art algorithms, specifically MDLT-
PC [3, 43] and RD-MDC [42, 44] for the two channel case J = 2 and y the
Pirate image. We adjust the quantization levels such that we achieve a fixed
rate and plot the (average) side and central distortion of the schemes under
comparison. We also plot the single description performance of ΓD1 and ΓD2

as the distortion obtained at full rate and at half the rate and associate this to

ΦD(y, δ−γ, λ) Dℓẑℓ

MD Encoder

ΓD1(D
−1
1 z̄1, y, δ1 − γ̃1)

ΓDJ
(D−J

J z̄1, y, δJ − γ̃J)

y

z̄1

z̄J

ẑ1

ẑJ

R(ẑ1)

R(ẑJ)

ŷγ̃j

Fig. E.6: Encoding of sparse coefficients in a MD setup.
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the central (horizontal line) and side distortion (vertical line), respectively. This
corresponds to the extreme MD setup where there is no requirement for the side
or central distortion, in which case a single description encoder is sufficient.

In Fig. E.7 (a) and (b) we see that MDLT-PC and RD-MDC are able to
obtain better single description PSNR than that of the SPIHT encoder using
either ΓD1 or ΓD2 . Further, we observe that MDl1C shows larger distortion
at same rate, but behaves according to the single description bounds of the
SPIHT encoder (ΓD1 and ΓD2), however with a gap. This gap is due to the
suboptimality of the MDl1C approach exemplified in Fig. E.5.

We also show an example which demonstrates the flexibility of the pro-
posed method. To this end we select J = 3, apply non-symmetric distortion
requirement δℓ 6= δℓ′ for at least some |ℓ| = |ℓ′| with ℓ, ℓ′ ∈ IJ , non-symmetric
weights λj 6= λj′ for at least some j, j′ ∈ JJ and both orthogonal and biorthog-
onal dictionaries. The results are shown in Fig. E.8 where we obtain rates
R(ẑ1) = 0.32, R(ẑ2) = 0.52 and R(ẑ3) = 0.58 such that R(ẑ) = 1.42. For com-
parison, if we encode the same image in a single description setup with the coder
ΓD using a biorthogonal Cohen-Daubechies-Feauveau (CDF) 9/7 DWT with 7
levels as dictionaryD we obtain the distortion measure PSNR(‖Dẑ′−y‖2) ≈ 27.0
or PSNR(‖Dẑ′ − y‖2) ≈ 34.0 at the rates R(ẑ′) = 0.25 or R(ẑ′) = 0.81, respec-
tively. This example is a large scale problem with M × (|IJ |+ J + J) ≈ 3.4 · 106
primal-dual variables. The encoding process required v = 13 iterations and the
SPIHT encoder was then applied J+(v−1) = 15 times since in the first iteration
we need to encode all J descriptions and in the remaining iterations it is only
neccessary to encode the single description j for which γ̃j was modified in the
previous iteration.

6.3 MD Image Sequence Encoding

To show the flexibility of the proposed framework, we give an image sequence
example. An image sequence can be seen as a three dimensional signal. If we
join k consequent frames in a single block we obtain a windowed three dimen-
sional signal with dimension m×n×k with m×n being the frame dimensions of
the video. For image sequences we then form y as a column major wise stacked
version of a each two-dimension frame with M = mnk. For encoding, we ap-
ply 3D SPIHT [45]. To comply to the 3D SPIHT framework we also form the
dictionaries as three dimensional DWTs. As dictionaries we select D−1

{1}: a 3

level orthogonal Haar DWT along the (temporal) dimension associated with k
and a 2-dimensional orthogonal Symlet16 DWT with 5 levels along the (spatial)
dimensions associated with m,n, and D−1

{2}: a 3 level orthogonal Haar DWT

along the (temporal) dimension associated with k and a 2-dimensional orthog-
onal Daub8 DWT with 5 levels along the (spatial) dimensions associated with
m,n.
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2‖D2ẑ2 − y‖2
)

P
S
N
R
( ‖
D

{1
,2
}ẑ
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2‖D1ẑ1 − y‖2) + 1
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Fig. E.7: Comparison between different MD methods for the image Pirate (Grayscale,
512 × 512) at: (a) rate R(ẑ) = 1 and (b) rate R(ẑ) = 0.25. The plot shows central distortion
versus (average) side distortion. The single description performance using ΓD1

and ΓD2
are

also shown as the distortion at full rate and at half the rate which are associated to respectively
the central distortion (horizontal lines) and side distortion (vertical lines). As dictionaries we
use D−1

{1}: a 2-dimensional orthogonal Symlet16 DWT with 7 levels, and D−1
{2}: a 2-dimensional

biorthogonal CDF 9/7 DWT with 7 levels.
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y

D1ẑ1 (27.0, 27.0) D2ẑ2 (28.3, 28.0) D3ẑ3 (29.1, 29.0)

D{1,2}ẑ{1,2} (30.7, 30.0) D{1,3}ẑ{1,3} (32.1, 31.0) D{2,3}ẑ{2,3} (32.4, 32.0)

D{1,2,3}ẑ{1,2,3} (34.0, 34.0)

Fig. E.8: Encoding the image Barbara (Grayscale, 512 × 512). As dictionaries we use
D−1

{1}: a 2-dimensional orthogonal Symlet8 DWT with 7 levels, D−1
{2}: a 2-dimensional or-

thogonal Symlet16 DWT with 7 levels, and D−1
{3}: a 2-dimensional biorthogonal CDF 9/7

DWT with 7 levels. We have λ1 = 1.5, λ2 = 1.4 and λ3 = 1.0. The distortion re-
quirements and actual distortions are given above the individual images using the notation
(PSNR(‖Dℓ ẑℓ − y‖2),PSNR(δℓ)). The resulting rates are respectively R(ẑ1) = 0.32, R(ẑ2) =
0.52, R(ẑ3) = 0.58 such that R(ẑ) = 1.42.
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Fig. E.9 shows an example for an image sequence where we have defined
a frame extraction function s(y, k̄) which takes the k̄th frame from the image
sequence stacked in y. For this example we obtain the rates R(ẑ1) = 0.10 and
R(ẑ2) = 0.12 such that R(ẑ) = 0.22. For comparison, if we had encoded the
same image with the coder ΓD using D{2} = D as dictionary we obtain the
distortion measure PSNR(‖Dẑ′ − y‖2) ≈ 29.3 or PSNR(‖Dẑ′ − y‖2) ≈ 34.0 at
the rates R(ẑ′) = 0.05 or R(ẑ′) = 0.17, respectively. This example is a large scale
problem with M × (|IJ |+J+J) ≈ 5.7 ·106 primal-dual variables. It is expected
that the comparison between the MDl1C method and state-of-the-art MD video
coder will render similar results as in Fig. E.7, that is, overall determined by
the singe channel encoder and a gap introduced by the suboptimal approach of
forming sparse descriptions using convex relaxation. Comparison between 3D
SPIHT and standard video encoding schemes are given in, e.g., [45, 46].

s(y, 5)

s(D1ẑ1, 5)
(29.3, 29.0)

s(D{1,2}ẑ{1,2}, 5)
(34.0, 34.0)

s(D2ẑ2, 5)
(29.3, 29.0)

Fig. E.9: Encoding the image sequence Foreman (Grayscale, 288 × 352). We jointly pro-
cess k = 8 consecutive frames and let λ1 = λ2 = 1.0. The dictionaries are D−1

{1}: a 3 level

orthogonal Haar DWT along the dimension associated with k and a 2-dimensional orthog-
onal Symlet16 DWT with 5 levels along the dimensions associated with m,n, and D−1

{2}: a

3 level orthogonal Haar DWT along the dimension associated with k and a 2-dimensional
orthogonal Daub8 DWT with 5 levels along the dimensions associated with m,n The dis-
tortion requirement and actual distortion are given above the individual images using the
notation (PSNR(‖Dℓẑℓ − y‖2),PSNR(δℓ))). The resulting rates are respectively R(ẑ1) = 0.10
and R(ẑ2) = 0.12 such that R(ẑ) = 0.22.
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7 Conclusion

We have shown how to use efficient first-order convex optimization techniques
in a multiple description framework in order to form sparse descriptions, which
satisfies a set of individual and joint distortion constraints. The proposed convex
formulation allows for non-symmetric distortions, non-symmetric l1-measures,
different dictionaries and an arbitrary number of descriptions. We analyzed
the sparse descriptions and concluded that the sparse descriptions were non-
trivial. When encoding the sparse coefficients and comparing with state-of-the-
art methods it was not possible to achieve the same rate-distortion performance.
On the other hand, the proposed method allow for a more flexible formulation
and provides an algorithm for applying encoding in sparse signal processing.
Efficient encoding of sparse coefficients is generally an open research topic.
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