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Summary

This PhD thesis entitled “Multi-Material Design Optimization of Composite Struc-
tures” addresses the design problem of choosing materials in an optimal manner
under a resource constraint so as to maximize the integral stiffness of a structure
under static loading conditions. In particular stiffness design of laminated compos-
ite structures is studied including the problem of orienting orthotropic material
optimally. The approach taken in this work is to consider this multi-material
design problem as a generalized topology optimization problem including multiple
candidate materials with known properties. The modeling encompasses discrete
orientationing of orthotropic materials, selection between different distinct materi-
als as well as removal of material representing holes in the structure within a unified
parametrization. The direct generalization of two-phase topology optimization to
any number of phases including void as a choice using the well-known material
interpolation functions is novel.

For practical multi-material design problems the parametrization leads to opti-
mization problems with a large number of design variables limiting the applica-
bility of combinatorial solution approaches or random search techniques. Thus,
a main issue is the question of how to parametrize the originally discrete op-
timization problem in a manner making it suitable for solution using gradient-
based algorithms. This is a central theme throughout the thesis and in particular
two gradient-based approaches are studied; the first using continuation of a non-
convex penalty constraint to suppress intermediate valued designs and the second
approach using material interpolation schemes making intermediate choices unfa-
vorable through implicit penalization of the objective function. The last contribu-
tion consists of a relaxation-based search heuristic that accelerates a Generalized
Benders Decomposition technique for global optimization and enables the solu-
tion of medium-scale problems to global optimality. Improvements in the ability
to solve larger problems to global optimality are found and potentially further
improvements may be obtained with this technique in combination with cheaper
heuristics.
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Resume

Denne PhD-afhandling med titlen “Multi-materiale designoptimering af kompositte
konstruktioner" omhandler designproblemet i optimalt at vælge materialer un-
der begrænsede ressourcer således at konstruktionens stivhed maksimeres under
statisk belastning. Især studeres stivhedsdesign af laminerede komposit konstruk-
tioner inklusiv optimal orientering af orthotropt materiale. Den valgte i denne
afhandling tilgang betragter dette multi-materiale designproblem som et gener-
aliseret topologioptimerings-problem der inkluderer et antal materialer med kendte
egenskaber. Denne modelering af problemet indbefatter diskret orientering af or-
totrope materialer, valg mellem forskellige distinkte materialer såvel som fjernelse
af materiale i een og samme parametrisering. Den direkte generalisering af to-
fase topologioptimering til et arbitrært antal faser hvor huller inkluderes som en
mulighed ved hjælp af de velkendte materiale-interpolationsfunktioner er ny.

For praktiske multi-materiale designproblemer fører parametriseringen til optimer-
ingsproblemer med så mange designvariable at kombinatoriske eller tilfældighedsstyrede
søgealgoritmer ikke er anvendelige. Derfor er spørgsmålet, hvordan det oprindeligt
diskrete problem parametriseres så det kan løses ved hjælp af gradientbaserede al-
goritmer et centralt tema i afhandlingen. To gradient-baserede tilgange studeres;
den første anvender en gradvis indsnævring af det tilladelige designrum til endeligt
at fjerne ikke-heltallige løsninger, mens den anden tilgang anvender materiale-
interpolation som implicit igennem objektfunktionen gør ikke-heltallige løsninger
ufavorable. Det sidste bidrag er en relaksations-baseret søgeheuristik som accel-
ererer en generaliseret Benders’ dekompositions-algoritme til global optimering, og
som muliggør løsning af middelstore problemer til globalt optimum. Det påvises
at sådanne heuristikker kan øge størrelsen af problemer der kan løses til globalt
optimum og potentielt kan der udvikles yderligere forbedringer ved hjælp af denne
teknik i kombination med billigere heuristikker.





ix

Publications

This dissertation consists of an introduction to the area of research and three
papers submitted or to be submitted for refereed scientific journals.

Publications in refereed journals

• Hvejsel, C.F.; Lund, E.; Stolpe, M. (2011): “Optimization strategies for discrete
multi-material stiffness optimization”, Structural and Multidisciplinary Optimiza-
tion, DOI: 10.1007/s00158-011-0648-5.

• Hvejsel, C.G.; Muñoz, E. (2010): “Discrete Multi-material Optimization: Combin-
ing Discrete and Continuous Approaches for Global Optimization”, to be submit-
ted.

• Hvejsel, C.F.; Lund, E. (2011): “Material Interpolation Schemes for Unified Topol-
ogy and Multi-material Optimization”, Structural and Multidisciplinary Optimiza-
tion, DOI: 10.1007/s00158-011-0625-z.

Publications in proceedings and monographs with review

• Hvejsel, C.G.; Muñoz, E.; Lund, E. (2010): “Multi-Material Optimization - Global
Optimization and Relaxations”. In: Abstract from The IV European Conference on
Computational Mechanics (Eds. Allix, O. et al.), Palais de Congrès, Paris, France,
May 16 - 21 2010, 2 pages.

• Hvejsel, C.G.; Lund, E. (2009): “Failure Constraints for Discrete Material Opti-
mization”. In: DTU Mathematics Report nr. 2009-02 PLATO-N International
Workshop “Advances in Topology and Material Optimization - Methods and In-
dustrial Applications”, DTU Lyngby, September 23 - 25 2009, Denmark, ISBN
0904-7611, 2 pages.

• Lund, E.; Hvejsel, C.G.; Lindgaard, E. (2009): “From Topology to Detailed De-
sign of Multi-Material Laminated Composite Structures”. In: DTU Mathematics
Report nr. 2009-02 PLATO-N International Workshop “Advances in Topology
and Material Optimization - Methods and Industrial Applications”, DTU Lyngby,
September 23 - 25 2009, Denmark, ISBN 0904-7611, 2 pages.

• Lund E.; Hvejsel C.G.; Lindgaard, E. (2009): “An Integrated Design Approach to
Multi-Material Multi-Criteria Optimization of Laminated Composite Structures”.
In: Book of Abstracts. 8th World Congress on Structural and Multidisciplinary
Optimization (Eds. H.C. Rodrigues et al.), 1 - 5 June 2009, Lisbon, Portugal, 1
page.

• Hvejsel C.G.; Lund E. (2009): “Interpolation Schemes in Discrete Material Ot-
pimization”. In: Book of Abstracts. 8th World Congress on Structural and Multi-
disciplinary Optimization (Eds. H.C. Rodrigues et al.), 1 - 5 June 2009, Lisbon,
Portugal, 8 pages.

• Lund, E.; Lindgaard, E.; Hvejsel, C.G.; Hansen A.L.; Møller H. (2009): “On Gradi-
ent Based Structural Optimization of Multi-Material Laminated Composite Shell



x

Structures”. In: Proc. Composites 2009, 2nd ECCOMAS Thematic Conference on
the Mechanical Response of Composites, London, April 1 - 3 2009, Great Britain,
6 pages.

• Hvejsel, C.G.; Lund, E. (2009): “Stress Constraints for Discrete Material Opti-
mization”. In: Proceedings of the Twenty Second Nordic Seminar on Computational
Mechanics (s. 47-50). (Eds. Damkilde, L. et al.), Aalborg University. Department
of Civil Engineering, 4 pages.

• Hvejsel, C.G.; Lund, E.(2008): “Towards Local Design Criteria in Discrete Mate-
rial Optimization”. In: Proc. 8th World Congress on Computational Mechanics
WCCM8, 5th European Congress on Computational Methods in Applied Science
and Engineering ECCOMAS 2008 (Eds. B.A. Schrefler and U. Perego), Venice,
June 30 - July 5 2008, Italy, 2 pages.

• Lund, E.; Johansen, L.S.; Hvejsel, C.G.; Lindgaard, E. (2008): “Multi-Criteria
Multi-Material Topology Optimization of Laminated Composite Structures”. In:
Proc. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
10 - 12 September 2008, Victoria, Canada, British Columbia, AIAA Paper 2008-
5897, 14 pages.

• Lund, E.; Johansen, L.S.; Hvejsel, C.G.; Lindgaard, E. (2008): “Multi-Material
Topology Optimization of Geometrically Nonlinear Multi-Layered Composite Shell
Structures”. In: Proc. 8th World Congress on Computational Mechanics WCCM8,
5th European Congress on Computational Methods in Applied Science and Engi-
neering ECCOMAS 2008 (Eds. B.A. Schrefler and U. Perego), Venice, June 30 -
July 5 2008, Italy, 2 pages.

Publications partially based on Master’s Thesis

• Hvejsel, C.G.; Lund, E. (2007): “Efficient Shell Element Formulation for Use in
Discrete Material Optimization”. In: Proceedings of the 20th Nordic Seminar on
Computational Mechanics (Eds. Larsson, R.; Runesson, K.), Chalmers Tekniska
Högskola, November 23 - 24 2007, Göteborg, Sweden, 2 pages.

• Hvejsel, C.G.; Hansen, H. F.; Lund, E. (2007): “Shell Element for Efficient Analysis
and Optimization of Laminated Composite Shell Structures”. In: Book of Abstracts
2nd GACM Colloquium on Computational Mechanics for Young Scientists from
Academia and Industry, Technische Universität München, October 2007, München,
Germany.



Contents

1 Introduction 1

1.1 Materials, laminates and structures . . . . . . . . . . . . . . . . . . 1

1.2 Design optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Composite laminate optimization . . . . . . . . . . . . . . . . . . . 4

1.3.1 Optimization with anisotropic and orthotropic materials . . 5

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Multi-material design optimization 9

2.1 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Energy principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Strain and stress energy . . . . . . . . . . . . . . . . . . . . 10

2.2.2 External work . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Principle of stationary total potential energy . . . . . . . . 11

2.3 Continuum problem formulation . . . . . . . . . . . . . . . . . . . 11

2.4 Design parametrization . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Candidate materials . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Simultaneous topology and multi-material optimization . . 15

2.4.3 Multi-material optimization . . . . . . . . . . . . . . . . . . 16

2.4.4 Material parametrization . . . . . . . . . . . . . . . . . . . 16

2.5 Discretized problem formulation . . . . . . . . . . . . . . . . . . . 17

2.6 Discretized binary design problem . . . . . . . . . . . . . . . . . . 18



xii Contents

2.6.1 Continuous relaxation . . . . . . . . . . . . . . . . . . . . . 19

2.7 Solution techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Solving (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Non-convex penalty constraint (Paper A) . . . . . . . . . . . . . . 21

2.9 Global optimization (Paper B) . . . . . . . . . . . . . . . . . . . . 22

2.9.1 Generalized Benders’ Decomposition . . . . . . . . . . . . . 22

2.9.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Material interpolation schemes (Paper C) . . . . . . . . . . . . . . 24

2.10.1 Voigt interpolation . . . . . . . . . . . . . . . . . . . . . . . 25

2.10.2 Multiphase “SIMP” . . . . . . . . . . . . . . . . . . . . . . . 25

2.10.3 Multiphase RAMP . . . . . . . . . . . . . . . . . . . . . . . 26

2.10.4 Penalizing effect . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10.5 Illustrative example . . . . . . . . . . . . . . . . . . . . . . 27

2.10.6 Other ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Summary and concluding remarks 33

3.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Contributions and impact . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37

Paper A 43

Paper B 45

Paper C 47



1

Introduction

T
his thesis is concerned with optimal material selection from a set of given
materials with pre-defined properties so as to design the global layout of a

multi-material composite structure under static loading conditions. This mechan-
ical design problem comes up in a number of applications and in particular we
consider optimal composite laminate design. Designing laminated composite struc-
tures optimally requires a material to be chosen in each layer of the laminate,
including the question of orienting orthotropic materials in each of the layers.

Rational design methodologies for composite structures become more important
with the increasing use of these materials in various industries ranging from mili-
tary aerospace and marine applications to civil transportation, wind turbine blades,
etc. Common for these applications is a desire for high structural performance
and/or low weight (and cost) simultaneously, and often the raw material cost and
thereby the total cost of these structures is relatively high. Thus, the potential
savings are high if the materials can be utilized efficiently or even optimally. The
increasing use of this class of materials seems to be continuing and with better anal-
ysis techniques and systematic design methodologies, the advantages of composite
materials may be utilized even further, making composite materials an attractive
alternative also for lower cost applications.

Regardless of the perspective taken - low cost or low weight - a key issue for a
successful design is to select and employ the right material(s) in an intelligent1

manner for the given application, i.e. to design the mechanical structure such
that the potential candidate materials throughout the structure are utilized as
efficiently as possible for the given application.

1.1 Materials, laminates and structures

The use of multiple materials fulfilling different purposes as parts of a structure is
not new and is well-known from e.g. reinforced concrete, laminated plates/shells,
and sandwich panels to name few. In this context the term composite may refer to

1not as in “intelligent design”!
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multiple scales at which the structure is composed of different elements. Sandwich
panels for instance are characterized by a compliant core separating two stiff face
sheets. At this level we talk about a composite structure, but at a smaller scale the
skins are often composite laminates composed of layers of heterogeneous composite
materials themselves made of reinforcing fibers held together by a weaker matrix.
Similarly, composite laminates may be combined in other ways to form composite
structures where the laminate consists of layers (plies) of homogeneous material
or heterogeneous composite materials. In this thesis we are mainly interested in

Figure 1.1: Length scales of composite structure, laminate, and material, respectively.

The structure is composed of multiple laminates containing a number of layers which

may be homogeneous or heterogenous composite materials.

designing composite structures and laminates and hence not necessarily materials.
This distinction, however, is mainly a matter of length scale as shown in figure
1.1 and in principle the concepts and ideas presented in this thesis could also be
applied at the level of material design. With the words of Bendsøe and Sigmund
(2003); “any material is a structure if you look at it through a sufficiently strong
microscope”.

We assume to have a set of existing (composite or homogeneous) materials at
our disposal from which we want to select the best for each macroscopic design
subdomain of consideration. Thus, we a priori fix the design discretization; the
number of design subdomains as well as their spatial extension is fixed throughout
the optimization process. This limitation may seem restrictive but as we will see, it
may represent a quite comprehensive parametrization in terms of design freedom
for distributing multiple phases so as to optimize an objective function within
certain constraints.

In relation to laminate optimization this means that we fix the number of layers
and then consider each layer as an individual subdomain for which we want to
select the material in an optimal manner.

1.2 Design optimization

Compared to designing with a single isotropic material, the freedom and com-
plexity of designing with multiple anisotropic materials is higher. On one hand
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Layer 1, θ1, t1, mat1
Layer 2, θ2, t2, mat2

...
...

Layer L, θL, tL, matL

Figure 1.2: Laminate with layers consisting of different materials potentially oriented

at different angles. The thickness of the layers may vary as well (not shown).

the design freedom in terms of number of design variables is much larger, on the
other hand the number of restrictions and constraints for a (laminated) composite
structure is larger as well. This situation potentially makes up a complex design
problem and it may be difficult to exploit the full potential of the materials by
intuition alone. Currently it is not possible to formulate and solve practical real-
life composite design problems completely as mathematical optimization problems.
Certainly, it is not impossible to a certain extent to do design optimization of
composite structures, but to formulate and solve an optimization problem that
allows for all imaginable design freedom and considers all imaginable constraints
and restrictions that must be taken into account in practice, is still an ambitious
endeavor for which there is no definitive framework yet. The question is whether
it is possible or even desirable to include all possible information within a fully au-
tomated optimization based design process. Maybe rather optimization should be
regarded as an aid to a human decision maker, typically the design engineer, who
supervises the process, intervenes, modifies, and carries out the design decisions
suggested by the optimizer.

The experienced designer intuitively knows when something is good. An other
and more involved question is whether it is also optimal? And by what measure?
These questions are explicitly addressed in design optimization and in this way the
task of formulating optimization problems may be considered a creative challenge
requiring imaginative capabilities at a high and abstract level. It requires the
capability to “see through” the often vague and fuzzy statements of what is good
and to put these into precise mathematical statements that allow the optimization
problem to be solved in a hopefully efficient manner.

To outline some of the complexities involved with a fictitious full design optimiza-
tion formulation for composite structures, we mention out of many; not yet resolved
issues regarding prediction of the failure behavior of generally laminated compos-
ite structures under arbitrary loading (see e.g. Hinton et al. (2002) for a review
of composite failure criteria), non-convexity of criteria functions, as well as the
possible difficulties encountered in solving the large-scale optimization problems
resulting from such a complete formulation. Nevertheless, if we could formulate
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a design optimization problem with a large freedom in the parametrization, and
still take into consideration important constraints, it should be possible to obtain
a good design concept in terms of information about how to distribute a limited
amount of expensive material so as to obtain the best structural performance
possible.

The design problem we attempt to solve can be stated as; given a number of pre-
defined candidate materials with known properties, select in each point throughout
the reference domain either no material or one of the candidates so as to minimize
an objective (cost) function subject to physical constraints and resource constraints.
In it’s basic form, this material selection problem is discrete in nature. Physically,
the material selection variables are binary; either a material is chosen throughout
a domain or it is not. Such discrete problems are inherently hard to solve.

The work presented in this thesis is motivated by the increasing use of composite
materials, in particular the simultaneous use of multiple different materials within
a mechanical structure as it is seen in e.g. wind turbine blades where a number of
quite different materials are employed simultaneously.

This thesis is a contribution to, what we believe is, a comprehensive parametriza-
tion of the optimization problem encountered when designing with multiple possi-
bly anisotropic composite materials. The multi-material design problem is formu-
lated very similar to topology optimization; a method which has become popular
for conceptual layout design of systems whose physics are governed by partial
differential equations, see e.g. Bendsøe and Sigmund (2003).

1.3 Composite laminate optimization

To fully exploit the potentials of laminated composites it is necessary to specify
material, thickness and orientation for each layer of the laminate. Doing so, the
directionality of the individual layers may be used beneficially so as to obtain the
desired response of the laminated structure. From this it is clear that the number
of design variables can be very large in laminate design problems.

The process of designing a laminated composite structure can be thought of as a
matter of making decisions (regarding the design) so as to fulfill some purpose in
the best way without violating constraints or requirements that must be met in
order to have a feasible solution. The basic idea of such a design optimization is to
formulate the mechanical design problem as a mathematical optimization problem
and consequently obtain the design of the structure as a solution to this opti-
mization problem. This requires the design problem statement to be parametrized
and formulated unambiguously in terms of the design variables to be determined.
The parametrization of the optimization problem has an impact on the number
of design variables as well as on the difficulty of obtaining solutions in an efficient
and reliable manner.
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Typically laminate design is combined with optimization of the orientation of the
anisotropic or orthotropic layers and materials. To start with, an overview of
previous attempts in addressing the optimal orientation problem is given.

1.3.1 Optimization with anisotropic and orthotropic materials

Optimal structural design with composite materials has been studied extensively
for more than forty years and it is not within the scope of this work to give an
exhaustive account for the developments. For an overview and an introduction
to laminate design optimization see the textbook by Gürdal et al. (1999) and the
review paper by Abrate (1994) as well as two recent reviews by Ghiasi et al. (2009,
2010).

Inspired by Fang and Springer (1993) laminate optimization approaches may be
categorized according to the following four categories: 1) analytical methods, 2)
enumeration methods, 3) stochastic and heuristic search methods, 4) mathemati-
cal programming techniques. Furthermore, various combinations of these methods
could be envisaged. Within this spectrum, the approaches taken in this thesis are
placed in the two last categories with an emphasis on the mathematical program-
ming oriented approaches. In the following we describe different composite design
parametrizations.

Fiber angle and thickness optimization

Quite remarkably one of the first publications on optimization of composite struc-
tures, see Schmit and Farshi (1973), employed mathematical programming to min-
imize the mass under strength and stiffness constraints using layer thicknesses
for pre-defined orientations as the design variables. Other early attempts pri-
marily used analytical or optimality criteria approaches to optimize the response
of plane problems involving orthotropic materials, e.g. Banichuk (1981) studied
optimal orientation of orthotropic material in plane problems. Pedersen (1989)
derived analytical expressions for optimal orientation of orthotropic material as
functions of the strain field and later also optimized the thickness distribution in
combination with the orientation in Pedersen (1991). Thomsen and Olhoff (1990);
Thomsen (1991) studied optimal orientation and material density distribution for
plane problems. Thomsen (1992) used a homogenization approach to design two-
material structures in combination with orientation of the material.

Lamination parameters

An other parametrization of laminate design is the use of so-called lamination pa-
rameters originally proposed by Tsai and Pagano (1968). Lamination parameters
provide a parametrization of the properties of laminates consisting of identical
orthotropic material oriented differently in each layer. Using material invariants
describing the elastic properties of orthotropic (and anisotropic) material, the lam-
inate properties may be represented in terms of the lamination parameters. The
lamination parameters are trigonometric functions of the layer thicknesses and
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orientations. The laminate stiffness is linear in the lamination parameters. The
lamination parameters are not mutually independent and for in-plane problems the
relations between lamination parameters and their physical representation exist on
closed form which was used for optimization purposes in a number of publications,
see Miki (1982); Fukunaga and Vanderplaats (1991); Fukunaga and Sekine (1993).
For more general problems involving combined in-plane and bending load these
relations are not given on closed form and to return to a physical representation
of the lay-up an inverse problem in the layer thicknesses and orientations must be
solved subsequently, Hammer et al. (1997); Foldager et al. (1998).

Free Material Optimization

Free material optimization (FMO) was proposed by Ringertz (1993); Bendsøe et al.
(1994) and has been studied since then by numerous researchers, for an overview
and introduction to the method see Zowe et al. (1997); Ben-Tal et al. (2000); Kočvara and Zowe
(2001); Kočvara et al. (2008) and for recent developments in terms of extensions to
eigenvalue related criteria functions and stress constraints see Kočvara and Stingl
(2007); Stingl et al. (2009a,b). The design parametrization in FMO varies the full
elastic tensor with the only requirement that the material behaviour does not vio-
late physical limits in the sense that the elastic tensor must be symmetric and pos-
itive semidefinite. The parametrization is not limited to existing manufacturable
materials and hence the optimized FMO result needs to be interpreted under the
technological restrictions for a given realization or manufacturing process. Such
interpretations have been investigated by Hörnlein et al. (2001) and Bodnár et al.
(2008).

Discrete Material Optimization

The developments within multi-phase topology optimization by Sigmund and Torquato
(1997); Gibiansky and Sigmund (2000) lead to a generalization to any number
of phases by the Discrete Material Optimization (DMO) approach proposed by
Stegmann and Lund (2005); Lund and Stegmann (2005) where the discrete prob-
lem of choosing between multiple distinct materials is converted to a continuous
problem enabling design sensitivity analysis and the use of gradient based opti-
mizers to solve the problem. This parametrization uses weighting functions to
parametrize the material properties as weighted sums of the chosen candidate
materials. Within this parametrization discrete fiber angle optimization may be
addressed by considering the different orientations as different materials, but also
completely different materials may be mixed so as to choose between e.g. steel,
fiber reinforced composites, foam materials etc. This allows for topological changes
of the structure and in connection with design of laminates this allows for the oc-
currence of sandwich structures to emerge as an optimization result. This approach
has been applied successfully to material selection problems involving global cri-
teria functions such as maximization of structural stiffness, eigenfrequencies and
buckling loads, see e.g. the references above and Lund (2009).
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Alternative multi-phase parametrizations include level-set approaches Wang and Wang
(2004); Wang et al. (2005), relative density parametrization Zhou and Li (2008)
which similarly to the parametrization in Stegmann and Lund (2005) implicitly
ensures unity summation of the weights. A recent idea for the parametrization
of multi-material design optimization was presented by Bruyneel et al. (2010);
Bruyneel (2011) who used finite element shape functions as weights to interpolate
properties of candidate materials. Finally, we mention the peak-function approach
Yin and Ananthasuresh (2001) that uses a single design variable to “slide” between
a number of candidates which seems attractive in terms of the low number of de-
sign variables but according to our experience the numerical performance is highly
dependent on parameter tuning.

1.4 Objectives

The present PhD project has been part of a larger project called “Multi-material
design optimization of composite structures” running from June 2007 till August
2010 as a collaboration between the Department of Mechanical and Manufacturing
Engineering, Aalborg University and the Department of Mathematics, Techni-
cal University of Denmark where Mathias Stolpe and Eduardo Muñoz have been
project partners.

The aim of the present study is to develop continuous optimization formulations
for discrete multi-material problems, that can be used in combination with meth-
ods for integer formulations developed at DTU. Furthermore it has been the aim
to develop methods including strength/failure constraints on the individual phases.
This challenging problem, however, has not been resolved within the present project
and still remains open.

The objective of this project is to develop models based on a discrete material
parametrization, and to develop continuous optimization formulations for optimal
stiffness design of multi-material composite structures taking into account the
global structural stiffness and the total mass of the structure. The objective is to
develop and implement methods that enable rational design of laminated composite
structures using a discrete multi-material parametrization.

In particular it has been the aim to develop continuous formulations that approx-
imate the original discrete problem as closely as possible in order to be able to
attack large-scale problems using gradient-based algorithms.

In the project the in-house research code MUST(MUltidisciplinary Synthesis Tool)
has been used as a platform for research and experimentation. MUST is a finite
element based analysis and design optimization tool developed by Professor Erik
Lund and co-workers for more than ten years.
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Outline of the Thesis

The thesis is organized as follows; the present chapter has given the background
for the problems addressed in this thesis, Chapter 2 presents the theoretical back-
ground on multi-material optimization and discusses some of the problems involved
in tackling these problems, Chapter 3 summarizes the contributions of the accom-
panying papers and concludes the thesis including directions for further research.
Finally, the accompanying papers are appended.



2

Multi-material design optimization

This chapter describes the background of discrete multi-material design optimiza-
tion problems; we review the formulation of the continuum minimum compli-
ance multi-material problem, discretize it to obtain a mixed 0-1 design problem,
and present approximations used in the solution process. Having described the
parametrization and criteria functions we describe solution techniques and algo-
rithms.

The minimum compliance problem has been studied extensively in the literature
and in the following we present background material for the developments shown
later in the thesis. For a further treatment of the minimum compliance problem
please refer to the review paper by Eschenauer and Olhoff (2001) and the textbook
by Bendsøe and Sigmund (2003).

2.1 Linear elasticity

This section reviews notation and basic assumptions regarding the governing physics
and presents selected topics of relevance to the developments presented later.

We work within the framework of linear elasticity and assume quasi-static loading
throughout this thesis. The governing equations on strong form are presented in
matrix-vector notation to avoid confusion when introducing the design parametriza-
tion.

The kinematic relation between the strain field and the displacement field gives
the components of the linearized symmetric strain tensor in vector form, ε ∈ R

6.

ε(u) = Lu = 1

2

(
∇u + ∇uT

)
(2.1)

where u ∈ R
3 is the displacement vector field and ∇u denotes the gradient of the

displacement field. We assume that the stresses σ ∈ R
6 are linked linearly to the

strains ε through Hooke’s law

σ(ε) = Eε ⇔ (2.2)

ε(σ) = E−1σ = Cσ (2.3)
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where E ∈ R
6×6 is the symmetric material stiffness matrix containing the entries

of a symmetric fourth-order tensor and C is the corresponding compliance matrix.
Finally three equilibrium equations are given by

∇ · σ + f = 0 (2.4)

where ∇·σ is the divergence of the stress field, and f ∈ R
3 is the body force vector

field (force per unit volume). Together with appropriate boundary conditions in
terms of prescribed displacements and tractions applied to the surface of the body,
Equations (2.1)-(2.4) define the boundary value problem of linear elasticity. In the
following section we define strain and stress energy measures that are used later
in the description of energy principles.

2.2 Energy principles

The equilibrium conditions may be given an alternative form using variational
calculus and energy principles. Energy principles form the theoretical basis for
the finite element method used for the actual calculations as described in Sec-
tion 2.5 and are also used in the development of material interpolation schemes in
Section 2.10.

2.2.1 Strain and stress energy

The strain energy density Ū is defined as the energy required to deform a unit
volume solid from a stress free reference state to deformed state. The strain
energy density is given by

Ū =

∫ ε

0

σ(ε) dε (2.5)

The total strain energy U is defined as the volume integral of the strain energy
density (2.5):

U =

∫

Ω

Ū dΩ (2.6)

The complementary strain energy density or stress energy density UC is given by

ŪC =

∫ σ

0

ε(σ) dσ (2.7)

As for the strain energy the total stress energy UC is defined as the volume integral
of the stress energy density (2.7):

UC =

∫

Ω

ŪC dΩ (2.8)
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Strain and stress energy with a linear constitutive law

If the relation between stress and strain is linear as defined in (2.2) and (2.3), the
strain energy density and the stress energy density are identical

Ū = 1

2
εT Eε = 1

2
σT ε = 1

2
σT Cσ = ŪC (2.9)

Thus the total energies are also identical: U = UC .

If stresses and strains are related through an elastic constitutive relation as is
the case for linear elasticity, the total strain energy U is also called the internal
potential Πi.

Πi := U (2.10)

2.2.2 External work

The work done by external forces W is given by

W =

∫

Ω

f
T
u dΩ +

∫

S

pT u dS = −Πe (2.11)

where f are body forces per unit volume potentially acting throughout the body
and p are surface tractions applied on the surface of the body. The work done by
the external forces also equals their lost potential to do work and therefore we call
Πe the external potential.

2.2.3 Principle of stationary total potential energy

If the strains are related to stresses through an elastic constitutive relation such as
Hooke’s law (2.2), an equivalent equilibrium condition to (2.4) may be expressed
on weak form using the internal (2.10) and external potential energy (2.11). The
total potential energy Π (TPE) is defined as:

Π = Πe + Πi = U − W (2.12)

Equilibrium is formulated via the principle of stationary TPE; among all kinemat-
ically admissible displacement fields, the one extremizing the total potential energy
is the equilibrium displacement field. The variational stationarity condition of the
TPE is given by

δΠ = δU − δW = 0 (2.13)

where δ denotes kinematically admissible variations, i.e. variations of the displace-
ment field satisfying kinematic boundary conditions, see e.g. Dym and Shames
(1996). In the following we use the principle of stationary TPE as the equilibrium
condition but other equilibrium conditions are equally valid.

2.3 Continuum problem formulation

The continuum infinite dimensional form of the optimization problem seeks to de-
termine the optimal point-wise material distribution as follows: given a number of



12 2.3. Continuum problem formulation

distinct pre-defined candidate materials with known properties, select in each point
throughout the reference domain either no material or one of the candidates so as
to minimize the compliance under static loading subject to a resource constraint
limiting the total mass of the structure. This constitutes a distributed 0-1 valued
optimization problem. The admissible set Ead consists of a number of pre-defined
materials with known properties that may vary pointwise throughout the reference
domain. In some cases void is included as a choice to allow for the introduction of
holes. Most often a resource constraint limits the mass of available material.

Maximizing the stiffness is equivalent to minimizing the compliance of the structure
under a given load. The minimum compliance problem is stated in variational form
in terms of the work done by the external forces to reach equilibrium.

minimize
u,E

W =

∫

Ω

fT u dΩ +

∫

S

pT u dS External work

(2.14a)

subject to δU − δW = 0 Equilibrium
(2.14b)

E ∈ Ead Parametrization constraints
(2.14c)

Before describing the discretized formulation, we present an equivalent form of
(2.14) in terms of the strain energy. This is used in Section 2.10.

If the external loads are independent of the displacements (dead loads) and if
stresses are related linearly to strains, i.e. (2.2) and (2.9), then the external work
equals twice the total strain energy (internal work), i.e. W = 2U , see e.g. Pedersen
(1998). Thus (2.14) may be cast equivalently as

minimize
u,E

2U =

∫

Ω

εT Eε dΩ Total strain energy

(2.15a)

subject to δU − δW = 0 Equilibrium
(2.15b)

E ∈ Ead Parametrization constraints
(2.15c)

Thereby minimizing the total strain energy stored in the structure at equilibrium
is equivalent to minimizing the external work.

Note that the strain energy is related to the stress energy through the relations in
(2.9) and hence the problem of minimizing the total strain energy U is equivalent
to minimizing the total stress energy UC .

To summarize, we may express the minimum compliance (maximum stiffness)
problem either as minimizing the work done by the external forces, minimizing
the total strain energy, or minimizing the total stress energy in the structure.
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2.4 Design parametrization

The infinite dimensional continuous problem formulations presented above are
hardly applicable in practice and we discretize the problem in terms of a spatial
discretization of the design field as well as a spatial discretization of the analysis
field. The analysis and the design field discretizations are not necessarily coinci-
dent though this is often the case. In this section we describe the set of admissible
designs Ead for a spatially discretized design domain in terms of a parametriza-
tion of multi-material selection problems as well as simultaneous topology and
multi-material selection problems. The discretization results in a finite dimen-
sional approximation of the originally infinite dimensional admissible set. The
parametrization presented is general and may be applied to a range of material
distribution problems. However, the focus in this thesis is on plane problems and
layered plate and shell structures. In particular the design problem of orienting
orthotropic material optimally at distinct material directions is addressed.

Assume that a given fixed reference domain Ω ∈ R
2 or R

3 is divided into a num-
ber of non-overlapping design subdomains (e.g. finite elements or layered finite
elements) such that Ω = Ω1 ∪ Ω2 ∪ · · ·Ωnd , Ωi ∩ Ωj = ∅ ∀i 6= j. The definition
of design subdomains may be chosen to coincide with the finite element analysis
discretization as described in Section 2.5 but a design subdomain may also contain
multiple finite elements in a so-called patch used for manufacturing reasons if it is
not allowable to have material changes at the level of each finite element. A design
subdomain may also be e.g. a single layer within a layered finite element, a layer
covering multiple elements, a group of layers within a single element, a collection
of elements for which the same material should be chosen etc.

Ω2

Ω3

· · · Ωnd

Ω1

Figure 2.1: Example of discretization of the reference domain Ω into design subdomains

Ωj . Note that the subdomains may or may not coincide with the analysis discretization.
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Within each design subdomain we want to select either no material or one from
a set of possible candidates with known material properties. Inspired by solid-
void topology optimization this design problem is parametrized using binary (0/1)
design variables that determine the selection among the given candidates. Within
each design subdomain a number of candidate materials is given and the selection
among these is parametrized using a binary selection variable xij whose value
determines the selection of a given material within the subdomain of interest

xij =

{

1 if material i is chosen in design subdomain j

0 if not
(2.16)

To be physically meaningful this variable should only attain the values 0 or 1, i.e.
xij ∈ {0, 1}n where the number of design variables n is described in the following.

The number of candidate materials may differ between the design subdomains,
and thus the total number of design variables n is given as the sum of the number

of candidate materials over all subdomains, n =
∑nd

j=1
nc

j . Typically, though, the

number of candidate materials nc is constant throughout the nd subdomains and
therefore the total number of design variables is simply given by n = nc · nd.

2.4.1 Candidate materials

Any material with known material properties in terms of mass density ρ, elastic
properties E, etc. may serve as a candidate material. The elastic properties may
be isotropic, orthotropic or arbitrarily anisotropic. In case of anisotropic or or-
thotropic candidate materials, discrete fiber angle optimization may be parametrized
by candidate materials oriented along a number of distinct directions. Such parametriza-
tion of discrete fiber angle optimization is demonstrated in the papers.

Note that with the described parametrization, the design space is limited to phys-
ically available materials in contrast to e.g. Free Material Optimization (FMO)
where the material tensor is varied freely over all imaginable material tensors
without consideration of the physical existence of a material with these proper-
ties. Thus the design space of FMO is larger than that of DMO which is limited to
existing or manufacturable materials. However, the two approaches complement
each other in the sense that a DMO-like parametrization may be used to identify
combinations of existing materials that approximate the optimal material tensor
obtained from an FMO result as was demonstrated by Bodnár et al. (2008).

In the following sections we describe how the DMO parametrization may be applied
to model different design problems. In Section 2.4.2 simultaneous topology and
multi-material selection is presented as a generalization of the 0–1 solid-void topol-
ogy optimization problem, and subsequently the multi-material design problem is
presented in Section 2.4.3.
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2.4.2 Simultaneous topology and multi-material optimization

The simultaneous topology and material selection problem considers the following
question in every design subdomain: which material, if any, should be chosen given
a number of possible candidates?

Previously, this problem has been parametrized by a number of variables that con-
trol the material selection and a separate topology variable scaling the contribution
of all the other variables, see e.g. Sigmund and Torquato (1997); Gibiansky and Sigmund
(2000). For instance with two candidate materials the effective material tensor
would be parametrized as

E(x) = xtop (E1 + x (E2 − E1)) (2.17a)

= xtop ((1 − x)E1 + xE2) (2.17b)

0 < xmin ≤ xtop ≤ 1, 0 ≤ x ≤ 1

where the variable xtop controls the topology and x controls the selection between
the two materials. This parametrization implicitly ensures that there cannot be
more than one material contributing fully at a time.

The generalization of the approach above to an arbitrary number of candidates
is possible but cumbersome. Furthermore, in combination with intermediate den-
sity penalization the scheme is not invariant with respect to the ordering of the
candidates, see Bendsøe and Sigmund (2003). Thus, with with two equally good
candidate materials, one is favored just by the (arbitrary) choice of the ordering.
This is undesirable and calls for other approaches.

We propose to parametrize the simultaneous topology and material selection ques-
tion as follows. Recall the parametrization (2.16). Naturally at most one material
can be chosen in each design subdomain and thus within a subdomain we cannot
allow two selection variables to be unity at the same time. Thus, in every subdo-
main we allow at most one material to be chosen, but we also allow no material
to be chosen i.e. void. This condition is expressed for each design subdomain by
the following linear inequality constraints

ne

∑

i=1

xij ≤ 1, ∀ j (2.18)

Together with the parametrization (2.16) these constrains ensure at most one
material to be chosen in each design subdomain. If any variable entering the sum
attains one (i.e. the corresponding material is chosen) the remaining variables
necessarily must be zero for the inequality to be satisfied. This constraint is also
called a generalized upper bound constraint, analogously to the upper bound on
the variables in solid-void topology optimization. Next, we change the inequality
constraint to equality and study the consequences of doing so.
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2.4.3 Multi-material optimization

Requiring exactly one material to be chosen in each subdomain (and hence not
allowing holes) is imposed through a linear equality constraint

ne

∑

i=1

xij = 1, ∀ j (2.19)

Satisfying this constraint ensures that exactly one of the candidates i = 1, 2, . . . , nc

is chosen and the remaining candidates are automatically not chosen within the
subdomain in question.

2.4.4 Material parametrization

The effective material properties are parametrized using the binary material se-
lection variables. The parametrization presented here is quite general in the sense
that any material property of relevance for a given problem can be parametrized
as we demonstrate for the mass density and the elasticity matrix.

The effective mass density for the j’th subdomain, ρj(x) ∈ R, is given by

ρj(x) = ρ0 +
nc

∑

i=1

xij∆ρij , ∀ j (2.20)

where ∆ρij = ρij − ρ0. As explained above the 0’th phase typically is an ersatz
material representing void. In case it is massless, the void mass density is of
course zero and consequently ∆ρij = ρij . The properties of the nc materials with
an associated selection variable are those of the candidate materials among which
we want to choose.

If one variable attains 1 and Eqn. (2.18) or (2.19) is fulfilled, the effective mass
density is that of the corresponding material. If all variables are 0 the effective
properties are those of the 0’th phase, void. The effective mass density is used
later in the constraint limiting the total mass of the structure.

The effective elasticity tensor from (2.2) is represented by a symmetric matrix
Ej(x) ∈ R

6×6

Ej(x) = E0 +

nc

∑

i=1

xij∆Eij , ∀ j (2.21)

where ∆Eij = Eij − E0 ∈ R
6×6. Again phase 0 typically is given properties

approximating those of void, and the properties of the remaining phases are those
of the physical candidate materials.

With the proposed parametrization, multi-material selection problems, or simul-
taneous multi-material and topology problems may be formulated within the same
parametrization with the only difference being if the sparse linear constraints are
inequality constraints (2.18) or equality constraints (2.19).
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2.5 Discretized problem formulation

The finite element method is used to discretize the analysis field and in this case
the finite elements naturally also form a discretization of the design field where
the material properties are element-wise constant.

In the following, “tilde” denotes approximated quantities. We use the finite element
method to determine an approximate displacement field ũ as a function of the
nodal degrees of freedom d. The relation between ũ and d is established through
the chosen finite element interpolations also called the shape functions N . Within
each element these functions determine the interpolation of displacements from
the nodes within each element, ũe = Nede, see e.g. Hughes (2000); Cook et al.
(2001). The finite element form of the TPE (2.12) looks as follows

Π̃ = Ũ − W̃ = 1

2
dT Kd − rT d (2.22)

where K =

ne

∑

e=1

∫

Ωe

BT
e EeBe dΩe is the global stiffness matrix obtained as a

summation over all ne element stiffness matrices that depend on the element-wise
constant constitutive properties Ee and the strain-displacement relations Be =
LNe. r is the vector of work-equivalent nodal forces, for details consult any
standard textbook on the finite element method. In case of layered structures the
material properties are not neccesarily constant throughout the element but rather
within each layer of the element. In this work this has been handled with layered
shell elements using numerical or explicit integration of the material properties
through the thickness. For multi-layered structures with many layers (say, more
than four), explicit integration is faster compared to numerical integration through
the thickness. These elements were developed and implemented in the Master’s
thesis project Hansen and Hvejsel (2007).

The stationarity condition for the TPE applied to (2.22) yields a system of linear
equations governing equilibrium for the finite element discretized continuum.

δΠ̃ =
∂Π̃

∂d
= 0 ⇔ Kd − r = 0 (2.23)

The variation and hence the partial differentiation is taken with respect to each
non-prescribed degree of freedom in d, i.e. the kinematically admissible variations.

With the reference domain discretized by finite elements it is natural to employ this
discretization for the design field as well. Thus material properties are constant
within each element and thereby the distributed infinite dimensional 0-1 prob-
lem is reduced to a finite dimensional 0-1 problem where the material properties
E(x) and hence the stiffness matrix K(x) are parametrized in terms of the design
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variables x ∈ {0, 1}n. Thereby the discretized form of (2.14) is

minimize
x∈{0,1}n,d∈Rd

W̃ = rT d(x) External work (2.24a)

subject to K(x)d − r = 0 Equilibrium (2.24b)

The equivalent problem formulation in terms of the strain energy given by (2.15)
finite element form looks as

minimize
x∈{0,1}n,d∈Rd

2Ũ = d(x)T K(x)d(x) Total strain energy (2.25a)

subject to K(x)d − r = 0 Equilibrium (2.25b)

Recall, from (2.9) that with a linear constitutive law the strain energy is identical
to the stress energy, U = UC , and hence the problem of minimizing the total
strain energy U is equivalent to minimizing the total stress energy UC . These
relations between the different energy measures are used later in the study of
material interpolation schemes, Section 2.10.

2.6 Discretized binary design problem

In the following we formulate the binary design problem and present continuous
relaxations used in the solution approaches proposed in this thesis.

The original problem is a non-convex mixed 0-1 (binary) problem; the design
variables can physically only attain binary values as discussed in Section 2.4. The
unknown optimal nodal displacements d ∈ R

d are continuous and d is the num-
ber of free finite element degrees of freedom. Thus with the description of the
admissible designs the design problem in (2.24) is the following.

minimize
x∈{0,1}n,d∈Rd

c(x) = rT d (2.26a)

(P-SAND) subject to K(x)d − r = 0 (2.26b)
∑

j

ρj(x)Ωj ≤ M (2.26c)

nc

∑

i=1

xij = 1 or

nc

∑

i=1

xij ≤ 1, ∀j (2.26d)

xij ∈ {0, 1}, ∀ (i, j) (2.26e)

Ωj is the volume of the j’th design subdomain and M is a resource constraint
limiting the total mass of the structure. K(x) ∈ R

d×d is the design dependent
global stiffness matrix which is affine in the design variables in the following manner

K(x) =

∫

Ω

BT E(x)B dΩ =

nd

∑

j=1

∫

Ωj

BT
j Ej(x)Bj dΩj (2.27)
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where Ej(x) ∈ R
6×6 is the effective constitutive matrix for domain j from (2.21)

and B ∈ R
6×d is the strain-displacement matrix. (P-SAND) is not convex (due

to the bi-linear term in the equilibrium equations) and is on the form of a mixed
0-1 program which in general is hard to solve. One way to attack (P-SAND) is to
use decomposition techniques such as Generalized Benders’ Decomposition (GBD)
as shown in Muñoz (2010) and applied in Paper B. Another possibility is to use
nonlinear Branch-and-Bound methods as in Stolpe and Stegmann (2008).

The mass constraint is only relevant for multi–material problems where the can-
didate materials have different mass density i.e. in the case of pure fiber angle
optimization the mass constraint is redundant.

A feasible solution satisfies all linear constraints and thus in every design sub-
domain a material with non-vanishing stiffness is chosen and if the structure is
sufficiently constrained against rigid body motion, the stiffness matrix is non-
singular. If K(x) is non-singular, the nodal displacements can be eliminated by
use of the equilibrium equations d(x) = K(x)−1r to obtain an equivalent opti-
mization problem in the design variables x only. Thus, the original non-convex
0-1 program is reformulated as a 0-1 program with a convex objective function in
so-called nested form.

minimize
x∈{0,1}n

c(x) = rT K(x)−1r (2.28a)

(P) subject to
∑

j

ρj(x)Ωj ≤ M (2.28b)

nc

∑

i=1

xij = 1 or

nc

∑

i=1

xij ≤ 1, ∀j (2.28c)

xij ∈ {0, 1}, ∀ (i, j) (2.28d)

This binary problem is in general hard to solve but it’s continuous relaxation
may be solved using standard continuous nonlinear programming algorithms. The
solution to (P) is denoted by x∗

P .

2.6.1 Continuous relaxation

If the binary constraints on the variables are relaxed, we obtain the continuous
relaxation (R) whose feasible set is a superset of (P)’s feasible set.

minimize
x∈Rn

c(x) = rT K(x)−1r (2.29a)

(R) subject to
∑

j

ρj(x)Vj ≤ M (2.29b)

nc

∑

i=1

xij = 1 or

nc

∑

i=1

xij ≤ 1, ∀j (2.29c)

0 ≤ xij , ∀ (i, j) (2.29d)
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Note that the constraints (2.29c) in combination with (2.29d) ensure that the
variables fulfill xij ≤ 1 and hence there is no need for an upper bound on the
variables.

Provided that the stiffness matrix is parametrized by (2.27) using (2.21) for the
material interpolation, the compliance function in (R) is convex as shown by e.g.
Svanberg (1994); Stolpe and Stegmann (2008), and with the feasible set given by
linear constraints this constitutes a convex optimization problem, see e.g. Boyd and Vandenberghe
(2004), and thereby a local optimum x∗

R is also a global optimum of (R). Further-
more the feasible set of (R) is a superset of the feasible set of (P). Thus the
following properties hold:

1. The solution to (R) is better than or as good as the solution to (P), i.e.
c(x∗

R) ≤ c(x∗
P ).

2. If the solution to (R) happens to be binary then it is also a solution to (P).

3. If there is no feasible solution to (R) then there is no feasible solution to (P)
either.

The first property is of interest since it gives a bound on the attainable performance
and thereby makes it possible to assess the quality of any given binary design.
This property is used in global optimization, see Muñoz (2010) and Paper B.
Since all constraints are linear, feasibility of (R) is relatively easily detected by the
algorithm.

In the continuous relaxation the design variables may be interpreted as volume
fractions of each candidate material in the given domain. Thus the constraints
originally formulated in binary form in (2.18) and (2.19) may be interpreted as
constraints on the total volume fraction of material in each domain. Allowing
intermediate volume fractions implies non-distinct material choices (i.e. mixtures)
which are not feasible with respect to the originally binary problem. However,
if the solution to the relaxed problem formulation attains discrete values after
optimization, the result is meaningful and manufacturable.

In the following we discuss techniques for obtaining binary solutions by use of
continuous problem formulations related to (R). All of the approaches studied
here solve the convex continuous relaxation (R) as the first sub-problem within a
sequence of sub-problems.

2.7 Solution techniques

Having formulated the optimization problem (P) and it’s continuous relaxation
(R) we now turn our attention to solution techniques and algorithms to solve
these problems.
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As described in Section 2.6.1 the solution to (R) gives information that is used in
the solution procedures applied to determine a binary solution. Hence we start by
describing how (R) is solved followed by descriptions of the techniques for attacking
(P).

2.7.1 Solving (R)

The continuous relaxation (R) is convex and hence it may be solved to optimality
using any large-scale non-linear programming algorithm capable of handling a
large number of variables and (sparse) linear constraints. In this study we use
the sparse sequential quadratic programming (SQP) algorithm SNOPT Gill et al.
(2005, 2008). This SQP implementation is considered to be mature and stable. It
takes a general problem formulation where the nonlinear parts of constraints are
distinguished from linear parts which are taken care of separately, and sparsity is
exploited throughout.

The solution to (R) typically contains subdomains with a mixture of two or more
candidate materials, in particular if the mass constraint is active. Thus, further
steps are needed to obtain designs with no or only small amounts of intermediate-
valued variables. Despite of the need for a discrete design, the continuous solution
to (R) contains valuable information that can be used in the search for a discrete
design. This is used in the heuristic procedure presented in Section 2.9.2.

2.8 Non-convex penalty constraint (Paper A)

One way to obtain a binary design using a continuous solution approach is to
suppress intermediate designs through a constraint that explicitly addresses the
“discreteness” of the variables. Based on the continuous relaxation (R), a re-
lated problem is formulated by adding a constraint that explicitly ensures binary
feasibility. This approach is studied in Paper A where a non-convex quadratic
constraint is used to gradually reduce the continuous design space to the binary
feasible set of (P). Explicit constraints to suppress intermediate densities were
also studied by Borrvall and Petersson (2001a,b) who used explicit constraints of
regularized (filtered) intermediate densities to obtain distinct designs to solid-void
topology optimization problems. We use a similar approach to suppress inter-
mediate densities but we do not use any regularization. The following concave
quadratic constraint suppresses intermediate valued variables

g(x) =
∑

i,j

xij (1 − xij) ≤ ε , 0 ≤ ε ≪ 1 (2.30)

A sequence of problems is solved starting out by solving the convex problem (R)
and then use the solution to this problem as a starting guess for a sequence of
non-convex problems. The non-convex problems are obtained by augmenting (R)
with the quadratic constraint (2.30). The parameter ε is a small number used to
relax/tighten the constraint gradually. The constraint can be made inactive by
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selecting ε sufficiently large at the initial design. By reducing ε to zero the design
is constrained to be integer feasible. Different continuation strategies for ε are
studied and the influence on the results is examined through numerical examples
as shown in Paper A. As for the convex relaxation (R), SNOPT is used to solve
the non-convex relaxations. The method does not guarantee convergence to the
global optimal solution but it implicitly provides a lower bound from the solution
to (R) and therefore it is possible to assess the worst case gap between the obtained
design and the global optimum.

2.9 Global optimization (Paper B)

Global optimization techniques are concerned with determining the best solution(s)
to an optimization problem and certifying it’s quality. Compared to finding de-
signs fulfilling only local optimality conditions, global optimization is considerably
harder and consequently, everything else being equal, the problems that can be
solved to global optimality are often significantly smaller.

In the following it is shown how the solution to the continuous relaxation can guide
and accelerate the search process for a global optimum of the integer problem
using the Generalized Benders’ Decomposition technique, see Geoffrion (1972).
GBD applied to structural optimization problems was studied in detail by Muñoz
(2010) where the theoretical background for this technique is given.

The results summarized in this section (and presented fully in Paper B) are a joint
effort between Eduardo Muñoz and the author of this thesis.

2.9.1 Generalized Benders’ Decomposition

The problem (P-SAND) is a non-convex mixed 0-1 nonlinear program with contin-
uous variables for the displacements and 0-1 valued design variables. Generalized
Benders’ Decomposition (GBD) is a technique to attack hard optimization prob-
lems having special structure in the variables. Under certain assumptions the
method guarantees convergence to a global optimum and hence it is a determinis-
tic exact global optimization method as opposed to indeterministic and heuristic
approaches.

With the GBD method the solution to the original problem is approached itera-
tively through solution of a sequence of simpler problems; the so-called (relaxed)
master problems and sub problems, respectively. The sub problems are linear
programs in the displacements d and the relaxed master problems are integer
linear programs in the 0-1 valued design variables x.

The main effort in the GBD algorithm lies in solving the relaxed master problems.
The solutions to the master problems are binary designs fulfilling the condition
that they are better than or at least as good as the previously obtained designs.
With each new solution obtained a new constraint is added to the following master
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problems. The constraints are also called cuts; they cut away regions of the feasible
set within which the optimal solution is to be located. With good cuts the region
to search for the optimal solution is limited and hence the solution is likely to be
obtained sooner. The quality of the cuts may be assessed based on the notion
of Pareto dominance. According to this concept cuts coming from designs with
a lower objective function value are better than cuts coming from designs with
a higher objective function. Even cuts coming from continuous relaxations can
be used and hence the cut generated from the optimal solution to the continuous
relaxation is the best cut that can be included. The inclusion of this special cut
was shown to have a significant impact on the solution process for truss topology
optimization problems, Muñoz (2010), and was also used with success for multi-
material optimization in Paper B.

2.9.2 Heuristics

Heuristics employ experience-based knowledge to solve hard problems in a rea-
sonable amount of time. They can be considered as educated guesswork in the
sense that they do not provide guarantees of the quality of the obtained design but
typically the designs are reasonably good. Used in combination with exact global
optimization procedures, heuristics can assist the exact procedure in converging
faster to a proven global optimum. In this section we describe one such heuristic
that combines a relaxation based neighborhood search heuristic that can speed up
the convergence of the GBD algorithm without sacrificing the guarantee for global
optimality of GBB. Actually, the procedures studied in Paper A and C are also
heuristic solution procedures in the sense that they do not guarantee to locate
global optima. However, they may also be used as heuristic techniques speeding
up an exact procedure. Popularly speaking the quality of a heuristic lies in it’s
ability to generate good solutions, since this typically will improve the exact solver
the most. However, to assess whether a given solution is in fact a global optimum,
an exact procedure is needed. This is one of the motivations for employing exact
solvers.

In Muñoz (2010) it was found that the convergence rate of the GBD algorithm
may be improved if a “good” 0-1 design and/or a tight lower bound estimate is
obtained early in the iterative process. By “good” we mean a design that has
an objective function close to that of the optimal solution. Whether the good
design is obtained within the sequence of relaxed GBD master problems or by
some external procedure does not matter since the GBD algorithm converges to a
global optimum. Thus it is of interest to have heuristic procedures that generate
good but not necessarily optimal designs at relatively low or at least controlled
computational cost.

The GBD-Rens heuristic studied in Paper B is inspired by the so-called Relax-
ation Enforced Neighborhood Search (Rens) proposed for mixed-integer linear
programs by Berthold (2007). The idea is to generate a good integer design by
rounding the solution to the continuous relaxation. The rounding problem is for-
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mulated as a binary problem in the non-integral valued variables of the continuous
solution. Furthermore, the solution to the relaxation provides a lower bound that
may be used as a valid lower bound within the GBD procedure as described in the
previous section.

If a continuous solution contains a number of subdomains within which a distinct
selection could be made, these domains are also likely to have the same value in
the optimal discrete solution. This statement contains no guarantees and it only
manifests a hope. To motivate it recall that if the continuous solution happens to
be completely binary-valued (i.e. no domain containing mixture) it is in fact the
global binary solution.

This reasoning is the motivation for a heuristic procedure that may be formulated
as follows: take the continuous solution to (R), fix the variables that are binary-
valued and solve a sub-problem in the remaining variables to obtain a binary design
for them. This idea is the basis of the heuristic procedure proposed in Paper B
where the heuristic procedure is described in detail and shown to accelerate the
convergence behavior of the GBD procedure.

2.10 Material interpolation schemes (Paper C)

Approximating the 0-1 topology problem using material interpolation schemes is
probably the most popular technique to solve large-scale topology optimization
problems. For practical problems the number of design variables easily exceeds
hundreds of thousands and this prohibits the use of exhaustive search or combi-
natorial techniques applied directly to the original 0-1 problem. This is one of
the main reasons for the use of gradient-based algorithms in the search for local
optima.

Having introduced the parametrization of the stiffness and the mass, one can
attack the continuous relaxation directly and obtain useful knowledge from it’s
solution as described in Section 2.6.1 and 2.9. However, the solution to the convex
relaxed problem is rarely binary feasible and hence it is not a feasible solution to
the original optimization problem.

Material interpolation schemes allow intermediate material choices during the so-
lution process and through penalization of intermediate choices the solution is
“encouraged” to converge towards distinct choices honoring the original binary
requirement on the selection variables (2.16). It is often argued that the popular
material interpolation schemes violate rigorous bounds on the attainable prop-
erties of material mixtures for certain parameter intervals, see the discussion in
Bendsøe and Sigmund (1999). In the present work the use of interpolations is
regarded as a method that is viable as long as the final solution honors the binary
condition (for which there is no ambiguity regarding the effective properties). The
existence of intermediate solutions should be considered as a computational tech-



Chapter 2. Multi-material design optimization 25

nique that allows for the use of gradient-based optimizers enabling the solution of
large-scale problems not tractable by combinatorial or exact methods. The choice
of interpolation scheme is not unique and in the following a number of schemes
with different properties are described.

2.10.1 Voigt interpolation

The so-called Voigt interpolation is the simplest possible interpolation scheme
given by the volume fraction weighted arithmetic average of the constituent stiff-
nesses

Ej(x) = E0 +
nc

∑

i=1

xij∆Eij , ∀ j (2.31)

This stiffness is obtained for a heterogeneous medium if all phases are subjected to
the same uniform strain Voigt (1910). It is not physically possible in a heterogenous
composite material to expose all phases to exactly the same strain state since the
stresses at phase boundaries would not be in equilibrium, Hill (1963). Thus,
the stiffness given by the Voigt estimate/interpolation is an upper bound on the
attainable stiffness of a heterogeneous composite .

2.10.2 Multiphase “SIMP”

SIMP is an abbreviation for “Solid Isotropic Material with Penalization”. We
use quotation marks here since the effective material properties in our approach
are not necessarily isotropic, for instance when interpolating between anisotropic
materials. The scheme is a direct generalization of the original scheme proposed
for interpolation between void and solid. We take the discrete parametrization
from (2.21) and raise the, now relaxed, design variable to a power p ≥ 1. We keep
the generalized upper bound constraints and obtain the following interpolation
scheme for the full constitutive matrix

ES
j (x) = E0 +

nc

∑

i=1

x
p
ij

︸︷︷︸

wij

∆Eij , p ≥ 1, ∀ j (2.32)

For p = 1 the sum of the weights controlling the contribution from each stiffness
phase add to unity if the design variables do. For p > 1 intermediate material
selections are unfavorable since the total stiffness contribution is reduced in the
sense that the weights do not sum to unity for intermediate choices, even if the
design variables do. Thus intermediate choices intrinsically are penalized, see also
the discussion below in Section 2.10.4.

Note that for nc = 1, the generalized scheme (2.32) reduces to the well-known
two-phase SIMP scheme. For this particular case, however, only the generalized
upper bound inequality (2.18) is relevant while requiring (2.19) would lead to a
trivial problem.
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2.10.3 Multiphase RAMP

In Stolpe and Svanberg (2001) the so-called RAMP scheme was proposed as an al-
ternative interpolation scheme for two-phase topology optimization. RAMP stands
for “Rational Artificial Material with Penalization” and the idea of the scheme is
that for isotropic two-phase interpolation a certain value of the penalization pa-
rameter yields a concave objective function increasing the probability of locating
an optimum at the boundary of the feasible domain meaning a distinct design. We
propose a generalization to multiple materials similar to the SIMP generalization
(2.32).

The interpolation scheme for the constitutive matrix is given by

ER
j (x) = E0 +

nc

∑

i=1

xij

1 + q(1 − xij)
∆Eij , q ≥ 0, ∀ j (2.33)

The effect of the penalization parameter q is analogous to that of p in the SIMP
scheme; it makes intermediate selections unfavorable by reducing the net material
contribution in the stiffness interpolation.

2.10.4 Penalizing effect

For both schemes presented above the penalizing effect of intermediate densities
fulfilling Equation (2.18) or (2.19) comes from the fact that the sum of the penal-
ized weights is less than unity. In Figure 2.2 we show the sum of the penalized
weights for nc = 2 for a range of penalization parameters for both schemes. We
use x1 +x2 = 1 to eliminate x2 and plot the sum of the penalized stiffness weights,
e.g. for the SIMP weights we have w1 + w2 = x

p
1

+ x
p
2

= x
p
1

+ (1 − x1)
p.
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Figure 2.2: Sum of penalized stiffness weights for n
c

= 2 for the SIMP and the RAMP

interpolation scheme for different penalization parameters.
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2.10.5 Illustrative example

The following example demonstrates properties of the material interpolation schemes
proposed in this work and illustrates the effect of penalization. We investigate the
influence of the penalization in combination with the applied loading and candidate
materials on the likelihood of obtaining a distinct material selection.

Usually for solid-void topology optimization the ability of the SIMP (and RAMP)
scheme to obtain 0/1 solutions is attributed to it’s reduced stiffness relative to the
full contribution in the mass/volume constraint at intermediate densities. How-
ever, the situation is quite different if we are to select between candidate materials
with the same mass density but different directional properties, i.e. anisotropic or
orthotropic materials.

The following example is constructed so as to remove the influence of the mass
constraint; both materials have the same mass density and thus the mass constraint
plays no role. The two candidate materials are instances of the same orthotropic
material but are oriented differently. The idea is to study the optimal material
selection for different stress states for which we a priori know the solution in terms
of an optimal distinct material choice and observe which solution the proposed
interpolation schemes would lead to.

Consider a bi-axial plane stress state as shown in Figure 2.3. Different character-
istic stress states are obtained by varying the principal stress ratio; −1 ≤ σII

σI
≤ 1.

The design problem that we address is that of choosing between two distinct orien-
tations of an orthotropic material. This problem we regard as a material selection
problem with two candidate materials where each material orientation represents
a distinct candidate material. The first candidate material that we consider is an
orthotropic material with it’s principal material direction coincident with the first
principal stress direction (i.e. θ = 0◦) and the second candidate material has the
principal material direction coincident with the second principal stress direction
(θ = 90◦). As descibed in Section 2.2.1 the compliance of the structure is directly

σI

σI

σII

σII

θ

Figure 2.3: Bi-axial stress states with coordinate system.

linked to the pointwise stress energy density. Recall the stress energy density from
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(2.7)
ŪC = 1

2
σT C(x)σ = 1

2
σT E−1(x)σ (2.34)

Multi-material parametrizations

Now, for a given stress state σ and two candidate materials we explore the design
space for different interpolations. We want to investigate the interpolation scheme
in terms of it’s behaviour when selecting between two materials and thus we elim-
inate the topology question by requiring Equation (2.19) to hold. This makes it
possible to eliminate one variable whereby the problem is parametrized in x1 only.
Thus, x1 = 1 means that the orthotropic material oriented at θ = 0◦ is chosen and
for x1 = 0 the same material at θ = 90◦ is chosen.

Using the simplifications described above the generalized SIMP scheme in Equation
(2.32) reduces to

E(x) = x
p
1
E0◦ + (1 − x1)

pE90◦ (2.35)

For p > 1 the sum of the weighting of the individual phases is less than or equal
to one, w1 + w2 ≤ 1 for 0 < x1 < 1. Thereby mixtures are penalized in the sense
that the amount of stiffness contributing material effectively is reduced. In Figure
2.4 the resulting stress energy density is shown for different principal stress ratios
and different values of the penalization parameter p. From the figure we observe
a number of properties for this scheme

• For a distinct material selection, i.e. x1 = 0.0 or x1 = 1.0 the scheme yields
the same objective function value, regardless of the value of p.

• For p = 1.0 the compliance is convex in x1. For all loads except the uni-
directional load (σII

σI
= 0.0), the optimum is a mixture.

• For large p the compliance level generally is higher for mixtures. This is due
to the fact that the weights on the phases do not sum to unity meaning that
intermediate choices also encompass choosing less material in total.

• For p > 1 the compliance is non-convex with several local minima and hence
a non-binary point may be a local optimum.

• The scheme is indifferent with respect to ordering of the phases, i.e. the
ordering does not bias the tendency to select any of the phases over the
other.

Similarly for the RAMP scheme (2.33) using the equality selection constraint (2.19)
the interpolation reduces to

E(x) =
x1

1 + q(1 − x1)
E0◦ +

1 − x1

1 + qx1

E90◦ (2.36)
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Figure 2.4: Stress energy density for different fixed bi-axial stress states obtained using

the SIMP interpolation (2.35).

where q ≥ 0 is the penalization parameter used to make intermediate choices un-
favorable. The observations made for the SIMP scheme carry over to the RAMP
scheme. Actually, for q = 0 the RAMP scheme is identical to the SIMP scheme for
p = 1. The overall shapes of the curves are similar except for some minor differ-
ences in slope and curvature near 0 and 1 where the RAMP scheme in general is
steeper. Note that the curves shown take into account the sum to unity constraint
eliminating x2, and thereby the slope of the curves rather represent the reduced
gradient than the pure derivative wrt. x1. Therefore the expected vanishing slope
of the SIMP scheme is not observed at x1 = 0.

2.10.6 Other ideas

In the previous section it was demonstrated how the penalization discourages in-
termediate density solutions by reducing the net amount of material for interme-
diate choices. An other material interpolation scheme which works in a differ-
ent manner is the so-called the Voigt-Reuss scheme, see Swan and Arora (1997);
Swan and Kosaka (1997a,b). This scheme is a hybrid of the Voigt and the Reuss
mixture schemes, respectively. The Voigt scheme presented previously in Sec-
tion 2.10.1 obtains the effective material properties for a mixture of phases exposed
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Ū
C

Ū
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Figure 2.5: Stress energy density for different fixed bi-axial stress states obtained using

the RAMP interpolation (2.36).

to the same state of strain whereas it’s counterpart, the Reuss scheme, obtains the
effective properties for a mixture of phases exposed to the same state of stress. One
could also envision these two mixture rules embodied as springs coupled in series
(Voigt) versus springs coupled in parallel (Reuss). This idea was proposed in the
above mentioned publications where gradual penalization was introduced through
continuation shifting the interpolation from the Voigt scheme to the Reuss scheme.
Looking at Figure 2.4 and 2.5, respectively, the Reuss interpolation would generate
a straight line connecting the value of the stress energy density at x1 = 0 to the
corresponding value at x1 = 1. This indicates that the Reuss interpolation forms a
concave stress energy density function. Doing some algebraic manipulations, one
can show that the two-phase RAMP scheme, see Stolpe and Svanberg (2001), is
identical to the Reuss interpolation scheme exactly for the parameter setting for
which the RAMP scheme becomes concave. This fact combined with the statement
in Bendsøe and Sigmund (2003, p.63) to look for concave interpolations, gave hope
to the Voigt-Reuss approach. However, despite of numerous attempts to get this
procedure to work, it was abandoned at some point due to numerical difficulties.
The approach was tested in combination with SNOPT which is an implementa-
tion of the Sequential Quadratic Programming algorithm with a limited memory
quasi-Newton approximation to the Hessian of the Lagrangian. In the Hessian



Chapter 2. Multi-material design optimization 31

approximation procedure a check for positive curvature is implemented to ensure
a positive-definite approximate Hessian. However, a positive Hessian approxima-
tion for a concave function is impossible per se. In other words, the algorithm
intrinsically “fights against” the nature of the problem and this combination of
algorithm and problem formulation did not match. Experience with the algorithm
showed that with the Reuss interpolation, the convergence of the SQP algorithm
slowed down to make almost no progress. It may be that a Sequential Linear
Programming algorithm as used in the original papers is better suited for the
Voigt-Reuss interpolation scheme though this was never tested within the present
work.

2.11 Existence of solutions

Similar to solid-void topology optimization, the continuum form of the multi-
material optimization problem shown in (2.15) is ill-posed and lacks existence of
solutions. The discretized finite-dimensional problem has existence of solutions.
However, the solution to the discretized problems is mesh-dependent.

To obtain a well-posed problem regularization is needed. It is beyond the scope
of this work to give a complete description of techniques available to reduce mesh
dependency of topology optimization problems, but a few comments and thoughts
are worthwhile. We give a brief description of these problems in the setting of
topology optimization and extend some of the ideas and concepts to multi-material
optimization problems.

It is well-known from topology optimization that the infinite dimensional 0-1 (void-
solid) minimum compliance problem lacks existence of solutions, see e.g. Lurie
(1993); Strang and Kohn (1986); Kohn and Strang (1986a,b,c). Mathematically
the problem is ill-posed and lacks existence of solutions. The mechanical expla-
nation is that the introduction of more holes leading to microstructure gives a
better structural efficiency (higher stiffness) without affecting the resource con-
straint. Macroscopically such fine scale regions appear as “grey” with macroscopi-
cally anisotropic properties which to some extent explains why grey solutions and
composites are good from an optimal point of view. The study of such optimal mi-
cro structure is done extensively in the so-called “microstructure” or “homogeniza-
tion” approach, see Eschenauer and Olhoff (2001); Bendsøe and Sigmund (2003)
for references to this branch of optimal design. Allowing grey in the solution space
amounts to accepting infinitesimally small features in the solution which is typi-
cally not wanted from a practical point of view. The finite-dimensional discretized
problem with element-wise constant density has existence of solutions itself. How-
ever, refining the mesh by increasing the number of elements and thereby the
number of design domains leads to qualitatively different structures with finer
structural details which was first observed and addressed in optimal plate design,
see Cheng and Olhoff (1981, 1982). This is unwanted since the solution thereby
inherently depends on the (more or less arbitrarily chosen) mesh and furthermore
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the occurrence of fine scale features is often unwanted for manufacturing reasons.
The point of refining the mesh was to improve the analysis field but not necessarily
to change the design field. From an engineering point of view we are interested
in having a minimum length scale of variation in the solution, i.e. to prevent
small scale features and variations in the solution. To counter these issues the
problem needs to be regularized and a number of techniques exist for this, for
further explanations see Sigmund and Petersson (1998), and Sigmund (2007) for
a recent review.

A mesh-independent length scale may be obtained using filtering techniques such
as the so-called sensitivity filter proposed by Sigmund (1994). Here the original
sensitivity field is smoothed heuristically. As pointed out by Sigmund (2007)
this heuristic technique does not work with line-search based optimizers such as
SNOPT that require consistent sensitivities, see Gill et al. (2008). Thus, this type
of filter is currently not applicable for multi-material optimization using the solu-
tion approaches described in this thesis. An other possibility that gives consistent
sensitivities would be to filter the material densities as shown by Bourdin (2001);
Bruns and Tortorelli (2001). An immediate question that comes up for filtering
techniques used with multiple phases is how to filter the densities. One idea could
be to evaluate each material density as an average of the surrounding correspond-
ing material densities. In combination with penalization this should control the
minimum size features of each phase.

The issues touched upon in this section are relevant and important theoretically as
well as practically but have not been addressed in this thesis. The challenge is to
generalize the concepts developed for two-phase topology optimization to multi-
material problems. It is our belief that the solution to some of these problems
will be an important step towards making multi-material optimization a mature
technology.
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Summary and concluding remarks

This chapter summarizes the main results of the three papers accompanying this
thesis, the relationship among them and gives an assessment of the significance
and impact of the results and points to future directions of research.

3.1 Summary of results

The papers address the minimum compliance discrete material selection problem
as formulated in (2.28) using continuous relaxations in the solution process en-
abling the use of gradient-based optimization algorithms in the search for binary
solutions. The results presented in this thesis have shown how the multi-material
optimization problem can be formulated and solved very similar to traditional
void-solid topology optimization using continuous variables that eventually obtain
binary values approximating the originally binary problem. This is obtained using
material interpolation schemes and explicit constraints that address the tendency
towards intermediate-valued designs if not penalized or constrained. Furthermore
it is shown how continuous solutions obtained using a gradient based optimizer can
assist and accelerate a Generalized Benders’ Decomposition algorithm in obtaining
solutions to problems not tractable otherwise.

Paper A: Discrete Multi-material Stiffness Optimization for Mul-
tiple Load Cases

In this paper we attacked the discrete material selection problem by solving a
sequence of non-convex continuous relaxations with a quadratic constraint that
explicitly prevents intermediate density solutions. A lower bound on the attain-
able performance is obtained by solving a continuous convex relaxation and this
solution is used as a starting guess for the non-convex problems. It is found that
the best binary solutions are found if all intermediate non-convex problems are
solved to (local) optimality with a tight tolerance. An alternative strategy with
looser convergence tolerances in the intermediate problems is found to be a good
compromise between computational cost and the quality of the obtained solutions.
Problems with a small amount of mixture in the relaxed solution are found to be
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easier to get to converge to a distinct solution compared to problems with many
domains with mixture.

Paper B: Discrete Multi-material Optimization: Combining Dis-
crete and Continuous Approaches for Global Optimization

This paper presents a heuristic approach to improve the numerical performance
of the Generalized Benders’ Decomposition algorithm for global optimal design of
laminated composite structures. The main idea of the paper is to use the solution
of a continuous relaxation to formulate a reduced size sub-problem corresponding
to the original full MINLP with a large number of variables fixed at the value
obtained in the continuous solution. The solution to the reduced sub-problem is
often close to the global optimal solution and thereby it may be used to improve
the convergence rate of the overall GBD algorithm. The approach is tested on a
set of numerical examples, and problems with up to 23.000 variables are solved to
global optimality. It is found that the heuristic improves the convergence rate of
overall GBD algorithm significantly.

Paper C: Material Interpolation Schemes for Unified Topology
and Multi-material Optimization

In this paper we propose material interpolation schemes as direct generalizations
of the well-known two-phase SIMP and RAMP scheme, respectively. The schemes
provide generally applicable interpolation schemes between an arbitrary number of
pre-defined materials with given (anisotropic) properties and favors distinct choices
by implicitly penalizing intermediate choices. The method relies on a large number
of sparse linear constraints to enforce the selection of at most one material in each
design subdomain. The proposed schemes can parametrize multi-material opti-
mization as well as simultaneous topology and multi-material optimization within
a unified parametrization. The penalizing effect of the interpolation schemes is
analyzed and attributed to the fact that the penalized weights controlling the
stiffness contribution do not sum to unity for intermediate selections. Thereby the
net stiffness of a mixture of two equally good materials is worse than that of either
phase alone and thus the mixture is unfavorable compared to a distinct choice.

3.2 Contributions and impact

The number of design variables in multi-material optimization problems of practi-
cal interest is very high and often it is beyond the size of what global optimization
techniques can handle. Therefore continuous relaxations that can be solved using
gradient-based algorithms are important. For the minimum compliance problem
addressed in this work, the continuous relaxation is convex and therefore its so-
lution forms a rigorous lower bound on the attainable performance of any binary
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solution. Thus, given any binary feasible solution we are able to assess its quality
which was done for the solutions presented in Paper A. This property was further
used in Paper B where the convex relaxation solution was used to obtain a rigorous
lower bound, and as the basis for a large neighborhood search heuristic in the non-
binary valued variables. This heuristic turned out to improve the capabilities of
the Generalized Benders’ Decomposition technique significantly for optimal de-
sign of laminated composite structures. To the authors’ knowledge, the use of
the Rens heuristic for MINLP’s is novel, the idea is generally applicable and may
very well be useful for other mixed-binary problems where a continuous relaxation
can be solved at relatively low cost. The improvement of GBD obtained using
this single heuristic indicates that other heuristic techniques may also improve the
convergence rate of the algorithm.

Paper C proposes generalizations of the SIMP and RAMP material interpolation
schemes to any number of phases, including topology optimization, within a unified
parametrization which is novel. The idea is demonstrated on the minimum compli-
ance problem, but the material parametrization is completely general and enables
multi-material optimization for all types of problems where two-phase topology
optimization has proven successful.

3.3 Future research

The examples addressed in this thesis mainly focus on laminated plate-like struc-
tures though the design parametrization is completely general and may as well be
applied to solid domains as well. This could be of interest with other physics as
seen in two-phase topology optimization.

The generalization to multiple phases also opens up for adapting filtering tech-
niques originally developed for topology optimization, to multi-material optimiza-
tion. The use of filters could also be a way to include manufacturing constraints
in multi-material optimization, see e.g. Guest (2009). A recent idea for a manu-
facturing aware parametrization of the topology design problem was put forward
by Gersborg and Andreasen (2011). Such approaches might be adapted to multi-
material and laminate design as well. Combining unified topology and multi-
material design with manufacturing constraints allowing only outer layers to be
removed opens for the possibility to design also the number of layers in the lami-
nate.

Another issue with the multi-material optimization approach is the large number of
design variables which is not a problem as long as the number of criteria functions
in the optimization problem is low. With an increasing number of criteria func-
tions e.g. with stress constraints, the resulting problem quickly grows beyond what
can be solved with currently available optimization algorithms. It is clear that this
challenge requires alternative parametrizations or techniques such as constraint ag-
gregation proposed by e.g. Yang and Chen (1996); Duysinx and Sigmund (1998);
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Poon and Martins (2007); París et al. (2010) or penalty approaches as shown by
Kočvara and Stingl (2009) for the stress constrained FMO problem.

The heuristics based improvements of the Generalized Benders’ Algorithm may
be developed even further. In this work we only investigated a relaxation based
search heuristic whose computational cost may be high in itself. Other heuristic
techniques with a lower or controlled computational could be employed as well.
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1 Introduction

Optimal design of high performance and cost-effective lami-
nated composite structures is a complex design problem due
to the large number of different materials employed along
with conflicting requirements such as low weight and cost
while maintaining sufficient stiffness and strength. For these
requirements composite materials are advantageous compared
to isotropic metals because of their superior specific proper-
ties (strength- and stiffness-to-weight ratio) and the possi-
bility to tailor the structural response by utilizing the direc-
tional properties. Optimal orientation of orthotropic material
has been dealt with by e.g. Sun and Hansen (1988); Peder-
sen (1989, 1991); Thomsen and Olhoff (1990); Mateus et al
(1991); Fukunaga and Vanderplaats (1991); Setoodeh et al
(2004), and for further references see also the review paper
by Abrate (1994) and the textbook by Gürdal et al (1999) .

To design a laminated composite structure it is necessary to
specify material, thickness and orientation in each layer of
the laminate. Doing so, the directionality of the individual
layers may be used beneficially so as to obtain the desired
response of the laminated structure. Thus, the number of de-
sign variables tends to be large in laminate design problems.

In this paper we address the laminate layup design prob-
lem of choosing among multiple non-vanishing materials
(CFRP1, GFRP2, polymeric foam, balsa wood, etc.) poten-
tially oriented in different predefined discrete directions. We
assume that the layer thicknesses as well as the total lami-
nate thickness are given and fixed a priori. Thus we solve a
material distribution problem on a fixed spatial domain and
discretization. The authors acknowledge the importance of
including stress constraints in the design problem as in e.g.
Schmit and Farshi (1973); Duysinx and Bendsøe (1998);

1 Carbon fiber reinforced polymer
2 Glass fiber reinforced polymer
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Bruyneel and Duysinx (2006) but in this work such con-
straints have not been included for a number of reasons. The
inclusion of strength constraints poses several theoretical as
well as computational challenges that have to be overcome
before such constraints can be included in practical multi-
material optimization problems with many design variables.
One step on the way is to have a continuous method that
yields integer solutions eventually which is one of the con-
tributions of the present paper. The design problem is stated
as;given a fixed domain in space and number of pre-defined
candidate materials, select the distinct material in each de-
sign subdomain that minimizes an objective function sub-
ject to physical and resource constraints.This statement we
regard as a discrete material distribution problem; eithera
material is selected or not in a given point in the design do-
main. The problem we address is a generalization of the 0-
1 (void-solid) topology optimization problem and thus en-
compasses this problem as a special case with void being
one of the “materials”. As such, the multi–material design
problem also lacks existence of solution in it’s continuum
infinite dimensional form, as known for the solid-void topol-
ogy optimization problem, Lurie (1980); Kohn and Strang
(1982, 1986); Cherkaev (1994). The implication of this is
that in a finite element discretized problem, the solution is
mesh dependent in the sense that finer meshes lead to finer
details in the solution, and potentially also to qualitatively
different structures. This is unwanted and to counter this
issue, a number of different techniques exist. To obtain a
well-posed problem one can introduce microstructure (or
composites) to the solution space or restrict fine scale fea-
tures from occurring in the design. The present work does
not introduce microstructure nor composites to the design
space but rather we give the possibility of selecting a pre-
defined existing composite material throughout pre-defined
fixed spatial design subdomains. Thus, the present work does
not introduce composites as a means for relaxing the design
problem or interpreting “grey” intermediate valued design
variables. In the present work we have not taken any mea-
sures against the issues regarding existence of solutions or
mesh dependency. Note that in theory the problem exists for
the approach taken here but as it is seen from the results, it
does not seem to pose too severe problems.

The multi–material design problem can be modeled us-
ing integer material selection variables leading to a mixed-
integer problem. Such discrete modeling leads to combina-
torial problems that are hard to solve. In topology optimiza-
tion a similar situation exists in the basic problem (solid or
void) and a well-known approach is to relax the integer re-
quirement on the selection variables to allow intermediate
values - grey - during the optimization, see e.g. Bendsøe and
Kikuchi (1988); Bendsøe (1989). These ideas were extended
to multi-phase problems by Sigmund and Torquato (1997);
Gibiansky and Sigmund (2000) for two non-vanishing phases

and void. Stegmann and Lund (2005) and Lund and Stegmann
(2005) proposed the so-called Discrete Material Optimiza-
tion (DMO) approach where the discrete optimization prob-
lem described above is converted to a continuous problem
enabling design sensitivity analysis and the use of gradient
based optimizers. DMO may be regarded as a ground struc-
ture approach for optimal material selection amongst mul-
tiple (anisotropic) materials. The idea is to relax the integer
constraint on the selection variables so as to allow intermedi-
ate selection variable values between0 and1 during the op-
timization, representing mixed-material properties obtained
as weighted averages of the constituent properties. This ap-
proach has been applied successfully to material distribu-
tion problems with criterion functions such as maximization
of structural stiffness, eigenfrequencies and buckling loads,
see e.g. the references above and Lund (2009). Stolpe and
Stegmann (2008) formulated convex minimum compliance
mass constrained problems and solved fiber angle problems
(without a mass constraint) to global optimality by solv-
ing relaxations within a branch-and-bound framework us-
ing a special purpose Newton method. The problems solved
in that paper did not include a constraint on the mass as
the examples only included problems with one orthotropic
material to be oriented at different discrete directions. For
these problems it was reported that most of the design vari-
ables at the optimal solution to the continuous relaxation at-
tained their lower or upper bounds, i.e. satisfied the original
integer requirement. However, in general this is not guar-
anteed and particularly when an active mass constraint is
present, the solutions tend to contain mixtures if no penal-
ization of intermediate selections is applied. In this paper we
model the problem similar to Stolpe and Stegmann (2008)
and furthermore we impose a quadratic constraint that can
be activated to prevent intermediate solutions. The quadratic
constraint (or any other intermediate penalty constraint)has
the advantage of giving a direct control of the amount of
intermediate-valued variables in contrast to material interpo-
lation schemes that typically encourage, but do not ensure,
integer feasibility. The constraint allows us to solve (mul-
tiple load case) minimum compliance multi-material prob-
lems with a constraint on the mass. The idea is to solve a
convex problem to optimality, and then use this solution as a
starting guess for a non-convex problem where the quadratic
constraint is imposed to obtain an integer feasible solution.
Without proof we claim that the current approach of using
the intermediate penalty constraint to control integer feasi-
bility may also be used in other optimal design problem for-
mulations including discrete variables, be it minimizing the
maximum compliance for multiple load cases or minimum
weight problems with a constraint on the compliance.

A key issue in DMO is that the continuous design variables
eventually are pushed to their limit values, thus fulfillingthe
integer constraints and allowing for a physical interpreta-
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tion of the final design. To obtain a distinct solution to a
continuous problem one may ’encourage’ distinct choices
through penalization of intermediate selections either asa
penalty to the objective function or through a constraint pre-
venting intermediate design variables. For either approach,
continuation on the degree of non-convexity may be applied
to avoid local minima while gradually improving the possi-
bility of obtaining a discrete solution with a good objective
function value. In general, continuous relaxations combined
with implicit and explicit penalization methods are heuris-
tic approaches often used in the topology optimization com-
munity to address otherwise hard integer design problems.
Either approach introduces some degree of non-convexity
to the design problem in order to converge towards an inte-
ger solution (0-1). Thus any of these approaches cannot be
guaranteed to converge to the global optimal solution since
points fulfilling the KKT conditions may just be local mini-
mizers.
Penalizing the objective function may be done either through
a constitutive interpolation scheme that implicitly penalizes
mixtures or by adding an explicit penalty term to the objec-
tive function. The interpolation scheme approach has gained
large acceptance in the topology optimization community
since the seminal paper by Bendsøe (1989). It is also known
as the SIMP-approach (Solid Isotropic Material with Penal-
ization), see e.g. Rozvany et al (1992); Bendsøe and Sig-
mund (1999, 2003). Other interpolation schemes have been
proposed and in particular the so-called RAMP (Rational
Approximation of Material Properties) scheme seems to have
gained acceptance as well, Stolpe and Svanberg (2001). As
an alternative to the material interpolation approaches, ex-
plicit penalization of intermediate densities has been applied
as well. This is typically done by adding a penalty term
to the objective function preventing intermediate solutions
from being optimal solutions. Quadratic penalty functions
have been proposed as such penalty terms, see e.g. Borrvall
and Petersson (2001b).
The paper is organized as follows; in Section 2 we state and
model the problem, develop reformulations and formulate
the method used to solve the problem. Section 3 contains de-
scriptions of a set of test problems that we solve, and present
the results of in Section refsec:Results. A discussion of the
method and the results obtained is given in Section 5 and
finally we conclude the paper with a view towards future
research in Section 6.

2 Problem Formulation

Givennc predefined materials with known constitutive prop-
erties and mass density, we want to select the material in
each of thend design subdomains such that a given objec-
tive function is minimized.

A discrete-valued material selection variablexij ∈ {0, 1}
is introduced to represent the selection of a given candidate
material,i, in each design domain,j.

xij =

{

1 if materiali is chosen in design subdomainj

0 if not

(1)

A design subdomain may be a single layer in a finite el-
ement, a layer covering multiple elements, multiple layers
within a single element etc. The definition of design sub-
domains may be chosen to coincide with the finite element
discretization but a design subdomain may also contain mul-
tiple elements in a so-called patch. Patches may be used
due to manufacturing reasons if it is not allowable to have
changes in material or fiber orientations at the level of the fi-
nite element discretization. Furthermore, the number of can-
didate materials may differ for the various design subdo-
mains. Thus, the total number of design variablesn is given
as the sum of the number of candidate materials for all de-
sign domains,n =

∑nd

j=1
nc

j , wherenc
j is the number of can-

didate materials in each of thend design subdomains.Typical-
ly, and throughout this paper, we have the same number of
candidate materials in all subdomains, i.e.nc

j = nc ∀j, and
therefor the total number of design variables is simply given
by n = ncnd.
In each design subdomain exactly one material should be
chosen. This is enforced by the following equality constraints
called the generalized upper bound constraints.

ne
∑

i=1

xij = 1 ∀ j (2)

This constraint, together with the constraints (1), ensures
that exactly one material is chosen. If any variable entering
the sum attains1 the remaining variables necessarily must
be0 in order for the equality to hold.

2.1 Original problem

We want to solve discrete multi-material (multi-load case)
minimum compliance problems subject to a mass constraint
by means of solving a sequence of continuous relaxations.
In the following we formulate the original problem and then
formulate continuous relaxations. We treat the multiple in-
dependent load cases by forming a weighted sum of the
compliance for the individual load cases. The relative im-
portance of each load case is given by a weighting factor
wl > 0 normalized such that

∑L
l=1

wl = 1.
The original problem is a non-convexmixed-integer prob-

lem; the design variables can physically only attain integer
values, i.e.xij ∈ {0, 1}. The unknown optimal nodal dis-
placementsul ∈ R

d are continuous andd is the number
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of free finite element degrees of freedom. We consider the
problem

minimize
x∈Rn,u1,...,uL∈Rd

c(x) =

L∑

l=1

wlp
T
l ul (3a)

(P-SAND) subject to K(x)ul = pl l = 1, 2, . . . , L

(3b)
∑

i,j

xijρiVj ≤ M (3c)

∑

i

xij = 1 ∀ j (3d)

xij ∈ {0, 1} ∀ (i, j) (3e)

whereρi is the mass density of materiali, Vj is the volume
of thej’th design subdomain andM is a resource constraint
limiting the total mass of the structure.K(x) ∈ R

d×d is the
design dependent global stiffness matrix. Equivalent Single
Layer (ESL) shell finite elements based on First-order Shear
Deformation Theory (FSDT) are used for the analysis, and
the stiffness matrix is linear in the design variables in the
following manner

K(x) =
∑

i,j

xijKij =
∑

i,j

xij

∫

Ωj

BT
j EiBj dΩj =

∑

j

∫

Ωj

BT
j

(
∑

i

xijEi

)

Bj dΩj (4)

whereEi ∈ R
6×6 is the constitutive matrix for materiali

andBj ∈ R
6×d is the global level strain displacement ma-

trix for domainj.

(P-SAND) is not convex (due to the bi-linear term in the
equilibrium equations) and is on the form of a mixed-integer
program which in general is hard to solve.

The mass constraint is only relevant for multi–material prob-
lems where the candidate materials have different mass den-
sity. In the case of pure fiber angle optimization the mass
constraint is redundant.

A feasible solution satisfies all linear constraints and thus
in every design domain a material with non-vanishing stiff-
ness is chosen. If we furthermore assume that the structure is
sufficiently constrained (i.e. constrained against rigid body
displacements) then the stiffness matrix is non-singular.If
K(x) is non-singular, the original non-convex 0-1 program
may be reformulated as a 0-1 program with a convex objec-
tive function in so-called nested form where the nodal dis-
placements are eliminated by use of the equilibrium equa-
tions for each load case, i.e.ul(x) = K(x)−1pl to obtain
an equivalent optimization problem in the design variables

x only.

minimize
x∈Rn

c(x) =

L∑

l=1

wlp
T
l K(x)−1pl (5a)

(P) subject to
∑

i,j

xijρiVj ≤ M (5b)

∑

i

xij = 1 ∀ j (5c)

xij ∈ {0, 1} ∀ (i, j) (5d)

This discrete problem is in general hard to solve. In the
following we formulate a relaxation to (P) which may be
solved using standard continuous nonlinear programming
algorithms. The optimal solution to (P) we denotex∗

P .

2.2 Convex continuous relaxation

If the integer constraints on the variables are relaxed, we
obtain a continuous relaxation (R) whose feasible set is a
superset of (P)’s feasible set.

minimize
x∈Rn

c(x) =

L∑

l=1

wlp
T
l K(x)−1pl (6a)

(R) subject to
∑

i,j

xijρiVj ≤ M (6b)

∑

i

xij = 1 ∀ j (6c)

0 ≤ xij ∀ (i, j) (6d)

Note that the generalized upper bound constraints from (2)
ensure that the variables fulfillxij ≤ 1. Thus there is no
need for an upper bound on the variables and it is enough to
ensure non-negative design variables.
The optimization problem given by (R) is convex as shown
by Svanberg (1994); Stolpe and Stegmann (2008). Thus a
locally optimal solutionx∗

R is also a global optimum to (R).
Furthermore (R) is the continuous relaxation of (P) and there-
for less constrained than (P). In other words the feasible set
of (P) is a subset of the feasible set of (R). Thus

– If the optimal solution to (R) happens to be an integer
solution then it is also an optimal solution to (P).

– The optimal solution to (R) is better than or as good as
the solution to (P), i.e.c(x∗

R) ≤ c(x∗
P ).

– If there is no feasible solution to (R) then there is no
feasible solution to (P) either.

For a single load case problem, the formulation in (R) is
the same optimization problem that Stolpe and Stegmann
(2008) investigated and developed a dedicated Newton method
for.
In the continuous relaxation the design variables may be
interpreted as volume fractions of each candidate material
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in the given domain. The equality constraints formulated
in Eq. (2) represent physical constraints on the volume of
available material in each domain. Allowing intermediate
volume fractions implies non-distinct material choices (i.e.
mixtures) which is not physical in a DMO parametrization.
However, if the solution to the relaxation attains discreteval-
ues after optimization, the result is meaningful and manufac-
turable. If the result is non-integer it needs to be made inte-
ger for a meaningful physical interpretation. One approach
is to apply simple rounding to nearest integer feasible solu-
tion. However, this approach may lead to designs violating
the mass constraint. An other solution is to apply penaliza-
tion through a material interpolation scheme to make inter-
mediate selections uneconomical in the objective function
and thereby encourage discrete solutions. Finally, there is
the possibility to impose a constraint preventing intermedi-
ate solutions. In the following we describe a quadratic con-
straint that is added to (R) to prevent non-integer solutions.

2.3 Non-convex continuous relaxation

The optimal solution to the convex continuous relaxation (R)
does in general not obey the integer requirement of the orig-
inal problem (P). Our interest is to obtain a good (but not
necessarily globally optimal) solution to (P) meaning that
the solution should satisfy the integer requirement. To obtain
integer solutions we need to either penalize intermediate val-
ues of the design variables, constrain them from occurring,
or round non-integer solutions to e.g. nearest integer solu-
tion. Rounding to nearest integer solution may give designs
that are not feasible with respect to the mass constraint. If
we instead impose a constraint that prevents intermediate
solutions, the integer feasible designs obtained should also
respect the mass constraint. Thus we extend (R) by imposing
an intermediate penalty constraintg(x) that controls integer
feasibility.

minimize
x∈Rn

c(x) =
L∑

l=1

wlp
T
l K(x)−1pl

(7a)

(R-Penal) subject to
∑

i,j

xijρiVj ≤ M (7b)

∑

i

xij = 1 ∀ j (7c)

g(x) ≤ ε , ε ∈ [0;∞[ (7d)

0 ≤ xij ∀ (i, j) (7e)

The functiong(x) is a concave penalty function that is vio-
lated for mixtures. For each design domain with non-discrete
design variables it should contribute to violating the inequal-
ity and give no contribution if a distinct (0/1) selection has

been made in that domain. By including the concave con-
straint in the optimization problem, (R-Penal) becomes non-
convex.

The feasible set described byg(x) = 0 is identical to
the original discrete set of points given by Equation (3e).
Since the optimization problem given by (R-Penal) is non-
convex, points satisfying usual first-order optimality condi-
tions for (R-Penal) can not be guaranteed to be more than
locally optimal solutions. Ifε = 0 the feasible set of (R-
Penal) is reduced to that of (P), and any of these integer
feasible points (xR−Penal) will have a worse (or as good)
objective function value as the global optimal solution to
(P), i.e.c(x∗

P ) ≤ c(xR−Penal). Thus, the global optimal so-
lution to (P) is bounded from below by the solution to (R)
and above by any feasible point of (R) and hence (R-Penal)
if ε = 0.

c(x∗
R) ≤ c(x∗

P ) ≤ c(xR−Penal) if ε = 0. (8)

Attacking the non-convex relaxation is a heuristic used to
obtain a discrete solution and it may or may not work well
depending on the given problem. For certain problems the
upper bound obtained as the solution to (R-Penal) is close
to the lower bound indicating that the solution has a perfor-
mance close to that of the global optimal solution. In the
present paper we do not devise further means for improving
the lower or upper bound, but the bounds obtained may still
be used to give a worst case estimate of the closeness of the
current solution to the global optimal solution.

2.3.1 Intermediate penalty constraint

The intermediate penalty function is satisfied only if the de-
sign is integer feasible, given that the user-controlled pa-
rameterε is zero. Borrvall and Petersson (2001a,b) used a
regularized (filtered densities) version of this penalty func-
tion for topology optimization. We use the following con-
cave quadratic constraint

g(x) =
∑

i,j

xij (1 − xij) ≤ ε (9)

The idea is to solve a sequence of problems starting out
by solving the convex problem (R) and then use the solu-
tion to this problem as a starting guess for the non-convex
problem (R-Penal). The parameterε is a user-controlled pa-
rameter used to relax/tighten the constraint. The constraint
can be made inactive by selectingε sufficiently large at the
initial design. By gradually reducingε to zero the solution
is constrained to be integer feasible. Different continuation
strategies forε and the influence on the results are examined
through numerical examples.
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2.3.2 Design sensitivity analysis

For the solution of (R) and (R-Penal) by use of a gradient
based algorithm efficient calculation of design sensitivity
analysis for the non-linear criterion functions is needed.In
the current problems the weighted compliance is the only
implicit non-linear function which we calculate analytical
design sensitivities for. The remaining constraints are lin-
ear and quadratic functions for which the sensitivities are
straightforward. The non-linear function for which we need
sensitivities is the weighted compliance function, Equation
(6a). Recall that the weighted compliance is given by

c(x) =

L∑

l=1

wlp
T
l K(x)−1pl (10)

If the applied loads are design independent and the stiff-
ness matrix is given by Equation (4), the sensitivity of the
(weighted) compliance with respect to a design variablexij

is given by

∂c(x)

∂xij
=

L∑

l=1

wlp
T
l

∂(K−1(x))

∂xij
pl =

= −
L∑

l=1

wlp
T
l K−1(x)

∂K(x)

∂xij
K−1(x)pl

= −
L∑

l=1

wlu
T
l

∂K(x)

∂xij
ul = −

L∑

l=1

wlu
T
l Kijul (11)

see e.g. Svanberg (1994).

2.3.3 Obtaining an initial design

In principle the initial guess for (R) is immaterial since the
problem is convex and hence the optimizer will find the
same optimal solution (if a feasible solution exists) regard-
less of the initial guess. However, in general the number of
iterations taken to determine an optimal point is lower if the
algorithm is started from a feasible initial point. Thus we
need a procedure to determine a feasible point to (R) in a
fast manner.

Stolpe and Stegmann (2008) proposed to solve a lin-
ear program to obtain a feasible initial point. We take the
same approach and briefly outline the procedure. First, we
distribute all candidate materials uniformly within each ele-

ment,x̄ij = 1

nc
j
∀ j (i.e.

∑nc
j

i=1
x̄ij = 1 ∀ j). At this point

we make a first-order approximation of the objective func-
tion c(d) ≈ c(x̄) + dT∇c(x̄) and solve the following linear

program ind.

minimize
d∈Rn

c(x̄) + dT∇c(x̄) (12a)

(LP-feas) subject to
∑

i,j

(x̄ij + dij) ρiVj ≤ M

(12b)
∑

i

(x̄ij + dij) = 1 ∀ j (12c)

0 ≤ x̄ij + dij ∀ (i, j) (12d)

The optimal solutiond̄ to (LP-feas) is used to update the
uniform distribution to a feasible initial point as follows

x0 = x̄ + d̄ (13)

The cost of this procedure is the cost of a design sensitivity
analysis to construct the first-order approximation plus the
cost of solving the linear program, which is relatively low
even for large problems.

2.4 Algorithm and implementation

The major optimality tolerancehopt determines the requested
accuracy for the fulfillment of the stationarity and comple-
mentarity conditions in the first-order optimality conditions
(the KKT-conditions). This tolerance is used in the proce-
dure(s) summarized in the following steps:

1. Distribute all candidate materials uniformly,x̄.
2. Solve (LP-Feas) to obtain a mass feasible starting guess

x0.
3. Usex0 as a starting guess and solve (R) to optimality

x∗
R.

4. Usex∗
R as a starting guess and solve (R-Penal) using

one of the following strategies for setting the value ofε

in Equation (7d):
A. Set ε = 10−3 directly and solve (R-Penal) to op-

timality with a major optimality tolerancehopt =

2 · 10−4.
B. Solve a sequence of (R-Penal) problems whereε is

tightened sequentially. Continuation:εk+1 = max{10−3, rεk}
wherer = 0.2 andε0 = g(x∗

R). All intermediate
problems in the continuation sequence are solved to
optimality with a major optimality tolerancehopt =

2 · 10−4.
C. As B, but in this strategy the subproblems solved

in the beginning of the continuation are solved with
a looser optimality tolerance which is tightened se-
quentially towards the end of the continuation. The
major optimality tolerance is set as:h

opt
k+1

= max{2·

10−4, rh
opt
k }, wherer = 0.2 andh

opt
0

= 1.0 .
All strategies are stopped whenε ≤ 10−3. Furthermore
each sub-problem in the continuation is stopped after at
most 200 major iterations.
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5. Finally, a heuristic rounding to0/1 is applied and all cri-
terion functions are re-evaluated with this integer design,
x0/1. This procedure rounds the largest design variable
in a given domain to1 and the remaining to0, whereby
the generalized upper bound constraints (see e.g. Equa-
tion (2)) are still satisfied. The final rounding is only a
minor modification since the design obtained after step
4 is already almost integer, except for the small tolerance
allowed,g(x) ≤ ε = 10−3.

The procedure proposed in this paper is implemented in our
in-house research code MUST (MUltidisciplinary Synthesis
Tool) mainly written in Fortran 90. MUST takes a finite ele-
ment discretization as input from e.g. ANSYS and together
with a few additional lines of information defining the op-
timization problem, the problem is set up and ready to be
analyzed and optimized in MUST.

All examples are discretized using 9–node degenerated
shell elements with 5 degrees of freedom per node (3 transla-
tional and 2 rotational), see e.g. Ahmad et al (1970); Panda
and Natarajan (1981). For purely plane problems such el-
ements are unnecessarily complicated and computationally
expensive, but these examples illustrate that the proposed
approach is able to solve the material distribution problem
within the plane of the structure as well as through the thick-
ness in layered structures. Note that the method may be used
with any kind of displacement based finite elements.

(R-Penal) is solved by use of the sequential quadratic
programming (SQP) algorithm SNOPT 7.2-8, see Gill et al
(2005, 2008). Linear mass and material selection constraints
are treated as such which is utilized within SNOPT in the
sense that linear constraints are always satisfied before call-
ing the non-linear functions. In SNOPT default parameter
settings are used except for the so-called “New Superbasics
Limit” which is set to 100.000, the “Major iterations limit”
to 200, and the “Minor iterations limit” to 1000. The major
optimality tolerance is set as described previously and the
“Function precision” is set accordingly, see Gill et al (2008).
(LP-Feas) is solved using the sparse implementation of the
primal simplex method available in SNOPT. For the LP’s
default parameters are used.

All results presented in this paper were obtained using a
standard desktop PC running Windows XP equiped with an
Intel Core2 Quad CPU at 2.4 GHz and 3.2 GB RAM. The
source code is compiled using Intels Visual Fortran compiler
and makes use of Intels Math Kernel Library (MKL).

3 Examples

In this section we describe a set of problems for which we
test the proposed method for solving discrete multi-material
problems. Computational results for the presented examples
are reported in Section 4.

1.0 m

1.0 m

P

t=0.01 m

Fig. 2 Example 4-8. Multi–layered (4 or 8) corner-hinged plate with
point load applied at the center. See Figure 3.1 for materialproperties.

3.1 Examples 1–3

In these examples we solve plane problems with two inde-
pendent load cases of equal importance (w1 = w2 = 0.5)
and loads with equal magnitude (|P1| = |P2|). In both load
cases the plate is hinged at all corners(ui = 0), see Figure
3.1. The physical domain within which the material is dis-
tributed is a rectangular plate of dimension4.0m× 2.0m×
0.5 · 10−3m. The domain is discretized by three different
meshes,(40 × 20), (60 × 30) and(120 × 60) respectively
and in each element five candidate materials are possible.
The first candidate material is a light and soft material repre-
senting e.g. isotropic foam and the remaining four candidate
materials represent a heavier and stiffer orthotropic material
oriented at four distinct directions,−45◦, 0◦, 45◦ or90◦. We
set the mass constraint such that the heavy orthotropic mate-
rials can be chosen in35% of the domain. In principal mate-
rial coordinate system the constitutive properties of the foam
material and the stiff orthotropic material are given in Figure
3.1.

3.2 Examples 4–8

This example is concerned with the design of a multi–layered
plate structure. The physical domain within which the mate-
rial is distributed is a quadratic plate of dimension1.0m ×
1.0m × 1.0 · 10−2m. The plate is loaded at the center by a
point loadP and each corner is hinged (ui = 0). A sketch
of the problem is shown in Figure 2. Examples 4-6 employ
a (24× 24) in-plane discretization. Example 4 is discretized
through the thickness with 8 layers whereas example 5 and
6 have 4 layers. Examples 7-8 have a coarser(12 × 12) in-
plane discretization. Example 7 is discretized through the
thickness with 8 layers, whereas Example 8 has 4 layers
through the thickness. The candidate materials are identical
to those in Example 1–3, i.e. a light and soft isotropic foam
material and a heavy and stiff orthotropic material oriented
at four distinct directions.
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2.0 m

4.0 m

P1

P2 t = 0.5 · 10
−3 m

Foam Orthotropic

Ex [Pa] 65.0 · 10
6

34.0 · 10
9

Ey [Pa] − 8.2 · 10
9

Ez [Pa] − 8.2 · 10
9

Gxy [Pa] − 4.5 · 10
9

Gyz [Pa] − 4.0 · 10
9

Gxz [Pa] − 4.5 · 109

νxy 0.47 0.29
ρ [kg/m3] 200.0 1910.0

Fig. 1 Example 1-3. Left: Domain geometry and boundary conditions. Loads act independently. Right: Material properties in principal material
coordinate system for the candidate materials.

Clamped

Clamped

Clamped

Clamped
1.0 m

1.0 m

Uniformly distributed pressure

t=0.05 m

Fig. 3 Examples 9–10. Single-layered clamped plate with uniform
pressure applied over the top surface.

3.3 Examples 9–10

These examples were proposed and solved by Lund and Stegmann
(2005) using the original DMO approach, and they illustrate
a discrete fiber angle orientation problem formulated as a
multi-material selection problem.

A single-layer clamped plate subjected to uniform pres-
sure is solved for minimum compliance. The plate has di-
mension1.0m×1.0m×0.05mand is discretized by a20x20

mesh of isoparametric9-node degenerated shell elements.
The material is orthotropic withEx = 54GPa, Ey = Ez =

18GPa, ν = 0.25, Gxy = Gyz = Gxz = 9GPa. First the
problem is parametrized by 4 DMO design variables per el-
ement such that the orthotropic material can be oriented in 4
directions (0◦,−45◦, 45◦ and90◦). A sketch of the problem
is shown in Figure 3.

With 400 elements this amounts to1600 design variables
in total. Then we increase the resolution in the orientations
to 12 candidate directions (−75◦, −60◦, . . ., 0◦, 15◦,. . .,
75◦, 90◦) leading to 4800 design variables.

3.4 Example 11

In this example we solve a multi–layered plate problem with
four independent load cases of equal importance (w1 = w2 =

w3 = w4 = 0.25) and loads with equal magnitude (|P1| =

P1

P2

P3

P4

L = 1.0 m

L = 1.0 m

L/3

L/3

t = 0.01 m

Simply supported

Simply supported

Simply supporte
d

Simply supporte
d

Fig. 4 Example 11. Eight-layer plate. Domain geometry and boundary
conditions. Each load acts independently. See Figure 3.1 for material
properties.

|P2| = |P3| = |P4|). In each load case the plate is simply
supported along the edges, that is all translational degrees of
freedom are fixed, see Figure 4. The physical domain within
which the material is distributed is a quadratic plate of di-
mension1.0m×1.0m×0.01m.The domain is discretized by
(24 × 24) elements in-plane and 8 layers through the thick-
ness and in each domain five candidate materials are possi-
ble. The first candidate material is a light and soft material
representing e.g. isotropic foam and the remaining four can-
didate materials represent a heavier and stiffer orthotropic
material oriented at four distinct directions,−45◦, 0◦, 45◦

or 90◦. The material properties are identical to those in Ex-
ample 1-3.

4 Results

In the following we report results and computational statis-
tics for the solution of the previously presented problems
summarized in Table 1. Each example is solved with all
three continuation strategies proposed in Section 2.4. The
three strategies we denote by A, B and C, respectively. Re-
call that each strategy involves the solution of the initialfea-
sibility problem (LP-Feas) as well as the solution of the con-
tinuous convex relaxation (R), these results are identicaland
common to all three continuation strategies and are summa-
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Problem # Materials Discretization Variables DOF LC’sM (kg)

1 5 800 (40x20x1) 4000 12585 2 3.0
2 5 1800 (60x30x1) 9000 27885 2 3.0
3 5 7200 (120x60x1) 36000 109785 2 3.0
4 5 4608 (24x24x8) 23040 9113 1 6.8
5 5 2304 (24x24x4) 11520 9113 1 6.8
6 5 2304 (24x24x4) 11520 9113 1 10.6
7 5 1152 (12x12x8) 5760 2393 1 6.8
8 5 576 (12x12x4) 2880 2393 1 10.6
9 4 400 (20x20x1) 1600 5600 1 n/a
10 12 400 (20x20x1) 4800 5600 1 n/a
11 5 4608 (24x24x8) 23040 8849 4 6.8

Table 1 Problem characteristics for the numerical examples.

rized in Table 2. The results obtained for each continuation
strategy are given in Table 3, 4 and 5, respectively. We report
the following quantities.

c(x0) Compliance of the optimal solution to (LP-Feas).
Itn Number of major iterations (for (R) and (R-Penal), re-

spectively)
nFun Total number of function calls during the major iter-

ations. For each function call the stiffness matrix is as-
sembled and factorized usingLDLT factorization and
the displacements are calculated by forward and back-
ward substitution.

nGrad Total number of sensitivity analyses (gradient evalu-
ations) performed during the major iterations. Each gra-
dient evaluation entailsn vector-matrix-vector products
at the element level as shown in Equation (11).

Time Wall clock time to perform optimization.
c(x∗

R) Compliance of the optimal solution to the relaxation
(R), lower bound.

g(x∗
R) Value of the penalty constraint function for the opti-
mal solution to the convex relaxation (R).

gmax = g(x̄) Maximum value of the quadratic penalty con-
straint function. Obtained for a uniform mixture of can-
didate materials,̄x.

c(x∗
R−Penal) Compliance of the (almost discrete) optimal
solution to the non-convex relaxation (R-Penal), upper
bound. We also report the number of iterations taken to
obtain this solution.

Obj. gap Relative gap between upper and lower bound,
c(x0/1)−c(x∗

R)

c(x∗

R)
100%.

5 Discussion

In the following paragraphs we discuss the results presented
above. We discuss the influence of the continuation strat-
egy on the results obtained as well as implications of the
discrete nature of the original problem for a continuous so-
lution approach. We study examples (Examples 4-6) where
the parametrization in combination with the mass constraint

and discretization plays a role in terms of how hard the prob-
lem is to solve.

5.1 Examples 1–3

The three examples solved here represent different discretiza-
tions of the same physical design problem. From the solu-
tion to (R) it is seen that the degree of mixture (g(x∗

R)/gmax)
is around0.32 − 0.35 for all three problems. This value in-
dicates a fairly mixed optimal solution to the convex contin-
uous relaxation and thus the lower bound obtained through
this relaxation is not very strong in the sense that any inte-
ger solution must be quite different from the solution to (R).
The objective gaps obtained by use of each of the different
continuation strategies are reported in Table 3, 4 and 5, and
it is seen that strategy B obtains the best design for all three
discretizations. Strategy C obtains as good or slightly worse
designs compared to B and strategy A obtains the worst de-
signs. The differences in the objective gaps are minor but
it is noteworthy that the computational cost of strategy B
is significantly higher than the other strategies, and the re-
sults obtained with strategy C are almost as good as with
B. The magnitude of the gap is considered to be acceptable,
given the amount of mixture in the lower bound solution.
The results obtained using strategy B for Examples 1 and
2 are visualized in Figure 5 and 6. Comparing Example 1
with Example 2 it is observed that the topologies obtained
with the two different meshes are very similar. The results
for Example 3 are not visualized, but the topology is very
similar to that for Example 1 and 2. The obtained topol-
ogy looks as expected and is similar to that obtained for
isotropic topology optimization under the same loading con-
ditions. Here, we furthermore obtain information about how
the orthotropic material should be oriented for structuralef-
ficiency. A similar example was addressed by Bendsøe et al
(1995); Hörnlein et al (2001); Bodnár (2009), where the
design problem was investigated using Free Material Op-
timization (FMO). The results obtained using FMO are not
directly comparable to those obtained in this paper due to the
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(LP-Feas) (R)

Problem c(x0) Itn. nFun nGrad Time (s) c(x∗

R
) g(x∗

R
)/gmax

1 789.3 95 99 97 411 22.72 226.7/640.0=0.354
2 200.1 104 112 110 1108 5.834 468.8/1440.0=0.3256
3 50.31 79 85 83 5468 1.544 1904.2/5760.0=0.331
4 167.3 23 26 24 526 28.77 339.8/3686.4=0.0921
5 771.3 45 48 46 437 34.83 486.5/1843.2=0.264
6 22.05 56 65 63 426 20.53 168.7/1843.2=0.0915
7 208.8 24 33 31 118 28.61 81.36/921.6=0.0883
8 85.35 88 105 103 162 81.69 39.10/460.8=0.085
9 9.043 9 12 10 11 8.895 68.25/300.0=0.2275
10 8.832 24 29 27 66 8.707 85.09/366.66=0.232
11 38.39 44 52 50 3278 17.94 471.6/3686.4=0.12

Table 2 Computational statistics for solution of linear feasibility problem (LP-Feas) and the continuous convex relaxation (R). Common part for
all three continuation strategies.

(R-Penal) Total

Problem Itn. nFun nGrad Time (s) c(x∗

R−Penal
) Obj. gap (%) Time (s)

1 5 10 8 30 26.81 18.01 450
2 5 11 9 78 7.001 19.37 1186
3 4 7 5 214 1.793 16.16 5762
4 6 12 10 137 29.78 3.51 911
5 28 45 43 270 353.8 918.01 768
6 3 6 4 30 20.76 1.13 474
7 4 10 8 27 29.76 4.03 163
8 4 17 15 22 82.44 0.927 193
9 5 8 6 7 9.007 1.25 22
10 3 6 4 10 8.814 1.23 81
11 7 12 10 430 19.56 9.02 3794

Table 3 Computational statistics for continuation strategy A.

(R-Penal) Total

Problem Itn. nFun nGrad Time (s) c(x∗

R−Penal
) Obj. gap (%) Time (s)

1 237 296 280 1055 25.84 13.72 1470
2 434 1052 1034 8168 6.683 14.55 9433
3 273 1081 1063 50120 1.771 14.72 60100
4 140 580 564 7211 29.11 1.19 7797
5 394 577 559 3958 60.65 74.156 4463
6 132 494 478 3094 20.72 0.93 3586
7 127 477 461 1424 28.92 1.01 1554
8 88 248 234 361 82.41 0.863 531
9 45 102 88 97 9.007 1.25 111
10 53 151 135 305 8.814 1.23 380
11 279 848 830 36550 18.85 5.091 39840

Table 4 Computational statistics for continuation strategy B.

full freedom of design of the material tensor in FMO com-
pared to the setting of DMO where the design is restricted
to a set of physically available materials. Nevertheless, the
results obtained here have similarities to those obtained by
FMO in the sense that the stiff material is chosen in the same
areas where the FMO results indicate a need for stiffness and
the fiber orientations obtained here resemble those shown by
Bodnár (2009).

5.2 Examples 4–6

These examples illustrate features of the parametrizationand
discretization of the design problem. First we examine Ex-
ample 4 and 5 and highlight similarities and differences in
the obtained results.

Examples 4 and 5 are instances of the same design prob-
lem except that Example 5 has a coarser discretization through
the thickness. In Example 4 there are 8 layers through the
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(R-Penal) Total

Problem Itn. nFun nGrad Time (s) c(x∗

R−Penal
) Obj. gap (%) Time (s)

1 46 116 100 363 25.84 13.72 780
2 16 43 25 266 6.750 15.74 1386
3 22 59 41 1701 1.793 16.16 7282
4 19 53 37 545 29.78 3.51 1135
5 138 302 284 2067 67.18 92.91 2573
6 9 27 11 113 20.76 1.13 601
7 9 215 199 615 29.76 4.03 744
8 9 31 17 34 82.44 0.927 205
9 9 32 18 26 9.007 1.25 42
10 9 34 18 49 8.814 1.23 122
11 58 119 101 4009 19.56 9.02 7232

Table 5 Computational statistics for continuation strategy C.

Fig. 5 Example 1 strategy B, elements with orientation shown indicate
the optimal fiber angle for the element. Elements without anyorienta-
tion indicate that the compliant material has been chosen. Design for
strategy C is identical.

Fig. 6 Example 2 strategy B, elements with orientation shown indicate
the optimal fiber angle for the element. Elements without anyorienta-
tion indicate that the compliant material has been chosen.

thickness whereas Example 5 has 4 double thickness layers
through the thickness. The mass constraint for both exam-
ples is set such that the heavy and stiff orthotropic material
can be chosen in at most 28.07% of the design domain. For
Example 4 this corresponds to 1293 domains (out of 4608)
and for Example 5 to 646 domains (out of 2304). Note that
the design problem is symmetric around the mid-plane of
the plate and therefore the design is expected to have a cor-
responding symmetry. Mechanically, the optimal structure
should resemble a sandwich structure due to bending in the
plate; the best material utilization is obtained by moving stiff
(and heavy) material from the inner layers of the plate to the
outer layers. It is seen from the optimal solution to (R), Ta-
ble 2, that the amount of mixture for Example 4 is somewhat
lower than that for Example 5,0.085 against0.264. Looking

DMO Density
Layer 1

 1.910E+003

 1.889E+003

 1.869E+003

 1.848E+003

 1.827E+003

 1.806E+003

 1.786E+003

DMO Density
Layer 2

 1.910E+003

 1.625E+003

 1.340E+003

 1.055E+003

 7.700E+002

 4.850E+002

 2.000E+002

Fig. 7 Example 4, interpolated mass density for solutions to the con-
tinuous relaxation (R). Left: Layer 1 and 8. Right: Layer 2 and 7. In the
four inner layers the soft and light material has been chosenthrough-
out. Note the different gray scales.

at the final objective gap for both examples it is seen that for
Example 4 it is below3.6% for all three strategies whereas
for Example 5 it ranges from74% to 918%! The results ob-
tained for Example 4 are considered to be satisfactory. The
results for Example 5 require some more explanation.

For Example 4 the mass constraint allows for stiff mate-
rial in 1293 domains, and the number of domains per layer
is 242 = 576. Thus, the mass constraint allows for a bit
more than two layers (one on each side) completely filled
with stiff material. Thereby, Example 4 has the possibility
to obtain a sandwich design within the mass constraint. The
solution to (R) demonstrates how heavy (and stiff) material
is placed almost throughout the outer layers and some stiff
material in the next layer, Figure 7. For Example 5 the phys-
ical size of each domain has doubled and now the mass con-
straint allows for stiff material in 646 domains. The number
of domains per layer is still242 = 576 and thereby there is
not “enough” material to fill the two outer layers with stiff
material to obtain a sandwich-type structure. Thus in Exam-
ple 5 soft material appears in the outer layers in order to
fulfill the mass constraint, see Figure 8.

From Figure 8 the interpolated density from the solution
to the continuous relaxation is seen. It is seen that the inter-
polated mass density ranges from477.4kg/m3 to1910.0kg/m3.
The lower value shows that there is no region in this layer
where pure light material has been chosen. The upper value
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DMO Density
Layer 1

 1.910E+003

 1.671E+003

 1.432E+003

 1.194E+003

 9.549E+002

 7.162E+002

 4.774E+002

Fig. 8 Example 5, interpolated mass density for solution to the con-
tinuous relaxation (R). Layer 1 and 4 (outer layers). In the two inner
layers the soft and light material has been chosen throughout.

Fig. 9 Example 5, layer 1 and 4: integer solutions obtained by the
three different continuation strategies A, B and C from leftto right.
Dark grey indicates heavy orthotropic material, orientation is indicated
in white. In the two inner layers the soft and light material has been
chosen throughout.

indicates an interpolated density reaching the maximum value.
Please note that it does not show how this density was achieved,
e.g. if it is a mixture of the four heavy orthotropic materials
or stems from one distinct material. Nevertheless, the plotof
the material density gives an indication of where the heavy
and stiff material is needed. It is seen that a region in the
middle of the plate attracts material and reaches towards the
corners where the plate is supported. From the plot it is seen
that large regions contain intermediate value densities com-
pared to Figure 7. The final integer solutions for layer layer
1 and 4 obtained by use of the three different continuation
strategies are shown in Figure 9. The large objective gap ob-
tained for Example 5 may be explained from these figures.
The large gap reported in Table 3 corresponds well with the
leftmost figure in Figure 9. Here it is seen that the central
part of the plate where the stiff material has been chosen
is disconnected from the corner supports and therefore this
isolated island of stiff material is pushed through the plate
under loading. The designs obtained with continuation strat-
egy B and C have a narrow connection of stiff material to
the corner supports and perform much better than the left
design. The objective gap for these designs is still consid-
ered to be high, though. Finally, we show Example 6 which
is similar to Example 5, but with a higher mass constraint
allowing for heavy material to be chosen in50.3% of the
design domain or approximately 2 layers. It is seen from Ta-
ble 2 that the solution to (R) is more distinct than that of
Example 5 (g(x∗

R)/gmax = 0.0915) and the integer solu-
tions obtained from the different continuation strategiesall

have an objective gap below1.5%. These gaps are consid-
ered to be satisfactory from an engineering point of view.
The designs obtained after the relaxation as well as the con-
tinuation all place the heavy material in the outer layers as
expected.

The difference in the designs obtained for Examples 4
and 5 illustrates how changes in parametrization and design
freedom may lead to completely different results in terms of
convergence to a discrete solution as well as ability to close
to objective gap. This may seem obvious but in practice it
can be hard to identify whether an intermediate density re-
sult is due to the parametrization/design employed, or if it
is due to the nature of the design problem. That being said,
it should be noted that Example 5 is a badly formulated de-
sign problem since the parametrization prevents an efficient
sandwich structure from occurring. One layer makes up a
quarter of the total thickness and thus the resulting sandwich
structure has thick face sheets relative to the core thickness.
For sandwich structures to be structurally efficient, the core
to face sheet thickness ratio should be at least5.77, Zenkert
(1997).

5.3 Examples 7–8

Examples 7 and 8 are analogous to Examples 4 and 6, except
for a coarser in-plane discretization, now12×12. The obser-
vations regarding the influence of the discretization through
the thickness for Examples 4 and 6 carry over to these exam-
ples without significant differences. Qualitatively, the mate-
rial distribution in the plane of the plate is similar to that
obtained for the previous examples except for a coarser res-
olution obtained here.

5.4 Examples 9–10

The solutions obtained for theses examples are shown in
Figure 10. All three continuation approaches obtained iden-
tical results for each of the examples. The fiber orientations
resemble those obtained previously using the original DMO
approach as well as the orientations obtained using a clas-
sical continuous fiber angle parametrization, see Lund and
Stegmann (2005). From Table 2 it is seen that the solu-
tions after the initial LP have an objective function value
quite close to the corresponding final solution obtained after
solving (R-Penal). This fortuitous behavior is not represen-
tative for all design problems though. The reason for this
behavior may be attributed to the load carrying mechanism
of the initial design which is quite similar to the load car-
rying behavior of the optimal design. Therefore a first order
approximation of the compliance at the initial design (uni-
form mixture of all candidate directions) is reasonably good
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Fig. 10 Examples 9–10. Discrete optimal fiber directions. Left: Ex-
ample 9, four candidate orientations per element. Right: Example 10,
twelve candidate orientations per element.

and consequently the optimal design obtained from this ap-
proximation is also good. In the other examples shown, the
initial uniform mixture of materials has a quite different load
carrying behavior compared to the optimal design. In such
situations, the first-order approximation of the compliance
is not as accurate as in this example and the design obtained
from the first-order approximation may be quite poor.

5.5 Example 11

The last example is a layered plate subjected to four inde-
pendent load cases. Strategy A and C obtain an integer solu-
tion with an objective gap of9.02% and strategy B obtains a
better integer solution with an objective gap of5.1%. Com-
pared to the other 8–layer examples (Example 4 and 7) the
lower bound solution (R) is more mixed and correspond-
ingly the objective gap is a bit higher. It is interesting to
note that the solution obtained by strategy B (which is better
than the other solutions obtained) does not look as “nice” as
the other solutions in terms of symmetry. The problem has
symmetry around the mid-plane as well as vertical and hori-
zontal symmetry, and the optimal solution obtained by a gra-
dient based optimizer is expected to have these symmetries
as well. However, the optimal solution obtained by strategy
B has a few elements that do not fit with these symmetries,
but they do yield an improvement in the objective function.
Whether the globally optimal solution is symmetric or not
remains open, it may be determined using global optimiza-
tion techniques such as branch-and-bound/cut or other tech-
niques.

6 Conclusion and Future Research

The paper demonstrates a method for solving optimal stiff-
ness design problems of discrete (laminated) multi-material
structures subjected to multiple independent load cases. We
have shown the use of a quadratic penalty constraint to ob-
tain integer solutions for continuous relaxations of the orig-
inal discrete multi–material design problems. The solutions

are obtained using a standard nonlinear programming opti-
mizer. As a part of the solution procedure a rigorous lower
bound is calculated. From the continuous solution a dis-
crete solution is obtained through the quadratic penalty con-
straint that is imposed gradually through a sequence of re-
lated problems. It turns out that the best designs are obtained
by solving all intermediate problems in this sequence to op-
timality (strategy B) but the computational cost of this ap-
proach may be quite high. As an alternative, the intermediate
problems can be solved to optimality with a larger conver-
gence tolerance and this approach has shown to be a good
compromise of computational cost and quality of the ob-
tained solutions.

The results obtained by use of the procedure described
in this paper posses features not previously obtained for the
considered class of problems. An important feature is the
possibility of giving a worst–case estimate of closeness to
global optimality. Any feasible integer solution, no matter
how it is obtained, may be compared to the lower bound ob-
tained as the solution to the convex continuous relaxation.
Thus with a small gap, the given integer solution is known
to be good in the sense that its performancemustbe close
to that of the global optimal solution. However, a large gap
does not necessarily mean that the current integer solution
is far away from the global optimal solution, it rather means
that we can not certify/guarantee that it is close to it. Thus,
the value of the solution to the convex continuous relaxation
(R) is twofold. First, it gives a good starting point for ob-
taining an integer solution by means of solving a (sequence
of) related non-convex problems. Second, it gives valuable
information in terms of a lower bound on the attainable per-
formance. For most examples solved in this paper a reason-
ably small gap is obtained, but for certain examples the gap
is large and therefor only a weak assessment of the close-
ness to the global optimal solution can be given. To improve
this gap in order to obtain a guaranteed globally optimal so-
lution, global optimization techniques such as branch-and-
bound/cut or other techniques using decomposition are nec-
essary. These techniques in combination with the approach
shown here are currently investigated.
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Gürdal Z, Haftka R, Hajela P (1999) Design and optimizationof lami-
nated composite materials. Wiley-Interscience
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Disrete Multi-Material Optimization:Combining Disrete and Continuous Approahesfor Global OptimizationEduardo Munoz∗ Christian Gram Hvejsel†1st June 2010, 17:15AbstratComposite laminate lay-up design problems may be formulated as disrete material seletion pro-blems. Using this modeling, we state standard minimum ompliane problems in their original Mixed-Integer Problem (MIP) formulation, whih we aim to solve to global optimality. We use di�erent teh-niques for ontinuous and disrete optimization, and a Generalized Benders' Deomposition algorithmfor obtaining globally optimal solutions. By solving the ontinuous relaxation of the mixed integer pro-blem, a onsiderable amount of information is passed to the mixed-integer problem. This is mainlydue to a onvexity property of the ontinuous relaxation of the original problem. In partiular, we usean e�ient heuristi tehnique, whih is very likely to �nd lose-to optimal solutions. This tehniqueonsists in solving a related sub-MINLP problem, based on the solution to the ontinuous relaxation ofthe original MINLP optimization problem. This sub-MINLP problem orresponds to the original mixedinteger problem, where a large number of variables are �xed (up to 90%). Solving the resulting problemis muh easier and requires signi�antly less omputational e�ort. The seletion of the variables to be�xed depends strongly in the solution of the ontinuous relaxation. This heuristi an be also used toimprove the performane of other optimization tehniques in the �eld of mixed-integer optimization. Anumber of numerial examples in design of omposite laminated strutures is presented. Several of themare solved to global optimality, and in extension the strengths of the method are disussed. Numerialexamples of medium size of up to 23.000 design variables are solved and gives promising results in solvinglarge design problems to optimality, onsidering a small tolerane. At the same time, the independeneof the design disretization with respet to the �nite element disretization allows the method to be usedin real life design problems and still obtain globally optimal solutions.Keywords: strutural design optimization, global optimization, heuristis, laminated omposite ma-terials.1 Introdution/Literature reviewAlmost every strutural or mehanial design problem an be formulated as an optimization problemwith either ontinuous or integer deision/design variables. Despite of the fat that most pratialdesign problems are disrete in nature, the vast majority of works on strutural optimization fous ondesign problems with ontinuous variables. The reasons for this are many; ontinuous problems are(muh) easier to solve, the size of manageable ontinuous problems is signi�antly larger ompared toequivalent integer problems, o�-the-shelf ontinuous large-sale optimization algorithms exist, and inaddition many integer problems may be attaked heuristially using ontinuous approahes. Typially,the integer nature of the deision variables omes from the fat that it is not desirable or possible to allow
∗Department of Mathematis, Tehnial University of Denmark, Matematiktorvet, Building 303S, 2800 Kgs. Lyngby,Denmark
†Department of Mehanial and Manufaturing Engineering, Aalborg University, Pontoppidanstræde 101, DK-9220 Aalborg�¿st, Denmark, E-mail: E.munoz�mat.dtu.dk and gh�me.aau.dk1



for e.g. every imaginable bar or plate thikness, material property et., for the design of a mehanialstruture. Often the designer is restrited to hoose from a set of prede�ned properties for the entityin question; be it a ross setion from a table of available standard ross setions, or a material froma set of prede�ned suitable andidate materials. Problems of truly disrete nature are not neessarilysuitable for ontinuous approahes and furthermore most ontinuous approahes give no guarantee orassessment about the quality of the solutions obtained, exept that they yield some design improvementompared to the initial design. To perform true optimization, that is to obtain the best solution(s) (theset of global optimal solutions), more rigorous approahes are needed, and this is the topi of globaloptimization (with integer variables), whih we onsider in this paper. The appliation addressed in thispaper is that of having a design domain, whih is subdivided into a �nite number of regions. Eah ofthese regions will be alled throughout this paper, a design sub-domain. In every design sub-domain,the seletion of a material from a set of given andidate materials is to be done. This formulationovers multi-material topology optimization problems suh as optimal omposite laminate lay-up designwith di�erent andidate material as well as disrete �ber orientation problems. We propose to use aombination of exat global optimization algorithms, ontinuous relaxations and heuristis to obtainguaranteed globally optimal solutions to these disrete design problems, whih would not be possibleto solve by either approah independently. In this paper heuristi proedures only have the purposeof assisting in �nding globally optimal solutions, while global optimization methods are used to both�nding globally optimal solutions, and also to prove the optimality of these solutions. In this artile weintend to use two heuristis proedures. First, the resolution of sub-MINLP formulations (mixed 0/1formulations, idential to the original mixed 0/1 formulation, where most of the variables are �xed, inorder to ease the proess of �nding a solution). Global optimality of a solution is often done by generatingvalid lower bounds for the optimal objetive funtions. In this artile, we intend to use the GeneralizedBenders' Deomposition (GBD) method, as a global optimization method. The di�ulty of provingglobal optimality depends strongly in the nature of eah problem. In partiular, onvexity properties ofthe ontinuous relaxation of an optimization model gives a superlative help in aomplishment of thistask. As a matter of fat, the optimal solution to the onvex ontinuous relaxation gives a meaningfullower bound for a global optimum of the 0/1 problem.Strutural design of laminated omposite strutures entails deisions about the number of layers,seletion of material in eah layer (CFRP1, GFRP2, polymeri foam, balsa wood, et.), orientationof orthotropi materials (0◦, 45◦, . . . , 90◦), individual layer thiknesses. In the urrent work we �x thenumber of layers as well as the layer thiknesses a priori and thus we only onsider the problem of seletingthe optimal material among multiple andidates hereunder the problem of orienting orthotropi materialsat prede�ned disrete angles. Thus we ontinue along the lines of (disrete) topology optimizationmeaning that we work on a given �xed domain within whih we want to selet in eah design sub-domain the optimal material from a number of given andidate materials. These were �rst presentedby Sigmund and Torquato (1997); Gibiansky and Sigmund (2000) in the setting of three-phase topologyoptimization (void and two materials). Sine then Stegmann and Lund (2005); Lund and Stegmann(2005) generalized the problem to inlude multiple (orthotropi) materials to be seleted among in thesetting of optimal omposite laminate design. In this paper the modeling of the ontinuous relaxationlosely follows that of Stolpe and Stegmann (2008).In ontrast (si!) to two-phase topology optimization, the design question is extended to inludemultiple distint phases whereby the problem is enlarged. This design problem is a generalization ofthe void-solid (or two-phase) topology optimization problem and inludes this problem as a speial asewhere void is one of the �materials�. Thus, the multi-material minimum ompliane problem also laksexistene of solutions in its ontinuum in�nite dimensional form, as it is well-known for the two-phasetopology optimization problem, see Lurie (1980); Kohn and Strang (1982, 1986); Cherkaev (1994). Fora �nite element disretized design domain, this means that the optimal solution is mesh dependent inthe sense that �ner meshes may produe �ner resolution and qualitatively di�erent solutions whih isof ourse unwanted. Preferably, the optimal design should not depend on the analysis disretization.To make the solution mesh independent, di�erent tehniques exist and have been used for topologyoptimization. One way to obtain a well-posed problem is to introdue miro strutures (i.e. omposites)to the design spae, or to exlude unwanted small sale features from the feasible set (see Bendsøe andSigmund (2003)). In this work we do not ensure existene of solutions through e.g. minimum length1Carbon �ber reinfored polymer2Glass �ber reinfored polymer 2



sale or omposites. We introdue the possibility of seleting pre-de�ned (omposite) materials from aset of andidate materials, throughout the also pre-de�ned spatial design sub-domain. Sine the problemof mesh dependeny exists for two-phase topology design, it also exists for the multi-material problemsine the former is just a speial ase of the latter. In pratie, however, it is our experiene that meshdependeny does not pose too severe problems. Nevertheless, it still exists and should be taken are ofin future researh. Here we just brie�y mention the issues related to de�ning meaningful length saleswhen multiple phases are involved. These issues are, to our knowledge, not resolved yet and requirefurther researh.As a general fat, the original formulation of disretized strutural design problems falls into theategory of nonlinear non-onvex mixed-integer problems, where the state variables are ontinuous va-riables and the deision/design variables are integer variables. This orresponds to a so-alled SAND(Simultaneous ANalysis and Design) formulation (see Fox and Shmit (1966); Haftka (1985); Haftka andKamat (1989)). To handle this lass of problems, several tehniques are found in the literature. Webrie�y mention the branh-and-bound method (Land and Doig (1960), Gupta and Ravindran (1985)),the branh-and-ut method (Stubbs and Mehrotra (2002)), the Outer Approximation Duran and Gross-mann (1986), and the Generalized Benders' Deomposition (GBD, Benders (1962), Geo�rion (1972)).In this work we apply the GBD method to treat diretly the mixed 0/1 strutural design problem inthe sense desribed by Munoz (2010a,b). This tehnique was �rst introdued by Benders (Benders'Deomposition, (BD), Benders (1962)), and aimed to solve linear mixed-integer problems. The methodwas generalized to a partiular lass of nonlinear mixed-integer problems in Geo�rion (1972), where thename Generalized Benders' Deomposition (GBD) was introdued. Furthermore, a new generalizationto a larger lass of nonlinear problems was introdued by Lazimy (1986). In the last two deades, a largenumber of publiations about variations and improvements of the method (speially in the BD method,as Rei et al. (2008), Magnanti and Wong (1981)) and appliations in industry have been published(Noonan and Giglio (1977), Habibollahzadeh and Bubenko (1986)). It seems that this tendeny willontinue in the oming years. With respet to strutural optimization, Munoz (2010a,b) applied GBDfor the design of simple 2-D truss strutures. That artile and the present are up now to our knowledge,the only existing appliations of GBD to strutural optimization. Munoz (2010a,b) pointed out the li-mitation of the method to solve large�sale topology optimization problems (i.e. many sub-domains anddesign variables) in terms of onvergene within a reasonable amount of time and memory. Therefore,in the ase of large�sale problems, the apaity of this and other methods of integer optimization is stilllimited. A way to treat large�sale problems is to reformulate the SAND form in a nested formulation,where the state variables are eliminated by use of the state equations. This leads to an optimizationproblem in the disrete variables only. A relaxation of this problem is obtained if the integer variables areallowed to take on ontinuous variables. The ontinuous variable approah typially uses penalizationof intermediate variable values to obtain integer feasible solutions eventually. (see e.g. Bendsøe andSigmund (1999) for a review of interpolation shemes in topology optimization). In topology optimiza-tion, the SIMP sheme (Solid Isotropi Material with Penalization) seems to be the sheme of hoie formost appliations involving two phases (solid/void or solid1/solid2). However, the sheme is not easilygeneralized to an arbitrary number of phases. Apart from this, the penalization introdues loal minimain the design spae meaning that for some situations, intermediate densities do appear no matter howhigh the penalization beomes, Stolpe and Svanberg (2001b). An alternative interpolation sheme is theso-alled RAMP (Rational Material with Penalization) proposed by Stolpe and Svanberg (2001a). Fora ertain penalization parameter value this sheme yields a onave ompliane funtion, meaning thatoptimal solutions are loated at the boundary of the feasible set, i.e. 0/1 solutions. The size (whih isnot neessarily related to the di�ulty) of the problems that we want to attak is roughly haraterizedby two quantities. The �rst is the size of the analysis problem, i.e. the number of ontinuous statevariables (the free degrees of freedom) in the �nite element disretized analysis problem. The number ofdegrees of freedom ranges from a few hundred up to millions. In this paper, we stay below ?!?XYZ?!?!.The seond quantity is the size of the design problem, namely the number of integer design variableswhih is related to the design domain disretization and the number of andidate materials. The oarsestdesign domain disretization may be if the same material (out of a set) is to be hosen throughout thestruture. A more realisti and interesting design problem is if we are to hoose the optimal materialin a larger number of design sub-domains. These ould be given as a layered on�guration overinglarge areas of the struture or even layered on�gurations hanging from element to element. For theonsidered appliations the number of design sub-domains is typially up to about ?!?XYZ?!?!FIXME.3



The number of andidate materials is typially between four and up to about �fteen. These numbersould be obtained for instane in optimal laminate design where where the layerwise design question isto hoose among an orthotropi material oriented at four or twelve prede�ned distint diretions as wellas other physially viable andidate materials suh as polymeri foam, balsa wood or other materials.(A small paragraph stating why suh andidate materials are relevant in a DMO problem).Apart from the above mentioned approahes for disrete optimization problems a number of heuris-ti approahes suh as geneti and evolutionary algorithms exist. However, these approahes give noguarantees in terms of onvergene to a global optimum and furthermore they typially require manyfuntion evaluations whih may be prohibitive.Organization of the PaperIn Setion 2 we present the formulation of the disrete mass onstrained minimum ompliane problem.In Setion 3 follows a desription of a method to solve the disrete problem by use of Benders' deom-position. It turns out that this method may take advantage of solutions with lower objetive funtionvalue whih help tightening the gap between the lower and upper bound of the global optimum objetivefuntion value. Therefore, all solutions with this property (disrete or even ontinuous solutions) areexpeted to improve the onvergene of the method. This leads to a desription of one suh method inSetion 4, namely a ontinuous relaxation, that may be used for this purpose. The ontinuous relaxationis also used as part of a rounding heuristi desribed in Setion 5. In Setion 6 we present a methodombining the previously desribed proedures and point out in what way this improves its pratial andnumerial performane. Following the presentation of the methods developed in this work, in Setion 8we demonstrate numerial examples solved by eah of the methods independently as well as exampleswhere both methods are used in ombination to demonstrate the improvement gained through the om-bination of the methods. Finally, we round o� with a disussion in Setion 10, point to future use of themethods and onlude in Setion 11.2 Problem FormulationConsider a (layered shell) struture Ω ∈ R
3. We aim to onstrut an optimization model to designa multi-material omposite laminated struture. Ω is onsidered as a �xed design domain, where thedistribution of material has to be assigned. A set of andidate materials with di�erent mehanialand mass properties is provided, and our goal is to �nd, if a suitable objetive funtion is given, theoptimal distribution of the materials satisfying the imposed onstraints. We assume linear elastiityfor the mehanial model, whih we disretize by �nite elements, reduing the ontinuum problem to a�nite-dimensional problem with degrees of freedom, u ∈ R

d. Considering appropriate support/boundaryonditions and a given load ondition, f ∈ R
d, the �nite element equilibrium equations take the followingform

K(x)u = f (1)where the sti�ness matrix K(x) ∈ R
d×d depends on the material onstitutive properties as well as the(�xed domain) �nite element strain-displaement relation as de�ned in (7). The onstitutive propertiesare assumed to be given by Hooke's law

σ = Eε (2)where E is the onstitutive matrix.Given a number of prede�ned materials, nc, with known onstitutive properties Ei and mass density
ρi, we want to minimize the ompliane under stati loading. In order to build the optimization model,a seond disretization of the design domain Ω is made. This disretization is for the design problem,and it is independent of the �nite element disretization. More preisely, the seond disretization of Ωintrodues a set of nd design subdomains, and a material seletion variable xij ∈ {0, 1} is introduedto represent the seletion of a given andidate material, i ∈ {1, . . . , nc}, in every design domain, j =
1, . . . , nd.

xij =

{

1 if material i is hosen in design domain j

0 if not (3)4



A (design) subdomain may be a single layer in an element, a layer overing multiple elements, multiplelayers within a single element et. We remark that the disretization of the design domain may, or maynot oinide with the �nite element disretization. The total number of design variables n is given as thesum of the number of andidates de�ned within eah design sub-domain, i.e. in general n =
∑nd

j=1
nc

i .However, if the number of andidate materials in all sub-domain is idential the number of variables issimply n = nd · nc.In eah subdomain, it is required that only one material is hosen. This is enfored by the followinglinear equality onstraints also alled generalized upper bound onstraints.
nc

j∑

i=1

xij = 1 ∀j (4)In eah subdomain, the design-dependent mass density is given by ρj(x) =

nc
j∑

i=1

xijρi and onsequentlythe total mass of the struture is
M(x) =

nd
∑

j=1

ρj(x)Vj =

nd
∑

j=1

nc
∑

i=1

xijρiVj , (5)where Vj is the (�xed) volume of subdomain j. We onsider the disrete minimum ompliane, massonstrained problem given by minimize
x∈Rn,u∈Rd

c(x) = fT u(x) (6a)(OP) subjet to K(x)u = f, (6b)
(M(x) ≤M) (6)
nc

j∑

i=1

xij = 1, ∀j, (6d)
xij ∈ {0, 1}, ∀i, j (6e)where f are design independent nodal loads, u(x) are the nodal displaements obtained as the solutionto Equation (1) and M(x) is the total mass of the struture, Equation (5), whih is limited by M . Theonly assumption we make with respet to M , is that it must satisfy

0 < M <

nd
∑

j=1

max
i
{ρi},So the problem is not infeasible, neither has a trivial solution. The mass onstraint is only relevant formulti�material problems where the andidate materials have di�erent mass density. In the ase of pure�ber angle seletion problems (i.e. same physial material at di�erent orientations), the mass onstraintis redundant sine all andidate materials in these problems have the same mass density.3 Generalized Benders' Deomposition Applied to 0-1 DesignOptimization ProblemsIn this setion, we introdue the resolution of the problem (6) by means of Generalized Benders' De-omposition (GBD); we give a brief desription of the method, and introdue an important theoretialresult with respet to the onvergene of the algorithm to a global optimum. Then, we haraterize theonditions and modes to improve and aelerate the pratial onvergene of the method.3.1 Desription of the MethodIn this setion, we present the resolution of the problem (6) by means of the Generalized Benders'Deomposition (GBD, see Geo�rion (1972)). GBD is a known optimization algorithm for nonlinear5



mixed-integer problems. It is based on separating the optimization model into two sequenes of simpleroptimization programs. The �rst sequene of problems only onsiders the integer variables of the pro-blems, plus a single salar ontinuous variable, making a sequene of linear mixed integer problems. Theother sequene deals only with the set of ontinuous variables, and it is given by a speial reformulationof the equilibrium equations.In Munoz (2010a), a standard topology optimization in its mixed-integer formulation was studied.We onsider the sti�ness matrix K(x) as linear in the design variables
K(x) =

∑

ij

xijB
T
j EiBj =

∑

ij

xijKij (7)where Bj ∈ R
6×d is the �nite element strain-displaement matrix for subdomain j, Ei ∈ R

6×6 isthe onstitutive matrix for the i'th andidate material, and Kij = BT
j EiBj is the resulting positivesemide�nite loal sti�ness matrix related to the design element j for the andidate material i. Underthis assumption, the GBD method applied to the minimum ompliane problem given byminimize

x∈Rn,u∈Rd
c = fT u (8a)(OP-GBD) subjet to K(x)u = f, (8b)

ρT x ≤M, (8)
Ax ≤ b, (8d)
x ∈ {0, 1}n, (8e)onverges in a �nite number of iterations to a global optimal design. Problem (8) orresponds to theproblem (6), where a general set of linear onstraints Ax ≤ b is replaed by the partiular ase of theseletion material onstraints ∑nc

i=1
xij = 1, ∀j.The GBD algorithm applied to the the problem (6) supposes the inlusion of two sequenes ofsimpler optimization problems. The �rst is the sequene of the so alled subproblems (SP), onsideringthe displaement �eld u (a ontinuous variable). The seond is the sequene of master problems (MP),onsidering the design variable x (a 0-1 variable).The subproblem orresponds to the problem (6) with the variable x is �xed to a given design x :=

xk ∈ {0, 1}n, so the optimization problems only takes into onsideration the displaement �eld uminimize
u∈Rd

c(xk) = fT usubjet to K(xk)u = f.
(9)Problem (9) simply orresponds to solve the analysis problem uk = K(xk)−1f and evaluate the om-pliane related to the design xk, by c(xk) = fT uk. Notie that we are impliitly pointing out that theanalysis problem possesses a unique solution. This is due to the fat that the global sti�ness matrix

K(xk) is positive de�nite, sine the optimization problem (6) is not a strit topology problem, but amulti-material seletion problem, whih means that all andidate materials inluded have non-vanishingsti�ness.The master problem, is de�ned almost exatly as it was de�ned in Munoz (2010b), and we repeatits desription and notation used, adapted to the problem (6). The master problem for iteration Norresponds to the following linear mixed 0-1 problem.minimize
x∈Rn,y∈R

ysubjet to l∗c(x, uk, νk) ≤ y, ∀ k = 1, . . . , N,
ρT x ≤M,
nc
∑

i=1

xij = 1, ∀j

x ∈ {0, 1}n,

(10)where l∗c is a funtion de�ned as
l∗c (x, uk, νk) = fT uk + νkT

[xk − x],

νk =
(

ukT
K11u

k ukT
K12u

k . . . ukT
Kncnduk

)T

,
(11)6



where uk is given by the subproblem (9), and xk is the solution of the k-th relaxed master problem.The following explanation rule is equivalent to the ones stated in Munoz (2010a). We repeat it almostexatly, sine they de�ne the notation used through the artile.Remark 1. The notation used here is slightly di�erent from the one used in Munoz (2010a,b), where theexpression νk was de�ned di�erently. It is important to have this in mind before omparing the equationsand algorithms presented here with those in the mentioned artiles.3.2 GBD by Level SetsIn Munoz (2010), a variation of the GBD tehnique, named GBD by level set uts, was introdued,showing a signi�ant improvement with respet to the lassial GBD algorithm. The priniple of thisalgorithm is esenially the same, but instead of inluding GBD uts related to the solutions of the masterproblems, a bisetion proedure allows to �nd a non integer points at the level set of the inumbentsolution. The bisetion proedure requires to have previously omputed the solution of the ontinousrelaxation of the problem. In Munoz (2010), all details about this tehnique are explained extensively.Along this artile, we will only use this tehnique for all experiments. Sine we do not use the lassialGBD algorithm at any moment, will use the name GBD algorithm to refer to this improved variation ofthe GBD tehnique.3.3 Convergene of the AlgorithmThe onvergene of the GBD algorithm to a global optimum was proven in Munoz (2010a), and it is basedon the onvexity of the relaxation to [0, 1]n, of the projetion of the ompliane funtion c(x, u) = fT u(x)on the design variable spae c(x) = fT K(x)−1f . The proof is rather tehnial and not given here.3.4 Desription of the AlgorithmThe GBD algorithm is brie�y desribed in this subsetion. A �owhart with the algorithm desriptionis shown in �gure 1. A omplete and detailed statement of the algorithm is presented in Munoz (2010a).
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Figure 1: Flowhart of the GBD AlgorithmThe main idea of the GBD algorithm is to approximate the projetion of the nonlinear mixed-integer problem on the integer design variable. This approximation produes a linear mixed-integerproblem, where all the ontinuous variables of the original problem have been removed by the projetionoperation, and only one salar ontinuous variable is onsidered. At eah iteration the algorithm adds alinear onstraint whih is a linear approximation of the projeted ompliane funtion at a given design
xk. You an see how these linear onstraints approximate the ompliane on Figure 2.7



Algorithm 1 Generalized Benders' Deomposition
UB ←∞
LB ← −∞
k ← 0
x0 ∈ [0, 1]n suh that it is mass feasible
ǫ > 0while |zk+1 − UB| > ǫ do

uk, νk ← solve (SP) using xk

l∗c(x, uk, νk), see (11)
(xk+1, zk+1)← solve (MP) inluding l∗c(x, uk, νk) ≤ y, see (10).
LB = zk+1if c(xk+1) ≤ UB then

UB ← c(xk+1)end if
k ← k + 1end whileIt is important to remark that even if there is a theoretial onvergene of the method in a �nitenumber of iterations, there is no guarantee that this onvergene is going to be reahed within reasonableCPU resoures (time and memory). This is due to the fat that a master problem, whih is a linearmixed 0 − 1 problem, takes longer and longer to be solved and onsumes more memory, as more linearonstraints are added. As a onsequene, the size of the problem must be seleted in a way that theonvergene of the method is observed in numerial experiments. There are also other parameters thatneed to be taken into aount in order to have pratial onvergene. For example, the ratio between thesti�ness among the di�erent andidate materials in�uenes the ability of the algorithm to onverge. Thiswill be shown on the numerial experiments setion. CGH: do we atually show this in the numeris?4 Convex Continuous RelaxationThe original non-onvex mixed-integer program, (OP), an be reformulated in so-alled nested form asan integer program with a onvex objetive funtion if the displaements u are eliminated by use ofthe equilibrium ondition (given that the sti�ness matrix K(x) is non-singular, i.e. u(x) = K(x)−1p).Thereby we obtain an equivalent integer program with a onvex objetive funtion in the design variables
x only. Furthermore if the integer requirement on the design variables is relaxed, a onvex ontinuousoptimization problem is obtained minimize

x∈Rn
c(x) = pT K(x)−1p (12a)(R) subjet to ∑

i,j

xijρiVj ≤M (12b)
∑

i

xij = 1 ∀ j (12)
0 ≤ xij ∀ (i, j) (12d)Note that the generalized upper bound onstraints from (4) ensure that the variables ful�ll xij ≤ 1.Thus there is no need for an upper bound on the variables and it is su�ient to ensure non-negativedesign variables.The optimization problem given by (R) is onvex as shown by Svanberg (1994); Stolpe and Stegmann(2008), and thus a loally optimal solution x∗

R is also a global optimum of (R), and suh solution maybe obtained using any suitable nonlinear optimization algorithm suh as SNOPT (Gill et al., 2005) orIpopt (Wähter and Biegler, 2006). Furthermore, (R) is a (nested form) ontinuous relaxation of (P)and it has a larger feasible set than (P). In other words the feasible set of (P) is a subset of the feasibleset of (R). Thus, 8
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Figure 2: Coneptual illustration of the GBD algorithm on an unonstrained problem. Theprojetion of the ompliane c(x) is approximated by linear funtions (in red). In ase of aonstrained problem the ontinuous optimum will in general not generate a horizontal ut.
• If the optimal solution to (R) happens to be an integer solution then it is also an optimal solutionto (P).
• The optimal solution to (R) is better than or as good as the solution to (P), i.e. c(x∗

R) ≤ c(x∗
P ).Thus, it may be used as a lower bound estimator for the original 0/1-problem.

• If there is no feasible solution to (R) then there is no feasible solution to (P) either.The motivation for solving a onvex ontinuous relaxation in the proess of attaking the integer opti-mization problem is that it an be solved to global optimality with reasonable resoures, and therebyit may be used as a relatively fast way of obtaining a good lower bound assessment of the attainableperformane of the original integer optimization problem. This lower bound an be used as a valid lowerbound within GBD if it is better than the best valid lower bound obtained from the master problems(MP). Reall that the goal within GBD is to improve iteratively the lower and upper bound so as to losethe gap between them. If a good valid lower bound an be obtained early in the solution proess of GBD,the sequene of sub- and master problems the method is more likely to onverge within reasonable CPUresoures. Depending on the spei� problem, the ontinuous optimum may give valuable informationabout the integer solution. As stated above, if the ontinuous solution is integer-valued it is in fatthe integer optimal solution. This situation, however, is very unlikely and virtually never seen in theonsidered types of problems. Nevertheless, it is not unusual to see that a fration, typially 50−90%, ofthe ontinuous variables attain integer values in the ontinuous optimum, and furthermore most domainsat least have some of their variables at the lower bound, i.e. in many domains the ontinuous optimumhas "disarded" some of the andidate materials. Note that this situation, does not mean that thosematerials are not part of the optimal integer solution, but it still gives information about a provenlygood design, though ontinuous. The (reasonable) hope though is, that the solution to the integer pro-blem is lose in some sense to the ontinuous optimal solution. If many of the ontinuous variables takeinteger values in the optimal ontinuous solution, this hope is most ertainly reasonable. The largerthe number of ontinuous valued variables in the optimal ontinuous solution, the less reasonable thisassertion is. These observations motivate the use of a heuristi proedure that an obtain a good upperbound (inumbent solution) in terms of an integer and feasible solution with a good objetive funtion.
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5 Use of HeuristisAs desribed in the setion on GBD a (possibly long) sequene of MILPs are solved in the MasterProblems (MP). MILPs are typially solved by impliit enumeration strategies suh as branh-and-bound/ut algorithms. These algorithms rely on the solution of relaxations at eah node visited in theenumeration tree and on basis of this solution, branhing in the tree is done. The e�ieny of thesealgorithms relies heavily on the use of heuristis to obtain feasible solutions as well as heuristis forimproving feasible solutions. State-of-the-art MILP solvers suh as the ommerial odes CPLEX andGurobi as well as the aademi ode SCIP (Ahterberg, 2007) employ a number of heuristis to speedup the onvergene rate.5.1 GBD-RensThe use of heuristis within branh-and-bound/ut algorithms is well-known and standard nowadays.In this paper we propose to also use heuristis to enhane the rate of onvergene of the GBD algorithmitself. Thus we use heuristis to obtain a good (but not neessarily optimal) integer solution early inthe solution proess as a sort of "warm start" of the GBD algorithm. The motivation for doing so waspointed out by Munoz (2010a,b) where it was shown that the GBD algorithm may take advantage of agood initial solution (upper bound) as well as a lower bound as obtained from a relaxation. As alreadydesribed, we solve the ontinuous relaxation of a nonlinear integer program. This solution yields a lowerbound on the attainable performane of any integer feasible solution and furthermore it is also used ina Large Neighborhood Searh heuristi. The heuristi is inspired by the so-alled Relaxation EnforedNeighborhood Searh (Rens) proposed for MILPs by Berthold (2007). The idea of this heuristi is tosolve a ontinuous relaxation to optimality and observe whih variables that attain integer values inthis solution. Integer-valued variables are then �xed at their obtained value and a Large NeighborhoodSearh in the remaining intermediate-valued variables is performed through a sub-MINLP where onlythe intermediate-valued variables from the relaxation are onsidered (now as integer variables). Thus,we formulate the rounding heuristi as a sub-MINLP. The resulting sub-MINLP is solved using GBDon the redued problem. The size and thereby the ost of solving the sub-problem naturally dependson the integrality of the ontinuous solution. Note that by solving the sub-problem to optimality weobtain the best rounding possible for a given ontinuous relaxation solution. Also, if the feasible setof the sub-MINLP turns out to be empty, no feasible rounding of the ontinuous solution exists, seeBerthold (2007). The solution obtained for the sub-MINLP is passed bak to the global problem andused as a good initial solution in the omplete GBD. Also note that the ontinuous relaxation of theomplete MINLP minimum ompliane and the orresponding sub-MINLP problems have exatly thesame solutions. Therefore, the ontinuous relaxation of the sub-MINLP problem does not give anyadditional information. For some examples the resulting sub-MINLP problem is not easy to solve either.This ould happen if the fration of �xed variables is not big enough, and thus there is no real advantagein attaking the sub-MINLP problem. An alternative to overome this ompliation, is to introdue avariation of theGBD-Rens heuristis, whih is to do a seleted rounding of the solution of the ontinuousrelaxation before �xing variables with integer values. This means that we set a threshold λs ∈ [0, 0.5],suh that eah design variable with a value outside the interval [0.5 − λs, 0.5 + λs] in the solution ofthe ontinuous relaxation is rounded. In exhange, it is also expeted that if a variable attains a non-integer value, it is less likely that this variable will have an integer value in the solution of the originalinteger problem. So it is lear that the larger the number of �xed variables, the less likely it is to beable to �nd an optimal solution when treating the sub-MINLP problem. In addition, it is even possiblethat, if too many variables are �xed, the resulting sub-MINLP may not be a feasible problem. As aonsequene, to make the heuristi more robust with respet to the type of problem, a seond variation ofthe heuristi is introdued, by running the heuristi proedure iteratively, in suh a way that the numberof �xed variables dereases eah time the GBD-Rens heuristi is exeuted. This iterative proedure isontrolled by the parameter αs, whih is updated eah time before starting it. Another aspet to takeinto aount is the fat that this heuristi may be used to ontrole the size of the resulting sub-MINLPwe are willing to solve. This would be helpful if we want to attak a design problem of maybe 50.000variables. Suppose that in this hypotheti example, the ontinuous relaxation solution obtained has forinstane 35.000 0 − 1 values. In this ase, the remaining sub-MINLP problems has 15.000 variables,whih is still too big. In this ase, we are able to ontrol the size of the sub-MINLP problem by settinga value of the threhold parameter λs < 0.5. We ould also set the minimum perentage of variables to10



be �xed in the sub-MINLP problem. In this way, the use of the modi�ed GBD-RENS heuristi may leadto �x maybe 48.000 variables. Then we have a sub-MINLP of 2.000 variables, whih is more likely to besuesfullty attaked by the GBD-RENS heuristi.5.2 Modi�ed Compliane Funtion (Quadrati Interpolation Heuristi?)The performane of the GBD algorithm an be improved by use of a di�erent law for assembling thesti�ness matrix, as it was done in Munoz (2010a,b). This means that the sti�ness matrix given by (7),is replaed by
K(x) =

∑

ij

[αxij + (1 − α)x2

ij ]B
T
j EiBj (13)where α ∈ [0, 1] is a parameter ontrolling the mixture of two interpolations shemes. It is importantto note that for any value of α < 1, the ontinuous relaxation is not onvex, and therefore the GBDmethod an not longer guarranty onvergene to global optimality. For that reason, for these values of α,the GBD method is no more than a heuristi to �nd good solutions. In addition, numerial experienesshow that for a low value of the mixture parameter α, the GBD algorithm onverges quikly, but lesshanes of �nding good solutions exists. Therefore, again, the use of an iterative proedure, alling thisheuristi several times, updating eah time the value of α, from α0 ∈ (0, 1) to α = 1 seems to be a robustproedure to �nd designs with low objetive value in short time.Remark 1. Note that all heuristis desribed here produe one or several andidate designs. Thesesolutions not only helps in the improvement of the upper bound of the optimal value, but also produeone ompliane GBD ut per eah of these solutions. This remark is important in order to notie that ifa problem is large in terms of design variables, probably a large pu-time is used in �nding good solutionandidates.6 Combining MethodsIn this setion we present a way of improving the performane of the optimization algorithm by ombiningthe Benders algorithm, with solutions to ontinuous relaxations of the original problem (6). We desribethe implementation of these ombined methods, and indiate possible variations of them. A omparisonof the performane of the di�erent ombinations is given in Setion 8 on numerial examples.As it was indiated in (referene to MunozStolpe), the Benders deomposition method applied tothe minimum ompliane problem 6 onverges to an optimal solution in a �nite number of iterations.However, in pratie, this number is unknown and ould potentially be very large. Furthermore, the sizeof the master problem grows with the number of iterations (one or more uts added at eah iteration),leading to a longer solution time for eah master problem, whih may prevent the algorithm to onvergein a reasonable amount of time. On the other hand, at any stage of the algorithm, it is possible toasses the loseness of the urrent solution to the global optimum. This information might be useful,depending on the order of magnitude of the gap between the best bounds obtained. If this is not thease, one ould use any method that gives a better estimate of a lower bound for the global optimum.As shown by (MunozPaper on Pareto Optimal Cuts) the quality of any ut is de�ned aording to theirPareto dominane value, whih depends on the objetive funtion value of the solution generating theut. Thus, better objetive feasible solutions may in the ase of the problem given by 6 be used togenerate good uts in the sense that they have a positive in�uene on the onvergene rate ompared todominating (less good) uts.To sum up, the onvergene rate of Benders deomposition may be improved by1. using the solution to a onvex ontinuous relaxation to improve the estimate of a lower bound forthe global optimum. This ontinuous solution also generates a good ut that an be inluded.2. inluding uts generated from good 0/1-solutions.Ad 1) Reall that the Voigt interpolation sheme is simply the natural ontinuous relaxation of theoriginally 0/1-valued feasible design spae. The model indued by this relaxation is onvex, satisfyingonstraint quali�ations, and therefore a global optimum exists, its unique, and it orresponds to anypoint satisfying the KKT onditions. This solution may be found by use of any suitable NLP optimization11



algorithm, suh as SNOPT (ref. to SNOPT), Filter�SQP (ref. ...), et. In fat this solution generatesthe only non-dominated ut, that is, the best ut in the sense of Pareto dominane.Ad 2) A way to generate good 0/1-solutions is to use a ontinuation approah to make the solutions to theontinuous relaxations onverge to 0/1-solutions within a tolerane, and �nally round these solutions to
0/1. One suh approah has been desribed in detail in Setion 4 but any other method produing good
0/1-designs may be used as well. One important thing to note is that the design should stay feasibleafter rounding the solution. This is not ensured automatially by the rounding heuristi whih onlyrounds without onsideration of feasibility of the onstraints or the optimality of the rounded solution.Thus, for some problems it may be neessary to improve the heuristi suh that the rounded design isindeed feasible.TODO
• Presentation of basi idea/onept - statement of method, refer to �ow hart in Benders setion.Present rounding heuristi idea: solving tighter onstrained ontinuous relaxations if previousrounded solution was infeasible after rounding.
• Give overview of di�erent possibilities of ombining the methods - mainly Benders' alone, Benders'inluding Voigt solution ut, and Benders' + Voigt solution ut + 0/1 solution ut. A tableomparing these results for one example.7 ImplementationIn this setion, we desribe brie�y, the implementation of the algorithms desribed in the artile innumerial experiments. The GBD algorithm was implemented for the design of multimaterial ompositelaminated strutures. The ode was writing in the platform for analysis and optimization of shellstrutural models MUST (referene??) The resolution of the Master Problem was attaked the mixed-integer optimization solver GUROBI (Gurobi Optimization (2009)). The ontinuous relaxation to theminimum ompliane problem was attaked with the NLP solver SNOPT (ref). All numerial exampleswere run on the Fyrkat luster (Desription of Fyrkat).8 Numerial ExamplesIn this setion, we present a set of numerial examples to be solved with the proposed algorithmsapplied to optimal design of multimaterial (laminated) omposite strutures. This type of struture isoften modeled as shells, and therefore, a shell �nite element (FE) disretization is used to perform thestati equilibrium analysis. The design disretization does not neessarily math the FE disretization,as it will be the ase in many of the examples. For some examples we make use of so-alled pathes,whih are groups of elements having the same design variable assoiated with them. This serves as away of reduing the number of design variables as well as a means of providing for more manufaturingnear designs in the sense that the laminates are typially produed using mats overing larger areas (i.e.multiple elements) of the struture..Table 1 shows the general desription of the set of examples inluded in the artile. It inludes thenumber (Prob) and Name (Desription) of the problem, the number of andidate materials onsidered inthe problem (# Mat.), the design disretization of the problem (Design Disr.) in the format PaxbxL,where a,b represents the in-plane design disretization, and  represents the number of layer of thestruture onsidered in the design problem. The �eld Variables states the total number of design variablesintrodued in the optimization problem. FE Disr. spei�es the FE disretization of the problem, inthe format Edxe, where d,e represents the �nite element analysis disretization in eah diretion in theplane. # LC's stands for the number of load ases onsidered in the problem. Finally, M represents themass limit for the mass onstraint of the design problem.8.1 Examples 1-3These �rst three examples illustrate the appliation of the proposed method to a doubly urved parabolishell struture. All three instanes are solved using an FE disretization of 32 by 32 shell elements in theplane of the struture. In all three examples the design disretization through the thikness ompriseseight layers of equal and �xed thikness (8 · 0.01m). In the plane, Example 1 has 2 by 2 design domains12



in eah layer, Example 2 has 4 by 4 design domains per layer and Example 3 8 by 8. In all threeexamples the struture is subjeted to one load ase: a entral point load ating in the vertial diretion.The design task is to selet the optimal material out of �ve possible in eah domain. Four of thematerials are instanes of a relatively sti� orthotropi material oriented at four pre-de�ned diretions(−45◦, 0◦, 45◦, 90◦) de�ned relative to the global x-axis. The �fth andidate material is a polymerisandwih foam of low weight and sti�ness.
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Figure 3: Example 1: sketh of paraboli shell. Geometry: base lengths 1.0 · 1.0 m2,height 0.1 m, shell thikness 0.08 m (= 8 · 0.01 m), design disretization in greysale(2x2 pathes), analysis disretization (32x32 elements), vertial point load in the enterand hinged support at eah orner. Short notation: P2x2x8L, E32x32.!!!!!!!! Table with material properties !!!!!!8.2 Examples 4-7These four examples illustrate optimal disrete �ber angle orientation on a plane dis problem. All fourinstanes are solved using an FE disretization of 32 by 32 shell elements in the plane of the struture.The dis is lamped along the left edge and subjeted to a vertial downward ating point load in thelower right orner. The design disretization for the three examples is of inreasing resolution in theplane of the dis, Example 4 has 4 by 4 design domains in the plane, Example 5 has 8 by 8, Example6 has 16 by 16 and Example 7 32 by 32. The design problem is a pure �ber orientation problem,i.e. all andidate represent the same orthotropi material oriented at four (−45◦, 0◦, 45◦, 90◦) or twelve(−75◦,−60◦, . . . , 0◦, 15◦, . . . , 90◦) distint diretions. Thus, the example has no mass onstraint (ofrelevane). The material properties are idential to those of the orthotropi material in Example 8-9(!!!!!!!!!!!TODO: hek that this is orret!!!!!!!!).PSfrag replaements
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Figure 4: Example 4: sketh of lamped membrane dis. Geometry: side lengths
1.0 · 1.0 m2, thikness 0.5 · 10−3 m, design disretization in greysale (4x4 pathes),analysis disretization (32x32 elements), vertial downward ating point load at lowerright orner. Clamped (all DOFs �xed) along left edge. Short notation: P4x4x1L,E32x32. 13
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Foam Orthotropi
Ex [Pa] 65.0 · 106 34.0 · 109

Ey [Pa] − 8.2 · 109

Ez [Pa] − 8.2 · 109

Gxy [Pa] − 4.5 · 109

Gyz [Pa] − 4.0 · 109

Gxz [Pa] − 4.5 · 109

νxy 0.47 0.29
ρ [kg/m3] 200.0 1910.0Figure 5: Example 8-9. Left: Domain geometry and boundary onditions. Loads at independently. Right:Material properties in prinipal material oordinate system for the andidate materials.8.3 Examples 8-9In these examples we solve plane problems with two independent load ases of equal importane (w1 =

w2 = 0.5) and loads with equal magnitude (|P1| = |P2|) ating at midspan oppositely on eah fae.In both load ases the plate is hinged at all orners (ui = 0), see Fig. 5. The physial domain withinwhih the material is distributed is a retangular dis of dimension 4.0m × 2.0m × 0.5 · 10−3m. Thedomain is disretized by two di�erent meshes, (20 × 10) and (40 × 20) respetively and in eah designsub domain (=element) �ve andidate materials are possible. The �rst andidate material is a lightand soft material representing e.g. isotropi polymeri foam and the remaining four andidate materialsrepresent a heavier and sti�er orthotropi material oriented at four distint diretions (−45◦, 0◦, 45◦ or
90◦). We set the mass onstraint suh that the heavy orthotropi materials an be hosen in at most 35%of the domain. The onstitutive properties in the prinipal material oordinate system the orthotropimaterial and of the foam material are given in Fig. 5.8.4 Example 10The following very simple example illustrates the possibility of distributing a limited amount of materialthrough the thikness of the domain as well as in the plane. A design domain is given in terms of asimply supported beam (disretized using shell elements) subjeted to a uniform transverse pressureload in the vertial diretion, see Fig. 6. The domain is disretized into 20 by 2 elements in the plane ofthe struture and �ve layers through the thikness. This disretization is used for the analysis as wellas the design. The total volume of the design domain is 1.25m3. The mass density of the lightweightandidate material is ρ = 200kg/m3 and that of the heavy andidate material is ρ = 1910kg/m3. Thuswith a total mass onstraint of 1500kg, heavy material an not be hosen in more than 58.5% of the totaldesign domain orresponding to 116 element layers. The material properties of the andidate materialsused in this example are idential to those shown in Fig. 5.8.5 Examples 11-13This set of examples demonstrates the ability to perform optimal multi�layered omposite plate design.We solve the same design problem using di�erent design disretizations through the thikness to investi-gate the in�uene on the optimal design. The physial domain within whih the material is distributedis a quadrati plate of dimension 1.0m×1.0m×1.0 ·10−2m. The plate is loaded at the enter by a pointload P and eah orner is hinged (ui = 0). A sketh of the problem is shown in Fig. 7. All three examplesemploy a (24×24) in-plane disretization. Example 11 is disretized through the thikness with 8 layerswhereas example 12 and 13 have 4 layers. The andidate materials are idential to those in the previousexample, i.e. a light and soft isotropi foam material and a heavy and sti� orthotropi material orientedat four distint diretions, see Fig. 5. For more information on the problem harateristis please onsult14
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Figure 6: Example 10: Geometry: side lengths 10.0 · 1.0 m2, shell thikness 0.125 m (=
5 · 0.025 m), design disretization is idential to the analysis disretization (20x2 elements),transverse distributed pressure load and simply supported at eah end.PSfrag replaements

?LBUB
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Figure 7: Example 11-13. Multi�layered (4 or 8) orner-hinged plate with point load appliedat the enter.See Fig. 5 for material properties.Table 1.8.6 Computational ExperieneThe 13 examples were used for setting 17 omputational examples (in the ase of examples 4, 5, 6and 7, two di�erent sets of material angle andidates were onsidered, generating one extra numerialsub-example for eah of these ones). For eah of these omputational examples, 4 sets of numerialexperiments were arried out. The �rst set of examples orresponds to the exeution of the GBDalgorithm without onsidering any heuristi proedure (GBD-1). The seond set of examples orrespondsto the exeution of the GBD algorithm where the quadrati interpolation heuristi was used (GBD-2).The third set of examples orresponds to the use of the GBD-Rens heuristi proedure (GBD-3), andthe fourth set of examples is the one ombining these two heuristis before starting the GBD algorithm(GBD-4). The total CPU-time allowed for eah example was 96 [h℄, and the algorithm is set to stopwhenever the optimality gap reahes the tolerane of 1.0%. However, we onsider as a satisfatory result,if the onsidered algorithm is able to �nd globally optimal solutions within an optimality tolerane of
5%. Besides, we set a maximum pu-time of 3000[s] for the exeution of eah relaxed master problem.The reason for setting this limit value, is to avoid the MILP solver trying to solve to optimality theMILP problem whih is too di�ult and ould take too many hours or even days.9 ResultsIn this setion, we present the omputational results for the 13 (17) examples introdued in Set. 8.In total 68 numerial examples were exeuted, whih orrespond to the exeution of the 17 numerialexamples desribed in Set. 8, for eah of the four methods desribed in Set. 8.6 (GBD-1,GBD-2,GBD-3and GBD-4).The results for these sets of examples is shown in Tables 2, 3, 4, 5 respetively. These tables show15



Prob. Desription # Mat. Design disr. Variables FE disr. # LC's M (kg)1 Paraboli Shell 5 P2x2x8L 160 E32x32 1 7.2482 Paraboli Shell 5 P4x4x8L 640 E32x32 1 7.2483 Paraboli Shell 5 P8x8x8L 2560 E32x32 1 7.2484 Clamped Membrane 4/12 P4x4x1L 64 E32x32 1 n/a5 Clamped Membrane 4/12 P8x8x1L 256 E32x32 1 n/a6 Clamped Membrane 4/12 P16x16x1L 1024 E32x32 1 n/a7 Clamped Membrane 4/12 P32x32x1L 4096 E32x32 1 n/a8 Two Load Case 5 E20x10x1L 1000 E20x10 2 3.09 Two Load Case 5 E40x20x1L 4000 E40x20 2 3.010 Simply sup. beam 5 E20x2x5L 1000 E20x2 1 1500.011 LayeredPlate 5 E24x24x8L 23040 E24x24 1 6.812 LayeredPlate 5 E24x24x4L 11520 E24x24 1 6.813 LayeredPlate 5 E24x24x4L 11520 E24x24 1 10.6Table 1: Summary of problem harateristis for the numerial examples.the information about the best objetive value attained by the algorithm Best UB, the objetive value ofthe ontinuous relaxation solution (R) (R) Sol., the best value of the lower bound of the optimal solutionobtained by the GBD method GBD LB, the �nal optimality gap at stop O. Gap, and the total numberof valid GBD uts inluded in total in the algorithm # GBD uts.For the set of examples exeuted with the algorithm GBD-1, 3 examples reahed a �nal optimalitygap smaller than 1.0%, 5 examples reahed a gap < 3% (inluding the 3 that reahed 1.0%), and 10examples reahed under 5.0%. For examples run with GBD-2, 4 examples reahed the stop riteria
1.0%, 8 examples reahed a gap < 3.0%, and 11 were under 5.0%. For the examples run with GBD-3, 3 examples reahed the stop riteria 1.0%, 6 examples reahed a gap < 3.0%, and 11 were under
5.0%. Finally, for the examples run with GBD-4, 4 examples reahed the stop riteria 1.0%, 11 examplesreahed a gap < 3.0%, and 12 were under 5.0%. In addition, to make the omparison among the di�erentalgorithms more lear, Table 6 shows the �nal onvergene gap O. Gap for eah group of examples.The omparison of the results in terms of onvergene (O. gap at stop) for eah set of numerialexamples is presented in Table 6.10 DisussionIn general, the performane shown of the four algorithms is satisfatory, and shows the general strengthsof the GBD algorithm itself. The use of the presented heuristis shows how the method is able to �ndbetter designs, and therefore, is able to �nd more tight bounds for the assessment of global optimality ofthe algorithm, whih is important speially when treating medium-large sale problems. The ombinationof the two presented heuristis showed the best results in the sense of obtaining solutions with thesmallest objetive value, and obtaining the lowest optimality gap among the examples not reahing thestop riterion of 1.0%.Note that the ombining heuristi proedures algorithm (GBD-4) reahed a negative optimality gapat onvergene for examples 4.1 and 5.1. This is nothing to worry about, sine these values are subjetedto the optimality tolerane for the solution of the master problem, obtained by the MILP solver. Thesevalues fall inside the usual optimality tolerane of any MILP solver. Thus, these numbers are perfetlyreasonable.Another important fat to point out, is the variation in the number of GBD uts obtained throughthe di�erent examples. In general, a number of around thousand GBD uts is an reasonable numberto onsider in the algorithm. Above this number, the resolution of the master problem beomes fairlyslow, and almost no further improvement in the lower bound is observed. Therefore, it is desired thatthe algorithm uses the best quality uts in order to onverge as early as possible. In Munoz (2010b) itwas pointed out that the quality of the GBD uts related to the ompliane funtion depends strongly in16



Prob. Best UB (R) Sol. LB GBD LB O. Gap # GBD uts1 31.827 27.707 27.706 14.867 3792 27.102 22.175 22.217 21.986 3323 19.330 17.695 17.672 9.237 4394.1 143.828 138.053 142.549 0.897 1264.2 128.382 126.157 127.154 0.966 235.1 186.441 184.448 185.956 0.261 45.2 123.099 120.885 121.217 1.553 7596.1 134.255 128.212 128.135 4.727 20296.2 121.809 116.903 116.879 4.197 12357.1 131.828 125.028 124.935 5.439 12257.2 117.337 113.506 113.460 3.376 4798 568.568 22.017 22.092 2473.6 25019 825.281 22.718 22.672 340.19 59510 163.273 160.178 161.354 1.189 46711 30.108 28.760 28.691 4.688 24112 68.842 34.841 34.725 97.587 69413 21.356 20.529 20.520 4.024 503Table 2: Numerial Results for GBD with out any Heuristis (GBD-1).
Prob. Best UB (R) Sol. LB GBD LB O. Gap # GBD uts1 31.337 27.707 27.576 13.098 5122 23.746 22.175 22.220 7.058 9163 18.556 17.695 17.678 4.864 7824.1 143.828 138.053 142.406 0.999 954.2 128.021 126.157 127.738 0.222 445.1 186.441 184.448 186.162 0.150 115.2 a 120.885 a a a6.1 131.587 128.212 128.451 2.441 11866.2 120.012 116.903 116.867 2.659 12847.1 128.428 125.028 125.147 2.622 10097.2 116.032 113.506 113.642 2.103 10098 554.735 22.017 22.104 2409.6 9939 840.459 22.718 22.671 3599.2 39510 163.008 160.178 161.848 0.717 44811 29.668 28.760 28.699 3.159 15512 61.484 34.841 34.721 76.468 29713 21.239 20.529 20.518 3.455 506a Example 5 needs to be re-runTable 3: Numerial Results for the Modi�ed Sti�ness Matrix Heuristis (GBD-2).17



Prob. Best UB (R) Sol. LB GBD LB O. Gap # GBD uts1 31.834 27.707 27.574 14.892 1792 24.025 22.175 22.185 7.230 6773 18.734 17.695 17.675 5.873 6494.1 143.828 138.053 142.609 0.855 1034.2 128.021 126.157 127.511 0.400 295.1 186.441 184.448 186.411 0.016 135.2 123.163 120.885 121.181 1.636 6996.1 132.205 128.212 128.156 3.114 9496.2 120.799 116.903 116.928 3.311 4497.1 129.662 125.028 124.991 3.707 7997.2 117.304 113.506 113.499 3.346 4498 35.767 22.017 22.096 61.870 12689 26.731 22.718 22.731 17.600 99410 163.500 160.178 160.635 1.784 25011 29.442 28.760 28.722 2.373 68212 49.592 34.841 34.756 42.336 39913 20.838 20.529 20.535 1.478 649Table 4: Numerial Results for GBD-RENS Heuristis (GBD-3).
Prob. Best UB (R) Sol. LB GBD LB O. Gap # GBD uts1 31.631 27.666 27.707 14.162 5562 23.636 22.175 22.203 6.463 9953 18.485 17.695 17.695 4.463 8674.1 143.815 138.053 143.819 -0.002 1294.2 128.021 126.157 128.021 0.0 585.1 186.441 184.448 186.537 -0.05 235.2 122.868 120.885 121.194 1.381 9276.1 131.546 128.212 128.449 2.411 19756.2 119.784 116.903 116.880 2.464 14607.1 128.438 125.027 125.101 2.667 35937.2 116.075 113.506 113.506 2.264 19288 34.308 22.017 22.017 55.823 12309 26.537 22.718 22.718 16.810 29810 162.675 160.178 162.208 0.288 90211 29.327 28.760 28.730 1.974 9312 45.133 34.841 34.805 29.539 143413 20.765 20.529 20.548 1.054 2615Table 5: Numerial Results for GBD with Combining methods.
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Prob. GBD-1 GBD-2 GBD-3 GBD-41 14.867 13.098 14.892 14.1622 21.986 7.058 7.230 6.4633 9.237 4.864 5.873 4.4634.1 0.897 0.416 0.855 -0.0034.2 0.966 0.222 0.400 0.0005.1 0.261 0.150 0.016 -0.0515.2 1.553 727.2 1.636 1.3816.1 5.696 2.441 3.114 2.4116.2 4.197 2.659 3.311 2.5527.1 5.439 2.622 3.707 2.6677.2 3.376 2.000 3.346 2.3038 2473.6 2409.6 61.870 55.8239 532.8 3599.6 17.600 16.81010 1.189 0.717 1.784 0.28811 4.688 3.159 2.373 1.97412 96.131 76.468 42.336 29.53913 4.024 3.455 1.478 1.054Table 6: Comparison of the onvergene (O. Gap) attained by eah algorithm. The smallest gap obtainedamong the four algorithms is underlined.the ompliane value. Thus, it is natural to expet that the better the solutions found, the less numberof GBD uts will be neessary for onvergene of the GBD algorithm. Furthermore, we have hosento ompare the number of GBD-uts, beause it seems to be the most fair way to ompare methodsfollowing di�erent heuristi proedures in the ontext of the GBD algorithm. In fat, the best wayto asses a heuristi proedure, is to determine the quality of the designs obtained by this proedure,in terms of objetive value, and to ount the number of andidate designs found by this heuristi. Inthis way, a heuristi providing for example 300 andidate designs to the GBD algorithm only ould beompared in a fair way to the pure GBD algorithm, after the latter has reahed 300 iterations sinethis an be onsidered as a di�erent way of exploring this number of solutions. In this sense, heuristiproedures will most likely obtain the 300 andidate designs faster than the GBD algorithm, sine theGBD algorithm needs to solve one MILP problem eah time a new design is obtained. Besides that, theCPU time spent in solving the MILP is unpreditible, sine it depends on the intrinsi ombinatorialnature of eah master problem.Nevertheless, note that for small examples the use of any heuristi proedure may make the algorithmspend time in searhing andidate designs and make the overall algorithm slow in omparison with theGBD algorithm alone (GBD-1). This situation is seen in example 4.1 (the ase of four angle orientationandidates). For this example, the algorithm GBD-1 stopped right away after only 4 iterations, whilethe algorithm GBD-4 inluded 23 valid feasibility uts. But this is nothing but the onlusion that forsmall problems, the use of heuristis is more likely to be unneessary.Another interesting remark is that none of the methods ould treat satisfatory Examples 1, 8, 9and 12. There ould be many reasons for this fat. Sine the algorithm has shown dependeny in itsperformane aording to the suessful appliation of heuristis, we believe that for these examples,neither the algorithm, nor the heuristis were able to �nd good, or lose to optimal designs. If anotherheuristi doing this job exists, then ombined with the presented GBD algorithm, it will be able obtainthe best possible estimation of global onvergene gap possible for the GBD algorithm. Therefore webelieve that in general, the GBD method, ombined with other heuristi methods, will reah betterresults in terms of the quality of both the obtained solution and the ability to asses the global optimalitygap in numerial examples.
19
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Abstract This paper presents two multi-material interpo-
lation schemes as direct generalizations of the well-known
SIMP and RAMP material interpolation schemes originally
developed for isotropic mixtures of two isotropic material
phases. The new interpolation schemes provide generally
applicable interpolation schemes between an arbitrary num-
ber of pre-defined materials with given (anisotropic) prop-
erties. The method relies on a large number of sparse linear
constraints to enforce the selection of at most one material in
each design subdomain. Topology and multi-material opti-
mization is formulated within a unified parametrization.

Keywords Material interpolation · Topology optimization ·
Multi-material parametrization · Composite materials

1 Introduction

Since the seminal papers by Bendsøe and Kikuchi (1988)
and Bendsøe (1989) on topology optimization considered
as a material distribution problem, the field of structural
topology optimization has gained momentum and the ideas
of optimal material distribution using the so-called den-
sity approach have been extended to other applications and
physics as well, see e.g. Bendsøe and Sigmund (2003) and
Bendsøe et al. (2005).
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The basic question addressed in two-phase topology opti-
mization is; how to distribute a limited amount of material
within a spatial reference domain so as to optimize some
objective function. In other words the question is whether
or not to put material at any given point within the fixed
reference domain. The natural extension of this question is;
given a number of materials with different properties, how
should they be distributed to optimize some objective func-
tion under a constraint on the total amount of material or
constraints on the amount of the individual phases? In this
paper we address the problem with a constraint on the total
amount of material, but the other question with constraints
on the amount of each phase is not too different.

The topology problem may be modeled as a (non)linear
mixed 0–1 program and solved using global optimization
techniques, see e.g. Stolpe and Svanberg (2003), Muñoz
and Stolpe (2010) and Muñoz (2010). In theory these
approaches are able to determine a global optimum but in
practice they are limited by their ability to cope with large
scale problems.

In classic solid-void topology optimization the use
of material interpolation schemes such as SIMP (Solid
Isotropic Material with Penalization) is probably the most
popular approach and has proven successful for a large num-
ber of applications, see Bendsøe and Sigmund (2003) and
Eschenauer and Olhoff (2001). The idea of approximat-
ing the 0–1 problem using penalized intermediate densi-
ties was originally proposed by Bendsøe (1989). Another
material interpolation scheme is the RAMP scheme (Ratio-
nal Approximation of Material Properties) (Stolpe and
Svanberg 2001) which is similar to the SIMP scheme in its
basic concept.

Extensions of the SIMP scheme to multiple phases were
presented by Sigmund and Torquato (1997) and Gibiansky
and Sigmund (2000) who designed material microstructures



C.F. Hvejsel, E. Lund

having extreme properties using a three-phase (two mate-
rials and void) topology optimization approach. In these
papers one variable controls the topology by determining
the pointwise amount of material while the other variable
controls the mixture between the two material phases. The
ideas of using topology optimization techniques to choose
between multiple phases were extended to any number of
phases by Lund and Stegmann (2005), Stegmann (2004)
and Stegmann and Lund (2005) using the so-called Discrete
Material Optimization (DMO) approach for the design of
laminated composite structures. They proposed generaliza-
tions of the SIMP scheme where weighting functions with
penalization of intermediate selections control the selec-
tion of each phase. Each weighting function is affected by
all design variables (associated with the subdomain) such
that an increase of one weight results in a decrease in all
other weights. This interdependency in combination with a
SIMP-like penalization typically leads to a distinct mate-
rial selection. Different variations of these schemes were
shown; one with the property that the weights sum to unity
and another scheme were the weights sum to less than unity
for intermediate values of the design variables.

In Yin and Ananthasuresh (2001) a peak function
approach is used where the effective material properties for
mixtures of an arbitrary number of phases are interpolated
using one density variable. The approach uses Gaussian dis-
tribution “peak functions” as weights on each phase. The
peaks corresponding to selection of a given material are sep-
arated such that selection of a given material is obtained
if the density variable attains the value corresponding to a
material peak. The width (mean deviation) of the peaks is
a parameter and continuation is used to sharpen the peaks
gradually in order to obtain distinct choices.

Another way to parametrize multi-phase problems is the
so-called color level set approach (Wang and Wang 2004,
2005; Wang et al. 2005) where material regions are repre-
sented by unions of different level sets of implicit functions.
The idea is to separate the design domain into regions rep-
resenting the sub domains containing one of the material
phases and design changes are imposed by letting the inter-
faces evolve so as to obtain an optimal subdivision of the
design domain into distinct material regions.

In Setoodeh et al. (2005) a combined SIMP and cellu-
lar automata approach was proposed for combined topol-
ogy and continuous fiber angle optimization for 2D con-
tinua though the approach in this work is not exactly a
multi-material parametrization. To some extent the results
obtained in that work (simultaneous fiber angle and topol-
ogy) are comparable to some of those presented in the
present paper.

Recently a new multi-material parametrization has been
proposed in Bruyneel (2011) where bilinear finite element

shape functions act as weights in a weighted interpola-
tion between the candidate materials. The approach uses
two variables to interpolate between four materials lead-
ing to fewer design variables compared to other approaches.
The idea was demonstrated for four materials and could
maybe be generalized to more phases, though it is not clear
how non-negativity of the weight functions is assured for
higher-order interpolations.

In this paper we generalize the SIMP and RAMP
schemes so as to parametrize simultaneous topology and
multi-materials design within a unified parametrization. The
approach relies on a large number of sparse linear con-
straints limiting the selection of a material to at most one
in each domain. The approach is demonstrated on the
minimum compliance (maximum stiffness) problem, but
the basic idea of the parametrization is applicable to any
material distribution design problem involving an arbitrary
number of candidate materials/phases.

2 Problem formulation

We consider the minimum compliance material distribution
problem representing multi-material selection (and topol-
ogy design) problem within a fixed reference domain in
two or three dimensions with an optional constraint on the
total mass.

2.1 Design parametrization

In the following we describe the parametrization of multi-
material selection problems as well as simultaneous topol-
ogy and multi-material selection problems, respectively.

A fixed reference domain � ∈ R
2 or R

3 is divided
into a number of design subdomains �j , j = 1, 2, . . . , nd

within which we want to select the optimal material given
a number of possible candidates. A design subdomain may
be e.g. a layer in a finite element, a layer covering mul-
tiple elements, multiple layers within a single element, a
collection of elements for which the same material should
be chosen etc. The definition of design subdomains may
be chosen to coincide with the finite element discretization
but a design subdomain may also contain multiple elements
in a so-called patch. Patches may be used due to manu-
facturing reasons if it is not allowable to have changes in
material or fiber orientations at the level of the finite element
discretization.

Within each design subdomain a number of candidate
materials is given and the selection of these is parametrized
using a binary selection variable xij whose value determines
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the selection of a given material within the subdomain of
interest

xij =

⎧
⎪⎨

⎪⎩

1 if material i is chosen in design

subdomain j

0 if not

(1)

To be physically meaningful this variable should only attain
the values 0 or 1. However, this requirement leads to non-
linear binary/integer programming problems which would
limit the size of tractable problems significantly. A popular
technique for solving large scale instances of such prob-
lems is the so-called density approach; the variables are
treated as continuous and can attain intermediate values
during the optimization process. To obtain physically valid
integer solutions intermediate choices are made unfavor-
able by the use of penalization techniques. The advantage
is that gradient information can be used efficiently in the
search for a solution which significantly increases the size
of computationally tractable problems.

The number of candidate materials may differ between
the design subdomains, and thus the total number of design
variables n is given as the sum of the number of candidate

materials over all subdomains, n = ∑nd

j=1 nc
j . Typically, and

throughout this paper, we have the same number of candi-
date materials nc in all subdomains and therefore the total
number of design variables is simply given by n = ncnd .

2.1.1 Simultaneous topology and multi-material
optimization

The simultaneous topology and material selection problem
considers the following question in every design subdo-
main; which material, if any, should be chosen given a
number of possible candidates? It has been customary to
treat this question by having one variable controlling the
topology by scaling the contribution of the variables control-
ling the material selection, see e.g. Sigmund and Torquato
(1997) and Gibiansky and Sigmund (2000). We propose
to parametrize the topology question as follows. With the
parametrization from (1) in mind we know that at most
one material can be chosen in each design subdomain.
Thus, in every subdomain we allow at most one material
to be chosen, but we also allow no candidate to be cho-
sen. This condition is expressed by the following inequality
constraints.

nc
∑

i=1

xij ≤ 1, ∀ j (2)

Together with the constraints (1) this constraint ensures that
at most one material is chosen in each design subdomain. If

the sum of the binary selection variables is zero, none of the
corresponding materials have been chosen and a base mate-
rial (representing “void”) is chosen. If any variable entering
the sum attains one (i.e. the corresponding material is cho-
sen) the remaining variables necessarily must be zero for the
inequality to be satisfied.

2.1.2 Multi-material optimization

Requiring exactly one material to be chosen (and hence
not allowing holes) is imposed through a linear equality
constraint in each subdomain.

nc
∑

i=1

xij = 1, ∀ j (3)

Satisfying this constraint ensures that exactly one of the can-
didates i = 1, 2, . . . , nc is chosen and the remaining candi-
dates are automatically not chosen within the subdomain in
question.

2.2 Material parametrization

The effective material properties are parametrized using the
material selection variables. The effective mass density for
the j’th subdomain, ρj (x) ∈ R, is given by

ρj (x) = ρ0 +
nc

∑

i=1

xij�ρi j , ∀ j (4)

where �ρi j = ρi j − ρ0. As explained above the 0’th phase
typically is an ersatz material representing void. In case it is
massless, the void mass density is of course zero and con-
sequently �ρi j = ρi j . The nc materials with an associated
selection variable are the candidate materials among which
we want to choose. If a variable is 1 and (2) or (3) is fulfilled,
the effective mass density is that of the corresponding mate-
rial. If all variables are 0 the effective properties are those
of the 0’th phase, void.

Similarly the effective stiffness tensor is represented by
a symmetric matrix Ej (x) ∈ R

6×6

Ej (x) = E0 +
nc

∑

i=1

xij�Eij , ∀ j (5)

where �Eij = Eij − E0 ∈ R
6×6. Again phase 0 typically

is given properties representing or approximating those of
void, and the properties of the remaining phases are those of
the physical candidate materials. We assume that 0 ≺ E0 ≺
Eij from which it follows that �Eij := Eij − E0 � 0.
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With the proposed approach we can formulate both
multi-material selection problems, and simultaneous multi-
material and topology problems within the same para-
metrization with the only difference being if the sparse
linear constraints are inequality constraints (2) or equality
constraints (3).

Actually it is possible to parameterize multi-material
selection using (2) by letting one of the candidates be the
0’th phase and thereby save one design variable per design
subdomain. However, using the 0’th phase for a physical
candidate in combination with penalization is not invariant
with respect to phase ordering. Thus it is not advisable to
use this approach. It is also possible to parametrize simul-
taneous topology and material selection using (3) by letting
void be one of the phases that can be selected with an asso-
ciated variable. For the reasons explained above we choose
the unified parametrization since it leads to invariance with
respect to the ordering of the phases when penalization is
applied as shown later.

2.3 Original problem

The original problem is modeled as a non-convex mixed-
integer problem; the design variables physically can only
attain integer values, i.e. xij ∈ {0, 1}. We assume quasi-
static loading applied to the non-restrained nodes f ∈ R

d

where d is the number of non-restrained finite element
degrees of freedom. The unknown optimal nodal displace-
ments u ∈ R

d are continuous. We consider the problem

minimize
x∈Rn ,u∈Rd

c(x) = f T u(x) (6a)

subject to K (x)u = f (6b)
∑

i, j

xijρi Vj ≤ M (6c)

nc
∑

i=1

xij = 1 OR
nc

∑

i=1

xij ≤ 1, ∀ j (6d)

xij ∈ {0, 1}, ∀ (i, j) (6e)

where ρi is the mass density of material i , Vj is the
volume of the j’th design subdomain and M is a resource
constraint limiting the total mass of the structure. The
mass constraint is only relevant for multi–material prob-
lems where the candidate materials have different mass
density. In the case of pure fiber angle optimization modeled
using an orthotropic material oriented at a number of dis-
tinct directions as candidate materials, the mass constraint
is redundant. K (x) ∈ R

d×d is the design dependent (global

level) stiffness matrix. The stiffness matrix is parametrized
in the following manner

K (x) =
∑

j

Kj =
∑

j

∫

�j

BT
j Ej (x)Bj d�j (7)

where the summation denotes assembly of the stiffness
matrix. Ej (x) ∈ R

6×6 is the design dependent constitu-
tive tensor given in (5) and Bj is the standard finite element
strain-displacement matrix.

If K (x) is non-singular, the original non-convex 0–1
problem may be reformulated as a 0–1 problem with a
convex objective function in so-called nested form where
the nodal displacements are eliminated by use of the
equilibrium equations, i.e. u(x) = K (x)−1 f to obtain
an equivalent optimization problem in the design variables
x only.

2.4 Nested continuous problem formulation

We relax the binary requirement on the variables and
introduce material interpolations for the discrete material
parametrization as shown in Sections 3.1 and 3.2. The
relaxed problem we consider is given by

minimize
x∈Rn

c(x) = f T K (x)−1 f (8a)

subject to
∑

i, j

xijρi Vj ≤ M (8b)

nc
∑

i=1

xij = 1 OR
nc

∑

i=1

xij ≤ 1, ∀ j (8c)

xij ≥ 0, ∀i, j (8d)

where K (x) ∈ R
d×d is now the design dependent (global

level) stiffness matrix as shown in (7) with the interpolated
constitutive tensors Ej (x) as given in relation (9) or (12).
In the following section we describe the material interpo-
lation schemes in more detail. We use adjoint sensitivity
analysis for the objective function (8a), see e.g. Bendsøe
and Sigmund (2003) for details.

3 Material interpolation schemes

Material interpolation schemes allow intermediate material
choices during the solution process but should at the same
time penalize intermediate choices so as to obtain distinct
choices eventually honoring the original binary requirement
on the selection variables (1). It is often argued that the pop-
ular material interpolation schemes for certain parameter
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intervals violate variational bounds on the attainable prop-
erties of material mixtures, see discussion in Bendsøe and
Sigmund (1999). The use of interpolations is regarded as a
heuristic method that is viable as long as the final solution
honors the binary condition (for which there should be no
ambiguity regarding the effective properties). Intermediate
solutions are merely an artifact that we use to obtain distinct
solutions.

3.1 Multiphase “SIMP”

We put SIMP in quotation marks since the effective mate-
rial properties in our approach are not necessarily isotropic,
e.g. when interpolating between anisotropic materials. The
scheme is a direct generalization of the original scheme pro-
posed for interpolation between void and solid. We take
the discrete parametrization from (5) and raise the, now
relaxed, design variable to a power p ≥ 1. We keep the gen-
eralized upper bound constraints and obtain the following
interpolation scheme for the full constitutive tensor

E S
j (x) = E0 +

nc
∑

i=1

x p
ij

︸︷︷︸
wij

�Eij , p ≥ 1, ∀ j (9)

For p = 1 the sum of the weights controlling the contri-
bution from each stiffness phase add to unity if the design
variables do. For p > 1 intermediate material selections are
unfavorable since the total stiffness contribution is reduced
in the sense that the weights do not sum to unity for inter-
mediate choices, even if the design variables do. Thus
intermediate choices intrinsically are penalized.

Note that for nc = 1, the generalized scheme (9) reduces
to the well-known two-phase SIMP scheme. For this par-
ticular case, however, only the generalized upper bound
inequality (2) is relevant and requiring (3) would lead to
a trivial problem. The sensitivity of (9) with respect to a
design variable affecting the interpolation is

∂ E S
j (x)

∂xij
= px p−1

i j �Eij , ∀ i, j (10)

It follows that for p > 1 the sensitivity of the stiffness tensor
vanishes if the corresponding design variable is zero,

∂ E S
j

(
xij = 0

)

∂xij
= p0p−1�Eij = 0, p > 1, ∀ i, j (11)

3.2 Multiphase RAMP

In Stolpe and Svanberg (2001) the so-called RAMP scheme
was proposed as an alternative interpolation scheme for two-
phase topology optimization. The idea of the scheme is that

for isotropic two-phase interpolation a certain value of the
penalization parameter yields a concave objective function
increasing the probability of obtaining a distinct solution.
We propose a generalization to multiple materials similar to
the SIMP generalization (9).

The interpolation scheme for the constitutive tensor is
given by

E R
j (x) = E0 +

nc
∑

i=1

xij

1 + q
(
1 − xij

)

︸ ︷︷ ︸
wij

�Eij ,

q ≥ 0, ∀ j (12)

The effect of the penalization parameter q is analogous to
that of p in the SIMP scheme; it makes intermediate selec-
tions unfavorable by reducing the net material contribution
in the stiffness interpolation. The sensitivity of (12) with
respect to a design variable affecting the interpolation is

∂ E R
j (x)

∂xij
= 1 + q

(
1 + q

(
1 − xij

))2
�Eij � 0, ∀ i, j (13)

3.3 Penalizing effect

For both schemes the penalizing effect of feasible interme-
diate densities fulfilling (2) or (3) comes from the fact that
the sum of the penalized weights is less than unity. In the
following we address different issues affecting the penal-
ization and derive relations for the parameters such that it
is possible to control the amount of penalization and pre-
scribe comparably penalizing parameters for the SIMP and
the RAMP scheme, respectively. We compare the amount of
penalization for uniform mixtures; x̄i j = 1

nc , ∀i, j , whereby
all weights are equal.

3.3.1 Number of candidates

For a fixed penalization parameter the number of candi-
date materials has an influence on the sum of the penalized
weights. Thus, different values of the penalization param-
eters may be necessary to obtain comparable penalization
in problems with different number of candidate materials.
In the following we obtain relations between the number of
candidates and the sum of the weights for uniform mixtures.
Looking at the weights within a subdomain, the sum of the
weights for a uniform mixture with the SIMP scheme is

nc
∑

i=1

wi
(
x̄i j

) =
nc

∑

i=1

(
1

nc

)p

= nc
(

1

nc

)p

, p ≥ 1 (14)
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For p = 1 it is seen that the sum of weights equals unity.
For p > 1 the sum depends on the number of candidate
materials such that a larger number of candidates leads to
a smaller sum for fixed penalization p. Thus with many
candidates the penalization acts stronger compared to penal-
ization of fewer candidates. Similarly for the RAMP scheme
the uniform mixture weights sum as

nc
∑

i=1

wi
(
x̄i j

) =
nc

∑

i=1

1
nc

1 + q
(

1 − 1
nc

)

= 1

1 + q
(

1 − 1
nc

) , q ≥ 0 (15)

For q = 0 the uniform mixture weight sum is independent
of the number of materials whereas the penalized weight
sum (for q > 0) depends on the number of candidate mate-
rials. The effect of the number of candidates is equivalent to
the behaviour of the SIMP scheme.

3.3.2 SIMP/RAMP equivalent penalization

The effect of the penalization parameters in the generalized
SIMP and RAMP scheme, respectively, is different and in
order to compare the amount of penalization of the schemes
we now derive relations for the parameters that give the
same sum of weights for uniform mixtures of the phases.
This yields sets of parameters that give comparable amounts
of penalization for both schemes.

For a uniform mixture of materials x̄i j = 1
nc , ∀i, j , all

weights are equal. Now equating the weights in the SIMP
scheme to those in the RAMP scheme, we obtain a value for
the RAMP penalization parameter that yields the same sum
of the weights for uniform mixtures as the SIMP scheme
does,

(
1

nc

) p̄

=
1
nc

1 + q̄
(

1 − 1
nc

) ⇔ (16)

q̄ =
(

1
nc

)− p̄ − nc

nc − 1
(17)

The opposite expression for p̄ in terms of q̄ and nc is

p̄ = − ln
(
nc + ncq̄ − q̄

)

ln
(

1
nc

) (18)

These expressions can be used to assign sets of parame-
ter values yielding comparable penalization. In Fig. 1 we
show the sum of the penalized weights for nc = 2 for
a range of penalization parameters for both schemes. We
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Fig. 1 Sum of penalized stiffness weights for nc = 2 for the SIMP and
the RAMP interpolation scheme for various penalization parameters

use x1 + x2 = 1 to eliminate x2 and plot the sum of the
penalized weights, e.g. for the SIMP weights w1 + w2 =
x p

1 + x p
2 = x p

1 + (1 − x1)
p. Table 1 shows the result of (17),

i.e. the equivalent RAMP penalization parameter q̄ for var-
ious number of candidates nc and given SIMP penalization
parameters p̄.

From the table it is seen the value of q should be set
significantly higher than that of p in order to obtain compa-
rable penalization. As seen from Fig. 1 the RAMP scheme
seems to penalize mixtures over a larger range compared to
the SIMP scheme.

3.3.3 Remarks on penalization and continuation strategy

We start out solving a convex relaxation without any penal-
ization (i.e. p = 1 or q = 0) and use the result of this
problem as an initial guess for a penalized problem that
should yield a distinct material selection eventually. In the
problems solved in this paper, the solution to the convex
problem often has many variables within a subdomain equal

Table 1 Equivalent uniform mixture penalization; RAMP parameter
q̄ for given SIMP parameter p̄ and number of phases nc

nc p̄ 1 2 3 4 5

2 q̄ 0 2 6 14 30

3 q̄ 0 3 12 79.5 120

4 q̄ 0 4 20 254.7 340

5 q̄ 0 5 30 623.75 780
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to zero and non-zero values only for two or three of the
materials. Thus to penalize equally in the SIMP and the
RAMP scheme we select the equivalent penalization param-
eters obtained for nc = 2 instead of those for the actual
number of candidate phases. In case of use of the schemes
for problems where experience shows other behavior, it may
be useful or necessary to adjust the penalization parameters
accordingly.

We first solve the convex problem to optimality (see next
section) and then use this solution as a starting guess in a
penalized subproblem where we raise the SIMP penaliza-
tion p to 2 then 3 and finally 4. For the RAMP scheme we
increase q to 3 then 6 and finally 14. All subproblems are
solved to optimality which is usually around 60–70 itera-
tions for the convex problem and typically less than 20 for
each of the penalized problems.

3.4 Implementation

The procedure proposed in this paper is implemented in
our in-house finite element and optimization code MUST
(MUltidisciplinary Synthesis Tool) mainly written in
Fortran 90. MUST takes a finite element discretization as
input from e.g. ANSYS and together with a few additional
lines of information defining the optimization problem, the
problem is set up.

All examples solved in this paper are discretized using
nine-node degenerated shell elements with five degrees of
freedom per node (three translational and two rotational),
see e.g. Ahmad et al. (1970) and Panda and Natarajan
(1981). For purely plane problems such elements are unnec-
essarily complicated and computationally expensive, but
these examples illustrate that the proposed approach is able
to solve the material distribution problem within the plane
of the structure as well as through the thickness in layered
structures. Note that the method may be used with any kind
of finite elements.

The optimization problems are solved using the sequen-
tial quadratic programming algorithm SNOPT 7.2-9 (Sparse
Nonlinear OPTimizer), see Gill et al. (2005, 2008). SNOPT
uses first-order gradient information and exploits sparsity in
the problem in combination with a limited-memory quasi-
Newton approximation to the Hessian of the Lagrangian.
Linear mass and material selection constraints are treated as
such which is utilized within SNOPT in the sense that linear
constraints are always satisfied before calling the non-linear
functions. In SNOPT default parameter settings are used
except for the so-called “New Superbasics Limit” which
is set to 100.000, the “Major iterations limit” to 200, the
“Minor iterations limit” to 10.000, and we explicitly specify
“QPSOlver CG”. The “Major optimality tolerance” is set to
2.0 · 10−4.

4 Illustrative example

The following example demonstrates properties of the mate-
rial interpolation schemes proposed in this paper and illus-
trates the effect of penalization. We investigate the influence
of the penalization in combination with the applied load-
ing and candidate materials on the likelihood of obtaining a
distinct material selection.

Usually for solid void topology optimization the ability
of the SIMP (and RAMP) scheme to obtain 0/1 solutions
is attributed to its penalized stiffness relative to the full
contribution in the mass/volume constraint at intermediate
densities. However, the situation is quite different if we are
to select between different materials with the same mass
density but different directional properties, i.e. anisotropic
or orthotropic materials.

The following example is constructed so as to remove the
influence of the mass constraint completely; both materials
have the same mass density and thus the mass constraint
plays no role. Furthermore the two candidate materials
are instances of the same orthotropic material but oriented
differently. The idea is to study different stress states for
which we know the optimal solution in terms of a distinct
material choice and observe which solution the interpolation
schemes would lead to.

Consider the bi-axial plane stress state as shown in Fig. 2.
Different characteristic stress states are obtained by vary-
ing the principal stress ratio; −1 ≤ σII

σI
≤ 1. The design

problem that we address is that of choosing between two
distinct orientations of an orthotropic material. This prob-
lem we regard as a material selection problem with two
candidate materials in the sense that each material orien-
tation represents a candidate material. The first candidate
material that we consider is an orthotropic material with its
principal material direction coincident with the first princi-
pal stress direction (i.e. θ = 0◦) and the second candidate
material has the principal material direction coincident with
the second principal stress direction (θ = 90◦). The compli-
ance of the structure is directly linked to the pointwise stress
energy density

uc(x1
) = 1

2
σ T E

(
x1

)−1
σ (19)

σI

σI

σII

σII

θ

Fig. 2 Bi-axial stress states with coordinate system
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Now, for a given stress state σ and two candidate materials
we explore the design space for different interpolations. We
want to investigate the interpolation scheme in terms of it’s
behaviour when selecting between two materials and thus
we eliminate the topology question by requiring (3) to hold.
This furthermore makes it possible to eliminate one variable
whereby the problem is parametrized in x1 only. Thus, x1 =
1 means that the orthotropic material oriented at θ = 0◦
is chosen and for x1 = 0 the same material at θ = 90◦
is chosen.

4.1 SIMP scheme

Using the simplifications described above the generalized
SIMP scheme in (9) reduces to

E
(
x1

) = x p
1 E0◦ + (

1 − x1
)p

E90◦ (20)

For p > 1 the sum of the weighting of the individual
phases is less than or equal to one, w1 + w2 ≤ 1 for
0 < x1 < 1. Thereby mixtures are penalized in the
sense that the amount of stiffness contributing material
effectively is reduced. In Fig. 3 the resulting stress energy
density is shown for different principal stress ratios and

different values of the penalization parameter p. From
the figure we observe a number of properties for this
scheme

– For a distinct material selection, i.e. x1 = 0.0 or x1 =
1.0 the scheme yields the same objective function value,
regardless of the value of p.

– For p = 1.0 the compliance is convex in x1. For all

loads except the uni-directional load
(

σII
σI

= 0.0
)

, the

optimum is a mixture.
– For large p the compliance level generally is higher for

mixtures. This is due to the fact that the weights on the
phases do not sum to unity meaning that intermediate
choices also encompass choosing less material in total.

– For large p the compliance is non-convex with several
local minima and hence a non-integer point may be a
local optimum.

– The scheme is indifferent with respect to ordering of
the phases, i.e. the ordering does not bias the tendency
to select any of the phases over the other.

Note that for a plane problem as is the case here, E
may be interpreted as the equivalent membrane stiffness
of a material consisting of two layers, one with material

Fig. 3 Stress energy density for
different fixed bi-axial stress
states obtained using the SIMP
interpolation (20)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

p = 1  (Voigt) p = 2 p = 3 p = 5



Material interpolation schemes for unified topology and multi-material optimization

Fig. 4 Stress energy density for
different fixed bi-axial stress
states obtained using the RAMP
interpolation (21)
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E0◦ , the other with material E90◦ , of thicknesses x p
1 and

(1 − x1)
p, respectively. For p > 1 the total thickness of

the layers is less than unity for intermediate designs, and
thereby penalization favors distinct choices since only dis-
tinct choices achieve unit total thickness. For p = 1 the
total thickness adds to unity and the design variables may be
interpreted directly as the layer thicknesses and for this case
the parametrization itself does not penalize intermediate
thicknesses.

4.2 RAMP scheme

Using the equality selection constraint (3) the RAMP
scheme in (12) reduces to

E
(
x1

) = x1

1 + q
(
1 − x1

) E0◦ + 1 − x1

1 + qx1
E90◦ (21)

where q ≥ 0 is the penalization parameter used to make
intermediate choices unfavorable. The observations made
for the SIMP scheme carry over to the RAMP scheme,
see Fig. 4 for plots of resulting stress energy density for
different fixed bi-axial stress states. Actually, for q = 0 the
RAMP scheme is identical to the SIMP scheme for p = 1.
The overall shapes of the curves are similar except for some

minor differences in slope and curvature near 0 and 1 where
the RAMP scheme in general is steeper. Note that the curves
shown take into account the sum to unity equality constraint
eliminating x2, and thereby the slope of the curves rather
represents the reduced gradient than the pure derivative
wrt. x1. Therefore the expected vanishing slope of the SIMP
scheme is not observed at x1 = 0.

5 Numerical examples

In the following we describe numerical examples illus-
trating the possibilities using the new generalized multi-
material interpolation schemes. In particular we address the
ability of the schemes to obtain discrete solutions and com-
pare the solutions obtained using the two new schemes.
We show how it is possible to formulate and solve opti-
mal orientation of orthotropic materials that are limited
to a number of distinct directions. Furthermore we show
examples of simultaneous material selection and orientation
between multiple different materials where some of them
may be anisotropic or orthotropic. Some of the examples
addressed in this paper were investigated in an earlier paper
by the authors using quadratic penalization of intermediate
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Fig. 5 Left: Domain geometry
and boundary conditions. Loads
act independently.
Right: Material properties in
principal material coordinate
system for the candidate
materials

2.0 m

4.0 m

P1

P2 t = 0.5 · 10−3m

Orthotropic

E x [Pa] 34.0 · 109

E y [Pa] 8.2 · 109

E z [Pa] 8.2 · 109

G xy [Pa] 4.5 · 109

G yz [Pa] 4.0 · 109

G xz [Pa] 4.5 · 109

vxy 0.29
ρ [kg/ m 3] 1910.0

densities to obtain distinct solutions (Hvejsel et al. 2011).
Results are presented in Section 6.

5.1 Plane two load case example

This example illustrates simultaneous topology and discrete
orientation optimization on a plane continuum subjected to
two independent load cases of equal importance and loads
with equal magnitude (|P1| = |P2|) and was originally
proposed by Bendsøe et al. (1995). The multiple load case
extension is treated using a weighted sum formulation of
the individual load case compliances. In both load cases
the structure is hinged at all corners (ui = 0), see Fig. 5.
The physical domain in which the material is distributed is
a rectangular domain with dimensions 4.0 m×2.0 m×0.5 ·
10−3 m. The domain is discretized by 40 × 20 elements
and in each element four candidate materials are possible.
The four candidate materials represent the same orthotropic
material oriented at four distinct directions, −45◦, 0◦, 45◦
or 90◦. We set the mass constraint such that material can be
chosen in 32.7% of the domain (i.e. 261.8 elements) mean-
ing that void must be chosen in the remaining elements. The
constitutive properties of the orthotropic material are given
in material coordinate system in the table of Fig. 5.

5.2 Layered composite multi-material plate

This example illustrates multi-material design optimization
with a lightweight polymeric foam and a limited amount
of heavy and stiff orthotropic material oriented in four
predefined distinct directions.

The candidate materials are the same as in Section 5.1 but
the design domain consists of a quadratic plate within which
we want to distribute and orient the materials, see Fig. 6.

5.3 Clamped membrane

This example is a plane problem which we treat first as an
optimal orientation selection problem and subsequently as

a simultaneous topology and optimal orientation problem.
The problem has previously been solved in Bruyneel (2011)
who used a finite element shape function parametrization
(SFP) to select between multiple materials and a separate
topology density variable. The problem consists of a plane
domain as shown in Fig. 7.

5.3.1 Discrete orientation selection

First we address the problem of choosing the optimal dis-
tinct orientation out of four possible at which an orthotropic
material may be oriented, −45◦, 0◦, 45◦ or 90◦. Each
direction is considered a distinct material and the mass
constraint is redundant for this problem. Thus we solve the
optimization problem using the equality constraint in (3).

5.3.2 Simultaneous topology and discrete orientation
optimization

This problem solves the orientation problem as well as the
topology problem with a constraint on the total amount of
available material. The total amount of material is limited
such that material can only be present in 11 out of the
16 design subdomains, and in each design subdomain we
include the possibility of choosing no material as modeled
by the inequality constraint in (2).

1.0 m

1.0 m

P

t=0.01 m

Fig. 6 Eight layer corner-hinged plate with point load applied at the
center. See Fig. 5 for material properties
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Fig. 7 Left: Problem sketch of
plane domain clamped at left
edge and loaded vertically
downward at lower right corner.
Note that finite element
discretization differs from
design discretization indicated
in greyscale. Right: Material
properties for clamped
membrane example from
Bruyneel (2011)

Orthotropic

E x [Pa] 146.86 · 109

E y [Pa] 10.62 · 109

E z [Pa] 10.62 · 109

G xy [Pa] 5.45 · 109

G yz [Pa] 3.99 · 109

G xz [Pa] 5.45 · 109

vxy 0.33
ρ [kg / m 3] 1600.0

Fig. 8 Two load case plane
disc, SIMP solution:
interpolated mass density and
chosen fiber orientation,
penalized compliance (p = 4):
26.12. Please note that in this
plot the lightest grey
corresponds to orthotropic
material with a bit of void.
Compare density scale with that
in Fig. 9

 1.910E+003

 1.887E+003

 1.864E+003

 1.841E+003

 1.818E+003

 1.796E+003

 1.773E+003

 1.750E+003

 1.727E+003

Fig. 9 Two load case plane
disc, RAMP solution:
interpolated mass density and
chosen fiber orientation,
penalized compliance (q = 14):
26.32. Please note that in this
plot the lightest grey
corresponds to a bit of
orthotropic material mixed with
void. Compare density scale
with that in Fig. 8

 1.910E+003

 1.704E+003

 1.497E+003

 1.291E+003

 1.085E+003

 8.787E+002

 6.724E+002

 4.662E+002

 2.599E+002
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Fig. 10 Identical SIMP (left)
and RAMP (right) solution in
layer 1 (and 8): interpolated
mass density and chosen fiber
orientation

6 Results

6.1 Plane two load case example

The topology and material directions obtained using the pro-
posed interpolation schemes are shown in Figs. 8 and 9,
respectively. The interpolated mass density and the chosen
direction of the orthotropic material is indicated in elements
with orthotropic material. Elements where all design vari-
ables are at their lower bound are removed to clarify the
topology of the structure.

It is seen that the topologies are virtually identical and for
both solutions the convergence to a distinct material selec-
tion is quite clear. The SIMP scheme obtains a more distinct
solution compared to the RAMP solution. A non-distinct
interpolated mass density is only observed in a few elements
in both solutions and the reason for this is that the mass con-
straint is set (more or less arbitrarily) to a value in between
the distinct jumps corresponding to the mass increase when
switching one element from void to material. Thus, the algo-
rithm employs material until the mass constraint is active

in order to gain the stiffness increase obtained by choosing
more of the heavy material. Mixture between orthotropic
materials of same mass density is not visible by inspection
from the given figures, but from the underlying results it is
seen that all elements with orthotropic material fully contain
the indicated one. Since the solutions have converged almost
to 0/1 solutions, the penalized compliance is comparable to
the non-penalized compliance.

A similar example was addressed by Bendsøe et al.
(1995), Hörnlein et al. (2001) and Bodnár (2009), where
the design problem was investigated using Free Material
Optimization (FMO). The results obtained using FMO are
not directly comparable to those obtained in this paper
due to the full freedom of design of the material tensor in
FMO compared to the setting of DMO where the design is
restricted to a set of physically available materials. Never-
theless, the results obtained here have similarities to those
obtained by FMO in the sense that stiff material is chosen
in the same areas where the FMO results indicate a need
for stiffness, and also the fiber orientations obtained here
resemble those shown by Bodnár (2009).

Fig. 11 SIMP (left) and RAMP
(right) solution in layer 2;
light grey: pure foam,
dark grey: mixture of foam
and orthotropic material,
black: pure orthotropic material
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Fig. 12 Discrete orientation
selection. Left: SIMP/RAMP
solution. Right: SFP solution
from Bruyneel (2011) evaluated
using our code

SIMP/RAMP, c(x) = 2.63592 Bruyneel-SFP, c(x) = 2.65219

6.2 Layered composite multi-material plate

We use the same conventions for plotting the solution as for
the previous example. In the four innermost layers the light
and compliant foam material has been chosen throughout
as expected. In Fig. 10 we see the outer layers (symmet-
ric) where it is observed that the stiff material is chosen
throughout and at the same time oriented so as to make use
of the orthotropy. Note that the sandwich structure with stiff
outer layers and a compliant core comes out as a result of the
optimization. This result agrees well with the expectations
for a stiffness optimal lightweight structure for bending.

In most elements the material choice has converged to a
distinct solution. In terms of material distribution and ori-
entation the RAMP solution is perfectly symmetric around
all planes of symmetry, see right column of Figs. 10 and 11.
Almost all elements contain a distinct material selection and
the only non-distinct elements are found in layer 2 and 7
where a few elements symmetrically arranged around the
region of stiff material contain mixture of light and stiff

material, see Fig. 11(right). The SIMP solution is very sim-
ilar to the RAMP solution but slightly more converged in
terms of distinct material selection where the elements that
contained mixture in the RAMP solution now have become
distinct at the price of breaking the perfect symmetries, see
Fig. 11(left). Both designs have almost the same objective
function.

6.3 Clamped membrane

6.3.1 Discrete orientation selection

For this problem the SIMP and the RAMP solution are
identical and the solution in terms of orientation of the
orthotropic material is shown in Fig. 12. The solution is
slightly different from the one obtained by Bruyneel (2011).
The reason for this may be the differences in the finite
element formulations employed in either approach. To com-
pare with the solution obtained by Bruyneel we reevaluated

Fig. 13 Simultaneous topology
and discrete orientation
selection. Left: SIMP/RAMP
solution. Right: SFP solution
from Bruyneel (2011) evaluated
using our code

SIMP/RAMP, c(x) = 3.19710 Bruyneel-SFP, c(x) = 4.68823
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the design presented in Bruyneel (2011) using our finite ele-
ment code; the result was that Bruyneels solution performed
slightly worse than the one obtained using the approach
presented in this paper. It is perfectly possible that the
solution obtained by Bruyneel is the optimal solution for the
finite element formulation employed in that paper. There-
fore one should be cautious drawing conclusions about the
merits of either approach. The optimal solution depends on
the finite element formulation employed and therefore it is
difficult to draw conclusions about the methods based on
this comparison only.

6.3.2 Simultaneous topology and discrete orientation
optimization

As for the previous solution the SIMP and the RAMP
solution are identical. This example was also solved by
Bruyneel, but this time our solution differs more than in
the previous problem. In Fig. 13 both solutions are shown
and differences are observed in the topology as well as in
the material orientation in the coincident elements. Again
we have reevaluated the design from Bruyneel (2011) using
our finite element code, and this time the performance
is significantly different. The solution obtained using our
approach outperforms the one using the SFP approach pri-
marily due to a better topology where our solution makes
better use of the support on the left edge by placing material
there instead of adding material above the diagonal stair-like
connection.

7 Conclusion and future work

This paper has presented natural generalizations of the
well-known two phase material interpolation schemes so
as to include any number of possibly anisotropic mate-
rials/phases. The generalization of the SIMP and RAMP
schemes to multiple phases is made possible through a
large number of linear (in-)equality constraints that ensure
that at most one (2) or exactly one (3) material is cho-
sen in each design subdomain. This modeling of the
problem is viable using modern optimizers that handle the
many sparse linear constraints efficiently. The presented
parametrization enables topology design combined with
discrete material optimization within the same problem for-
mulation and changing from one type to the other only
requires a change of the linear equality constraints to linear
inequality constraints, or vice versa.

The penalizing effect of the new schemes has been ana-
lyzed in the setting of equal mass density orthotropic mate-
rials subject to different states of stress, and the penalizing
effect is attributed to the fact that the sum of weights is less

than unity for the penalized problems and hence intermedi-
ate densities are prevented. An alternative to the approach
presented in this paper could be to require the weights (the
penalized design variables) to sum to unity. However, this
would destroy the linearity of the constraints and possi-
bly the penalizing effect. This formulation has not been
investigated further but it is known from the original DMO
weighting schemes that distinct choices are more difficult
for schemes with the sum to unity property, see Lund and
Stegmann (2005) and Stegmann and Lund (2005).

Dual algorithms in combination with convex separable
approximations such as the method of moving asymptotes
(MMA), see Svanberg (1987, 2002), have been the natural
choice for two-phase topology optimization problems with
a large number of variables and few constraints. The large
number of sparse linear constraints in the present approach
should be possible to treat efficiently with such algorithms
as it is done in e.g. SNOPT. To the authors’ best knowl-
edge no such MMA implementation currently exists and it
could be interesting to see how the parametrization shown
in this paper behaves numerically using MMA-like optimiz-
ers modified to handle the many sparse linear constraints.
Another alternative could be to use interior-point methods
such as IPOPT, see Wächter and Biegler (2006).

The presented generalization of the SIMP and the RAMP
schemes to an arbitrary number of phases opens up for
a large number of possibilities for topology and multi-
material design optimization. Many of the ideas and devel-
opments from two-phase topology optimization in terms
of governing physics, problem formulations, solution tech-
niques, regularization/filtering, etc. may now be extended
directly to multi-material problems.
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