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ABSTRACT

Recently, optimal linearly constrained minimum variance (LCMV)
filtering methods have been applied for fundamental frequency es-
timation. Like many other fundamental frequency estimators, these
methods utilize the inverse covariance matrix. Therefore, the co-
variance matrix needs to be invertible which is typically ensured by
using the sample covariance matrix involving data partitioning. The
partitioning adversely affects the spectral resolution. We propose a
novel optimal filtering method which utilizes the LCMV principle
in conjunction with the iterative adaptive approach (IAA). The IAA
enables us to estimate the covariance matrix from a single snapshot,
i.e., without data partitioning. The experimental results show, that
the performance of the proposed method is comparable or better than
that of other competing methods in terms of spectral resolution.

Index Terms— Fundamental frequency estimation, optimal fil-
tering, iterative adaptive approach.

1. INTRODUCTION

There exists a multitude of signal processing applications in which
the fundamental frequency is an essential parameter. A few exam-
ples are, e.g., parametric coding of audio and speech, automatic mu-
sic transcription, musical genre classification, tuning of musical in-
struments, separation and enhancement of audio and speech sources,
etc. Due to the importance of knowing the fundamental frequency,
numerous of approaches and methods have been proposed for esti-
mating this parameter. For a few examples of such estimators see,
e.g., [1–7] and the references therein.

We will now introduce the problem of fundamental frequency
estimation. The reasoning behind describing audio and speech sig-
nals by the fundamental frequency, among other parameters, is that
audio and speech signals are quasi-periodic. That is, for a lim-
ited amount of signal samples, we can safely assume that for n =
0, . . . , N − 1

x(n) =
L∑

l=1

αle
jlω0n + w(n) , (1)

where L is the number of harmonics, αl = Ale
jφl with Al > 0 and

φl denoting the real amplitude and the phase of the lth harmonic,
ω0 is the fundamental frequency and w(n) is complex noise. We
assume that the model order L is known, hence, the fundamental
frequency estimation problem is to estimate ω0 from (1). While not
considered in this paper, the model order assumption can easily be

avoided by using a model order estimator [8,9] or even by doing the
model order and fundamental frequency estimation jointly [7].

Many of the aforementioned fundamental frequency estimators
(e.g., optimal filtering techniques and subspace-based methods) uti-
lizes the covariance matrix inverse [7], hence, in such estimators the
covariance matrix must be invertible. In consequence of that, the co-
variance matrix must be full-rank. Typically, this is ensured by using
the sample covariance matrix

R̂ =
1

N −M + 1

N−1∑
n=M−1

x(n)xH(n) , (2)

where x(n) =
[
x(n) · · · x(n−M + 1)

]T
and M < N

2
+ 1.

It is well-known that the spectral resolution depends on the sample
length. That is, the resolution is decreased by the data partitioning
embedded in (2).

Recently, however, the iterative adaptive approach (IAA) was
proposed [10, 11], which can be used for covariance matrix and
spectrum estimation. There is no data partitioning in this method,
i.e., the covariance matrix is estimated iteratively from only a single
snapshot. In this paper, we will propose to use a covariance matrix
estimate, obtained by using the IAA, in conjunction with an optimal
filtering method for fundamental frequency estimation. Note that the
IAA could be used in conjunction with other covariance based fun-
damental frequency estimators as well. Since our method operates
on a single snapshot of data, we can expect that our proposed opti-
mal filtering method has a higher spectral resolution compared to the
optimal filtering method in [7].

The remainder of the paper is organized as follows. In Section
2, we briefly review the optimal filtering method for fundamental
frequency estimation and propose to use it in conjunction with the
IAA. In Section 3, we present some experimental results obtained
from quantitative experiments. Finally, in Section 4 we conclude on
our work.

2. OPTIMAL FILTERING METHOD UTILIZING THE
ITERATIVE ADAPTIVE APPROACH

2.1. Fundamental Frequency Estimation using Optimal Filter-
ing

First, we will briefly review the concept of using an optimal fil-
tering method for fundamental frequency estimation. This concept
was introduced in [12] and is based on an optimal harmonic LCMV
(hLCMV) filter. Consider M time-reversed samples from (1) in vec-
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tor format

x(n) =
[
x(n) x(n− 1) · · · x(n−M + 1)

]T
, (3)

for n = M − 1, . . . , N − 1. We introduce the FIR filter h =[
h(0) · · · h(M − 1)

]H
, from which the output is given by

y(n) = hHx(n) . (4)

The output power of the filter is the defined as

E{|y(n)|2} = hHRh , (5)

where R = E{x(n)xH(n)}. The optimal filter response is found,
by using the LCMV principle. That is, we design the filter to have a
unit gain at the harmonic frequencies while having maximum noise
suppression

min
h

hHRh s.t. hHz(lω0) = 1 , (6)

for l = 1, . . . , L,

where z(ω) =
[
1 e−jω0 · · · e−j(M−1)ω0

]T
. The well-know

solution to this optimization problem is

ĥ = R−1Z(ω0)
(
Z(ω0)

HR−1Z(ω0)
)−1

1 , (7)

with Z(ω0) =
[
z(ω0) · · · z(Lω0)

]
. We can then obtain an

estimate of the fundamental frequency by inserting (7) into (5) and
maximize the output power as

ω̂0 = argmax
ω0

1H
(
ZH(ω0)R

−1Z(ω0)
)−1

1 . (8)

The covariance matrix R is replaced by (2). Recall, that for R to be
invertible, it is required that M < N

2
+ 1. In this paper, we propose

instead to use a covariance matrix estimate obtained by using the
iterative adaptive approach. In this method, the covariance matrix
can be estimated from a single snapshot, i.e., we can obtain an N×N
covariance matrix estimate.

2.2. Covariance Matrix Estimation using the Iterative Adaptive
Approach

The iterative adaptive approach (IAA), proposed in [11], is a method
for estimating the spectral amplitudes. In the estimation procedure,
a WLS cost-function [13] is minimized

α̂k = argmin
αk

(x(n)− αkz(ωk))
H Q−1(ωk) (x(n)− αkz(ωk))

(9)

where Q(ωk) is the noise covariance matrix defined as

Q(ωk) = R− |αk|2z(ωk)z
H(ωk) . (10)

In the IAA, the covariance matrix is approximated by the well-
known covariance matrix model [9]

R̃ = Z̄(ω)P̂Z̄H(ω) , (11)

where ω =
[
0 2π 1

K
· · · 2πK−1

K

]
is the K-point frequency

grid. The matrices Z̄(ω) and P̂ are defined as

Z̄(ω) =
[
z(ω(0)) · · · z(ω(K − 1))

]
(12)

P̂ = diag
{[|α̂0|2 · · · |α̂K−1|2

]T}
, (13)

α̂k =
zH(ω(k))x(n)

N
, k = 0, . . . ,K − 1

repeat
R̃ = Z̄(ω)P̂Z̄H(ω)

for k = 0, . . . ,K − 1

α̂k =
zH(ω(k))R̃−1x(n)

zH(ω(k))R̃−1z(ω(k))
P̂k = |α̂k|2

end
until (convergence)

ω̂0 = argmax
ω0

1H
(
ZH(ω0)R̃

−1Z(ω0)
)−1

1

Table 1. The optimal filtering method for ω0 estimation utilizing the
IAA

where |α̂k|2 = P̂k. Minimizing (9) with respect to αk yields

α̂k =
zH(ωk)Q

−1(ωk)x(n)

zH(ωk)Q−1(ωk)z(ωk)
. (14)

By using the matrix inversion lemma it turns out that we can simplify
(14) as

α̂k =
zH(ωk)R̃

−1x(n)

zH(ωk)R̃−1z(ωk)
. (15)

Note, however, that to estimate the covariance matrix using (11),
we need an estimate of the spectral amplitudes (15) and vice versa.
The estimation is therefore performed iteratively initialized by the
periodogram estimate. For most applications, 15 iterations is enough
[11].

2.3. Proposed Optimal Filtering Method Utilizing the Iterative
Adaptive Approach

In the proposed filtering method, we use the filter design in (7) where
we replace the covariance matrix with the estimate in (11). This
result in the optimal harmonic IAA (hIAA) filter

h̃ = R̃−1Z(ω0)
(
Z(ω0)

HR̃−1Z(ω0)
)−1

1 . (16)

We could also use the noise covariance matrix Q instead of R in
(16) which is intuitively more correct, i.e.,

˜̄h = Q̃−1(ω0)Z(ω0)
(
Z(ω0)

HQ̃−1(ω0)Z(ω0)
)−1

1 . (17)

We can write the IAA-based noise covariance matrix estimate as

Q̃(ω0) = R̃− Z(ω0)P̂sZ
H(ω0) , (18)

where P̂s is a diagonal matrix containing the estimated powers of
the harmonics. By making use of the matrix inversion lemma, it can
then be shown that

h̃ = ˜̄h . (19)

Since the two filter designs are identical for the problem at hand,
we will just use the design in (16) which is simpler. In Table 1 it
is shown how we can use the optimal hIAA filter to estimate the
fundamental frequency.
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Fig. 1. Fundamental frequency estimation MSE as a function of the
grid size used in estimation of the covariance matrix with N = 40.
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Fig. 2. Fundamental frequency estimation MSE as a function of the
grid size used in estimation of the covariance matrix with N = 80.

As it can be seen, the estimate is obtained by maximizing the
expected filter output power over a set of candidate frequencies. If a
fine estimate is required, a relatively coarse set of candidate frequen-
cies can be chosen whereupon the coarse fundamental frequency es-
timate is refined using a gradient search. The gradient, needed in
that respect, is given by

gω0 = −2Re{1H(ZHR̃−1Z)−1ZHR̃Y(ZHR̃−1Z)−11} , (20)

where [Y]pq =
[

∂
∂ω

Z
]
pq

= −j(p− 1)qe−jω0q(p−1).

3. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation of the pro-
posed method. Note that in all simulations we estimate the funda-
mental frequency over a relatively coarse grid and refine the estimate
using (20) in a steepest-descent algorithm with exact line search.
First, we investigated how to choose the frequency grid size when
estimating the covariance matrix using (11). To investigate this, we
performed a series of Monte-Carlo simulations where we varied the
frequency grid size. For each grid size we conducted 500 Monte-
Carlo simulations. To evaluate the average error of doing the dis-
cretization in (11), we chose a random fundamental frequency in all
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Fig. 3. Fundamental frequency estimation MSE as a function of the
sample length N .
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Fig. 4. Fundamental frequency estimation MSE as a function of the
fundamental frequency ω0.

simulations for a certain grid size. The random fundamental fre-
quency was sampled from a uniform distribution U(0.4, 0.5). The
model order was set to L = 3, the sample length was N = 40 and
the SNR, defined as

SNR = 10 log10

∑L
l=1 |αl|2
σ2
w

, (21)

was 20 dB (σ2
w is the noise variance). The results from this series of

simulations are shown in Fig. 1. From the results it can be seen that
for this particular setup, a grid size of K ≈ 600 frequency points is
enough. Note also, that the MSE is following but not reaching the
Cramér-Rao lower bound (CRLB). This is common, however, for
the inverse covariance based methods [7]. The depicted CRLB is the
asymptotic CRLB [14]

CRLB(ω0) ≈ 6σ2
w

N3
∑L

l=1 A
2
l l

2
. (22)

The same simulations were conducted when N = 80 and the results
from these simulations are depicted in Fig. 2. For the case with
N = 80, K ≈ 1000 is enough. The important thing to note is, that
when we increase the number of samples N we also need to increase
the number of frequency grid points K, to achieve the maximum
possible performance.
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Fig. 5. Fundamental frequency estimation MSE as a function of the
fundamental frequency spacing Δ in a two-source scenario.

We also compared the proposed method with the harmonic WLS
(hWLS) [1], the harmonic LCMV (hLCMV) [7], the harmonic ap-
proximate NLS (hANLS) [7], and the harmonic MUSIC (hMUSIC)
methods [7]. For example, we compared the methods for different
sample lengths. For each sample length we conducted 500 Monte-
Carlo simulations and in each simulation ω0 was sampled randomly
from U(0.42, 0.43). The remaining setup was: L = 3, SNR = 20 dB
and K = 2000. The results from this series of simulations are shown
in Fig. 3. First, we note that the hANLS method shows an erratic be-
haviour for these small sample lengths and is thereby outperformed
by the other methods. The hIAA method outperforms the hLCMV
method for all Ns, which is also expected since it has more degrees
of freedom in the filter. Finally, we note that hMUSIC and hWLS
performs best for N < 25 while for N ≥ 25 hIAA, hWLS and
hMUSIC show the same performance. Also we note, that for high
Ns all methods seem to closely follow the CRLB. Then we com-
pared the methods for different values of the fundamental frequency.
A series of Monte-Carlo simulations were conducted with 500 sim-
ulations for each fundamental frequency. In each simulation K was
sampled randomly from Ud(2000, 3000) (Ud(x1, x2) is the discrete
uniform distribution taking integer values in the interval from x1 to
x2). The remaining set up was: N = 35, L = 3 and SNR = 20 dB.
The results from this experiment are depicted in Fig. 4. Again we
note that hANLS is unreliable for the given setup. The hIAA shows
an improvement compared to hLCMV for ω0 < 0.4. For low fun-
damental frequencies (ω0 < 0.3), hIAA and hWLS outperforms the
other methods, while for ω0 > 0.4 all methods except hANLS show
the same performance. The results indicate that the proposed method
(along with hWLS and hMUSIC) has a better spectral resolution than
hLCMV. Finally, we compared hIAA, hLCMV, hANLS and hMU-
SIC in a scenario with two harmonic sources. The two sources both
had L = 3 harmonics each with unit amplitudes. We then conducted
a series of Monte-Carlo simulations for different spacings of the fun-
damental frequencies of the two sources (500 simulations for each
frequency spacing). In each simulation, the number of samples was
N = 80 and the SNR was 40 dB. The results from these simulations
are shown in Fig. 5. For Δ > 0.05 the proposed method clearly
outperforms the other methods.

4. CONCLUSION

In this paper, we proposed a new optimal filtering method for esti-
mating the fundamental frequency of a (quasi-)periodic signal. The

proposed method is an optimal LCMV filtering method which oper-
ates on single data snapshot. This is possible, because we estimate
the covariance matrix using the iterative adaptive approach (IAA).
By filtering on a single data snapshot rather than having to partition
the data vector as in the filtering methods in [7], we obtain a bet-
ter spectral resolution. The claim on increased spectral resolution
was supported by the simulation results. The results showed that for
small numbers of samples, low fundamental frequencies, and small
frequency spacings in a two-source scenario, the proposed method
clearly outperforms the optimal LCMV filtering method in [7]. This
was also expected since the proposed method is an improvement of
this method. Furthermore, for small number of samples and low
frequencies, the proposed methods performance is comparable with
that of the harmonic MUSIC and harmonic WLS methods. In a two-
source scenario it outperforms all the methods in the comparison
above the frequency spacing threshold.
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