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ABSTRACT

In this paper, we consider the problem of joint direction-of-arrival
and order estimation in array processing with compressed sensing.
In particular, we show how to solve these problems jointly using a
subspace approach based on the notion of angles between subspaces.
In the process, we also discuss the conditions on the measurement
matrix and demonstrate how to implement the estimator algorithm
efficiently when using compressed sensing. Our simulation results
show that it is indeed possible to solve these problems and that good
performance can be obtained, although the use of compressed sens-
ing does have an impact on the performance of the estimator.

Index Terms— Direction of arrival estimation, spectral analy-
sis, frequency estimation, array signal processing

1. INTRODUCTION

A classical problem in array signal processing is that of determining
the direction-of-arrival (DOA) of sources impinging on the array,
and many methods have been proposed throughout the history, in-
cluding such prominent work as [1–3]. We are here also interested
in this problem, but in a new context, namely that of compressed
sensing [4, 5], wherein measurements are formed as random linear
combinations of the sensor inputs. In this context, the parameter
estimation and signal reconstruction problems are most often dealt
with by solving convex problems, typically equality constrained 1-
norm minimization problems, and such approaches have also been
applied to array signal processing, e.g., [6–8]. In both DOA estima-
tion and compressed sensing, the number of sources, i.e., the model
order, is often assumed known, or, is assumed to have been found
in some other way. The number of sources may of course vary over
time, and the question is, however, how to deal with this both in
DOA estimation and in compressed sensing, since the design of an
appropriate measurement matrix requires that the number of sources
is known, i.e., that the level of spatial sparsity is known a priori.

The problem under consideration can be formally defined as fol-
lows. Let yk(n) be the observed signal at time n for sensor k of a
uniform linear array (ULA), and letK be the total number of sensors
andN the total number of snapshots. For L narrowband sources (the
model order) and complex spatial noise e(n) impinging on the array,
the spatial signal model can be expressed as

y(n) = ΦAx(n) + Φe(n) (1)

where x(n) contains the individual signals of the sources impinging
on the array and y(n) contains yk(n) for k = 1, . . . ,K. The noise
is here assumed to be colored, i.e., E

{
e(n)eH(n)

}
= Q with Q

being the noise covariance matrix, E {·} the expectation operator

and (·)H the conjugate transpose. We here assume that Q is known
or estimated in some other way and that it is invertible. Moreover,
A ∈ CK×L is a Vandermonde matrix containing the steering vectors
of the L < K incoherent sources, with unknown spatial frequencies
{ωl}, defined as A =

[
a(ω1) · · · a(ωL)

]
where a(ωl) =

[ 1 e−jωl · · · e−jωl(K−1) ]T is the steering vector of source l. We
then seek to find the spatial frequencies {ωl} and the number of
sources L. The spatial frequencies are related to the DOAs as ωl =
Ωld sin θl/c with Ωl being the center frequency of the lth source,
θl its DOA, d the sensor spacing, and c the propagation velocity.
Assuming that the spatial frequencies are distinct, the columns of A
are linearly independent. The matrix Φ ∈ RM×K with M ≤ K is
the so-called measurement or sensing matrix of compressed sensing
(see, e.g., [4, 5]), which here operates across the array exploiting
spatial sparsity. We will return to the matter of how to choose M
later. This matrix is constructed as a realization of a random process
but is assumed known and constant over the N snapshots.

In this paper, we present a subspace-based approach for deter-
mining the direction-of-arrivals as well as the number of sources,
i.e., the model order. The method is based on a modified covariance
matrix model that takes the presence of compressed sensing into ac-
count. At this point, it should be stressed that we are not here ar-
guing for the relevance of using compressed sensing in this context,
but rather investigating how the associated problems can be solved
in a consistent manner (for some applications of compressed sens-
ing, we refer the reader to [5]). The proposed method is based on the
concept of angles between subspaces (see, e.g., [9, 10]), which has
recently been shown to be applicable to the problem of model order
estimation [11].

The remainder of this paper is organized as follows: In Section
2 we develop the covariance matrix for signals of the form (1) and
discuss the implications of using compressed sensing on the model.
We then proceed to present the proposed joint DOA and order esti-
mator in Section 3 and present some results in Section 4. Finally, we
conclude our work in Section 5.

2. MODIFIED COVARIANCE MATRIX MODEL

We will now proceed to derive the modified covariance matrix for
the compressed sensing scenario. The M ×M covariance matrix of
the observed signal is then

R = E
{

y(n)yH(n)
}

= ΦAPAHΦT + ΦQΦT . (2)

Assuming that the signals of the individual sources in the vector
x(n) are independent and zero-mean, the matrix P is diagonal and
contains the expected power of the individual sources.



From (2), it can be observed that the measurement matrix gen-
erally changes the covariance matrix of the noise, rendering even
white noise colored, and this must be addressed before we proceed.
We will here do this by introducing a pre-whitener that takes the
presence of colored noise and compressed sensing into account as
follows. Let C be the Cholesky factor such that(

ΦQΦT
)−1

= CHC, (3)

with C being a square, upper triangular matrix. We note that ΦQΦT

is square, positive definite and has full rank and thus invertible with
probability close to one. Note that the Cholesky factor is generally
complex due to Q being complex. Then, by multiplying y(n) by C,
we obtain a pre-whitened signal whose covariance matrix is given
by

R̃ = CΦAPAHΦTCH + I. (4)

Note that the noise variance can vary and be unknown without af-
fecting the derivations that follow. Let UΛUH be the eigenvalue
decomposition (EVD) of R̃. Then, U contains the M orthonor-
mal eigenvectors um, and Λ is a diagonal matrix containing the
corresponding eigenvalues, λm, with λ1 ≥ . . . ≥ λM . Let S
be formed from the eigenvectors corresponding to the L most sig-
nificant eigenvalues, the range R (·) of which we refer to as the
signal subspace. Similarly, let G be formed from the eigenvec-
tors corresponding to the M − L least significant eigenvalues, i.e.,
G =

[
uL+1 · · · uM

]
, and R (G) is referred to as the noise

subspace. It can then be shown that the columns of CΦA span the
same space as the columns of S, and that CΦA therefore also must
be orthogonal to G, i.e.,

AHΦTCHG , AHΞ = 0, (5)

or, equivalently, A should be orthogonal to Ξ. This result is an ex-
tension of the basic result used in the MUSIC algorithm as originally
proposed in [1], here modified to account for compressed sensing. In
practice, G is of course unknown and an estimate can be obtained
from the EVD of the sample covariance matrix. From the above, it
can then be seen that to estimate G, we must require that M > L.
Additionally, we observe that it is required that rank (ΦA) = L,
which essentially means that we must construct a measurement ma-
trix Φ that, regardless of what the spatial frequencies {ωl} are, must
have rows that capture or are likely to capture the column space of A,
i.e., R (A) ∈ R

(
ΦT
)
. This is essentially also what the so-called

restricted isometry property (RIP) of compressed sensing says, and
some ways of constructing matrices (and choosingM ) that obey this
have been proposed in the literature [12]. Until recently [13], these
conditions were only shown to hold for what has been referred to
as incoherent dictionaries, but such conditions are in direct contra-
diction with the physics of the considered problem as the individual
spatial angles can occur on a continuum of values, corresponding to a
highly coherent dictionary. The question still remains, however, how
to choose M when L is unknown. We here propose to simply put
an upper bound on it and choose M accordingly (see, e.g., [5, 13]
for details), and hence facilitate estimating the exact L number of
sources as long as it is lower than this bound. Regarding the number
of snapshots N , it must be at least as high as the number of sources,
L, to allow identification of the signal subspace and its orthogonal
complement, i.e., N ≥ L. Note that the covariance matrix need not
be full rank for this approach to work.

On a related note, the issue of the coherence of the dictionary is
also closely related to an advantage that the proposed method holds

over methods like basis pursuit [14], since such methods are inher-
ently restricted to finite dictionaries, while the proposed method can
(finite precision effects aside) find underlying continuous parame-
ters, corresponding to an infinite and highly coherent dictionary.

3. MEASURING ORTHOGONALITY

The question is now how to measure the orthogonality between the
two matrices A and Ξ. In answering this question, we will turn to
the notion of angles between subspaces in linear algebra. Let ΠΞ be
the projection matrix for the subspaceR(Ξ) and ΠA the projection
matrix for the subspace R(A). The principal angles between the
two subspaces are defined recursively as (see, e.g., [9])

cos (θk) = max
y∈CM

max
z∈CM

yHΠAΠΞz

‖y‖2‖z‖2
(6)

, yHk ΠAΠΞzk = ξk, (7)

for k = 1, . . . , κ and orthogonal vectors yHyi = 0 and zHzi = 0
for i = 1, . . . , k − 1. Furthermore, κ is the minimal dimension of
the two subspaces, i.e., κ = min{L,K − L}. As can be seen, {ξk}
are the singular values of the matrix product ΠAΠΞ. As was shown
in [11], a convenient and accurate scalar measure of the angles is the
average over cosine to the angles squared, i.e.,

1

κ

κ∑
k=1

cos2(θk) =
1

κ
‖ΠAΠΞ‖2F . (8)

For computing this, we need to determine the two projection ma-
trices. For Ξ this is not problem as it has to be calculated only
once for each set of snapshots and candidate L. It is, however,
more problematic for A, as it depends on all the DOAs—this is
also the reason that Φ and C are multiplied onto G rather than A.
Noting that the columns in A are asymptotically orthogonal, i.e.,
limK→∞KΠA = limK→∞KA

(
AHA

)−1
AH = AAH , we

see that the projection matrix can be simplified significantly. Let Γ
be an orthogonal basis forR(Ξ). Then its projection matrix is given
by ΠΞ = ΓΓH and (8) can be expressed as

1

κ

κ∑
k=1

cos2(θk) =
1

κ
‖AHΓ‖2F . (9)

This measure can now be used to determine the model order L as
well as the spatial frequencies {ωl} as the parameters that combine
to minimize the average angle between the two subspaces, i.e., (see
[11] for details)(

L̂, {ω̂l}
)

= arg min
L

1

κ

L∑
l=1

min
ωl

‖aH(ωl)Γ‖2F , (10)

which follows from the additivity of the Frobenius norm over the
columns of A. Note that both A and Γ depend on L while only A
depends on {ωl}. Hence, (10) is not equivalent to simply estimating
the order by identifying peaks in the pseudo-spectrum. (10) is a
practical measure as the minimization over {ωl} is decoupled into
L minimizations over one nonlinear parameter. Moreover, the inner
products involved in the computation of aH(ωl)Γ can be efficiently
computed using FFTs, or, alternatively, using standard polynomial
rooting methods. We note that it can be seen from the definition
of angles between subspaces that the measure used in the original
MUSIC algorithm is only correct when both the involved matrices
consist of orthogonal columns.
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Fig. 1. RMSE as a function of the SNR.
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Fig. 2. Percentage of correctly estimated model orders as a function
of the SNR.

4. RESULTS

We will now report some experimental results in the form of root
mean square estimation errors (RMSEs) for the spatial frequencies
as well as the percentage of correctly estimated model orders. The
results were obtained using Monte Carlo simulations with 100 runs
for each data point. The dependencies of the RMSE on various
factors have been investigated by varying the signal-to-noise ratio
(SNR), the number of measurements M retained in the compressed
sensing, and the number of snapshotsN in separate experiments. As
reference, the Cramér-Rao lower bound (CRLB) is reported as well,
and we compare to another method capable of joint DOA and order
estimation, namely ESPRIT [2] extended to order estimation as pro-
posed in [15]. Measurement matrices generated as realizations of a
Gaussian i.i.d. process with M = 4L as has been reported to work
well in practice [5] are used, except in the experiment in which M
is varied. These were randomized in each Monte Carlo run and were
then also compared to the performance without compressed sens-
ing. That is, by setting the measurement matrix equal to the identity

matrix, the proposed method reduces to MUSIC, except that it also
determines the model order. In the figures to follow, we refer to
the case with compressed sensing as CS and the proposed method
based on angles between subspaces as AbS. For all the experiments,
additive, white, Gaussian noise was used along with L = 5 nar-
rowband sources, impinging on the array from different angles. For
simplicity in the experiment (and for retaining the same SNR for all
sources), these sources were generated having distinct spatial fre-
quencies {ωl}, namely 0.7966, 2.2467, 3.1414, 4.4963, and 6.2727,
identical power and i.i.d. uniformly distributed phases. Except when
otherwise stated, an SNR of 10 dB was used, along with K = 50
and N = 50. In Figures 1-6, the RMSE and the percentage of cor-
rectly estimated model orders are shown as functions of the various
parameters. First of all, it can be observed that the MUSIC method
performs close to the CRLB when compressed sensing is not used.
This is, however, not the case when compressed sensing is used, as
a gap can be observed. Interestingly, we observe that this gap is
approximately equal to the ratio between K and M , i.e., the per-
formance obtained with compressed sensing is identical to what one
would have obtained by simply usingM sensors instead ofK. It can
also be observed that the proposed method determines the correct
model order, except under adverse conditions with very low SNRs
and low M , and, as M is increased, its performance approaches
the CRLB. Note that several of the methods exhibit identical per-
formance over some intervals in Figures 4 and 6, for which reason
the curves fall on top of each other. An interesting observation from
these experiments is that the threshold behavior changes with the
use of compressed sensing, meaning that the estimator breaks down
earlier than without compressed sensing. Another observation is that
even with compressed sensing, the proposed method outperforms the
ESPRIT algorithm in terms of RMSE.

5. CONCLUSION

In this paper, we have considered the problem of jointly determining
the direction-of-arrivals and the number of sources jointly in arrays
employing compressed sensing. We have shown how this problem
can be solved using a novel subspace approach based on angles be-
tween subspaces. The method was demonstrated to have good per-
formance, resulting in both accurate estimates of the spatial frequen-
cies and the number of sources. Moreover, despite the introduction
of compressed sensing it is possible to implement the algorithm us-
ing FFTs or root methods provided that a re-orthogonalization step
is introduced. Interestingly, the results show, that the threshold be-
havior of the method changes with the use of compressed sensing,
with the method still outperforming the ESPRIT algorithm.
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