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Abstract

Although optimal from a theoretical point of view, maximum likelihood estima-

tion for Cox and cluster point processes can be cumbersome in practice due to the

complicated nature of the likelihood function and the associated score function. It is

therefore of interest to consider alternative more easily computable estimating func-

tions. We derive the optimal estimating function in a class of first-order estimating

functions. The optimal estimating function depends on the solution of a certain Fred-

holm integral equation and reduces to the likelihood score in case of a Poisson process.

We discuss the numerical solution of the Fredholm integral equation and note that a

special case of the approximated solution is equivalent to a quasi-likelihood for binary

spatial data. The practical performance of the optimal estimating function is evaluated

in a simulation study and a data example.

Keywords: Estimating function, Fredholm integral equation, Godambe information,

Intensity function, Quasi-likelihood, Spatial point process.

1. INTRODUCTION

Maximum likelihood estimation for spatial point processes such as Cox and cluster point

processes is in general not easy from a computational point of view (see e.g. Møller and

Waagepetersen, 2004). The intensity function on the other hand often has a simple ex-

plicit form and this enables the construction of simple estimating functions. For example,

composite likelihood arguments (e.g. Møller and Waagepetersen, 2007) lead to an estimating

function that is equivalent to the score of the Poisson maximum likelihood function. This

provides a computationally tractable estimating function for estimation of parameters in the

intensity function. Theoretical properties of the resulting estimator are well understood, see

e.g. Schoenberg (2005), Waagepetersen (2007) and Guan and Loh (2007).

A drawback of the Poisson score function approach is the loss of efficiency since possible

dependence between points is ignored. In the context of intensity estimation, it appears that

only Mrkvička and Molchanov (2005) and Guan and Shen (2010) have tried to incorporate

second-order properties (e.g. the pair correlation function which is often available in explicit

forms for processes such as Cox and cluster point processes) in the estimation so as to
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improve efficiency. Mrkvička and Molchanov (2005) show that their proposed estimator is

optimal among a class of linear, unbiased intensity estimators, where the word ‘optimal’

refers to minimum variance. However, their approach is restricted to a special type of

spatial point processes whose intensity function is given up to an unknown scaling factor.

In contrast, Guan and Shen (2010) propose a weighted estimating equation approach that

is applicable to intensity functions in more general forms. However, a similar optimality

result cannot be established for their approach. We show in Section 3.2 that the optimality

result in Mrkvička and Molchanov (2005) is a special case of our more general result, and

that the estimation method in Guan and Shen (2010) is only a crude approximation of our

new approach.

For many types of correlated data other than spatial point patterns, estimating func-

tion based procedures have been widely used for model fitting when maximum likelihood

estimation is computationally challenging. Examples of such data include longitudinal data

(Liang and Zeger, 1986), time series data (Zeger, 1988), clustered failure time data (Gray,

2003) and spatial binary or count data (Gotway and Stroup, 1997; Lin and Clayton, 2005).

For most of these methods, the inverse of a covariance matrix is used in their formulations

as a way to account for the correlation in data, and optimality can be established when

the so-called quasi-score estimating functions are used (Heyde, 1997). For spatial point

processes, a similar covariance matrix cannot be constructed because the data are defined

over a continuous spatial domain and hence are of infinite dimension. Heyde (1997) dis-

cusses generalizations of the quasi-score estimating functions to processes that are defined

over continuous time and possess a special semimartingale representation. However, such a

representation is generally not possible for spatial point processes.

In this paper we develop an optimal estimating function for intensity estimation that

takes into account possible spatial correlation. The optimal estimating function depends on

the solution of a certain Fredholm integral equation and reduces to the likelihood score in case

of a Poisson process. We derive asymptotic properties of the resulting parameter estimator,

and discuss the practical implementation of our proposed method based on a numerical

solution of the Fredholm integral equation. We further show that a discretized version of
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our method is closely related to the quasi-likelihood for spatial data (Gotway and Stroup,

1997; Lin and Clayton, 2005). Our work hence not only lays the theoretical foundation

for optimal intensity estimation, but also fills in a critical gap between existing literature

on spatial point processes and other types of (discrete) stochastic processes. We illustrate

the superior performance of our proposed approach over existing ones through a simulation

study, and we apply it to some real data examples.

2. BACKGROUND

2.1 Intensity and Pair Correlation Function

Let X be a point process on R2 and let N(B) denote the number of points in X ∩ B

for any bounded set B ⊆ R2. The first- and second-order moments of the counts N(B) are

determined by the intensity function ρ(·) and the pair correlation function g(·, ·), respectively,

see Møller and Waagepetersen (2004). More precisely,

EN(B) =

∫

B

ρ(u)du (1)

and

Cov[N(A), N(B)] =

∫

A∩B
ρ(u)du+

∫

A

∫

B

ρ(u)ρ(v)[g(u,v)− 1]dudv (2)

for bounded sets A,B ⊆ R2. For convenience of exposition we assume that g(u,v) only

depends on the difference u − v since this is the common assumption in practice. In the

following we thus let g(r) denote the pair correlation function for two points u and v with

u−v = r. However, our proposed optimal estimating function is applicable also in the case

of a non-translation invariant pair correlation function.

2.2 Composite Likelihood

Assume that the intensity function is given in terms of a parametric model ρ(u) = ρ(u;β),

where β = (β1, . . . , βp) ∈ Rp is a vector of regression parameters. Popular choices of the

parametric model include linear and log linear models, ρ(u;β) = z(u)βT and log ρ(u;β) =

z(u)βT, where z(u) = (z1(u), . . . , zp(u)) is a covariate vector for each u ∈ R2. A first-order

log composite likelihood function (Schoenberg, 2005; Waagepetersen, 2007) for estimation of
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β is given by
∑

u∈X∩W
log ρ(u;β)−

∫

W

ρ(u;β)du, (3)

whereW ⊂ R2 is the observation window. This can be viewed as a limit of log composite like-

lihood functions for binary variables Yi = 1[N(Bi) > 0], i = 1, . . . , m, where the cells Bi form

a disjoint partitioning ofW and 1[·] is an indicator function (e.g. Møller and Waagepetersen,

2007). The limit is obtained when the number of cells tends to infinity and the areas of the

cells tend to zero. In case of a Poisson process, the composite likelihood coincides with the

likelihood function.

The composite likelihood is computationally simple and enjoys considerable popularity

in particular in studies of tropical rain forest ecology where spatial point process models are

fitted to huge spatial point pattern data sets of rain forest tree locations (see e.g. Shen et al.,

2009; Lin et al., 2011). However, it is not statistically efficient for non-Poisson data since

possible correlations between counts of points are ignored.

3. AN OPTIMAL FIRST-ORDER ESTIMATING EQUATION

A first-order estimating function is an estimating function of the form

ef (β) =
∑

u∈X∩W
f(u)−

∫

W

f(u)ρ(u;β)du, (4)

where f(u) is a 1 × p real function that possibly depends on β. Let Σf = Varef (β),

Jf = −def (β)/dβ
T and Sf = EJf . Note that E, Var, Σf , Jf and Sf all depend on β but

we suppress this dependence in this section for ease of presentation. The matrix Sf is called

the sensitivity and SfΣ
−1
f Sf is the Godambe information. Our aim is to find a function φ

so that eφ is optimal in the sense that

SφΣ
−1
φ Sφ − SfΣ

−1
f Sf (5)

is non-negative definite for all f : W → Rp, i.e., eφ has maximal Godambe information.

Let êφ(β) = ef (β)Σ
−1
f Σfφ be the optimal linear predictor of eφ(β) given ef (β) where
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Σfφ = Cov[ef (β), eφ(β)]. Then

Var[êφ(β)− eφ(β)] = Σφ −ΣφfΣ
−1
f Σfφ

is non-negative definite whereby

SφΣ
−1
φ Sφ − SφΣ

−1
φ ΣφfΣ

−1
f ΣfφΣ

−1
φ Sφ

is non-negative definite too. Hence, (5) is non-negative definite provided

SφΣ
−1
φ Σφf = Sf

which holds if Σφf = Sf for all f (in particular, this implies Σφ = Σφφ = Sφ). By the

Campbell formulae (e.g. Møller and Waagepetersen, 2004, Chapter 4),

Σφf =

∫

W

fT(u)φ(u)ρ(u;β)du+

∫

W 2

fT(u)φ(v)ρ(u;β)ρ(v;β)[g(u− v)− 1]dudv,

Sf =

∫

W

fT(u)ρ′(u;β)du,

where ρ′(u;β) = dρ(u;β)/dβ. Hence, Sf = Σφf is equivalent to

∫

W

fTβ (u)
{
ρ′(u;β)− φ(u)ρ(u;β)− ρ(u;β)

∫

W

φ(v)ρ(v;β)[g(u− v)− 1]dv
}
du = 0.

Assuming ρ > 0 we should thus choose φ as a solution of the Fredholm integral equation

(e.g. Hackbusch, 1995, Chapter 3)

φ =
ρ′

ρ
−Tφ, (6)

where T is the operator given by

(Tf)(u) =

∫

W

t(u,v)f(v)dv with t(u,v) = ρ(v;β)[g(u− v)− 1]. (7)
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Assume that ρ and g are continuous so that T is compact in the space of continuous

functions onW (Hackbusch, 1995, Theorem 3.2.5) and moreover that −1 is not an eigenvalue

(we return to this condition in the next section). It then follows by Theorem 3.2.1 in

Hackbusch (1995) that (6) has a unique solution

φ = (I+T)−1ρ
′

ρ
,

where I is the identity operator (or, depending on context, the identity matrix) and (I+T)−1

is the bounded linear inverse of I+T. We define

e(β) = eφ(β) =
∑

u∈X∩W
φ(u)−

∫

W

φ(u)ρ(u;β)du, (8)

Σ = Vare(β), J = −de(β)/dβT, S = EJ

where by the above derivations,

S = Σ =

∫

W

φT(u)ρ′(u;β)du. (9)

In the Poisson process case where g(·) = 1, (8) reduces to

∑

u∈X∩W

ρ′(u;β)

ρ(u;β)
−

∫

W

ρ′(u;β)du

which is precisely the score of the Poisson log likelihood (3).

3.1 Condition for non-negative eigenvalues of T

In general it is difficult to assess the eigenvalues of T given by (7). However, suppose that

g−1 is non-negative definite so that Ts is a positive operator (i.e.,
∫
W
fT(u)(Tsf)(u)du ≥ 0)

where Ts is given by the symmetric kernel

ts(u,v) = ρ(u;β)1/2ρ(v;β)1/2
[
g(u− v)− 1

]
.
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Then all eigenvalues of Ts are non-negative (Lax, 2002, Corollary 1, p. 320). In particular,

−1 is not an eigenvalue. The same holds for T since it is easy to see that the eigenvalues of

T coincide with those of Ts.

The assumption of a non-negative definite g(·)−1 is valid for the wide class of Cox point

processes which in turn includes the class of cluster processes with Poisson clusters. For a Cox

process driven by a random intensity function Λ, g(u, v) = 1 + Cov[Λ(u),Λ(v)]/[ρ(u)ρ(v)]

so that g(·)− 1 is non-negative definite.

3.2 Relation to Existing Methods

Suppose we approximate the operator T by

(Tf)(u) =

∫

W

f(v)ρ(v;β)[g(u− v)− 1)]dv ≈ ρ(u;β)f(u)

∫

W

[g(u− v)− 1]dv. (10)

This is justified if f(v)ρ(v;β) is close to f(u)ρ(u;β) for the v where g(u − v) − 1 differs

substantially from zero. Then the Fredholm integral equation (6) can be approximated by

φ =
ρ′

ρ
− ρAφ,

where

A(u) =

∫

W

[
g(u− v)− 1

]
dv.

We hence obtain an approximate solution φ = wρ′/ρ with w(u) = [1 + ρ(u;β)A(u)]−1.

Using this approximation in (8) we obtain the estimating function

∑

u∈X∩W
w(u)

ρ′(u;β)

ρ(u;β)
−

∫

W

w(u)ρ′(u;β)du,

which is precisely the weighted Poisson score suggested in Guan and Shen (2010).

Mrkvička and Molchanov (2005) derived optimal intensity estimators in the situation of

ρ(u;λ) = λγ(u) for some known function γ(u) and unknown parameter λ > 0. Since λ is
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the only unknown parameter, a direct application of (6) yields

λφ(u) + λ2
∫

W

φ(v)γ(v)
[
g(u− v)− 1

]
dv = 1,

which is essentially the same as the result in Theorem 2.1 of Mrkvička and Molchanov (2005).

3.3 Solution Using Neumann Series Expansion

Suppose that ‖T‖op = sup{‖Tf‖∞/‖f‖∞ : ‖f‖∞ 6= 0} < 1 where ‖f‖∞ denotes the supre-

mum norm of a continuous function f on W . Then we can obtain the solution φ of (6) using

a Neumann series expansion which may provide additional insight on the properties of φ.

More specifically,

φ =

∞∑

k=0

(−T)k
ρ′

ρ
. (11)

If the infinite sum in (11) is truncated to the first term (k = 0) then (8) becomes the Poisson

score. Note that

‖T‖∞ ≤ sup
u∈W

∫

W

|t(u,v)|dv.

Hence, a sufficient condition for the validity of the Neumann series expansion is

sup
u∈W

ρ(u;β)

∫

R2

∣∣g(r)− 1
∣∣dr < 1. (12)

Condition (12) roughly requires that g(r)−1 does not decrease too slowly to zero and/or

that ρ is moderate. For example, suppose that g is the pair correlation function of a Thomas

cluster process (e.g. Møller and Waagepetersen, 2004, Chapter 5),

g(r)− 1 = exp
[
− ‖r‖2/(4ω2)

]
/(4πω2κ), for some κ, ω > 0, (13)

where κ is the intensity of the parent process and ω is the normal dispersal parameter. Then,

∫

R2

∣∣g(r)− 1
∣∣dr = 1

4πκω2

∫

R2

exp(−‖r‖2
4ω2

)dr = 1/κ

and (12) is equivalent to supu∈W ρ(u;β) < κ. In this case, Condition (12) can be quite
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restrictive. However, the Neumann series expansion is not essential for our approach and we

use it only for checking the conditions for asymptotic results; see Appendix A.

4. ASYMPTOTIC THEORY

Let Wn ⊂ R2 be an increasing sequence of observation windows in R2. We assume that

the true pair correlation function is given by a parametric model g(r) = g(r;ψ) for some

unknown parameter vector ψ ∈ Rq. Let θ = (β,ψ) ∈ Rp+q. We denote the true value of

θ by θ∗ = (β∗,ψ∗). In what follows, E and Var denote expectation and variance under the

distribution corresponding to θ∗.

Introducing the dependence on n and θ in the notation from Section 3, we have

φn,θ(u,β) =
[
(I+Tn,θ)

−1ρ
′(·;β)
ρ(·;β)

]
(u), (Tn,θf)(u) =

∫

Wn

tθ(u,v)f(v)dv

and

tθ(u,v) = ρ(v;β)
[
g(u− v;ψ)− 1

]
.

Following Section 5.3 we replace θ in the kernel tθ by a preliminary estimate θ̃n = (β̃n, ψ̃n).

The estimating function (8) then becomes en,θ̃n(β) where

en,θ(β) =
∑

u∈X∩Wn

φn,θ(u,β)−
∫

Wn

φn,θ(u,β)ρ(u;β)du.

Let β̂n denote the estimator obtained by solving en,θ̃n(β) = 0. Further, define

Σ̄n = |Wn|−1Varen,θ∗(β∗), Jn,θ(β) = − d

dβT
en,θ(β) and S̄n,θ(β) = |Wn|−1EJn,θ(β).

Note that Σ̄n and S̄n,θ(β) are ‘averaged’ versions of Σn = Varen,θ∗(β∗) and Sn,θ(β) =

EJn,θ(β).

In Appendix B we verify the existence of a |Wn|1/2 consistent sequence of solutions β̂n,

i.e., |Wn|1/2(β̂n − β∗) is bounded in probability. We further show in Appendix C that

|Wn|−1/2en,θ̃n(β
∗)Σ̄

−1/2
n is asymptotically standard normal. The conditions needed for these
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results are listed in Appendix A. It then follows by a Taylor series expansion,

|Wn|−1/2en,θ̃n(β
∗)Σ̄

−1/2
n = |Wn|1/2(β̂n − β∗)

Jn,θ̃n
(bn)

|Wn|
Σ̄

−1/2
n

for some bn ∈ Rp satisfying ‖bn − β∗‖ ≤ ‖β̂n − β∗‖, and R2 and R3 in Appendix B that

|Wn|1/2(β̂n − β∗)S̄n,θ∗(β
∗)Σ̄

−1/2
n → Np(0, I).

Hence, for a fixed n and since Σ̄n = S̄n,θ∗(β
∗) by (9), β̂n is approximately normal with mean

β∗ and covariance matrix estimated by |Wn|−1S̄−1

n,(ψ̃n,β̂n)
(β̂n).

5. IMPLEMENTATION

In this section we discuss practical issues concerning the implementation of our proposed

optimal estimating function.

5.1 Numerical Approximation

To estimate φ, consider the numerical approximation

(Tφ)(u) =

∫

W

t(u,v)φ(v)dv ≈
m∑

i=1

t(u,ui)φ(ui)wi, (14)

where ui, i = 1, . . . , m, are quadrature points with associated weights wi. An estimate φ̂(ui)

of φ(ui) is obtained by solving the linear equations,

φ(ui) +

m∑

j=1

t(ui,uj)φ(uj)wj =
ρ′(ui;β)

ρ(ui;β)
, i = 1, . . . , m.

The Nyström approximate solution of (6) is simply

φ̂(u) =
ρ′(u;β)

ρ(u;β)
−

m∑

i=1

t(u,ui)φ̂(ui)wi. (15)

Provided the quadrature scheme is convergent, it follows by Lemma 4.7.4, Lemma 4.7.6 and

Theorem 4.7.7 in Hackbusch (1995) that ‖φ − φ̂‖∞ converges to zero as m → ∞. This
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justifies the use of the Nyström method to obtain an approximate solution of the Fredholm

integral equation.

Replacing φ in (8) by φ̂, we obtain the estimating function

∑

u∈X∩W
φ̂(u)−

∫

W

φ̂(u)ρ(u;β)du. (16)

In many cases, the integral in (16) has to be numerically approximated. Although a more

general quadrature rule could be used, we for simplicity adopt the same rule used to approx-

imate (Tφ)(u). Then, (8) is approximated by

ê(β) =
∑

u∈X∩W
φ̂(u)−

m∑

i=1

φ̂(ui)ρ(ui;β)wi. (17)

To estimate β, we solve ê(β) = 0 iteratively using Fisher scoring. Suppose that the current

estimate is β(l). Then β(l+1) is obtained by the Fisher scoring update

β(l+1) = β(l) + ê(β(l))Ŝ−1, (18)

where

Ŝ =
m∑

i=1

φ̂(ui)
Tρ′(ui;β)wi.

is the numerical approximation of the sensitivity matrix S =
∫
W
φT(u)ρ′(u;β)du.

The simplest quadrature scheme is Riemann quadrature in which case (17) and (18)

takes the form of quasi-likelihood and iterative generalized least squares, respectively, see

Section 5.2.

5.2 Implementation as quasi-likelihood

Suppose that we are using the simple Riemann quadrature in (14). Then the wi’s correspond

to areas of some sets Bi that partition W and for each i, ui ∈ Bi. Let Yi denote the number

of events in Bi and define µi = ρ(ui;β)wi. If the Bi’s are sufficiently small so that the Yi’s
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are binary then (17) is approximately equal to

m∑

i=1

φ̂(ui)(Yi − µi). (19)

Further, by (1) and (2), EYi ≈ µi and

Cov(Yi, Yj) = 1(i = j)

∫

Bi

ρ(u;β)du+

∫

Bi×Bj

ρ(u;β)ρ(v;β)
[
g(u− v)− 1

]
dudv

≈ Vij = µi1(i = j) + µiµj

[
g(ui,uj)− 1

]
.

Define Y = (Yi)i, µ = (µi)i and V = [Vij]ij . Then EY ≈ µ and CovY ≈ V. Moreover,

from (15), [φ̂(ui)]i = V−1D where D = dµT/dβ is the m × p matrix of partial derivatives

dµi/dβj . Hence, (19) becomes

(Y − µ)V−1D, (20)

which is formally a quasi-likelihood score for spatial data Y with mean µ and covariance

matrix V (Gotway and Stroup, 1997).

Similarly, Ŝ = DTV−1D and substituting ê in (18) by (20), we obtain the iterative

generalized least squares equation

(β(l+1) − β(l))D(β(l))TV(β(l))−1D(β(l)) = [Y − µ(β(l))]V(β(l))−1D(β(l)), (21)

where we have used the notation D(β), V(β) and µ(β) to emphasize the dependence of D,

V, and µ on β.

5.3 Preliminary Estimation of Intensity and Pair Correlation

Using the notation from Section 5.2, V = V
1/2
µ (I+G)V

1/2
µ where Vµ = Diag(µi) and

Gij =
√
µiµj

[
g(ui,uj)− 1

]

so that G = [Gij ]ij is the matrix analogue of the symmetric operator Ts from Section 3.1.

In general g is unknown and must be replaced by an estimate. Moreover it is advantageous
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if G is fixed in order to avoid the computational burden of repeated matrix inversion in the

generalized least squares iterations (21).

As in Section 4, we assume that g(r) = g(r;ψ) where g(·;ψ) is a translation invariant

parametric pair correlation function model. We replace ψ and β inside G by preliminary

estimates β̃ and ψ̃ which are fixed during the iterations (21). The estimates β̃ and ψ̃

can be obtained using the two-step approach in Waagepetersen and Guan (2009) where β̃

is obtained from the composite likelihood function and ψ̃ is a minimum contrast estimate

based on the K-function. If translation invariance can not be assumed, ψ may instead be

estimated by using a second-order composite likelihood as in Jalilian et al. (2011).

5.4 Tapering

The matrix V can be of very high dimension. However, many entries in V are very close

to zero and we can therefore approximate V by a sparse matrix Vtaper obtained by tapering

(e.g. Furrer et al., 2006). More precisely, we replace G in V by a matrix Gtaper obtained by

assigning zero to entries Gij below a suitable threshold. We then compute a sparse matrix

Cholesky decomposition, I+Gtaper = LLT. Then (Y−µ)V−1/2
µ (I+Gtaper)

−1 can be easily

computed by solving the equation xLLT = (Y − µ)V−1/2
µ in terms of x using forward and

back substitution for the sparse Cholesky factors L and LT, respectively.

In practice, it is often assumed that g(r) = g0(‖r‖) for some function g0. If g0 is a

decreasing function of ‖r‖ then we may define the entries inGtaper as Gij1[‖ui−uj‖ ≤ dtaper],

where dtaper solves [g0(d)−1]/[g0(0)−1] = ǫ for some small ǫ. That is, we replace entries Gij

by zero if g0(‖ui − uj‖)− 1 is below some small percentage of the maximal value g0(0)− 1.

When V in (21) is replaced by Vtaper we obtain the following estimate of the covariance

matrix of β̂:

S−1
taperD

TV−1
taperV V−1

taperDS−1
taper (22)

where Staper = DTV−1
taperD. Note that it is not required to invert the non-sparse covariance

matrix V in order to compute (22).
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6. SIMULATION STUDY AND DATA EXAMPLE

To examine the performance of our optimal intensity estimator, we carry out a simulation

study under the Guan and Shen (2010) setting. We moreover apply our estimator to three

tropical rain forest data sets. We use the quasi-likelihood implementation of our estimator

as described in Sections 5.2-5.4 and hence for convenience we use in the following the term

quasi-likelihood for our approach.

6.1 Simulation Study

In the simulation study, following Guan and Shen (2010), realizations of Cox processes

are generated on a square window W . Each simulation involves first the generation of a

zero-mean Gaussian random field Z = {Z(u)}u∈W with exponential covariance function

c(u) = exp(−‖u‖/0.1) and then the generation of an inhomogeneous Thomas process given

Z with intensity function ρ(u;β) = exp
[
β0 + β1Z(u)

]
and clustering parameter ψ = (κ, ω),

cf. (13). For each simulation β = (β0, β1) is estimated using composite likelihood (CL),

weighted composite likelihood (WCL), and quasi-likelihood (QL). The clustering parameter

ψ is estimated using minimum contrast estimation based on theK-function (e.g. Section 10.1

in Møller and Waagepetersen, 2004).

The simulation window is eitherW = [0, 1]2 orW = [0, 2]2. The mean square error (MSE)

of the CL, WCL and QL estimates is computed using 1000 simulations for each combination

of different clustering levels (i.e., different expected numbers of clusters κ∗ = 100 or 200 and

different cluster radii ω∗ = 0.02 or 0.04), inhomogeneity levels (β∗
1 = 0.5 or 1), and expected

number of points (400 in the case of W = [0, 1]2 and 1600 in the case of W = [0, 2]2).

The integral terms in the CL, WCL and QL estimating equations are approximated using a

50× 50 grid for W = [0, 1]2 and a 100× 100 grid for W = [0, 2]2. Tapering for QL is carried

out as described in Section 5.4 using dtaper obtained with ǫ = 0.01 for each estimated pair

correlation function g(·; ψ̂). For WCL we use A(u) ≈ K(dtaper; ψ̂)− πd2taper where

K(t;ψ) =

∫

‖r‖≤t

g(r;ψ)dr.

Table 1 shows the reduction in MSE for the WCL and QL estimators relative to the CL
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estimator. The reductions show that one can obtain more efficient estimates of the intensity

function by taking into account the correlation structure of the process. As expected from

the theoretical results, the QL estimator has superior performance compared with both

the CL and the WCL estimators in all cases. The improvement over the CL estimator is

especially substantial in the more clustered (corresponding to small κ∗ and ω∗) and more

inhomogeneous (corresponding to β∗
1 = 1) cases where the largest reduction is 68.5%. As

we alluded in Section 3.2, the performance of the WCL estimator may rely on the validity

of the approximation (10). In case of a longer dependence range, the approximation is

expected to be less accurate and this explains the large drop in the efficiency of the WCL

estimator relative to the CL estimator when ω∗ increases from 0.02 to 0.04. In particular,

the WCL estimator does not appear to perform any better than the CL estimator when

ψ∗ = (200, 0.04). In contrast, the QL estimator still gives significant reductions in MSE of

size 10-26% depending on the value of β∗
1 and W .

Table 1: Reduction (%) in MSE (summed for β0 and β1) for WCL and QL relative to CL.
W = [0, 1]2 W = [0, 2]2

ψ∗ = (κ∗, ω∗)
β∗
1 = 0.5 β∗

1 = 1.0 β∗
1 = 0.5 β∗

1 = 1.0
WCL QL WCL QL WCL QL WCL QL

(100, 0.02) 15.6 35.9 41.4 59.3 17.2 39.7 52.2 68.5
(100, 0.04) 1.5 34.4 14.2 42.2 11.9 38.9 13.6 55.1
(200, 0.02) 4.9 15.4 20.2 34.0 8.6 19.9 26.3 40.0
(200, 0.04) -3.5 16.5 3.0 26.2 2.0 10.3 -7.5 18.0

6.2 Data Example

Figure 1 shows the spatial locations of three tree species, Acalypha diversifolia (528 trees),

Lonchocarpus heptaphyllus (836 trees) and Capparis frondosa (3299 trees), in a 1000m ×

500m observation window on Barro Colorado Island (Condit et al., 1996; Condit, 1998;

Hubbell and Foster, 1983). We moreover consider ten covariates: pH, elevation (dem), slope

gradient (grad), multiresolution index of valley bottom flatness (mrvbf), incoming mean so-

lar radiation (solar), topographic wetness index (twi) as well as soil contents of copper (Cu),

potassium (K), mineralized nitrogen (Nmin) and phosphorus (P).

We fit a Cox process model with a log-linear intensity function including all ten covariates

to each of the three tree species using CL, WCL and QL. For each species we fit the following
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Figure 1: Locations of Acalypha, Lonchocarpus, and Capparis trees and image of interpo-
lated potassium content in the surface soil (from top to bottom).

pair correlation functions of normal variance mixture type (Jalilian et al., 2011):

g(r;ψ) = 1 + c(r;ψ), r ∈ R2,
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where the covariance function c(r;ψ) is either Gaussian

c(r; (σ2, α)) = σ2 exp
[
− (‖r‖/α)2

]
,

Matérn (Kν is the modified Bessel function of the second kind)

c(r; (σ2, α, ν)) = σ2 (‖r‖/α)νKν(‖r‖/α)
2ν−1Γ(ν)

,

or Cauchy

c(r; (σ2, α)) = σ2
[
1 + (‖r‖/α)2

]−3/2
.

These covariance function represent very different tail-behaviour ranging from light (Gaus-

sian), exponential (Matérn), to heavy tails (Cauchy). The pair correlation function obtained

with the Gaussian covariance function is just a reparametrization of the Thomas process

pair correlation function (13). For the Matérn covariance we consider three different val-

ues of the shape parameter ν = 0.25, 0.5 and 1. With ν = 0.5 the exponential model

c[r; (σ2, α, 0.5)] = σ2 exp(−‖r‖/α) is obtained while ν = 0.25 and 1 yields respectively a log

convex and a log concave covariance function. The WCL and QL estimations were imple-

mented as in the simulation study but using a 200× 100 grid for the numerical quadrature.

Figure 2 shows c(·; ψ̂) = g(·; ψ̂)−1 for the best fitting (in terms of the minimum contrast

criterion for the corresponding K-function) pair correlation functions: Cauchy for Acalypha,

Matérn (ν = 0.5) for Loncocharpus and Matérn (ν = 0.25) for Capparis. The so-called
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Figure 2: Best fitting covariance functions c(·; ψ̂) = g(·; ψ̂) − 1 for Acalypha (left), Lon-
cocharpus (middle), and Capparis (right).
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integral ranges for these fitted functions, which are obtained by integrating c(·; ψ̂)/c(0; ψ̂)

on R2 (e.g. Chilès and Delfiner, 1999), are 2037, 2759, and 3320 for Acalypha, Loncocharpus

and Capparis, respectively. Moreover, the tapering distances are 21, 52 and 110 for the three

species, respectively. The integral ranges and tapering distances show that the dependence

range is the largest for Capparis and smallest for Acalypha. The difference in the dependence

ranges is likely caused by the distinct seed dispersal modes of the three species (Wright et al.,

2007). Specifically, the seeds are dispersed by exploding capsules for Acalypha, by the

wind for Lonchocarpus and by birds and mammals for Capparis. Seidler and Plotkin (2006)

hypothesized that the modes of seed dispersal are reflected in the spatial patterns of tree

locations with tight clusters for exploding capsules, loose clusters for bird and mammal

dispersal and tightness of clustering somewhere in between for species with wind dispersal.

Table 2 shows the CL, WCL and QL estimates, where the latter two estimates were

obtained by using the best fitting pair correlation models. Backward model selection was

carried out for all methods and the models shown in Table 2 only contain covariates that

were retained for at least one of the backward model selections. In terms of WCL and QL,

the resulting regression parameter estimates are nearly identical for Acalypha, are in slightly

less agreement for Lonchocarpus, but are very different for Capparis. In particular, the QL

estimate in case of slope gradient is more than twice larger than the WCL estimate. The

distinct levels of agreement between the estimates from these two methods might be due

to the difference in the dependence ranges of these three species, as is also suggested by

our simulation study. Our main findings in terms of significance of the covariates also vary

among the three different methods. For Acalypha, elevation is found to be significant by

CL at the 5% level but not so by either WCL or QL. For Lonchocarpus, the QL approach

suggests that phosphorus is significant but topographic wetness index is not, whereas CL

and WCL suggest the opposite. For Capparis, slope gradient is found to be significant by

QL but not so by either CL or WCL. In all cases, the smallest estimated standard errors are

obtained with QL which is consistent with our developed theory of optimality.
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species/covariance β̂

Acalypha

CL
−6.91 + 0.021dem + 0.0047K
(77.34∗, 9.77∗, 1.153∗)× 10−3

WCL
−6.90 + 0.017dem + 0.0046K
(77.23∗, 9.57, 1.137∗)× 10−3

Cauchy
QL

−6.90 + 0.016dem + 0.0047K
ψ̂ = (15.28, 4.61) (77.09∗, 9.54, 1.133∗)× 10−3

Lonchocarpus

CL
−6.49− 0.021Nmin− 0.11P− 0.59pH− 0.11twi
(81.06∗, 7.45∗, 58.78, 282.89∗, 53.19∗)× 10−3

WCL
−6.49− 0.023Nmin− 0.098P− 0.58pH− 0.12twi
(80.75∗, 7.04∗, 56.67, 272.24∗, 51.49∗)× 10−3

Matérn
QL

−6.49− 0.023Nmin− 0.12P− 0.55pH− 0.084twi
ψ̂ = (3.11, 11.62, 0.5) (80.15∗, 6.95∗, 55.23∗, 266.10∗, 45.47)× 10−3

Capparis

CL
−5.07 + 0.028dem− 1.10grad + 0.0043K
(79.54∗, 9.98∗, 1200.36, 1.16∗)× 10−3

WCL
−5.07 + 0.028dem− 0.91grad + 0.0042K
(79.43∗, 9.61∗, 1141.97, 1.14∗)× 10−3

Matérn
QL

−5.10 + 0.019dem− 2.50grad + 0.0039K
ψ̂ = (1.16, 21.37, 0.25) (77.77∗, 8.86∗, 935.02∗, 1.02∗)× 10−3

Table 2: Estimates of regression parameters and their estimated standard errors (in paran-
theses) using CL, WCL and QL. ∗ indicates significance at the 5% level.

7. DISCUSSION

We develop theory and methods for optimal estimation of the intensity function of a spatial

point process. Our proposed optimal intensity estimation method only requires the specifi-

cation of the intensity function and a pair correlation function. Moreover, the estimation of

the regression parameters can be expected to be quite robust towards misspefication of the

pair correlation function since the resulting estimating equation is unbiased for any choice of

pair correlation function. In the data example we considered pair correlation functions ob-

tained from covariance functions of normal variance mixture type. Alternatively one might

consider pair correlation functions of the log Gaussian Cox process type (Møller et al., 1998),

i.e., g(r) = exp
[
c(r)

]
, where c(·) is an arbitrary covariance function.

If a log Gaussian Cox process is deemed appropriate, a computationally feasible alterna-

tive to our approach is to use the method of integrated nested Laplace approximation (INLA

Rue et al., 2009) to implement Bayesian inference. However, in order to apply INLA it is

required that the Gaussian field can be approximated well by a Gaussian Markov random

field and this can limit the choice of covariance function. For example, the accurate Gaus-
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sian Markov random field approximations in Lindgren et al. (2011) of Gaussian fields with

Matérn covariance functions are restricted to integer ν in the planar case. In contrast, our

approach is not subject to such limitations and can also be applied to non-log Gaussian Cox

processes.

We finally note that for the Nyström approximate solution of the Fredholm equation we

used the simplest possible quadrature scheme using a Riemann sum for a fine grid. This

entails a minimum of assumptions regarding the integrand but at the expense of a typically

high-dimensional covariance matrix V. There may hence be scope for further development

considering more sophisticated numerical quadrature schemes.
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APPENDIX A. CONDITIONS AND LEMMAS

To verify the existence of a |Wn|1/2 consistent sequence of solutions β̂n, we assume that the

following conditions are satisfied:

C1 ρ(u;β) = ρ(z(u)βT) where ρ(·) > 0 is twice continuously differentiable and

supu∈R2 ‖z(u)‖ < K1 for some K1 <∞.

C2 for some 0 < K2 <∞,
∫
R2

∣∣g(r;ψ∗)− 1
∣∣dr ≤ K2.

C3 φn,θ(u,β) is differentiable with respect to θ and β, and for |φn,θ(u,β)|, |dφn,θ(u,β)/dβ|

and |dφn,θ(u,β)/dθ|, the supremum over u ∈ R2,β ∈ b(β∗, K3), θ ∈ b(θ∗, K3) is

bounded for some K3 > 0, where b(x, r) denotes the ball centered at x with radius

r > 0.

C4 |Wn|1/2(θ̃n − θ∗) is bounded in probability.

C5 lim infn ln > 0, where for each n, ln denotes the minimal eigenvalue of

S̄n,θ∗(β
∗) = |Wn|−1EJn,θ∗(β

∗) = |Wn|−1

∫

Wn

φn,θ∗(u)
Tρ′(u;β∗)du.
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Condition C1 and C2 imply L1 and L2 below.

L1 for ρ(u;β), ρ′(u;β) and ρ′′(u;β), the supremum over u ∈ R2,β ∈ b(β∗, K3), θ ∈
b(θ∗, K3) is bounded.

L2 for a function h : R2 → R,

Var
∑

u∈X∩Wn

h(u) ≤ |Wn|
[
1 + sup

u∈Wn

ρ(u;β∗)K2

]
sup
u∈Wn

h(u)2 sup
u∈Wn

ρ(u;β∗).

In particular, |Wn|−1Var
∑

u∈X∩Wn
h(u) is bounded when h is bounded.

The condition C3 is not so easy to verify in general due to the abstract nature of the

function φn,θ. However, it can be verified e.g. assuming that φn,θ can be expressed using the

Neumann series. Condition C4 holds under conditions specified in Waagepetersen and Guan

(2009) (including e.g. C1 and C2). Condition C5 is not unreasonable since

S̄n,θ∗(β
∗) = |Wn|−1

∫

Wn

[ ρ′(u;β∗)

ρ(u;β∗)1/2

]T[
(I+Ts

n,θ∗)
−1 ρ

′(·;β∗)

ρ(·;β∗)1/2

]
(u)du

and (I + Ts
n,θ∗)

−1 is a positive operator (see Section 3.1). Since Σ̄n = S̄n,θ∗(β
∗), C5 also

implies

L3 lim infn ln > 0 where for each n, ln denotes the minimal eigenvalue of Σ̄n.

To prove the asymptotic normality of |Wn|−1/2en,θ̃n(β
∗)Σ̄

−1/2
n , we assume that the fol-

lowing additional conditions are satisfied:

N1 Wn = nA where A ⊂ (0, 1]×(0, 1] is the interior of a simple closed curve with nonempty

interior.

N2 supp
α(p;k)

p
= O(k−ǫ) for some ǫ > 2, where α(p; k) is the strong mixing coefficient

(Rosenblatt, 1956). For each p and k, the mixing condition measures the dependence

between X ∩ E1 and X ∩ E2 where E1 and E2 are arbitrary Borel subsets of R2 each

of volume less than p and at distance k apart.

26



N3 for some K4 <∞ and k = 3, 4,

sup
u1∈R2

∫

R2

· · ·
∫

R2

∣∣Qk(u1, · · · ,uk)
∣∣du2 · · ·duk < K4,

where Qk is the k-th order cumulant density function of X (e.g. Guan and Loh, 2007).

Conditions N1-N3 correspond to conditions (2), (3) and (6), respectively, in Guan and Loh

(2007). See this paper for a discussion of the conditions.

APPENDIX B. EXISTENCE OF A |Wn|1/2 CONSISTENT β̂n

We use Theorem 2 and Remark 1 in Waagepetersen and Guan (2009) to show the existence of

a |Wn|1/2 consistent sequence of solutions β̂n. Let ‖A‖M = supij |aij| for a matrixA = [aij ]ij .

With Vn = |Wn|1/2Σ̄1/2
n we need to verify the following results:

R1 ‖V−1
n ‖M → 0.

R2 For any d > 0,

sup
β:‖(β−β∗)Vn‖≤d

‖V−1
n

[
Jn,θ̃n

(β)− Jn,θ̃n
(β∗)

]
V−1

n ‖M

converges to zero in probability.

R3 ‖Jn,θ̃n
(β∗)/|Wn| − S̄n,θ∗(β

∗)‖M converges to zero in probability.

R4 en,θ̃n(β
∗)V−1

n is bounded in probability.

R5 lim infn ln > 0 where

ln = inf
‖x‖=1

xΣ̄
−1/2
n S̄n,θ∗(β

∗)Σ̄
−1/2
n xT.

We now demonstrate that R1-R5 hold under the conditions C1-C5 listed in Appendix A. For

each of the results below the required conditions or previous results are indicated in square

brackets.

R1 [C3, L1-L3]: By C3, L1 and L2 the entries in Σ̄n are bounded from below and above.
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Moreover, by L3 the determinant of Σ̄n is bounded below by lp > 0.

R2 [R1, C3, L1, L2, C4]: We show that

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

‖|Wn|−1
[
Jn,θ(β)− Jn,θ∗(β

∗)
]
‖M

converges to zero in probability. Note

|Wn|−1Jn,θ(β) = Ln,θ(β) +Mn,θ(β)

where

Ln,θ(β) = −
∑

u∈X
f1,n,θ(u,β) and Mn,θ(β) =

∫

R2

f2,n,θ(u,β)

with

f1,n,θ(u,β) =
1[u ∈ Wn]

|Wn|
d

dβT
φn,θ(u,β)

and

f2,n,θ(u,β) =
1[u ∈ Wn]

|Wn|
[
ρ(u;β)

d

dβT
φn,θ(u,β) + ρ

′(u;β)Tφn,θ(u,β)
]
.

Define

hi,n(u) = sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|fi,n,θ(u,β)− fi,n,θ∗(u,β
∗)|, i = 1, 2

and note that hi,n(u) converge to zero as n→ ∞. Then

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

|Mn,θ(β)−Mn,θ∗(β
∗)| ≤

∫

R2

h1,n(u)du

where the right hand side converges to zero by dominated convergence. Moreover,

sup
(θ,β):‖(θ−θ∗,β−β∗)|Wn|1/2‖≤d

∣∣Ln,θ(β)− Ln,θ∗(β
∗)
∣∣ ≤

∑

u∈X
h2,n(u) ≤

∣∣∣
∑

u∈X
h2,n(u)− E

∑

u∈X
h2,n(u)

∣∣∣+
∣∣∣E

∑

u∈X
h2,n(u)

∣∣∣.
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The first term on the right hand side converges to zero in probability by Chebyshev’s in-

equality and the second term converges to zero by dominated convergence.

R3 [R1, L1, L2, C4]:

|Wn|−1Jn,θ̃n
(β∗)− S̄n(β

∗) =

|Wn|−1
[
Jn,θ̃n

(β∗)− Jn,θ∗(β
∗)
]
+
[
|Wn|−1Jn,θ∗(β

∗)− S̄n(β
∗)
]

It follows from the proof of R2 that the first term on the right hand side converges to zero

in probability. The last term converges to zero in probability by Chebyshev’s inequality.

R4 [C3, L1, L2, C4]: Since Varen,θ∗(β∗)V−1
n is the identity matrix, en,θ∗(β

∗)V−1
n is bounded

in probability by Chebyshev’s inequality. The result then follows by showing that

|Wn|−1/2
[
en,θ̃n(β

∗)− en,θ∗(β
∗)
]
converges to zero in probability. Let

fn(θ) = |Wn|−1 d

dθT
en,θ(β

∗) =

|Wn|−1
[ ∑

u∈X∩Wn

d

dθT
φn,θ(u,β

∗)−
∫

Wn

ρ(u;β∗)
d

dθT
φn,θ(u,β

∗)du
]
.

Then

|Wn|−1/2
[
en,θ̃n(β

∗)− en,θ∗(β
∗)
]
= |Wn|1/2(θ̃n − θ∗)fn(tn)

where ‖tn − θ∗‖ ≤ ‖θ̃n − θ∗‖ and the factor |Wn|1/2(θ̃n − θ∗) is bounded in probability.

Further,

fn(tn) = fn(tn)− fn(θ
∗) + fn(θ

∗)

where fn(θ
∗) converges to zero in probability by Chebyshev’s inequality and fn(tn)− fn(θ

∗)

converges to zero in probability along the lines of the proof of R2.

R5 [C5, L3]: Follows directly from C5 and L3.
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APPENDIX C. ASYMPTOTIC NORMALITY OF |Wn|−1/2en,θ̃n(β
∗)Σ−1/2

n

By the proof of R4 it suffices to show that |Wn|−1/2en,θ∗(β
∗)Σ̄

−1/2
n is asymptotically normal.

To do so we use the blocking technique used in Guan and Loh (2007). Specifically, Condition

N1 implies that there is a sequence of windows WB
n = ∪kn

i=1W
i
n given for each n by a union

of mn ×mn subsquares W i
n, i = 1, · · · , kn, such that |WB

n |/|Wn| → 1, mn = O(nα) and the

inter-distance between any two neighbouring subsquares is of order nη for some 4/(2 + ǫ) <

η < α < 1. Let

eBn,θ∗(β) =
∑

u∈X∩WB
n

φn,θ∗(u;β)−
∫

WB
n

φn,θ∗(u;β)ρ(u;β)du ≡
kn∑

i=1

eB,i
n,θ∗(β),

where

eB,i
n,θ∗(β) =

∑

u∈X∩W i
n

φn,θ∗(u;β)−
∫

W i
n

φn,θ∗(u;β)ρ(u;β)du.

Define

ẽBn,θ∗(β) =

kn∑

i=1

ẽB,i
n,θ∗(β),

where the ẽB,i
n,θ∗(β)’s are independent and for each i and n, ẽB,i

n,θ∗(β) is distributed as eB,i
n,θ∗(β).

Let Σ̄
B
n = |WB

n |−1VareBn,θ∗(β
∗) and Σ̃

B

n = |WB
n |−1VarẽBn,θ∗(β

∗). We need to verify the

following results:

S1 ||Σ̃B

n − Σ̄
B
n ||M → 0 and ||Σ̄B

n − Σ̄n||M → 0 as n→ ∞,

S2 |WB
n |−1/2ẽBn,θ∗(β

∗)
(
Σ̃

B

n

)−1/2

is asymptotically standard normal,

S3 |WB
n |−1/2eBn,θ∗(β

∗)
(
Σ̃

B

n

)−1/2

has the same asymptotic distribution as

|WB
n |−1/2ẽBn,θ∗(β

∗)
(
Σ̄

B
n

)−1/2

,

S4 ‖|WB
n |−1/2eBn,θ∗(β

∗)− |Wn|−1/2en,θ∗(β
∗)‖ converges to zero in probability.

S1 [C2, C3, N1]: This follows from the proof of Theorem 2 in Guan and Loh (2007).

S2 [C2, C3, N3]: Conditions C2, C3 and N3 imply E[ẽin,θ∗(β)4] is bounded (see the proof

of Lemma 1 in Guan and Loh, 2007). Thus, S2 follows from an application of Lyapunov’s
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central limit theorem.

S3 [N2]: this follows by bounding the difference between the characteristic functions of

|WB
n |−1/2eBn,θ∗(β

∗) and |WB
n |−1/2ẽBn,θ∗(β

∗) using techniques in Ibramigov and Linnik (1971)

and secondly applying the mixing condition N2, see also Guan et al. (2004).

S4 [C1-C3, C5, N1]: Recall that |WB
n |/|Wn| → 1 due to N1. By C5 we only need to

show Var
[
en,θ∗(β

∗) − eBn,θ∗(β
∗)
]
/|Wn| → 0. This is implied by conditions C1-C3 and

|WB
n |/|Wn| → 1.
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