

## **Western Washington University**

## Western CEDAR

Chemistry Faculty and Staff Publications

Chemistry

5-2024

## Fluorescent lifetimes of oils and oil distillates in artificial seawater

Warren J. De Bruyn Chapman University

**Aaron Harrison** Austin College

Emma Kocik Chapman University

Dhivya Manickam Chapman University

**Ethan Truong** Chapman University

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/chemistry\_facpubs



Part of the Chemistry Commons

## **Recommended Citation**

De Bruyn, Warren J.; Harrison, Aaron; Kocik, Emma; Manickam, Dhivya; Truong, Ethan; and Clark, Catherine D., "Fluorescent lifetimes of oils and oil distillates in artificial seawater" (2024). Chemistry Faculty and Staff Publications. 17.

https://cedar.wwu.edu/chemistry\_facpubs/17

This Dataset is brought to you for free and open access by the Chemistry at Western CEDAR. It has been accepted for inclusion in Chemistry Faculty and Staff Publications by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

| Authors           |                            |                       |                          |               |
|-------------------|----------------------------|-----------------------|--------------------------|---------------|
| Marren J. De Bruy | n, Aaron Harrison, Emma Ko | ocik, Dhivya Manickam | n, Ethan Truong, and Cat | herine D. Cla |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |
|                   |                            |                       |                          |               |

Table 1. Oil and oil product sample names, numbers and API densities.

| Sample | Oil                      | <b>API Density</b> |
|--------|--------------------------|--------------------|
| 1      | Ecuador Oriente          | 29.2               |
| 2      | Venezuela Mercy          | 14.7               |
| 3      | Azerbaijan Naftalan      | 20.8               |
| 4      | Pennsylvania light crude | 43                 |
| 5      | Ecuador sour crude       | 23.9               |
| 6      | Suadi Arabian light      | 37.2               |
| 7      | Suadi Arabian medium     | 31.1               |
| 8      | Suadi Arabian Heavy      | 27.4               |
| 9      | Gasoline                 | 60                 |
| 10     | Kerosene                 | 51                 |
| 11     | Diesel                   | 35                 |