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Abstract 

The First Principles Density Functional Theory study is conducted on BCC Co-Al based 

solid solution which obeys Vegard’s law. Chemical bond energies are calculated beyond 

1NN interactions as second-nearest-neighbor and third-nearest-neighbor chemical bond 

energy values are significant and contribute to the total energy of the alloy. Elastic energy 

developed in the alloys due to the atomic radius misfit between solute and solvent atoms 

is also considered. Effects of atomic ordering on 1NN, 2NN, and 3NN chemical ordering 

energies and lattice parameters are investigated.  
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1 Introduction 

In Japan, in the early ‘60s attempt to discover new permanent magnets led to the 

discovery of magnetic alloys with high coercivity based on β-phase CoAl intermetallic 

compounds and it was found that magnetic Al-Co alloys containing more than 10% 

aluminum show high coercive forces and thus the investigators named these alloys 

“Malcolloy” [1].  

Frenkel and Dorfman [2] recognized that energetically it is unfavorable for domain wall 

formation when ferromagnetic particle size is below a critical size. Magnetic properties 

of fine-particle Permanent magnets are attained through a microstructure that consists of 

small, single-domain ferromagnetic particle assemblies that are dispersed in a weak 

ferromagnetic or non-magnetic matrix. Livingston [3] concluded that high coercivity of 

hard magnetic materials could be achieved only by changing intrinsic properties such as 

crystal anisotropy. Further development confirmed that coercivity is controlled by 

domain processes in high crystal anisotropy-based permanent magnets [4]. Hence 

relationship between microstructure and coercivity of fine particle permanent particles is 

established. In the early 1970s research on Co-Al-based magnetic alloys peaked, 

examining various aspects of magnetic properties and phase transformation mechanisms 

in these alloys [5]. Investigators involved in the study proposed different phase 

transformation mechanisms but all of them concluded that magnetic hardening of Co-Al-

based alloys results from aged microstructure which consists of elongated single-domain 

ferromagnetic particle assembly dispersed in a weak ferromagnetic or paramagnetic 

matrix. A.M. Zeltser et al [6] study on Co-Al alloys indicates that during aging Co-rich β-
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CoAl matrix precipitates elongated single-domain fine-particles which produce different 

microstructure entirely with corresponding magnetic behavior. As these studies indicate 

the potential of Co-Al-based permanent magnets, Malcolloy's high coercivity is believed 

to be dependent on magneto crystalline anisotropy at room temperature [7] whereas other 

alloys namely Chromindur, Cunife, Cunico, and Alnico obtain high coercivity as a result 

of high resistance to magnetization reversal. Schwartz [5] investigated Co-24.8 wt.% Al 

β-phase alloys in an attempt to correlate specific magnetic properties development with 

the evolution of microstructure using conventional and high-resolution transmission 

electron microscopy, magnetic measurements, and electron diffraction. The investigation 

shows that coercivity development follows microstructure evolution. 

 

This thesis focuses on Co-rich off-stoichiometric β-CoAl alloys. Figure 1.1 shows the 

Co-rich portion of the Co-Al equilibrium phase diagram with superimposed Curie 

temperatures for the ferromagnetic transition of β-CoAl and α-Co phases [8]. Upon 

quenching the solution from treatment temperature, B2 ordering of various degrees is 

achieved in the supersaturated β-CoAl substitutional solid solution. The magnetic 

properties of the partially ordered off-stoichiometric β-CoAl alloys can be studied 

computationally by employing an atomistic spin model [9]. In such a model, the spin 

dynamics of atomic moments at a system of atomic sites are simulated by solving the 

atomistic Landau-Lifshitz-Gilbert equation [10]. The atomic sites are inputs from an 

atomic configuration that is predetermined. To determine the atomic configuration of the 

interested system, the atomistic Monte Carlo method has been developed in our group 
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[11], which takes the chemical interactions of neighboring atoms and elastic interactions 

arising from atomic radius misfit between solute and solvent atoms into account. This 

method was employed to study substitutional Fe-Ga alloys, where relevant material input 

parameters are determined from First-Principles Density Functional Theory calculations 

[11]. To determine atomic configurations of interest in the partially ordered off-

stoichiometric β-CoAl alloys, the same atomistic Monte Carlo method will be employed. 

However, to do so, the relevant material input parameters of β-CoAl alloys need to be 

determined first. The purpose of this research is to determine some basic material 

parameters for the Co-rich Co-Al substitutional solid solutions by First-Principles within 

the framework of Density Functional Theory implemented in the Vienna Ab initio 

Simulation Package. The simulations are run on Michigan Technological University’s 

Superior supercomputer. 
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Figure 1.1. The Co-Al equilibrium phase diagram of Co rich portion [12] 

that is superimposed with Curie temperatures of the β-CoAl [13] and α-Co 

phases for a ferromagnetic transition  

 

 

 

 



5 

2 Hypotheses and Tests 

A proposition is made to determine basic material parameters in the Co-rich Co-Al 

substitutional solid solutions which are chemical bond energies up to the third nearest 

neighbors and elastic energy due to atomic radius misfit between solvent Co and solute 

Al atoms.  

2.1 Chemical Energy: First, Second, and Third Nearest 

Neighbor Bonds 

The conventional regular solid solution model considers only first nearest neighbor 

(1NN) bonds, which are assumed to dominate over other bonds of longer distances. In 

this study bonds up to the third nearest neighbors are considered and bond energies at 

different compositions(x) of the alloy Co1-xAlx are calculated. 

 

2.1.1 Significance of Second and Third Nearest Neighbor Bonds 

To describe the properties of a wide range of alloys, the first nearest neighbor(1NN) 

atomic interactions are considered. However, due to shortcomings in predicting the 

energy of the lattice, properties, and stability for some BCC structure alloys, Lee et al. 

[14] considered second-nearest neighbor (2NN) interactions for BCC Fe metal. 

Calculated properties considering 2NN interactions are compared with experimental data 

and results are found to be satisfactory. Lee et al. [15]  further extended the study to find 

the properties of BCC transition metals. Following [15], Zhiwei et al. [16] demonstrated 
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that the potential developed for lithium-silicon (Li-Si) alloys considering 2NN 

interactions is capable of predicting material properties. Jeong et al. [17] investigated 

binary systems considering 2NN interactions, the interatomic potential was found to 

reproduce various fundamental properties that are in good agreement with the 

experimental values.  

Soren et al. [18] investigation shows that considering only 1NN interactions fails to 

predict key magnetic and electronic properties, and including a third nearest neighbor 

(3NN) interactions gives accurate results. For the β-CoAl solid solution which is 

considered for this study chemical energies up to the third nearest neighbor are 

considered. The role of 1NN and 2NN interactions in understanding the decomposition 

paths and microstructure evolution is analyzed by Soffa et al. [19]. Thermodynamic 

stability and energetics of binary alloys are discussed in terms of 1NN pairwise 

interaction energies and the sign of chemical ordering energy (Ω) which is given by the 

below equation. 

Eq. 2.1                                  ( ) 2Co Al Co Co Al AlE E E− − −Ω = − +                                            

Ω is 1NN chemical ordering energy, ECo-Co, EAl-Al, and ECo-Al are the bond energies of Co-

Co, Al-Al, and Co-Al. According to the investigation [19] for Ω < 0, ECo-Al < (ECo-Co+ 

EAl-Al)/2, favoring of unlike pairs occurred, and the system was classified as ordering. 

And for Ω>0, ECo-Al > (ECo-Co+ EAl-Al)/2, Co-Co and Al-Al bonds are preferred within the 

solid solution. The pairwise interaction is extended to 2NN interactions and the 2NN 

chemical ordering energy (Ω’) is given by the equation 
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Eq. 2.2                                  ( ) 2Co Al Co Co Al AlE E E− − −′ ′ ′ ′Ω = − +  

E’Co-Al, E’Co-Co, and E’Al-Al are bond energies associated with 2NN interaction energies.  

Similarly, 3NN interchange energy (Ω’’) is given by the equation  

Eq. 2.3                                 ( ) 2Co Al Co Co Al AlE E E− − −′′ ′′ ′′ ′′Ω = − +  

𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ ,𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  are the energy values corresponding to 3NN bonds.  

Chemical bond energy calculations of β-CoAl are done using VASP. 3*3*3 BCC 

supercell is used for the simulations. Unit cell lattice parameter extrapolated from 

Vegard’s plot of β-CoAl shown in chapter 4.3.3 is used as the unit cell lattice parameter 

for 3*3*3 supercell and the Co and Al atoms in the supercell are considered to be in the 

fixed state for the simulation. The chemical ordering energies calculated are compared 

with each other to interpret the significance of 2NN and 3NN compared to 1NN energy. 

The aluminum composition x=2/54 for the alloy Co1-xAlx is considered for calculating 

1NN, 2NN, and 3NN bond energies. For Co52Al2 alloy changing one of the Al atomic 

positions in the supercell by keeping another in a fixed position, the respective chemical 

bond energies are calculated.  

 

2.1.2 Dependence of Bond Energy on Alloy Composition 

Chemical bond energies considering 1NN, 2NN, and 3NN interactions of Co1-xAlx are 

calculated for x=4/54=0.07407 (Co50Al4) similar to the Co52Al2 alloy using 3*3*3 



8 

supercell VASP simulations with the same input parameters and extrapolated unit cell 

lattice parameter value. For x=4/16=0.25 (Co12Al4) 1NN, 2NN, and 3NN chemical bond 

energies are calculated by exchanging the Al atomic positions with Co atoms in DO3 

ordered structure. The simulations for Co12Al4 are performed using VASP and 2*2*2 

supercell is used for this case of bond energy calculations and the lattice parameter used 

for this case is the same unit cell extrapolated lattice parameter from Vegard’s linear plot.  

Using 2*2*2 supercell 1NN, 2NN, and 3NN chemical bond energies for x=2/16=0.125 

(Co14Al2) are calculated by changing the atomic positions of aluminum atoms. Bond 

energies for x=0.5 are also calculated by exchanging the aluminum atomic positions with 

Co atoms in the B2 and B32 ordered phases. The 1NN, 2NN, and 3NN energy 

calculations of Co52Al2, Co50Al4, Co12Al4, Co14Al2, and Co8Al8 i.e., for x = 0.037, 

0.07407, 0.125, 0.25, and 0.5 respectively are compared to show the values are not 

constant and are composition dependent. 

 

2.2 Elastic Energy: Vegard’s Law and Atomic Radius 

Misfit 

The conventional regular solid solution model considers chemical energy and entropy but 

does not include elastic energy associated with the crystal lattice distortion caused by the 

different atomic radii of solute and solvent atoms. This study includes elastic energy 

which is calculated from Vegard’s plot of β-CoAl. 
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2.2.1 Validation of Vegard’s Law in Co-Al BCC-based Solid 

Solution 

Crystal structure analysis by applying X-ray diffraction on several ionic salt alloys 

showed an observation that at constant temperature, there exists a linear relationship 

between crystal lattice parameter and concentration of alloy constituents. This empirical 

rule is named as Vegard’s law [20]. However, when extended to metallic alloys, studies 

showed that a majority of them do not obey the rule [21]. Further studies investigated the 

relationship between the crystal lattice constant of alloys and the concentration of the 

binary components. Among those, First Principles Density Functional Theory has also 

been used to find out if any such relationship exists and if it exists what are the factors 

that affect the relationship. A brief discussion on the First Principles Density Functional 

Theory of classical non-uniform fluid mixtures and its relationship with Vegard’s law has 

been reported [22]. According to [23], identifying physical factors that affect the crystal 

structure of alloys can be done readily, which include: firstly, geometric differences in 

alloy constituent element's atomic sizes, Secondly, in pure element crystals, the relative 

volume per valence electrons, third, the Brillouin-zone effects, and lastly, Electro-

chemical differences between the alloy constituent’s elements. The significance of atomic 

size difference in determining crystal structure and lattice constant of a simple binary 

alloy is established by applying the Density Functional Theory of non-uniform fluid 

mixtures of hard spheres [24]. It is also proposed that DFT applied to fluid–solid 

transition of non-uniform fluid mixtures that are simple binary mixtures of hard spheres 

demonstrates the importance of relative atomic sizes in determining crystal structure, the 
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lattice parameters of alloys, and also the lattice constant and concentration relationship 

dependence on relative atomic sizes. It is also suggested that Vegard’s law may hold 

along the fluid-solid coexistence curve for small atomic size disparities between the two 

elements which are the constituents of the alloy. 

In this study, atomistic modeling of super saturated CoAl BCC-based solid solution is 

investigated using VASP (Vienna Ab-initio Simulation Package) which performs a 

quantum mechanical calculation based on First Principles Density Functional Theory. For 

the 2*2*2 supercell which consists of 8-unit cells of BCC structure with Co and Al 

occupying the atomic positions. VASP simulation is used to determine lattice parameters 

for different compositions of Aluminum i.e., the composition of Al in CoAl BCC-based 

structure varying from 0 At. % to 50 At.%. After lattice parameters of BCC-based Co-Al 

for different Al compositions (x) in Co1-xAlx are calculated, data is fitted to Vegard’s law, 

which manifests the elasticity effect and can be used to determine the atomic radius misfit 

between Co and Al atoms. Thus, DFT calculation results establish, a relationship between 

the lattice constant of alloy and the composition of Al. 

 

2.2.2 Elastic Energy of Co-Al BCC-Based Solid Solution 

Lattice distortions induced in a substitutional solid solution due to atomic radius misfit 

between solute and solvent were studied based on First Principles [25]. The misfit strain 

and misfit parameter introduced in the lattice due to atomic radius misfit in various solid 

solutions have also been studied using the first principles [26]. The strength of alloys 
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affected by atomic radius misfit is presented in [27]. The above studies show the 

significance of elastic energy in the solid solution induced due to atomic radius misfit. 

Microelasticity Theory [28] is used for calculating the elastic energy of a solid solution. 

Microelasticity theory is widely used in material science for developing computational 

models to determine and study microstructure evolution and strengthening mechanisms 

of different alloys under different conditions [29]. Elastic energy and magnetostatic 

energy effects on magnetic domains are studied by proposing a computational model for 

magnetostrictive materials by combining a micromagnetic model with the phase field 

microelasticity theory [30]. The computational model also predicts an increase in 

magnetostrictive effect under compressive pre-stress. As elastic energy affects magnetic 

properties, for β-CoAl solid solution elastic energy is also considered along with 

chemical energy [11]. For calculating the elastic energy linear equation of Vegard’s law 

is used. The calculated elastic energy is compared with the 1NN, 2NN, and 3NN 

chemical bond energies to show that elastic energy value is significant for contributing to 

total energy and thus needs to be considered in Co-Al substitutional solid solution. 

 

2.3 Effects of Ordering: Disordered and Ordered 

Substitutional Solid Solutions 

Supersaturated β-CoAl substitutional solid solution tends to develop B2 ordering of 

various degrees, depending on solution treatment and quenching [8]. The atomic ordering 

may be accompanied by a spontaneous lattice strain, which will be investigated. The 
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ordered phases of β-CoAl in the range of 0.25≤x≤0.5 are DO3 at x=0.25, B2 at x=0.5 and 

B32 at x=0.5. Equilibrium lattice parameters of ordered phases are different from 

disordered phases. At the same composition ordered phase lattice parameters are 

compared with disordered phases i.e., at x=0.25 and x=0.5. The effect of change in the 

number of 1NN atomic bonds on the lattice parameter due to ordering is investigated. 

 

For x=2/54 in Co1-xAlx, using 3*3*3 supercell the equilibrium lattice parameters are 

calculated for different Al atoms positions, namely, 1NN, 2NN, and 3NN. The difference 

in equilibrium lattice parameters for different aluminum atom positions is investigated. 
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3 Methodology 

3.1 Mean-Field Theory of Substitutional Solid Solution 

Co1-xAlx for Chemical Energy 

The molar free energy of Co1-xAlx, treated as a regular substitutional solid solution [31] 

is: 

Eq. 3.1                                                         F E TS= −  

Where the energy of mixing is given by: 

Eq. 3.2                                                    ( )1AE N z x x= Ω −  

The entropy of mixing is: 

Eq. 3.3                                            ( ) ( )ln 1 ln 1S R x x x x= − + − −     

In the above equations, NA is Avogadro’s number, z is the number of bonds per atom, Ω 

is 1NN chemical ordering energy which is given by Eq. 2.1, R is the gas constant, and T 

is the absolute temperature. 

The energy in Eq. 3.2 is the chemical energy that usually considers the 1NN bonds only. 

For the BCC host lattice of Co-rich β-CoAl alloys, there are 8 1NN bonds per atom, i.e., 

z=8. In such a situation, Ω and ECo-Al are defined for the 1NN bonds. When energies of 

the 2NN and 3NN bonds are comparable in magnitude to that of the 1NN bonds, they 

cannot be neglected and need to be considered. 
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Consideration of the 2NN bonds contributes a chemical energy term to the total energy: 

Eq. 3.4                                ( )1AE N z x x′ ′ ′= Ω −  

Where z’ = 6, it is the number of 2NN bonds per atom, Ω’ is 2NN chemical ordering energy 

given by Eq. 2.2. 

Similarly, consideration of the 3NN bonds contributes a chemical energy term to the total energy: 

Eq. 3.5                                   ( )1AE N z x x′′ ′′ ′′= Ω −  

Where z” =12, it is the number of 3NN bonds per atom, Ω” is 3NN chemical ordering energy 

given by Eq. 2.3. 

 

3.2 Vegard’s Law 

For Co-Al BCC-based solid solution, atomistic modeling of 2*2*2 supercell which 

consists of 8-unit cells is performed using VASP. For a 2*2*2 BCC-based supercell there 

are 16 atomic positions to define to run simulations, so by specifying Co and Al atoms in 

these 16 atomic positions the composition of the element in alloy is determined. For pure 

Co, all the atomic positions are assigned to only Cobalt. For Vegard’s law, the 

composition of Al(x) (in mole fraction) is varied from x=0.25 to 0.5. The compositions 

considered for simulation are x=0.25, 0.3125, 0.4375, and 0.5. For these Al compositions, 

the lattice parameters are calculated and fitted against Al composition(x). For x=0.25 

among 16 atom positions, 4 atoms out of the 16 are Al atoms and for this composition 
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four lattice parameters, one ordered phase DO3 and three disordered A2 phases are 

calculated. In 2*2*2 supercell the alloy with composition x=4/16=0.25 in Co1-xAlx is 

notated as Co12Al4. This is also extended for other compositions as well which indicates 

that 4 aluminum atoms and 12 cobalt atoms are present in the 2*2*2 BCC supercell. 

Similarly, for different Al compositions x=0.3125=5/16, x=0.375=6/16, and x= 

0.4375=7/16, four lattice parameters for disordered A2 phase at each composition are 

calculated. The specific number of Al atoms that are needed to be defined in the total of 

16 atomic positions is specified alongside the composition above i.e., for 5/16, 5 out of 

16 atoms are Al for x=0.3125. No ordered phase is considered for these off-

stoichiometric compositions. 

For x=0.5=8/16 two ordered phases, B2 and B32 are considered, whose lattice parameters 

are calculated along with two disordered phases. All the phases considered, namely, 

disordered A2, and ordered, DO3, B2, and B32 are shown in Fig. 3.1. 
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Figure 3.1. Atomic positions of Co and Al in ordered phases of Co1-xAlx  

 

The equilibrium lattice parameters of disordered solid solutions are calculated using the 

supercell method, considering multiple random atomic configurations at each Al 

composition within the range 0.25 ≤ x ≤ 0.5, and their average values are taken as the 

lattice parameter at each composition, which improves the statistics and reduces errors. In 

these simulations, two structural optimization schemes are employed and the results are 

compared. In one scheme, the atomic positions (i.e., fractional coordinates) in the 

supercells are fixed. In another scheme, the atoms are allowed to deviate from their ideal 

positions during structural relaxation. This is done by setting the INCAR control 

parameters of VASP. Lattice parameters calculated from both schemes are plotted against 

Al composition.  

 

3.3 Microelasticity Theory 

Due to the atomic radius misfit between the solvent Co and solute Al atoms in 

supersaturated β-CoAl substitutional solid solution, atomic displacements develop in the 

solid solution, leading to lattice distortion and strain. With Co-host lattice as a reference 

state, the macroscopic average strain, which is the homogeneous part of the total lattice 

strain, is given by the theory of micro-elasticity [28]:  
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Eq. 3.6                                                                                                                                                            

In the above equation, a is the lattice parameter of the solid solution Co1-xAlx at 

composition x, 𝑎𝑎𝐶𝐶𝐶𝐶 is the lattice parameter of Co-host lattice, 𝜀𝜀0 is misfit strain, the 

equation calculates the total lattice strain induced in the alloy due to change in lattice 

parameter of substitutional solid solution. The total lattice strain is also expressed in 

terms of misfit strain and Al atom composition (x).  

Whereas the misfit strain is defined in terms of the atomic radii of solvent and solute as 

shown below. 

Eq. 3.7                                            𝜀𝜀0 = 𝑟𝑟𝐴𝐴𝐴𝐴−𝑟𝑟𝐶𝐶𝐶𝐶
𝑟𝑟𝐶𝐶𝐶𝐶

                                                                                                         

 rCo and rAl are the atomic radii of Co and Al, respectively. 

 

It is worth noting that Eq. 3.6 is equivalent to Vegard’s law, the linear relationship between 

the lattice parameter and the composition of solute atoms (x) is defined as: 

                                 

 Eq. 3.8                                    𝑎𝑎 = 𝑎𝑎𝐶𝐶𝐶𝐶(1 + 𝜀𝜀0𝑥𝑥)                                                                                                    

 

The linear plot equation can be deduced from Vegard’s law plotted for Co1-xAlx. The 

equation of the linear plot is expressed as Eq. (3.8) and the corresponding values are 

found. Eq. (3.6) allows the determination of the misfit strain (and atomic radius misfit) 

through the composition-dependent lattice parameter data: 
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Eq. 3.9                          𝜀𝜀0 = 1
𝑎𝑎𝐶𝐶𝐶𝐶

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

                       

                                                                                             

From Vegard’s law linear plot equation, misfit strain is determined as shown in the above 

equation by using the lattice parameter 𝑎𝑎𝐶𝐶𝐶𝐶 = 𝑎𝑎(𝑥𝑥 = 0)  and the derivative, 𝑎𝑎𝑎𝑎/𝑎𝑎𝑥𝑥 

which are respectively the intercept and slope of the fitted straight line. 

 

According to the theory of microelasticity [28], the lattice strain caused by atomic radius 

misfit contributes an elastic energy to the total energy. The elastic energy is calculated from 

the below equation 

 

Eq. 3.10                        𝐸𝐸′′′ = 𝑁𝑁𝐴𝐴𝑉𝑉 �
3(1−2ν)
1−ν

�𝐾𝐾𝜀𝜀02𝑥𝑥(1 − 𝑥𝑥)                    

                                         

where V is the volume per atom, and K and ν are the bulk modulus and Poisson’s ratio, 

respectively. 

E’’’ is the elastic energy due to atomic radius misfit, and NA is Avogadro’s number.  

The bulk modulus (K) of Co1-xAlx solid solution is calculated for ordered phases DO3, B2, 

and B32 by fitting the Energy (E) vs V (volume of supercell) values using 2*2*2 

supercell VASP simulations. From the parabolic E vs V data fitting, Bulk modulus is 

calculated from the equation below for each phase: 

 Eq. 3.11                                            𝐾𝐾 = 𝑉𝑉 ∗ 𝑎𝑎2𝐸𝐸/𝑎𝑎𝑉𝑉2                                                                                             
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Bulk modulus(K) calculated for three ordered phases are plotted against Al 

Composition(x). And typical value for Bulk modulus and Poisson’s ratio are taken for 

elastic energy (E’’’) calculation. The Calculated elastic energy is compared with 

chemical bond energies. 

 

3.4 First-Principles Density Functional Theory 

The Density Functional Theory (DFT) solves the many-electron wave function with a 

simpler single-electron density as the main variable. Hohenberg-Kohn-Sham theory [32] 

[33] implies that the total energy of a system can be expressed solely in terms of electron 

density. The physical properties of a system can be found if the electron density is 

known. DFT-based calculations mainly consider outer electrons only as the inner 

electron’s role in bonding is minimal and they also screen the nuclear core effect partially 

[34]. By energy minimization, the calculation of a wide range of properties such as 

structural, chemical, elastic, and thermodynamic properties is enabled by DFT [35]. In 

this particular study to find out the chemical and elastic energy of β-CoAl, DFT 

calculations are performed. The First Principles study within the framework of DFT is 

used to perform total energy calculations. Vienna ab initio simulation package (VASP) 

code [36] implements the projector-augmented-wave (PAW) method [37]. The 

generalized gradient approximation (GGA) in the form Perdew-Burke Ernzerhof (PBE) is 

considered for the exchange-correlation energy [38].  
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VASP calibration is done using 3*3*3 supercell and 2*2*2 supercell for minimum total 

energy value to find out the optimum values of plane wave cut-off energy and k-points 

Monkhorst-pack mesh [39] in the Brillouin zone. The Optimum values of cut-off energy 

and k-points are 500 eV and 4*4*4 for 3*3*3 supercell respectively. And for 2*2*2 

supercell cut of energy is 500 eV and k-points are 5*5*5. Other VASP input parameters 

used were sufficient leading to well converged total energy.  
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4 Results and Discussion 

4.1 Calculation of Lattice Parameter and Elastic 

Modulus 

4.1.1 Lattice Parameter Calculation using DFT  

The equilibrium lattice parameter for the 2*2*2 DO3 ordered structure of BCC Co1-xAlx at 

x=0.25 is calculated by performing VASP simulations. M.J. Mehl et al. [40] calculated 

the equilibrium lattice parameter of Co-Al BCC unit cell B2 phase using DFT as a=2.862 

A0. Using this value as a reference, total energy calculations at the lattice constant 

2a=5.724, for 2*2*2 supercell are simulated. As the Aluminum composition for DO3 is 

less than the B2 phase composition the lattice parameter of the DO3 phase would be less 

than the B2 phase. So VASP simulations for total energy are performed considering 

lattice constants 2a<5.724. The energy values would first decrease and then increase 

indicating energy convergence. The lattice parameter which gives the lowest total energy 

value is noted and now the simulations using the lattice parameters greater and lower than 

the noted lattice parameter are performed. Total energy values simulated are plotted 

against the lattice parameters considered for simulations, the plot follows a parabolic 

path. Solving the parabolic equation for minimal energy, the equilibrium lattice 

parameter of the DO3 structure is found. Fig. 4.1 shows the parabolic plot of energy 

against the lattice parameter for the β-CoAl DO3 phase. The lattice parameter units in this 

entire study are Angstrom’s (A0) and the units of energy are eV.  
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Figure 4.1 Parabolic plot of total energy against lattice parameter for DO3 phase of β-

CoAl  

From the above plot, the parabolic equation relating Energy (E) and lattice parameter (a) 

is given as 

Eq. 4.1                                 𝐸𝐸 = 28.461𝑎𝑎2 − 323.17𝑎𝑎 + 813.59 

Phase stability is defined by minimum total energy. For energy dependent on lattice 

parameters, the equilibrium lattice parameter is that lattice constant which gives 

minimum energy. The minimum energy condition is first order derivative is zero i.e., 

dE/da=0.  

For minimum energy, the equilibrium lattice constant for the DO3 phase of β-CoAl is 2a0 

= 5.677418 A0, a0 = 2.838709 A0, and a0 is the equilibrium lattice parameter. 
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Similarly using 2*2*2 supercell for all compositions of Al considered in this study 

0.25≤x≤0.5 equilibrium lattice parameters for Co1-xAlx BCC structure unit cell are 

calculated. At each composition four atomic configurations are considered, ordered, and 

disordered. Two schemes of operations fixed and relaxed are considered in total energy 

simulations. All the equilibrium lattice parameters calculated for different atomic 

configurations at each composition are tabulated from Table 4.1 to 4.5. Lattice 

parameters calculated using both fixed and relaxed atom schemes are mentioned. 

Table 4.1 Equilibrium lattice parameters for x = 0.25 in Co1-xAlx BCC solid solution  

Atomic Arrangement Lattice parameter (fixed) 
A0 

Lattice Parameter 
(relaxed) A0 

DO3 2.838709 2.838709 
Disordered 1 2.83832815 2.83873959 
Disordered 2 2.85217 2.851537 
Disordered 3 2.85407 2.85422189 

 

Table 4.2 Equilibrium lattice parameters for x = 0.3125 in Co1-xAlx BCC solid solution 

Atomic Arrangement Lattice parameter (fixed) 
A0 

Lattice Parameter 
(relaxed) A0 

Disordered 1 2.86156212 2.86043 
Disordered 2 2.843831237 2.8442884 
Disordered 3 2.86776765 2.86805 
Disordered 4 2.866151 2.86776 
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Table 4.3 Equilibrium lattice parameters for x = 0.375 in Co1-xAlx BCC solid solution 

Atomic Arrangement Lattice parameter (fixed) 
A0 

Lattice Parameter 
(relaxed) A0 

Disordered 1 2.87648613 2.876486129 
Disordered 2 2.8836624 2.882545023 
Disordered 3 2.869141076 2.86567 
Disordered 4 2.88131 2.8818 

 

Table 4.4 Equilibrium lattice parameters for x = 0.4375 in Co1-xAlx BCC solid solution 

Atomic Arrangement Lattice parameter (fixed) 
A0 

Lattice Parameter 
(relaxed) A0 

Disordered 1 2.897636 2.898143832 
Disordered 2 2.902956 2.900666 
Disordered 3 2.877054642 2.87806778 
Disordered 4 2.89110729 2.893031633 

 

Table 4.5 Equilibrium lattice parameters for x=0.5 in Co1-xAlx BCC solid solution 

Atomic Arrangement Lattice parameter (fixed) 
A0 

Lattice Parameter 
(relaxed) A0 

B2 2.85390327 2.853903268 
B32 2.908518125 2.908518125 

Disordered 1 2.908518125 2.908518125 
Disordered 2 2.9146184 2.917785163 

   

Tabulated lattice parameters are fitted against aluminum composition for checking 

Vegard’s law, atomic radius misfit between Co and Al atoms, and for calculating misfit 

strain. The lattice parameter for pure Co using 2*2*2 supercell is 2.813, as BCC lattice 

for pure Co is unphysical it is used for comparison only. 

                                         



25 

4.1.2 Elastic Modulus Calculation of Ordered Phases in β-CoAl 

Solid Solution 

The lattice parameters against which the total energy is fitted for a parabolic plot in the 

previous chapter are used to find the volume of the 2*2*2 supercell. For calculating the 

elastic modulus total energy is plotted against the volume of the supercell. Energy (E) 

against supercell volume (V) is also parabolic. The parabolic plot DO3 phase of β-CoAl is 

shown in Fig. 4.2 

 

 

Figure 4.2 Parabolic plot of energy against supercell volume of DO3 phase  

From the above parabolic plot, the energy equation is  

Eq. 4.2                𝐸𝐸 = 0.0031𝑉𝑉2 − 1.1222𝑉𝑉 − 1.0417 
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By using Eq. 3.11   𝐾𝐾 = 𝑉𝑉 ∗ 𝑎𝑎2𝐸𝐸/𝑎𝑎𝑉𝑉2, Bulk modulus or Elastic modulus for the DO3 

phase is calculated. V in the formula is the volume calculated from the equilibrium lattice 

parameter of the DO3 phase, 𝑉𝑉 = (2 ∗ 2.838709)3. The value of K= 181 GPa. 

Similarly elastic modulus (K) is calculated for pure Co, B2, and B32 phases as 217 GPa, 

178 GPa, and 151 GPa, and the values are plotted against aluminum composition.  

 

4.2 Calculation of Chemical Bond Energies 

4.2.1 Chemical Bond Energies in BCC Co52Al2 

In the 3*3*3 supercell BCC structure of Co1-xAlx solid solution 54 atomic positions are to 

be defined for VASP simulation and x=2/54 indicates that 2 aluminum atoms are present 

in the supercell and the remaining 52 atomic positions are occupied by cobalt atoms, 

hence x=2/54 in Co1-xAlx is notated as Co52Al2. In nearest neighbor calculations 

minimum of two solute atom interactions is required which is why the composition 

x=2/54 is considered. Firstly, for x = 2/54 = 0.037 i.e., Co52Al2 1NN, 2NN, and 3NN 

chemical bond energies are calculated. In this composition, 2 Co atoms are replaced by 2 

Al atoms in a pure Co BCC supercell. For 1NN interaction Al atoms in (1/3,1/3,1/3) and 

(1/6,1/6,1/6) atomic positions are considered remaining all other atomic positions are Co 

atoms. For 2NN interaction Al atoms in (1/6,1/6,1/6) and (1/6,1/6,1/2) atomic positions 

are considered. Atomic positions (1/6,1/6,1/6) and (1/6,1/2,1/2) are considered for 3NN 

Al atoms interaction. In each case, the chemical bond energy of the two atoms considered 

is calculated by the bond counting method. For the two atomic positions considered in 
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1NN, 2NN, and 3NN, respective chemical bond energies in pure Co54Al0 and in Co53Al1 

are also calculated by the bond counting method. By solving the energy equations 

calculated for the five cases shown Ω, Ω’, Ω’’ are calculated. Fig. 4.3 shows the five 

cases considered for the bond energy calculation. 

 

Figure 4.3. Atomic configurations for calculation of 1NN, 2NN, and 3NN 

chemical bond energies. Only affected atoms in the supercell are shown. 

 

E1 is the chemical bond energy corresponding to pure Co i.e., Co54Al0. For 

calculating 1NN interchange bond energies, E1 is calculated by considering Co 

atoms in atomic positions (1/6,1/6,1/6) and (1/3,1/3,1/3). For 2NN bond energy 

calculations (1/6,1/6,1/6) and (1/6,1/6,1/2) atomic position Co atoms are 

considered. And atomic positions (1/6,1/6,1/6) and (1/6,1/2,1/2) are considered 

for 3NN energy calculations. 

 

For 1NN bond energy calculation, E1 corresponding to (1/6,1/6,1/6) from bond 

counting method is: 
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Eq. 4.3            𝐸𝐸1 �
1
6

, 1
6

, 1
6
� = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′   

 

For 1NN bond energy calculation, E1 corresponding to (1/3,1/3,1/3) is: 

 

Eq. 4.4           𝐸𝐸1 �
1
3

, 1
3

, 1
3
� = 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

From the above two equations, it can be noted that there are 8 first nearest 

neighbor bonds, 6 second nearest neighbor bonds, and 12 third nearest bonds in 

BCC 3*3*3 supercell. These are the same for 2*2*2 BCC supercell also. 

 

So E1 value for both atoms combined is given by adding Eq. 4.3 and Eq. 4.4  

 

Eq. 4.5            𝐸𝐸1 = 15𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′        

 

E1 is the chemical bond energy of Co54 corresponding to 1NN, ECo-Co is Co-Co 

atom bond energy in first nearest neighbor interaction, E’Co-Co is Co-Co atom 

bond energy in second nearest neighbor interaction, E’’Co-Co is bond energy 

between Co-Co atom which are positioned in third nearest neighboring positions. 

 

Calculation of chemical bond energy for 2NN interaction in pure Co BCC 3*3*3 

supercell Co54Al0. The atomic positions to be considered are (1/6,1/6,1/6) and 
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(1/6,1/6,1/2). The chemical bond energy calculation in Co54Al0 for 2NN 

interaction is denoted by E’1. 

Chemical bond energy considering atom in atomic position (1/6,1/6,1/6) in 

Co54Al0 for 2NN interaction is given by  

 

Eq. 4.6                 𝐸𝐸1′ �
1
6

, 1
6

, 1
6
� = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Chemical bond energy considering atom in atomic position (1/6,1/6,1/2) in 

Co54Al0 for 2NN interaction is given by 

 

Eq. 4.7               𝐸𝐸1′ �
1
6

, 1
6

, 1
2
� = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

The total chemical bond energy of BCC Co50Al0 considering (1/6,1/6,1/6) and 

(1/6,1/6,1/2) atomic position atoms given by adding Eq. 4.6 and Eq. 4.7.  

 

Eq. 4.8              𝐸𝐸1′ = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

For calculating chemical bond energies at a composition only two atoms are 

considered as bond energy associated with other atoms cancel out while 

calculating the difference.  
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Now for Co54Al0 chemical bond energy considering atomic positions (1/6,1/6,1/6) 

and (1/6,1/2,1/2) is calculated for 3NN interaction. The energy is denoted by E’’1. 

 

The chemical energy of Co54Al0 considering atom in (1/6,1/6,1/6) atomic position 

which will be used for 3NN chemical ordering energy calculation is given by 

Eq. 4.9              𝐸𝐸1′′ �
1
6

, 1
6

, 1
6
� = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Similarly for atom in the (1/6,1/2,1/2) position is given by 

 

Eq. 4.10           𝐸𝐸1′′ �
1
6

, 1
2

, 1
2
� = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Chemical energy value of Co54Al0 considering positions (1/6,1/6,1/6) and 

(1/6,1/2,1/2) is given by 

 

Eq. 4.11        𝐸𝐸1′′ = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 23𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

E1, E’1, and E’’1 are the same E1=E’1=E’’1 for Co54Al0 which is the total energy 

value of Co54Al0 calculated from VASP simulation using extrapolated lattice 

parameter, but are represented differently E1 in terms of 1NN atoms, E’1 in terms 

of 2NN atoms and E’’1 in terms of 3NN atoms. This is done for the simplification 

of Ω, Ω’, Ω’’ calculations. While calculations of Ω chemical bonds corresponding 

to those atoms other than (1/6,1/6,1/6) and (1/3,1/3,1/3) cancel out. For 2NN and 
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3NN energy calculations also the chemical bonds of atoms other than those 

considered cancel out. 

 

Similarly, for Co53Al1 chemical bond energy E2 is calculated by considering 

atoms in atomic positions (1/6,1/6,1/6) and (1/3,1/3,1/3) which will be used of 

1NN chemical energy, atomic positions (1/6,1/6,1/6) and (1/6,1/6,1/2) for 2NN 

energy calculation (E2’) and atomic positions (1/6,1/6,1/6) and (1/6,1/2,1/2) for 

3NN energy calculation (E2’’). Atomic position (1/6,1/6,1/6) is occupied by Al 

atom in Co53Al1.  

 

Chemical bond energy (E2) of Co53Al1 considering atomic positions (1/6,1/6,1/6) 

and (1/3,1/3,1/3) which are used for calculating 1NN energies is given by 

 

Eq. 4.12               𝐸𝐸2 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ +

                                            12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′   

 

ECo-Al is the bond energy between Co and Al atoms in the first nearest neighbor 

position, E’Co-Al is the bond energy between Co and Al atoms in the second 

nearest neighbor position and E’’Co-Al is the bond energy between Co and Al 

atoms in the third nearest neighbor position.  

Chemical bond energy (E’2) of Co53Al1 considering atomic positions (1/6,1/6,1/6) 

and (1/6,1/6,1/2) which are used for 2NN energy calculations is given by 
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Eq. 4.13        𝐸𝐸2′ = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ +

                                   12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Chemical bond energy (E’’2) of Co52Al2 considering atomic positions (1/6,1/6,1/6) 

and (1/6,1/2,1/2) which are used for 3NN energy calculations is given by 

 

Eq. 4.14          𝐸𝐸′′2 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ +

                                         11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Similar to Co54, in Co53Al1 E2 = E’2 = E’’2, but are represented differently.  

 

For Co52Al2, Chemical bond energy (E3) considering the two Al atoms in atomic 

positions (1/6,1/6,1/6) and (1/3,1/3,1/3) which are in 1NN positions is given by  

 

Eq.4.15         𝐸𝐸3 = 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 14𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

E3 is the total energy of Co52Al2 for Al atoms occupying 1NN positions. The 

above equation doesn’t represent the chemical energy for all the atoms in the 

supercell but only for (1/6,1/6,1/6) and (1/3,1/3,1/3) as chemical bond energy for 

other atoms cancels out while calculating ‘Ω’. 

 

For Co52Al2, Al atoms occupying 2NN positions (1/6,1/6,1/6) and (1/6,1/6,1/2) 

chemical bond energy (E4) is given by  



33 

Eq. 4.16         𝐸𝐸4 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 𝐸𝐸′𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 10𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

E4 is the total energy of Co52Al2 consisting of Al atoms in the 2NN position. Eq. 

4.16 represents the two Al atom bond energies other atom's bond energy cancels 

out while calculating Ω’.  

Chemical bond energy(E5) in Co52Al2 for the two Al atoms occupying 3NN 

positions (1/6,1/6,1/6) and (1/6,1/2,1/2) is given by 

 

Eq. 4.17          𝐸𝐸5 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′ + 22𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

E5 is the total energy of Co52Al2 consisting of Al atoms in 3NN positions. Eq. 

4.17 represents bond energy in terms of two Al atoms that are in the 3NN 

position. While calculating Ω’’ other atom bond energies cancel out. 

 

The first nearest neighbor chemical ordering energy (Ω) in 3*3*3 supercell of 

BCC Co-Al solid solution Co52Al2 is calculated from Eq. 4.5, Eq. 4.12, and Eq. 

4.15, which are equations of E1, E2, and E3. The equation of Ω for Co52Al2 in terms 

of E1, E2 and E3 by the following equation: 

 

Eq. 4.18   Ω =  ECo−Al −
𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶+𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴

2
= 𝐸𝐸2 −

𝐸𝐸1+𝐸𝐸3
2
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The second nearest neighbor chemical ordering energy (Ω’) in 3*3*3 supercell of 

BCC Co-Al solid solution Co52Al2 is calculated From Eq. 4.8, Eq. 4.13, and Eq. 

4.16, which are equations of E’1, E’2 and E4. It is already mentioned that E’1 = E1 

and E’2 = E2, E’1 and E’2 equations are expressed in terms of 1NN atoms but the 

values are the same as that of E1 and E2 respectively. The equation of Ω’ for 

Co52Al2 in terms of E1, E2, E4 is given by 

 

Eq. 4.19     Ω′ = ECo−Al′ − 𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶
′ +𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴

′

2
= 𝐸𝐸2 −

𝐸𝐸1+𝐸𝐸4
2

 

 

Ω’’ in 3*3*3 supercell of BCC Co-Al solid solution Co52Al2 is calculated from 

Eq. 4.11, Eq. 4.14, and Eq. 4.17, which are equations of E’’1, E’’2, E5. E’’1 = E1 

and E’’2 = E2. The equation of Ω’’ for Co52Al2 in terms of E1, E2 and E5 is given 

by 

 

Eq. 4.20     Ω′′ = ECo−Al′′ − 𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶
′′ +𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴

′′

2
= 𝐸𝐸2 −

𝐸𝐸1+𝐸𝐸5
2

 

 

Equations for Ω, Ω’ Ω’’ for x=2/54 in Co1-xAlx in terms of the total energy values 

of Co54 (E1), Co53Al1 (E2), Co52Al2 1NN (E3), Co52Al2 2NN energy(E4) and 

Co52Al2(E5). E1, E2, E3, E4, and E5 are VASP simulation outputs of 3*3*3 

supercell corresponding to the Al atom position shown in Figure 4.3. 
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4.2.2 Chemical Bond Energies in Co50Al4 

For x=4/54 =0.074 in Co1-xAlx BCC structure 1NN, 2NN, and 3NN chemical 

bond energy Ω, Ω’ and Ω’’ are calculated for Co50Al4 i.e., 4 Al atoms in a cluster 

of Co atoms in 3*3*3 supercell BCC structure in the similar way done for 

Co52Al2. Extrapolated unit cell lattice parameter from Vegard’s plot is used for 

the simulations. For Co50Al4 the atomic arrangements and their corresponding 

energies for the calculation of ‘Ω’ are given in Figure 4.4.  

 

 

Figure 4.4 Two atomic configurations of Co50Al4 which are used for ‘Ω’ 

Calculations. (Co atoms are depicted in Blue and Al atoms in red. Visualization is 

done using VESTA) 

 

E6 is the energy of Co50Al4 in which Al atomic positions are (1/6,1/6,1/6), 

(1/3,2/3,1/3), (1/3,1/3,1/3) and (1/6,1/2,1/6). E7 is the energy of Co50Al4 in which 

Al atomic positions are (1/6,1/6,1/6), (1/3,2/3,1/3), (1/3,1/3,1/3) and (1/6,5/6,1/6). 

E6 and E7 values are calculated from VASP simulations for the atomic 

configuration shown in Fig. 4.4.  

E6 E7 

Co (blue) Al (Red) 
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The difference between E6 and E7 atomic configurations is that the Al atom 

(1/6,1/2,1/6) in E6 is exchanged with the Co atom (1/6,5/6,1/6) in E7. E6 and E7 

energies of Co50Al4 are expressed in terms of bond energies of two atoms in 

(1/6,1/2,1/6) and (1/6,5/6,1/6) positions. Bond energies of remaining atoms that 

are not in (1/6,1/2,1/6) and (1/6.5/6,1/6) positions are equal for E6 and E7. 

 

The E6 energy equation considering the aluminum atom in (1/6,1/2,1/6) and the 

cobalt atom in (1/6,5/6,1/6) is given by 

 

Eq. 4.21      𝐸𝐸6 = 2𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ +

                                 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

The E7 energy equation for considered atoms is given by 

 

Eq. 4.22       𝐸𝐸7 = 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 9𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ +

                                  12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

  

The difference between Eq. 4.22 and Eq. 4.21 gives  

 

 Eq. 4.23                                         𝐸𝐸7 − 𝐸𝐸6 = 2Ω 
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Total energy (E8) of Co50Al4 consisting of aluminum atoms in atomic positions 

(1/6,1/6,1/6), (1/3,1/3,1/3), (1/3,2/3,1/3) and (1/6,1/2,1/2) is calculated from 

VASP simulations. The atomic configuration of E8 is shown in Figure 4.5. 

 

 

Figure 4.5 Co50Al4 (E8) atomic configuration with Al positions at (1/6,1/6,1/6), 

(1/3,1/3,1/3), (1/3,2/3,1/3) and (1/6,1/2,1/2) 

 

Atomic positions that need to be considered by comparing E8 and E6 are 

(1/6,1/2,1/6) and (1/6,1/2,1/2). All other atom's bond energies are the same in both 

configurations.  

 

E6 in terms of (1/6,1/2,1/6) and (1/6,1/2,1/2) atomic positions atoms expressed by 

 

Eq. 4.24  𝐸𝐸6 = 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 2𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ +

                            11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 13𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

E8 in terms of (1/6,1/2,1/6) and (1/6,1/2,1/2) atomic positions atoms expressed by 

E8 

Co (blue) Al (Red) 
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Eq. 4.25  𝐸𝐸8 = 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 2𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ +

                            12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

Calculating the difference between Eq. 4.25 and Eq. 4.24 gives 

 

Eq. 4.26                              𝐸𝐸8 − 𝐸𝐸6 = 2Ω′ − 2Ω′′ 

 

Another atomic configuration for Co50Al4 (E9) with aluminum atom positions at 

(1/6,1/6,1/6), (1/3,1/3,1/3), (1/3,2/3,1/3) and (1/6,1/2,5/6) is considered. E9 is 

calculated from the VASP simulation performed for this atomic configuration. 

Figure 4.6 depicts the atomic configuration of E9. 

 

 

Figure 4.6 Co50Al4 (E9) atomic configuration with Al positions at (1/6,1/6,1/6), 

(1/6,1/6,1/2), (1/3,2/3,1/3) and (1/6,1/2,1/6)  

 

The two atomic positions that need to be considered for expressing energies E6 

and E9 are (1/6,1/6,1/2) and (1/3,1/3,1/3). 

E9 

Co (blue) Al (Red) 
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E6 in terms of (1/6,1/6,1/6) and (1/3,1/3,1/3) is given by 

Eq. 4.27   𝐸𝐸6 = 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 2𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ +

                             11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 13𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

E9 in terms of (1/6,1/6,1/2) and (1/3,1/3,1/3) is given by 

 

Eq. 4.28  𝐸𝐸9 = 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 10𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ +

                             12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

The mathematical Difference of Eq. 4.28 and Eq. 4.27 gives: 

 

Eq. 4.29             𝐸𝐸9 − 𝐸𝐸6 = 4Ω − 2Ω′′ 

 

Solving Eq. 4.23, Eq. 4.26, and Eq. 4.29 Chemical ordering energy values for 

1NN, 2NN, and 3NN (Ω, Ω’, Ω’’) are calculated for Co50Al4.  

 

4.2.3 Chemical Bond Energies in Co14Al2 

For x=0.125=2/16 in Co1-xAlx BCC structure chemical bond energies (Ω, Ω’, Ω’’) 

are calculated from total energy values calculated using VASP simulations. Total 

energies are calculated for 1NN, 2NN, and 3NN aluminum positions in the 2*2*2 

supercell of Co14Al2. Figure 4.7 depicts the atomic configurations for Co1-xAlx 
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2*2*2 supercells with different aluminum compositions. For Co16Al0 total energy 

is denoted by E10, for Co15Al1 as E11, Co14Al2 with 1NN aluminum atom position 

as E12, for 2NN aluminum position of Co14Al2 as E13 and 3NN aluminum position 

of Co14Al2 as E14.  

 

 

 

Figure 4.7 Atomic configurations for calculating 1NN, 2NN, and 3NN chemical 

bond energy for Co14Al2. 

 

E10 E11 

E12 E13 

E14 

Co (blue) Al (Red) 
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Following bond counting, E10, E11, and E12 total energies are expressed in terms of 

(1/4,1/4,1/4) and (1/2,1/2,1/2) position atoms which are 1NN atoms. Energy 

equations considering 1NN atoms are given in the below equations. 

Eq. 4.30 𝐸𝐸10 = 15𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Eq. 4.31 𝐸𝐸11 = 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ +

                             12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

  

Eq. 4.32  𝐸𝐸12 = 14𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

From Eq. 4.30, Eq. 4.31, and Eq. 4.32 1NN chemical ordering energy (Ω) is given 

by 

 

Eq. 4.33     Ω = E11 −
𝐸𝐸10+𝐸𝐸12

2
 

 

E10, E11, and E13 total energies expressed in terms of 2NN atoms in (1/4,1/4,1/4) 

and (3/4,1/2,1/2) positions are given in the below equations. 

 

Eq. 4.34  𝐸𝐸10 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Eq. 4.35  𝐸𝐸11 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ +

                              12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  
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Eq. 4.36  𝐸𝐸13 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 3𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

Comparing Eq. 4.34, Eq. 4.35 and Eq. 4.36 the 2NN chemical ordering 

energy(Ω’) is given by 

 

Eq. 4.37    3Ω′ = E11 −
𝐸𝐸10+𝐸𝐸13

2
 

 

E10, E11, and E14 total energies expressed in terms of 3NN atoms in (1/4,1/4,1/4) 

and (3/4,1/4,3/4) positions are given by the following equations. 

 

Eq. 4.38  𝐸𝐸10 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 23𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Eq. 4.39   𝐸𝐸11 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 15𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ +

                               8𝐸𝐸𝐶𝐶0−𝐶𝐶0′′  

 

Eq. 4.40   𝐸𝐸14 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 7𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

Comparing Eq. 4.38, Eq. 4.39, and Eq. 4.40 3NN chemical bond energy (Ω’’) is 

given by 

 

Eq. 4.41  7Ω′′ = 𝐸𝐸11 −
𝐸𝐸10+𝐸𝐸14

2
 

 



43 

4.2.4 Chemical bond energies in Co12Al4 

For x=0.25 Ω, Ω’ and Ω’’ are calculated by considering the DO3 structure 2*2*2 

supercell. By interchanging the Co and Al atom positions total energy values are 

calculated using VASP calculation. 1NN,2NN, and 3NN chemical bond energy 

values are expressed in terms of the total energy values by the bond counting 

method. Figure 4.8 shows the atomic configurations of Co12Al4 considered. 

 

 

 

Figure 4.8 Atomic configuration of DO3  

Co12Al4 for different Aluminum atom positions in 2*2*2 supercell.  

 

E15, E16, E17, and E18 are total energy calculated from VASP simulation. E15 is the 

energy of the ordered phase DO3 configuration. The difference between E15 and 

E16 is atoms in (1/2,1/2,1/2) and (3/4,1/4,1/4) positions. So E15 and E16 energies 

Co (blue) Al (Red) 

E15:DO3 E16 

E17 E18 
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are expressed in terms of bond energies of the two atoms in atomic positions 

(1/2,1/2,1/2) and (3/4,1/4,1/4).  

E15 in terms of bond energies of (1/2,1/2,1/2) and (3/4,1/4,1/4) is given by 

 

Eq. 4.42   𝐸𝐸15 = 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′ +

                               12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′   

 

Eq. 4.43   𝐸𝐸16 = 5𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 3𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ +

                               24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

Comparing Eq. 4.42 and Eq. 4.43 the difference between E16 and E15 is  

 

Eq. 4.44   𝐸𝐸16 − 𝐸𝐸15 = −6Ω + 24Ω′′ 

 

E17 and E15 energies are expressed in terms of bond energies of atoms 

(1/4,1/4,1/4) and (3/4,1/4,1/4). The equations are  

 

Eq. 4.45  𝐸𝐸15 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 12𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

Eq. 4.46   𝐸𝐸17 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 3𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ +

                               24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

The difference between E17 and E15 from Eq. 4.46 and Eq. 4.45 is  
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Eq. 4.47  𝐸𝐸17 − 𝐸𝐸15 = −8Ω′ + 24Ω′′ 

 

E18 and E15 energies are expressed in terms of bond energies of 4 atoms in atomic 

positions (1/4,1/4,1/4), (3/4,1/4,1/4), (1/4,3/4,1/4) and (3/4,3/4,1/4). The energy 

equations are 

 

Eq. 4.48  𝐸𝐸15 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 20𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 23𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ + 23𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

Eq. 4.49  𝐸𝐸18 = 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 16𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ +

                              7𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′ + 32𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′ + 7𝐸𝐸′′𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 

 

The difference between E18 and E15 from Eq. 4.48 and Eq. 4.49 is  

 

Eq. 4.50  𝐸𝐸18 − 𝐸𝐸15 = −8Ω′ + 32Ω′′ 

 

Solving Eq. 4.44, Eq. 4.47, and Eq. 4.50 the Ω, Ω’, Ω’’ values for Co12Al4 are 

calculated. 

 

4.2.5 Chemical Bond Energies in Co8Al8 

For x=0.5 in Co1-xAlx 1NN, 2NN, and 3NN chemical bond energies (Ω, Ω’, Ω’’) 

are calculated from the total energies of CoAl BCC solid solution for different 
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aluminum atom positions. Figure 4.9 shows the atomic configuration of the 

Co8Al8 B2 phase for different atom positions in the 2*2*2 supercell. 

 

 

Figure 4.9 Atomic configurations for B2 phase Co8Al8 in 2*2*2 supercell  

 

Atomic positions (3/4,1/4,1/4) and (1/2,1/2,1/2) differ in E19 and E20 

configurations. E19 and E20 total energy values are expressed in terms of bond 

energies of the two atoms in (3/4,1/4,1/4) and (1/2,1/2,1/2) positions. The 

equations are 

 

Eq. 4.51  𝐸𝐸19 = 15𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 12𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′  

 

Eq. 4.52  𝐸𝐸20 = 𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 7𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′  

Comparing Eq. 4.51 and Eq. 4.52 gives  

 

Eq. 4.53   𝐸𝐸20 − 𝐸𝐸19 = −14Ω + 12Ω′ + 24Ω′′ 

Co (blue) Al (Red) 

E19:B2 E20 
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Total energies for B32 configurations by interchanging the atom positions are also 

calculated using VASP simulations of 2*2*2 supercell Co8Al8. Figure 4.10 shows 

the atomic configurations considered for the B32 phase. 

 

 

Fig. 4.10 Atomic configurations for B32 phase for different atomic positions in 

Co8Al8 2*2*2 supercell. 

 

Atomic positions which are different in E21 and E22 atomic configurations are 

(1/2,1/2,1/2) and (3/4,1/4,3/4). Total energies E21 and E22 are expressed in terms 

of the bond energies of these atoms, the equations are given as follows 

 

Eq. 4.54   𝐸𝐸21 = 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 7𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′ +

                               12𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′  

 

Eq. 4.55   𝐸𝐸22 = 3𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 9𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 3𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 6𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ + 6𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

The mathematical difference of Eq. 4.55 and Eq. 4.54 gives  

 

E21:B32 E22 E23 

Co (blue) Al (Red) 
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Eq. 4.56  𝐸𝐸22 − 𝐸𝐸21 = 2Ω − 12Ω′ + 24Ω′′ 

 

Atomic positions which are different in E21 and E23 atomic configurations are 

(1/4,1/4,3/4) and (3/4,1/4,3/4). The total energies of E21 and E23 are expressed in 

terms of the bond energies of these atoms, the equations are given as follows 

 

Eq. 4.57   𝐸𝐸21 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 11𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 12𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′′ +

                               12𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′′   

 

Eq. 4.58   𝐸𝐸23 = 8𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶 + 4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴 + 3𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′ + 4𝐸𝐸𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶′ +

                               4𝐸𝐸𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴′ + 24𝐸𝐸𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴′′  

 

The mathematical difference of Eq. 4.57 and Eq. 4.58 gives 

 

Eq. 4.59    𝐸𝐸23 − 𝐸𝐸21 = −8Ω′ + 24Ω′′ 

 

For x=0.5, 1NN, 2NN, and 3NN chemical bond energies are expressed in terms of 

total energy values of Co8Al8 2*2*2 supercell considered for calculations.  

 

In this chapter, equations of 1NN, 2NN, and 3NN chemical bond energies (Ω, Ω’, 

Ω’’) for five aluminum compositions (x) 0.037, 0.074, 0.125, 0.25, and 0.5 in 

BCC Co1-xAlx are shown.  
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4.3 Testing the Hypotheses 

Following equations 3.1 to 3.5 and 3.10, the molar free energy of Co1-xAlx is given by: 

Eq. 4.60 

         ( ) ( ) ( ) ( )2
0

3 1 2
1 ln 1 ln 1

1A

F E E E E TS

N z z z V K x x RT x x x x
ν

ε
ν

′ ′′ ′′′= + + + −

− 
′ ′ ′′ ′′= Ω+ Ω + Ω + − + + − −    − 

 

The results will be discussed in terms of the relative importance of individual energy 

terms in the free energy function. For convenience in result analysis and discussion, the 

following energy coefficients are defined: 

Eq. 4.61     

                 ( ) 2
0

3 1 2
1

c z c z c z c V K
ν

ε
ν
−

′ ′ ′ ′′ ′′ ′′ ′′′= Ω = Ω = Ω =
−

 

In Eq. 4.61, c is the 1NN chemical energy coefficient, c’ is the 2NN chemical energy 

coefficient, c’’ is the 3NN chemical energy coefficient and c’’’ is the elastic energy 

coefficient. 
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4.3.1 First nearest neighbor, second nearest neighbor, and third 

nearest neighbor chemical bond energies 

In Chapter 2.1.1, it is proposed to calculate the bond energies of 1NN, 2NN, and 3NN 

chemical bond energies and compare their values to reveal their respective importance. 

Such calculations are performed using a 3*3*3 supercell with atomic configurations 

shown in Fig. 4.3. The energies of the atomic configurations are summarized in Table 

4.6. 

Table 4.6. The energies of atomic configurations in Fig. 4.3. that are used for calculating 

1NN, 2NN and 3NN chemical bond energies in Co52Al2 

 E1 E2 E3 E4 E5 

energy 
(eV) 

-378.084555 -375.697674 -372.972622 -373.401898 -373.398153 

 

Using Eq. 4.18 and calculated energies E1, E2, and E3 given in Table 4.6 for x=2/54 in 

Co1-xAlx which is Co52Al2, Ω = −0.169 eV. Using 𝑧𝑧 = 8 for 1NN bonds per atom, the 

1NN chemical energy coefficient is calculated 𝑐𝑐 = 𝑧𝑧Ω = −1.353 eV. 

Similarly using Eq. 4.19 and calculated energies E1, E2, and E4 in Table 4.6 gives Ω′ =

0.0456 eV. Using 𝑧𝑧′ = 6 for 2NN bonds per atom, the 2NN chemical energy coefficient 

is calculated 𝑐𝑐′ = 𝑧𝑧′Ω′ = 0.273 eV. 
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Using Eq. 4.20 and calculated energies E1, E2, and E5 in Table 4.6 gives Ω′′ = 0.0437 eV. 

Using 𝑧𝑧′′ = 12 for 3NN bonds per atom, the 3NN chemical energy coefficient is 

calculated 𝑐𝑐′′ = 𝑧𝑧′′Ω′′ = 0.524 eV. 

Table 4.7. Chemical ordering energies of 1NN, 2NN, and 3NN and elastic energy per 

solute atom. 

 Ω  ′Ω  ′′Ω  c′′′  

energy 
(eV) 

-0.169 0.0456 0.0437 0.175 

ratio to |Ω| 100% 27.0% 25.9% 103.6% 

B2 Yes Yes Yes  

D03 Yes No Yes 

B32 No No Yes 

 

The calculated chemical ordering energies Ω, Ω’, and Ω’’ are summarized in Table 4.7. 

These energies are responsible for the development of atomic ordering and potential 

formation of ordered phases shown in Fig 4.11. Since the 2NN and 3NN bonds contribute 

27.0% and 25.9%, respectively, compared to the ordering energy of the 1NN bonds, their 

values are significant, so the 2NN and 3NN bonds are equally important as the 1NN 

bonds. In particular, the 1NN ordering energy Ω is dominant in magnitude, its negative 

value Ω < 0 favors 1NN Co-Al bonds, and is responsible for the B2 ordering and DO3 

ordering but not B32 ordering. The 2NN ordering energy Ω’ has a positive value Ω′ > 0, 

it disfavors 2NN Co-Al bonds, and is responsible for the B2 ordering but not DO3 

ordering and B32 ordering. The 3NN ordering energy Ω’’ also has a positive value Ω′′ >
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0, disfavors 3NN Co-Al bonds, and is responsible for B2 ordering, DO3 ordering and B32 

ordering. The effects of the 1NN, 2NN, and 3NN bond energies on the development of 

atomic ordering are also summarized in Table 4.7, which shows that B2 ordering is 

favored over DO3 and B32 ordering. 

 

Figure 4.11 Phases potentially formed in β-CoAl substitutional solid solution: (a) 

disordered A2 Co1-xAlx, (b) ordered B2 Co0.5Al0.5, (c) ordered DO3 Co0.75Al0.25, and (d) 

ordered B32 Co0.5Al0.5. 

 

The calculated chemical energy coefficients c, c’, and c’’ are summarized in Table 4.8. 

These energy coefficients are responsible for the formation of the disordered A2 phase. In 

particular, their combined coefficient 𝑐𝑐 + 𝑐𝑐′ + 𝑐𝑐′′ defines the free energy of the 

disordered A2 solid solution. Since 2NN and 3NN bonds contribute 20.2% and 38.7%, 

respectively, compared to the chemical energy of the 1NN bonds, their values are 

significant, and the 2NN and 3NN bonds are equally important as the 1NN bonds. 

Particularly the combined contribution of the 2NN and 3NN bonds accounts for 58.9% 

compared to 100% of the chemical energy of the 1NN bonds, thus their roles need to be 

considered. 



53 

Table 4.8. Energy coefficients of 1NN, 2NN, 3NN chemical bonds, and atomic radius 

misfit strain. 

 c  c′  c′′  c′′′  c′+ c′′  c′+ c′′+ c′′′  

energy (eV) -1.353 0.273 0.524 0.175 0.797 0.972 

ratio to |c| 100% 20.2% 38.7% 12.9% 58.9% 71.8% 

 

4.3.2 Dependence of Chemical Ordering Energy on Alloy 

Composition 

In Chapter 2.1.2, it is proposed to calculate the bond energies of 1NN, 2NN, and 3NN at 

different compositions x of the alloy Co1-xAlx to examine their composition dependence. 

Such calculations are performed using a 2*2*2 supercell with atomic configurations 

based on A2 at x=0.125, DO3 at x=0.25, B2 and B32 at x=0.5. Chemical ordering 

energies for 3*3*3 supercell at x=0.037 and x=0.074 are also calculated. Chapter 4.2 

consists of equations in which chemical ordering energies are expressed in terms of 

energies calculated using VASP simulations at different aluminum atom positions at 

different compositions. 

4.3.2.1 1NN, 2NN and 3NN chemical ordering energies for x=4/54 in Co1-xAlx 

For x=0.037=2/54 chemical ordering energies are calculated in chapter 4.3.1. For 

x=0.074=4/54, energies of atomic configurations shown in Fig. 4.4, Fig 4.5, and Fig 4.6, 

which are used for finding Ω, Ω’, and Ω’’ equations of Co50Al4 are summarized in Table 



54 

4.8. These energy values are from VASP simulations for a particular atomic 

configuration. 

Table 4.8 Energies of the atomic configurations shown in Figures 4.4, 4.5, and 4.6 

 E6 E7 E8 E9 

Energy eV -367.47519735 -367.92665406 -367.50761878 -368.3818368 

 

From Eq. 4.23 and calculated energies E6 and E7, 1NN chemical ordering energy value 

for Co50Al4 is Ω = −0.225728. Using Eq. 4.29, energy values E9 and E6, and Ω =

−0.225728 the 3NN chemical ordering energy value is calculated as Ω′′ = 0.001864. 

From Eq. 4.26, energy values E8 and E6, and Ω′′ , 2NN chemical ordering energy is 

calculated as Ω′ = −0.014347. 

 

4.3.2.2 1NN, 2NN and 3NN chemical ordering energies for x=2/16 in Co1-xAlx 

For x=0.125=2/16, energies of atomic configurations shown in Fig. 4.7 are calculated 

using VASP simulations of 2*2*2 supercell Co14Al2, which is a disordered A2 structure. 

The energies are summarized in Table 4.9. 

Table 4.9 Energies of atomic configurations shown in Fig. 4.7 

 E10 E11 E12 E13 E14 

Energy eV -111.993176 -109.738265 -106.965890 -107.506954 -107.510952 
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Using Eq. 4.33 and E10, E11, and E12, 1NN chemical ordering energy is calculated as Ω =

−0.258732, From Eq. 4.37 and energies E10, E11, and E13, 2NN chemical ordering 

energy is calculated as Ω′ = 0.004, From Eq. 4.41 and energies E10, E11, and E14, 3NN 

chemical ordering energy is calculated as Ω′′ = 0.002. 

 

4.3.2.3 1NN, 2NN and 3NN chemical ordering energies for x=4/16 in Co1-xAlx 

For x=0.25=4/16, energies of atomic configurations shown in Fig. 4.8 are calculated 

using VASP simulations for the 2*2*2 supercell. The energy values are summarized in 

Table 4.10. 

Table 4.10 Energies of atomic configurations shown in Fig. 4.8 

 E15 E16 E17 E18 

Energy eV -103.40900568 -101.73251376 -103.20049519 -103.25034056 

 

Solving Eq. 4.44, Eq. 4.47, and Eq. 4.50 using energy values from Table 4.10, 1NN, 

2NN, and 3NN chemical ordering energy values are calculated as Ω = −0.304338, Ω′ =

−0.0447558 and Ω′′ = −0.00623067 for Co12Al4. 
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4.3.2.4 1NN, 2NN and 3NN chemical ordering energies for x=8/16 in Co1-xAlx 

For x=0.5=8/16, energies of atomic configurations shown in Fig. 4.9 B2 phases and Fig. 

4.10 B32 phases are calculated using VASP simulations for 2*2*2 supercell. The energy 

values are summarized in Table 4.11. 

 

Table 4.11 Energies of atomic configurations shown in Fig. 4.9 and Fig. 4.10 

 E19 E20 E21 E22 E23 

Energy eV -95.8983317 -91.7701633 -87.7594779 -87.7866364 -87.3804092 

 

Solving Eq. 4.53, Eq. 4.56, and Eq. 4.59 1NN, 2NN, and 3NN chemical ordering energies 

are calculated as Ω = −0.429491, Ω′ = −0.113189 and Ω′′ = −0.021935 for Co8Al8. 

Calculated 1NN, 2NN, and 3NN chemical ordering energies Ω, Ω’, and Ω’’ for different 

aluminum compositions (x) in Co1-xAlx are summarized in Table 4.12. 

 

Table 4.12 1NN, 2NN and 3NN chemical ordering energy values for Al composition x in 

Co1-xAlx 

Aluminum 
composition (x) 

Ω Ω’ Ω’’ 

0.037 -0.169 0.0456 0.0437 
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0.074 -0.225728 -0.014347 0.001863 

0.125 -0.258732 0.004 0.002 

0.25 -0.304338 -0.04476558 -0.00623067 

0.5 -0.429491 -0.113189 -0.021935 

 

The chemical ordering energies are plotted in Fig. 4.12 against aluminum composition 

(x). A strong composition dependence is observed for the chemical ordering energies of 

1NN, 2NN, and 3NN bonds. 

 

Compared to 1NN and 2NN bonds, the 3NN chemical ordering energy becomes less 

important with increasing composition. On the other hand, the dominant 1NN chemical 

ordering energy becomes increasingly more important with increasing composition, 

favoring B2 and DO3 ordering. At the same time, the 2NN chemical ordering energy 

changes sign at around x=0.11 from positive to negative and increases in magnitude with 

increasing composition, favoring DO3 ordering. As a result, DO3 is favored for 

composition around x=0.25 and B2 is favored around x=0.5. Since B32 ordering requires 

near-zero 1NN chemical ordering energy, it is not favored in β-CoAl alloys. 
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Figure 4.12. Composition dependence of chemical ordering energies Ω , ′Ω

, ′′Ω  of 1NN, 2NN, 3NN bonds, respectively, in β-Co1-xAlx substitutional 

solid solution. 

 

 

4.3.3 Elastic Energy from Vegard’s Plot of β-CoAl Solid 

Solutions 

In Chapter 2.2.1, it is proposed to calculate the lattice parameters of the Co1-xAlx solid 

solutions at different compositions and fit the data to Vegard’s law to determine atomic 

radius misfit between Co and Al atoms and also to determine misfit strain. Figure 4.13 

plots the lattice parameter a(x) in the composition range 0.25≤x≤0.5, which is relevant to 

the β-CoAl alloys shown in the phase diagram in Fig. 1.1. Lattice parameters calculation 

and lattice parameters for different compositions of β-CoAl alloys is shown in Chapter 
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4.1. The results in Fig. 4.13 show that Vegard’s law holds well. To calculate the 

equilibrium lattice parameters of disordered solid solutions using the supercell method, 

multiple random configurations at each composition are simulated, and their average 

values are taken as the lattice parameter at a particular composition which improves the 

statistics and reduces the errors. According to Eq. (3.9), the misfit strain is determined by 

the lattice parameter 𝑎𝑎𝐶𝐶𝐶𝐶 = 𝑎𝑎(𝑥𝑥 = 0) and the derivative 𝑎𝑎𝑎𝑎/𝑎𝑎𝑥𝑥, which are respectively 

the intercept and slope of the fitted straight line in Fig. 4.13. From the linear plot in Fig. 

4.13 𝑎𝑎𝐶𝐶𝐶𝐶 = 2.7816 Å and da/dx = 0.2572 Å, both these value gives misfit stain value 

𝜀𝜀0 = 𝑎𝑎𝐶𝐶𝐶𝐶
−1𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 0.0925. 

The lattice parameter of pure Co body-centered cubic crystal is also calculated, which is 

2.813 Å and also plotted in Fig. 4.13. As shown in the phase diagram Fig. 1.1, pure Co 

has a hexagonal close-packed crystal structure (ε-Co) near room temperature and a face-

centered cubic crystal (α-Co) at elevated temperature, thus the body-centered cubic 

crystal structure considered here is unphysical and its result is for comparison purpose 

only. To be consistent with the micro elasticity theory [28] and Vegard’s law [20] in Eq. 

3.8 that holds well for the β-CoAl alloys in the composition range 0.25≤x≤0.5, the 

extrapolated lattice parameter 𝑎𝑎𝐶𝐶𝐶𝐶 = 2.7816 Å is used here and also for chemical bond 

energy calculations. 
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Figure 4.13. Lattice parameter as a function of the composition of Co1-xAlx solid 

solutions. 

VASP simulations for calculating the lattice parameters of Co1-xAlx using 2*2*2 

supercell, two structural optimization schemes are employed and the results are 

compared. In one scheme, the atomic positions (i.e., fractional coordinates) in the 

supercells are fixed; while in another scheme, the atoms are allowed to deviate from their 

ideal positions during structural relaxation. The calculated lattice parameters are plotted 

by different colored symbols in Fig. 4.13. It is observed that the two schemes produce 

consistent results without systematic differences.  

 

Figure 4.14 plots the calculated bulk modulus for the three ordered phases, namely, DO3 

at x=0.25, B2, and B32 at x=0.5. Again, for comparison purposes only, the bulk modulus 
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of unphysical pure Co of body-centered cubic crystal is also calculated and plotted in 

Fig.4.14. It shows a general trend that the bulk modulus of β-CoAl alloys decreases with 

increasing aluminum content. This trend can also be attributed to a general phenomenon 

observed in DFT calculations that the calculated elastic modulus decreases with 

increasing lattice parameters. In particular, at the same composition x=0.5, the B2 phase 

has a smaller lattice parameter and thus a greater bulk modulus than the B32 phase. 

 

Figure 4.14. Bulk modulus as a function of the composition of Co1-xAlx solid 

solutions. The dashed line serves as a guide to the eye. 

 

The elastic energy can be calculated by using Eq. (3.10). The volume per atom is 

𝑉𝑉 = 𝑎𝑎3/2. The reference state lattice parameter 𝑎𝑎𝐶𝐶𝐶𝐶 = 2.7816 Å gives 𝑉𝑉 =

10.761 Å3. Using misfit strain 𝜀𝜀0 = 0.0925, a typical bulk modulus 𝐾𝐾 = 200 

GPa, and a typical Poisson’s ratio 0.33ν = , the elastic energy coefficient is 
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determined by: ( ) ( )2
03 1 2 1 0.175c V Kν ε ν′′′ = − − =  eV. This value is compared 

to the chemical ordering energies in Table. 4.7 and chemical energy coefficients 

in Table. 4.8. Both comparisons show that the elastic energy contribution is 

103.6% compared to 100% of 1NN chemical ordering energy and 12.9% 

compared to 100% of 1NN chemical energy coefficient, both values are 

significant. 

 

 

4.3.4 Lattice Parameters of Ordered and Disordered Solid 

Solutions 

In Chapter 2.3, it is proposed to calculate the lattice parameters of ordered solid solutions 

and compare them with that of disordered solid solutions at the same composition. Within 

the composition range 0.25≤x≤0.5, DO3, B2, and B32 are the ordered phases formed. 

Using two schemes fixed and relaxed, the same lattice parameters are produced at each 

stoichiometric composition, because atoms in the ordered phase do not relax due to the 

symmetry of ordered atomic arrangement. The results are also plotted in Fig. 4.13. It 

shows that DO3 ordering affects the lattice parameter slightly, B2 ordering changes the 

lattice parameter significantly, while B32 ordering does not affect the lattice parameter.  
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The effect of ordering on lattice parameters can be understood from the changes in the 

1NN atomic bonds as summarized in Table 4.13. Fig. 4.15 shows atomic configurations 

at x=0.25 in Co1-xAlx. 

 

Figure 4.15 Atomic configuration for x=0.25 in Co1-xAlx using 2*2*2 supercell. One is 

the ordered phase DO3 and the other is a disordered phase. 

 

From Fig. 4.15 for the disordered phase at x=0.25, there are 4.5 Co-Co, 0.5 Al-Al, and 3 

Co-Al 1NN bonds per atom, while 4 Co-Co bonds, 0 Al-Al bonds, and 4 Co-Al bonds per 

atom in ordered DO3 phase. Comparing the two phases considered at x=0.25, the changes 

in 1NN bonds caused by DO3 ordering are -0.5 Co-Co bonds, -0.5 Al-Al bonds, and +1 

Co-Al bonds per atom. Table 4.13 shows the lattice parameters of ordered DO3 and 

disordered phase considered for 1NN atomic bonds calculation. 

Table 4.13 Lattice parameters at x=0.25 in Co1-xAlx for DO3 ordered phase and 

disordered phase 

DO3 

Co (blue) Al (Red) 
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Phase Lattice parameter 

DO3 2.838709 

Disordered 2.85407 

 

Atomic configurations considered for 1NN atomic bonds calculations at x=0.5 in Co1-

xAlx for two ordered phases B2 and B32 and one disordered phase are shown in Fig. 4.16 

 

Figure 4.16 Atomic configurations at x=0.5 in Co1-xAlx for 1NN atomic bonds calculation 

for B2, disordered phase, and B32. 

Lattice parameters of the phases considered for 1NN atomic bond calculations for x=0.5 

in Co1-xAlx are shown in Table 4.14. 

Table 4.14 Lattice parameters of x=0.5 in Co1-xAlx for two ordered phases and one 

disordered phase considered for 1NN atomic bond calculation 

Phase Lattice parameter 

B2 2.85390327 

Disordered phase 2.91 

B32 2.9085 

B2 B32 

Al (Red) Co (blue) 
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At x=0.5 in Co1-xAlx for the disordered phase considered, there are 2 Co-Co, 2Al-Al, and 

4 Co-Al 1NN bonds per atom. For the B2 phase, there are 0 Co-Co, 0Al-Al, and 8 Co-Al 

1NN bonds per atom. The change in the bonds caused by B2 ordering is -2 Co-Co bonds, 

-2 Al-Al bonds, and +4 Co-Al bonds per atom, which is 4 times the change in the case of 

DO3 ordering. In contrast, there are 2 Co-Co bonds, 2 Al-Al bonds, and 4 Co-Al bonds 

per atom in the ordered B32 phase. B32 ordering does not cause changes in the bonds. B2 

ordering however decreases the lattice parameter significantly from 2.91 Å to 2.8539 Å (-

1.93%), DO3 ordering slightly decreases the lattice parameter from 2.854 Å to 2.8387 Å 

(-0.536%), while B32 ordering change the lattice parameter from 2.91 Å to 2.9085 Å, (-

0.055%) within the inaccuracy of DFT calculation. 

Table 4.15 The changes in the numbers of 1NN atomic bonds caused by ordering. 

ordering change in the number of 1NN bonds per 
atom 

Co-Co Al-Al Co-Al 

D03 -0.5 -0.5 +1 

B2 -2 -2 +4 

B32 0 0 0 

 

The foregoing observation implies that the lattice parameter is determined by the 1NN 

atomic bonds. In particular, the Co-Al 1NN bond has a shorter length than the average 

length of Co-Co and Al-Al 1NN bonds. Since B32 ordering does not affect the number of 

the 1NN bonds, B32 ordering must be driven by the 2NN bonds as well as the bonds of 

longer atomic distances. 
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Using 3*3*3 supercell, equilibrium lattice parameters for x=0.037=2/54 in Co1-xAlx i.e., 

Co52Al2 are calculated with Al atoms in 1NN, 2NN, and 3NN atomic positions. 

Equilibrium lattice parameters of corresponding Al positions are tabulated in Table 4.16. 

 

Table 4.16 Equilibrium lattice parameters of Co52Al2 with Al atoms in 1NN, 2NN and 

3NN positions 

Al atom positions Equilibrium lattice parameter 

1NN 2.816994694 

2NN 2.816149137 

3NN 2.816247 

 

Equilibrium lattice parameters of Co52Al2 are plotted against Al-Al bond distance in 

1NN, 2NN, and 3NN. Fig. 4.17 depicts the dependence of lattice parameters on Al-Al 

bond distance in 1NN, 2NN, and 3NN positions.  
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Figure 4.17. Dependence of the lattice parameter of Co52Al2 solid solution 

on Al-Al bond distance, namely, 1st, 2nd, and 3rd nearest neighbor, 

respectively. 

 

The lattice parameters are determined by the 1NN atomic bonds and the Co-Al 

1NN bond has a shorter bond length than the average length of Co-Co and Al-Al 

1NN bonds is further supported by the calculated lattice parameters of Co52Al2 

solid solution for three different Al-Al bond distances, namely, 1NN, 2NN and 

3NN, respectively, as shown in Fig. 4.17. In particular 1NN bond has a longer 

bond length leading to a slightly larger lattice parameter (note the very dilute Al 

concentration in the 3*3*3 supercell), while the Al-Al 2NN and 3NN bonds do 

not affect the lattice parameter. 
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5 Conclusion and Future Work 

For β-Co1-xAlx substitutional solid solution, the 2NN and 3NN chemical bond energies 

are significant compared to 1NN chemical bond energy. The solid solution requires 

consideration of chemical bonds beyond 1NN which include 2NN and 3NN bond 

energies. The chemical ordering energies of 1NN, 2NN, and 3NN bonds in Co-Al 

substitutional solid solution depends on the alloy composition. For x=0.25 in β-Co1-xAlx 

DO3 ordering is favored, at x=0.5 B2 ordering is favored and B32 ordering is not favored 

in β-CoAl alloys. Vegard’s law holds well in disordered β-Co1-xAlx substitutional solid 

solutions and the atomic radius misfit between Al solute atoms and Co solvent atoms 

produces a misfit strain 0 0.0925ε =  and elastic energy per solute atom 0.175 eV. The 

elastic energy is significant in comparison to chemical bond energies and thus must be 

taken into account. Atomic ordering affects the lattice parameter and the lattice parameter 

is determined by 1NN atomic bonds. Atomic ordering is determined by 1NN, 2NN, and 

3NN atomic bonds. 
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A Copyright documentation 

All the figures used in this thesis for visualizing the atomic configurations of Co and Al 

atoms at different compositions in 2*2*2 supercells and in 3*3*3 supercells are produced 

by using “Visualization for Electronic and Structural Analysis (VESTA) software [41]. It 

is an open software that is used for three-dimensional visualization of crystal systems. 

VESTA Version 3 is used for the visualization. 

For data analysis, Tecplot 360 2022 R2 is used. Tecplot 360 is an integrated 2D and 3D 

plotting software used for complete visualization and analysis of simulation and test data. 
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