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Abstract 
 
Deep Neural Networks (DNNs) have come a long way in many cognitive tasks by 
training on large, labeled datasets. However, this method has problems in places with 
limited data and energy, like when planetary robots are used or when edge computing is 
used [1]. In contrast to this data-heavy approach, animals demonstrate an innate ability to 
learn by communicating with their environment and forming associative memories 
among events and entities, a process known as associative learning [2-4]. For instance, 
rats in a T-maze learn to associate different stimuli with outcomes through exploration 
without needing labeled data [5]. This learning paradigm is crucial to overcoming the 
challenges of deep learning in environments where data and energy are limited. Taking 
inspiration from this natural learning process, recent advancements [6, 7] have been made 
in implementing associative learning in artificial systems. This work introduces a 
pioneering approach by integrating associative learning utilizing an Unmanned Ground 
Vehicle (UGV) in conjunction with neuromorphic hardware, specifically the 
XyloA2TestBoard from SynSense, to facilitate online learning scenarios. The system 
simulates standard associative learning, like the spatial and memory learning observed in 
rats in a T-maze environment, without any pretraining or labeled datasets. The UGV, akin 
to the rats in a T-maze, autonomously learns the cause-and-effect relationships between 
different stimuli, such as visual cues and vibration or audio and visual cues, and 
demonstrates learned responses through movement. The neuromorphic robot in this 
system, equipped with SynSense’s neuromorphic chip, processes audio signals with a 
specialized Spiking Neural Network (SNN) and neural assembly, employing the Hebbian 
learning rule to adjust synaptic weights throughout the learning period. The 
XyloA2TestBoard uses little power (17.96 µW on average for logic Analog Front End 
(AFE) and 213.94 µW for IO circuitry), which shows that neuromorphic chips could 
work well in places with limited energy, offering a promising direction for advancing 
associative learning in artificial systems. 
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1 Introduction 
The burgeoning field of neuromorphic computing, drawing inspiration from the natural 
world and the principles of neuroscience, is reshaping the landscape of science and 
engineering. This novel computing paradigm seeks to emulate the exceptional efficiency 
and capabilities of biological nervous systems, particularly focusing on associative 
learning—a pervasive form of online learning observed in the animal kingdom. 
Associative learning enables animals to form and memorize connections between 
previously unrelated events based on temporal proximity, contrasting with the data-
driven methodologies predominant in modern Artificial Intelligence (AI) and Machine 
Learning (ML) [8]. Synaptic plasticity in the nervous system makes this learning simpler. 
This is when the strength of synaptic connections between neurons changes based on how 
they are active. This makes it easier to remember how events are connected by making 
those connections stronger [9, 10]. 

Deep Neural Networks (DNNs) have shown remarkable proficiency in various cognitive 
tasks by relying on extensive datasets for training [11-14]. The larger datasets and neural 
networks lead to higher accuracy [14, 15], thereby necessitating a demand for excessive 
pursuit of the large scale of datasets and neural networks [14-18]. This process involves 
adjusting weights through algorithms to minimize discrepancies between the output and 
the labeled truth in datasets. However, the escalating scale of DNNs and their reliance on 
large datasets present challenges like high power consumption, data scarcity, and reduced 
flexibility in autonomous operations. These limitations are particularly problematic in 
applications with constraints on Size, Weight, and Power (SWaP) [14, 15], such as 
planetary rovers that require high adjustability and minimal human intervention in 
energy- and communication-limited environments [15, 19, 20]. 

To address these challenges, neuromorphic systems, mimicking the associative learning 
of animals, offer a promising alternative. By emulating brain functions, these systems can 
facilitate more energy-efficient AI, enhancing the autonomous operating capabilities of 
intelligent robots [21, 22]. This approach not only provides a solution to the limitations of 
traditional DNNs but also leverages the self-learning mechanism of associative learning, 
allowing robots to adapt to their environment by interacting with and memorizing 
concurrent events [23-27]. Putting neuromorphic computing and associative learning 
together is a big step forward in making smart systems that can work efficiently and on 
their own in a wide range of difficult situations. 

1.1 Motivation and Contribution 
Associative learning in AI systems offers an innovative approach to self-learning through 
environmental interaction, significantly deviating from traditional data-driven deep 
learning methods like DNNs. This approach circumvents the drawbacks of relying on 
extensive datasets, which are not only challenging to create and verify but also result in 
prolonged training phases and substantial computational demands. Instead, associative 
learning leverages signal pathway modification, requiring fewer repetitions and reducing 
energy demands [28]. 
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Associative learning has been shown to work in neuromorphic systems recently, but these 
have mostly been limited to experiments involving basic tasks and compact neural 
networks [26, 29-38]. Many existing models also depend on pretraining with labeled 
datasets [33-37]. However, our work advances beyond these limitations by implementing 
real-world associative learning experiments, particularly focusing on the classical 
paradigm of fear conditioning in T-maze navigation in two different experimental setups. 

The classic T-maze experiment in rats for fear conditioning is a variation of the standard 
T-maze setup, specifically designed to study fear responses and conditioned learning. In 
this context, the T-maze is used to create a scenario where rats learn to associate a 
particular environment or cue with an aversive stimulus, typically a mild electric shock. 

The T-maze consists of a starting arm and two choice arms. One of the arms is designated 
as the 'safe' arm, and the other as the 'shock' arm, where a mild electric shock is delivered 
through the floor. During the training phase, the rat is placed in the maze and allowed to 
explore. When it enters the shock arm, it receives a mild electric shock, creating an 
unpleasant experience. This is repeated several times across different sessions, 
conditioning the rat to associate the shock arm with the negative stimulus. In the testing 
phase, the rat is again placed in the maze, but this time, no shock is administered. The 
researchers observed that the rat avoids the arm previously associated with the shock, 
which demonstrates associative learning. 

Our first experiment takes inspiration from the classic T-maze associative learning 
observed in rodents [39]. Here, a mobile robot equipped with the Xylo neuromorphic 
chip [40] is used to replicate the spatial navigation and decision-making processes 
observed in animals. The robot navigates a T-maze, learning to associate different audio 
and visual signals with certain outcomes. Audio command data and red color serve as 
conditional and unconditional stimuli, respectively. The robot's task is to navigate the 
maze and learn from these stimuli, adjusting its behavior based on the learned 
associations. This experiment not only demonstrates the robot's ability to process 
complex sensory information but also showcases the efficiency of the neuromorphic 
system in real-world scenarios. 

Numerous areas in the brain, such as the frontotemporal amygdala and hippocampus, 
play a critical role in learning. Modern advanced associative learning models can't really 
copy the old T-maze tests that are used in studies because their neural networks are too 
small [31-37]. Basic neural network models struggle to handle complex signals like audio 
and visual inputs. Numerous neural networks, rather than a small number of neurons in 
the brain, process these types of signals [41-46]. To overcome these challenges, a system 
using a large-scale, biologically realistic neural network is employed to process both 
audio and visual inputs. In this setup, a mobile robot equipped with sensors acts as a 
replacement for rats used in standard T-maze tests. The Xylo neuromorphic chip is 
utilized as the computational core for processing audio signals in associative learning 
tasks. During these experiments, commands for left or right directions simulate the 
auditory stimuli, while the color red replicates the shock signals given to rats. 
Consequently, the color red represents an adverse stimulus, whereas the audio commands 
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are neutral. The robot's avoidance of the red-colored arm in favor of the non-red arm is an 
imitation of a fear response. Two distinct neural assemblies oversee the robot's ability to 
recognize both auditory commands and visual cues. These assemblies are linked to a 
response neuron that triggers the robot's movement through two separate signal 
pathways. The pathway with a weaker synaptic connection acts as the conditional signal 
route, and the other with a robust synaptic connection functions as the unconditional 
signal route. 

The second experiment revolves around the implementation of associative learning in a 
mobile robotics application. This setup aims to replicate the classic fear conditioning 
experiment traditionally performed with rats [47] in a T-maze setting. In this scenario, a 
mobile robot equipped with various sensors acts as the subject. The robot is trained to 
associate two stimuli: a visual stimulus (red color) and a vibration stimulus (shock), akin 
to the neutral and undesirable stimuli in fear conditioning. The process of learning and 
the subsequent behavioral changes in the robot's movements reflect associative learning, 
like the responses observed in rats. This experiment stands out for its real-time online 
learning capabilities without pretraining, a novel approach in the field of AI and robotics. 
The large-scale neural assembly in the neuromorphic system allows for efficient 
processing of complex signals like visual inputs, an improvement over a simpler neural 
network model. 

These experiments represent significant strides in associative learning. Fear conditioning 
works like a complex learning model at both the cellular (Hebbian learning) and 
behavioral (neural assemblies) levels. Meanwhile, the T-maze experiment emulates 
rodent associative learning, applying these principles in real-time scenarios. These 
approaches contribute to the field by offering robust, real-world applications of 
associative learning, free from the constraints of large-scale datasets and pretraining. 
These studies represent a shift from traditional data-driven approaches, reducing the 
dependency on large, labeled datasets and extensive training. The integration of 
neuromorphic systems in mobile robots, simulating complex learning processes found in 
animals, opens new avenues for research and practical applications in areas where size, 
weight, power constraints, and autonomy are critical. The combination of these 
approaches demonstrates the versatility and potential of neuromorphic systems for 
replicating complex biological learning processes, marking a significant advancement in 
the fields of artificial intelligence and robotics. 

The contributions of this research are significant in several aspects, including: 

1. This work successfully implemented associative learning for online learning in 
mobile robotics applications using neuromorphic chips, bypassing the need for 
pretraining and large datasets. 

2. Classic animal learning models were simulated, such as fear conditioning in T-
maze navigation. This provides strong biological reasoning from the cellular 
(Hebbian learning) to behavioral (neural assemblies) levels. 

3. This work, focused on signal pathway adjustment, introduces a unique learning 
methodology for associative learning. 
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4. These advancements open new possibilities for AI applications in scenarios 
demanding adaptability, energy efficiency, and real-time learning, marking a step 
forward in the endeavor to mimic complex animal learning and exploration 
capabilities in AI systems. 

1.2 Background 
By dissecting and understanding the biological processes that allow animals to learn 
through association, a new approach to self-learning is developed. This approach applies 
this concept of associative learning to brain-inspired computing systems. This section 
will present the latest advancements in neuromorphic (brain-inspired) computing systems 
and the hardware used for such computing. It will then delve into the details of how 
associative learning functions, ranging from the level of individual cells to the overall 
behavior exhibited. 

1.2.1 Neuromorphic Computing 
Neuromorphic computing, designed to emulate the complex functions of human brains, is 
revolutionizing the field of Artificial Intelligence. The human brain, with its capability to 
perform intricate tasks using an astonishingly low amount of energy, approximately 20 
watts, serves as the primary inspiration for these systems [48-50]. This energy efficiency 
far surpasses that of modern computers, which require significantly more power for basic 
tasks. For instance, a typical computer uses around 250 watts just to recognize 1,000 item 
types, whereas the human brain can perform various complex cognitive functions, 
including stimulus classification and future predictions, within its energy budget [24]. 

The remarkable efficiency and computational prowess of the human brain are attributed 
to its billions of neurons and trillions of synapses, creating a complex, three-dimensional 
neural structure with a high level of interconnectedness. Each neuron, capable of 
communicating with over ten thousand others, serves as a signal processing unit, while 
synapses act as connectors and are pivotal in learning and memory. This complex 
structure allows for parallel processing, high connectivity, adjustable network topology, 
and spike-based information representation. 

Carver Mead's concept of neuromorphic computing, which aims to take advantage of 
these traits [51-54], was born in the 1980s. It aims to create neuromorphic hardware [55-
60] that mimics the brain's architecture and learning methods [61-63], thus overcoming 
the limitations of traditional von Neumann computer architecture, which suffers from the 
inefficiency of separating computing and memory units [64]. On the other hand, the 
brain's sparse, event-based computation and colocation of computational (neurons) and 
memory (synapses) units make it a model for more powerful and efficient computer 
systems [24, 65]. 

These systems utilize Spiking Neural Networks (SNNs) [66-68], a form of Artificial 
Neural Networks (ANNs) that more closely emulate biological neural networks. SNNs 
operate on dynamic binary-spiking inputs, making them fundamentally different from 
traditional ANNs with fixed, continuous-valued activities. This spiking mechanism, 
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reflective of how neurons in the human brain communicate, is essential for the energy 
efficiency and real-time processing capabilities of neuromorphic systems. 

Researchers are looking into both traditional Complementary Metal Oxide 
Semiconductor (CMOS) technology and new devices such as memristors and synaptic 
transistors [69-71] to make neuromorphic computing possible. These technologies aim to 
replicate the brain's efficient processing and learning capabilities, potentially leading to a 
new era in computing that is faster, more energy-efficient, and capable of handling 
complex cognitive tasks much like the human brain. 

By marrying the principles of neuroscience with advanced computing technology, 
neuromorphic systems stand at the forefront of AI development, promising to push the 
boundaries of machine intelligence and computational efficiency [72]. Their evolution 
reflects a significant shift from traditional computing paradigms, positioning them as a 
critical component in the future landscape of technology and AI [70]. 

Neuromorphic systems have taken a significant leap forward with the development of 
advanced neuromorphic chips like the Xylo-Audio (SYNS61201) [73], a standout 
member of the Xylo family of Application-Specific Integrated Circuits (ASICs) [40]. 
These chips are specifically designed for processing digital Spiking Neural Networks 
(SNNs). What sets the Xylo-Audio apart is its innovative analog audio front-end, which 
efficiently converts single-channel audio inputs into asynchronous events for SNN 
processing. This real-time operation is remarkably energy-efficient, consuming less than 
10 mW, making it ideal for a variety of applications such as environmental analysis, 
keyword detection, and monitoring of various biological and industrial activities. Figure 
1.1 shows the Xylo-Audio board used in this work. 

The Xylo-Audio development kit brings a new dimension to convolutional audio 
processing. It's not just for keyword detection; its versatility extends to identifying a 
broad range of audio attributes. Alongside the chip, the kit includes a high-quality MEMS 
microphone, a power measurement device, an external audio input port, and a USB-C 
port. It's compatible with the open-source Python library Rock-pool and the SynSense 
device toolchain Samna, offering a comprehensive solution for real-time audio detection. 

Rockpool is an open-source Python package that focuses on the development of signal 
processing applications using SNNs. It provides facilities to build, simulate, train, test, 
and deploy networks, either in simulation environments or on event-driven neuromorphic 
hardware. Rockpool supports various simulation backends, including Brian2, NEST, 
Torch, JAX, Numba, and NumPy. This versatility makes it a powerful tool for machine 
learning applications based on SNNs, though it is not designed for detailed simulation of 
biological networks [74, 75]. 

Samna, on the other hand, serves as the developer interface to the SynSense toolchain and 
runtime environment, facilitating interaction with all SynSense devices. It is designed for 
efficiency and user-friendliness, featuring a Python API with the core running in C++. 
Samna boasts an event-based stream filter system that enables real-time, multi-branch 
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processing of the event-based stream from the device. Its just-in-time compiler 
integration allows for adding user-defined filter functions at runtime, enhancing 
flexibility to accommodate various scenarios [76, 77]. 

 

Figure 1:1: Xylo Audio neuromorphic chip. 

The Xylo-Audio chip also boasts impressive technical features. Its Analog Front End 
(AFE) can handle both single-ended and differential modes, with event-based analog 
feature extraction for energy efficiency. The programmable AFE gain adapts to different 
sound intensities. The chip supports up to 1000 reservoir neurons and 8 classifications, 
with a configurable interrupt for signaling classification completion. Additionally, it has 
an internal operating frequency of up to 100 MHz and a low memory footprint, 
emphasizing its efficiency. 

The electrical characteristics of the device include a core operating voltage of 1.1 V, an 
IOVDD voltage of 2.5 V, and a digital communication range of 0-2.5 V. It processes 
input signals between 100 Hz and 20 kHz and starts operating within 0.5 seconds, with a 
typical power requirement staying under 350 µW. 

In summary, the Xylo SNN core is a cutting-edge component capable of simulating a 
Leaky Integrate and Fire (LIF) spiking neuron population. It supports up to 1000 hidden 
and 8 output neurons and accommodates a wide range of inputs and outputs. Its high 
customizability allows users to adjust synaptic and membrane time constants and set 
individual spiking thresholds for each neuron. The AFE module improves this ability by 
using a band-pass filter bank to split a single-channel analog signal into 16 separate 
channels. This makes neuromorphic computing possible and makes it work well.  
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Table 1.1 shows the features of Xylo Audio neuromorphic chip. 

Table 1.1: Features of Xylo neuromorphic chip. 

Feature Xylo Neuromorphic Chip [78] 

Technology Advanced analog and digital SNN processing 

Die Area Not specified 

Max # Neurons/Chip Up to 1000 reservoir neurons 
Max # Synapses/Chip Not specified 

Neuron Model Digital LIF spiking neuron models 

Power Consumption Below 10 mW 
Input Signal Bandwidth 100 Hz to 20 kHz 

Operating Voltage (VDD) 1.1 V 
IOVDD Voltage 2.5 V 

Analog Front End Capable of single-ended and differential modes 
Output Up to 8 binary event output channels 

Memory Footprint Approx. 150 KB 
Operating Frequency Up to 100 MHz 

Startup Time Within 0.5 seconds 
Average Power Approx. 350 µW 

 

The Leaky Integrate and Fire (LIF) model [79-81] is widely used due to its effective 
balance between capturing essential neural processing dynamics and maintaining 
computational simplicity. Equation 1.1 describes the LIF neuron. 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

=
𝐶𝐶𝑚𝑚
𝜏𝜏𝑅𝑅𝑅𝑅

(𝐸𝐸𝐿𝐿 − 𝑑𝑑𝑚𝑚) + 𝐴𝐴 × 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 1.1 

𝑖𝑖𝑖𝑖 𝑑𝑑𝑚𝑚 > 𝑑𝑑𝑡𝑡ℎ 𝑑𝑑ℎ𝑒𝑒𝑒𝑒 𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 

𝜏𝜏𝑅𝑅𝑅𝑅 =
𝐶𝐶𝑚𝑚
𝐺𝐺𝐿𝐿

 

In the Leaky Integrate and Fire (LIF) neuron model, various parameters are used to 
characterize the neuron's behavior. These include the membrane capacitance (𝐶𝐶𝑚𝑚), leak 
conductance (𝐺𝐺L), leak potential (𝐸𝐸𝐿𝐿), membrane potential (𝑑𝑑𝑚𝑚), input signal 
amplification (A), and the applied input current (𝐼𝐼𝑎𝑎pp). Additionally, the membrane RC 
time constant (𝜏𝜏𝑅𝑅C) is a crucial factor in this model. A simpler variant of this model is the 
Integrate and Fire neuron model, which is essentially a LIF neuron but without the 
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decaying aspect of the membrane potential. This means that in this variation, the 
membrane RC time constant (𝜏𝜏𝑅𝑅C) is considered to be infinitely large. 

1.2.2 Associative Learning 
Associative learning [82], a fundamental process observed in various animals, hinges on 
the ability to connect separate events that occur close together in time. This concept, first 
explored by Ivan Pavlov in the 1890s [83], revolutionized our understanding of animal 
behavior and learning processes. 

Pavlov's work, primarily with dogs, laid the foundation for this field [84]. He observed 
that dogs, which naturally salivate at the sight of food, began to salivate upon hearing a 
whistle if the sound was repeatedly paired with the presentation of food. This 
phenomenon demonstrated that the dogs had learned to associate the whistle, a neutral 
stimulus, with food, a natural stimulus. In the context of associative learning, the food 
represents an Unconditional Stimulus (US) that naturally elicits a response, while the 
whistle exemplifies a Conditional Stimulus (CS) that acquires the ability to trigger a 
response through association. 

The principle of associative learning extends beyond Pavlov's dogs to a wide range of 
animals, each demonstrating unique examples of this learning process. For instance, sea 
slugs (Aplysia) exhibit associative learning through modifications in their neural 
pathways [85]. In Aplysia, a touch to the tail (an unconditional stimulus) naturally causes 
the gill to retract. However, if a simultaneous stimulus is applied to the siphon (a 
conditional stimulus), over time, the gill will retract with just the siphon stimulus, 
showing learned association. 

In more complex animals, like rats, fear conditioning experiments have shown 
associative learning involving neural assemblies [86]. Rats can learn to associate a 
neutral sound with an electric shock. Initially, the sound (a neutral stimulus) does not 
provoke a fear response. However, when paired with an electric shock (an aversive 
stimulus), the rats learn to associate the sound with the shock and exhibit a fear response 
to the sound alone. 

Mechanisms Behind Associative Learning 

1. Signal Pathway Adjustment and Synaptic Plasticity [10, 87]: In neuroscience, 
associative learning is understood in terms of signal pathway adjustment and synaptic 
plasticity. Essentially, the brain learns to connect different stimuli through changes in 
how neurons communicate and form networks. 

2. Neural Assemblies [88, 89]: In more complex brains, such as those of mammals, 
associative learning involves the integration and interaction of neural assemblies—
groups of neurons that process and respond to different types of stimuli. 

Advances in neuroscience have shed light on the brain processes underlying associative 
learning. This learning involves changes in the neural circuitry, known as synaptic 
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plasticity [90], where the strength of synaptic connections between neurons is altered. For 
example, in the case of Pavlov's dogs, the repeated pairing of the bell and food led to 
changes in the brain's neural pathways, making the sound of the bell alone sufficient to 
trigger salivation. 

In more complex animals, associative learning involves the integration of information 
across different neural assemblies. For instance, fear conditioning in rats involves 
changes in the amygdala, a brain region critical for emotion processing [91], where 
sensory information about the conditioned and unconditioned stimuli converges and gets 
integrated. 

Real-life examples of associative learning 

1. Maze Learning in Rodents [92]: Rodents, like mice and rats, can learn to navigate 
mazes to find food. They associate certain paths or cues within the maze with the 
reward (food), demonstrating their ability to form complex spatial associations. 

2. Birdsong Learning in Birds [93]: Many bird species learn their songs by associating 
environmental sounds with their own vocalizations. Young birds often memorize the 
songs of their parents or surrounding adults and, through a process of trial and error, 
learn to replicate these sounds. This associative learning is critical for communication 
and mating in the bird world. 

3. Pet Training [94]: Domestic pets, like cats and dogs, learn various commands and 
behaviors through associative learning. For example, a dog may learn to sit when it 
hears the word "sit" if this command is consistently paired with a reward like a treat 
or affection. 

4. Human Learning [95]: In humans, associative learning is a part of everyday life. For 
example, a person might associate the smell of a specific perfume or cologne with a 
particular individual. Over time, just smelling that scent can evoke memories or 
emotions related to that person. Similarly, hearing a song that was frequently played 
during a significant period in one's life can bring back vivid memories of that time. 

5. Human Language Acquisition [96]: Humans, particularly in early childhood, exhibit 
associative learning through language development. Children learn to associate 
sounds (words) with objects, actions, or concepts, a process that forms the basis of 
language comprehension and usage. 

In conclusion, associative learning is a complex and wide-reaching concept that plays a 
crucial role in the behavior and adaptation of various organisms. Its principles are evident 
in a myriad of real-life examples and have significant implications across different fields, 
from psychology and neuroscience to education and robotics. This learning process 
highlights the adaptability and sophistication of the brain in forming associations and 
adapting to the environment. 

1.2.3 Mobile Robotics 
Mobile robotics serves as an excellent platform for the implementation of neuromorphic 
computing, aligning well with the operational constraints and conditions typically 
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encountered. The standout advantage of neuromorphic computing in this field is its 
minimal demand on Size, Weight, and Power (SWaP), which is essential for the complex 
cognitive functions that robots need to perform. Given that mobile robots operate with 
limited energy reserves, the low power consumption of neuromorphic computing is 
particularly beneficial. Furthermore, in many use cases, these robots must operate 
autonomously without the support of remote servers, relying solely on their own 
computational resources, a practice commonly known as edge computing. This approach 
involves processing data at or near the source rather than depending on distant, more 
robust computing facilities. Neuromorphic computing is also advantageous in situations 
where there is a lack of preexisting data, which can be due to the high costs or 
impracticality of data collection, a common issue in areas like lunar or Martian terrain 
analysis for space exploration [15]. Traditional Deep Learning (DL) methods use a lot of 
power and rely on large datasets for training. Neuromorphic computing, on the other 
hand, is a better and more efficient way to train mobile robots, especially in places with 
little data and limited power. For our associative learning experiment, we have selected 
the Agilex LIMO UGV as a mobile robotics platform, as shown in Figure 1.2. 

The AgileX Limo robot offers a significant advancement in the field of mobile robotics, 
particularly in the context of neuromorphic computing. Its compact and versatile design 
makes it an ideal platform for applications where Size, Weight, and Power (SWaP) are 
critical considerations. The AgileX Limo, with its multi-modal mobility, allows for 
different steering modes such as omni-directional, tracked, Ackermann, and four-wheel 
differential steering, enhancing its adaptability to various environments [97]. 

One of the key features of the AgileX Limo is its compatibility with the Robot Operating 
System (ROS), making it a suitable platform for both educational and research purposes 
in robotics. ROS enables the operation of various independent processes or nodes that 
carry out specific tasks using communication paradigms like publish-subscribe and 
client-service frameworks. In the publish-subscribe model, nodes can either publish or 
subscribe to data channels (topics), facilitating efficient data exchange among different 
components of the robot. The client-service model, on the other hand, involves a service 
node that performs specific functions upon requests from client nodes [98]. 

The AgileX Limo is equipped with an NVIDIA Jetson Nano, EAI XL2 LiDAR, 
ORBBEC® Dabai stereo depth camera, and a suite of other sensors, which together 
support advanced robotic applications. These applications include precise autonomous 
positioning, Simultaneous Localization and Mapping (SLAM), path planning and 
navigation, obstacle avoidance, and traffic light recognition. Because edge computing 
environments often don't have reliable communication with remote hosts, these features 
are very important for mobile robotics when they need to operate on their own. 



11 

 

Figure 1:2: Agilex LIMO robot used for our neuromorphic experiment. 

Furthermore, in situations with limited pre-existing data, such as in space exploration on 
Lunar or Martian terrains, the AgileX Limo's sensor suite and computational capabilities 
make it an excellent choice. Its ability to perform complex tasks autonomously using on-
board resources without relying on large datasets for training sets it apart from traditional 
deep learning approaches in robotics. 

Key features of the AgileX LIMO include: 

1. Robot Operating System (ROS) Compatibility: The LIMO is designed for ROS 
development and learning, offering a versatile platform for robot education, research, 
and development. This compatibility is crucial for facilitating autonomous task 
execution without relying on remote computational resources. 

2. Multi-Modal Steering Modes: The robot integrates four steering modes: omni-
directional, tracked, Ackermann, and four-wheel differential. This flexibility allows 
the LIMO to adapt to various terrains and environments, essential for edge computing 
applications in challenging conditions, such as space exploration on Lunar or Martian 
terrains. 

3. Advanced Sensor Array: Equipped with an array of sensors, including the EAI X2L 
LiDAR, ORBBEC® DaBai Stereo Depth Camera, and an Inertial Measurement Unit 
(IMU) comprising an accelerometer and gyroscope, the LIMO is adept at navigating 
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complex environments. These sensors enable functionalities like precise autonomous 
positioning, SLAM, path planning, obstacle avoidance, and traffic light recognition. 

4. Onboard Computing Power: Powered by an NVIDIA Jetson Nano, the LIMO 
offers enough computational power for sophisticated robotic applications, supporting 
tasks like mapping, navigation, and computer vision. 

5. Energy Efficiency: With a 12V Li-ion 5600mAh battery and efficient power 
management, the LIMO maintains the high energy efficiency necessary for mobile 
robots with limited power supplies. 

6. Gazebo Integration for Simulation: The integration with the Gazebo simulation 
environment is an essential feature, allowing for the testing and development of 
robotic applications in simulated conditions. 

7. Open-Source Software and Customizability: The LIMO's open-source nature and 
the availability of various ROS packages make it highly customizable and adaptable 
to different research and educational needs. 

Given these features, the Agilex Limo Robot is an ideal platform for edge computing in 
mobile robotics. Its ability to perform autonomous tasks using onboard computational 
resources makes it a strong candidate for applications where data collection is 
challenging or impractical, such as space exploration or unstructured environments. 

For experimentation and simulation, the Gazebo simulation environment can be 
integrated with ROS, offering a comprehensive platform for developing and testing 
robotic applications. This integration is particularly beneficial for educational and 
research purposes [99], allowing for a deeper understanding of robotic systems and their 
operation in simulated real-world scenarios. 

In summary, the AgileX Limo robot, with its advanced features and ROS compatibility, 
stands out as a versatile and efficient platform for mobile robotics applications, 
particularly in neuromorphic computing and edge computing scenarios. 
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2 Designing Methods for Associative Learning 
Our associative learning [100] system comprises two signal pathways dedicated to 
processing both audio and visual signals, as illustrated in Figure 2.1. This architecture 
enables the neuromorphic robot to simultaneously receive information from auditory and 
visual stimuli. 

 

Figure 2:1: Overall associative learning implementation. 

The auditory pathway is designed to capture and interpret audio cues, allowing the robot 
to discern and learn from sound-related stimuli within its environment. Meanwhile, the 
visual pathway focuses on processing visual information, enabling the robot to recognize 
and understand visual stimuli crucial for its associative learning. The neuromorphic 
robot's overall cognitive abilities are improved by connecting these two signal pathways. 
This helps researchers learn more about how audio and visual inputs affect each other. 

2.1 Foundations of Associative Learning: Network 
Initialization and Learning Dynamics 

The neural simulation begins with the creation of an associative learning network. This 
network serves as a container, encapsulating all the components we'll be using—the 
neurons, their interconnections, and various other features. 

Two primary stimuli are introduced into this system: the Conditional Stimulus (CS) and 
the Unconditional Stimulus (US). These are like the triggers that set the simulation in 
motion. To visualize this, imagine trying to teach a dog to salivate at the sound of a bell. 
The bell's ring would be the CS, while the sight of food (which naturally makes the dog 
salivate) would be the US. Over time, the aim is for the dog to start associating the bell 
with the food, so it begins to salivate just at the sound of the bell [101, 102]. 

Within this memory network, we establish groups of neurons, referred to as 'ensembles'. 
Each ensemble represents a specific stimulus or a response. For our purposes, we're 
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mainly focusing on three ensembles: one for the CS (like the bell's sound), one for the US 
(like the sight of food), and another that might be seen as the resultant response (the dog's 
salivation). 

These neurons have been modeled with specific properties in mind, such as the range of 
their firing rates and the values at which they start firing. Additionally, we've ensured that 
they are mostly positively oriented, meaning they are more likely to fire in response to 
positive stimuli. 

The properties of these ensembles are crucial for determining how they respond to stimuli 
and how they interact with each other. We've tabulated the primary properties of the three 
ensemble neurons we have used in Table 2.1. 

Table 2.1: Primary properties of the ensemble neurons. 

 

For the system to work, these neurons and stimuli must be interconnected. The 
conditional and unconditional stimuli are connected directly to their respective neuron 
ensembles. These connections determine how information flows within the network. 

A crucial part of associative learning is the "learning rule"—the mechanism that 
determines how our neurons adapt and change over time based on the stimuli they 
receive. In this case, we're employing a variant of the Hebbian learning rule known as 
Oja's learning rule [103]. Simply put, if two neurons fire together often, the connection 
between them is strengthened; if they don't, the connection weakens. It's the neural 
equivalent of the saying, "What fires together, wires together [104]." 

Property CS Ensemble US Ensemble RS Ensemble 
Number of Neurons 1 1 1 

Dimensions 1 1 1 
Neuron Type LIF LIF LIF 
Time constant 0.02s 0.02s 0.02s 

Refractory period 0.002s 0.002s 0.002s 

Encoders 
Evenly split 

between +1 and -
1 

Same as CS Same as CS 

Max Firing Rate 

Uniformly 
distributed 

between 200 and 
400 Hz 

Same as CS Same as CS 

Intercepts Between -1 and 
0.9 Same as CS Same as CS 

Radius 1.0 1.0 1.0 



15 

Beyond just the stimuli and response, the system is also designed to recognize and learn 
the association between the conditional and unconditional stimuli directly. This is a 
pivotal aspect of associative learning, as the network must understand and internalize the 
relationship between these two stimuli to produce the desired response. 

Once the network is set in motion, it's essential to monitor its behavior. This is done 
using 'probes', which can be visualized as diagnostic tools or sensors. They track various 
metrics within the network, such as neuron firing rates, learned connection weights, and 
the overall output. This data is crucial for understanding how well the network is learning 
and functioning. 

After running the simulation, the system examines the output. If the unconditional 
stimulus is present and the network's output doesn't cross a certain threshold, it takes this 
as a sign that the association isn't strong enough. As a response, the network reinforces 
learning by repeatedly presenting the same stimuli. Conversely, if the output crosses a 
specific threshold, it triggers an emergency response, indicating a strong association has 
been made. 

In essence, this entire setup is a simplified model of how associative learning might work 
in the brain. It tries to replicate the process where, over time and through repeated 
exposures, the brain learns to associate one stimulus with another and produce a specific 
response based on that association. 

2.1.1 Mechanisms of Associative Learning: Formation and 
Strengthening of Neural Connections 

The core of associative learning is the associations between the CS (audio commands) 
and the US (red color spikes), focusing on the weights of their connections and how they 
evolve over time. 

At the heart of associative learning lie the connections, or "weights," between neuron 
ensembles. These weights determine how strongly one neuron influences another. In our 
model, the connection weights represent the strength of the association between the CS 
and the US. Initially, the connections have predefined weights. However, as the network 
is exposed to stimuli, these weights change according to the specific learning rules 
applied, aiming to capture and strengthen the association between the CS and the US.  

Table 2.2 summarizes the initial connection weights and their evolution over time. 
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Table 2.2: Initial connection weights among ensemble neurons and their evolution over 
time. 

Connection Initial 
Weight 

Adjustment 
Method Expected Outcome 

US input to US 
neuron 1 Static (doesn't 

change) 

Remains strong 
throughout, 

representing the direct 
effect of US input. 

CS input to CS 
neuron 1 Static (doesn't 

change) 

Remains strong 
throughout, 

representing the direct 
effect of the CS input. 

US neuron to RS 
neuron 1 Static (doesn't 

change) 

Remains strong 
throughout, 

representing the direct 
effect of the US 

neuron. 

CS neuron to RS 
neuron 0.001 Adjusted by 

Hebbian learning 

This weight increases 
if CS neurons and RS 
neurons fire together 

frequently, 
strengthening the 

association. 

CS neuron to US 
neuron 0.01 Adjusted by 

Hebbian learning 

Enhances the learned 
association between 

the CS neuron and the 
US neuron over time. 

In the beginning, the US naturally has a more direct and potent connection to the 
Response Stimulus (RS) with a weight of 1, representing the innate, unlearned response. 
In contrast, the CS has a minimal initial weight compared to the RS and the US neurons, 
signifying its weak influence. 

However, when the CS and US are presented together, the learning mechanism (Hebbian 
learning) springs into action. The idea behind this learning is quite intuitive: if the CS and 
the US fire together frequently, the connection between them gets stronger. This is in line 
with the old adage in neuroscience: "Cells that fire together, wire together [105]." Over 
time, with repeated paired presentations of the CS and US, the weight between the CS 
and RS (and also between the CS and US neurons) increases. This signifies that the 
association between the two stimuli is getting stronger. 

As the system undergoes several learning iterations, the association between CS and US 
becomes more robust. If the learning is successful, the CS alone can evoke a strong 
response, even in the absence of the US. The network has effectively learned to associate 
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the CS with the US, much like how a dog learns to associate the sound of a bell with 
forthcoming food. 

In practical terms, when the CS presents a certain value, the output from the network 
(which was initially weak) becomes more pronounced, reflecting the strengthened 
association. If this output crosses a specific threshold, it might even trigger further 
actions or reactions, as encoded in the system. 

This dynamic change in weights and the resultant strengthening of associations is the 
crux of associative learning [106], modeling how we, and many other organisms, learn 
from associations in our environment. 

2.1.2 Enhancing Associative Learning through Hebbian and 
Oja's Rules 

Hebbian learning [107, 108] is a type of associative learning rule based on the principle 
that if two neurons activate together, the strength of the connections between them should 
increase. In simpler terms: "Neurons that fire together, wire together." 

The basic idea behind Hebbian learning is that if neuron A frequently activates just 
before neuron B, then the synapse from A to B should be strengthened. Mathematically, 
it is possible to calculate the change in synaptic weight (Δw) using Equation 2.1. 

Δw=η×(pre×post) 2.1 

 Where: 

• η is the learning rate. 
• pre is the firing rate of the presynaptic neuron. 
• post is the firing rate of the postsynaptic neuron. 

Oja's rule [103] is an extension of the basic Hebbian learning rule that includes a 
normalization term. This ensures that the synaptic weights do not grow indefinitely. The 
Oja's weight update rule is as follows, as in Equation 2.2. 

Δw=η×(pre×post−β×w×post2) 2.2 

Where: 

• η is the learning rate. 
• pre is the firing rate of the presynaptic neuron. 
• post is the firing rate of the postsynaptic neuron. 
• β is a constant that determines the strength of the normalization. 
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• w is the current synaptic weight. 

The term β×w×post2 serves to ensure that weights don't grow without bound. It acts as a 
subtractive normalization, scaling the weight changes depending on the size of the weight 
and the postsynaptic activity. 

For our work, Hebbian learning is applied to the connections between certain neuron 
ensembles. Specifically, it's used for two crucial connections: 

1. CS Neuron to RS Neuron 
2. CS Neuron to US Neuron 

For these connections, the Oja learning rule, which is a variation of the Hebbian rule, is 
utilized. The Oja rule strengthens connections when pre- and post-neurons fire together 
and ensures that weights do not grow indefinitely. Table 2.3 summarizes the Hebbian 
learning mechanism for our work. 

Table 2.3: Hebbian learning rules employed in our work. 

Connection Initial 
Weight 

Learning 
Rule 

Learning 
Rate Beta Expected Change 

CS to RS 
neurons 0.001 

Oja 
(Hebbian 
variant) 

6e-2 0.1 

Weight increases as the 
CS neuron and the RS 

neuron activate 
concurrently. 

CS to US 
neurons 0.01 

Oja 
(Hebbian 
variant) 

6e-2 0.1 

Weight strengthens 
with simultaneous 
activations of CS 
neurons and US 

neurons. 

When the CS is presented in conjunction with the US, both the CS neurons and the 
US/RS neurons are activated. The Oja learning rule adjusts the weights of the 
connections based on the degree to which these neuron groups are activated together. 
Over repeated pairings: 

1. The weight between the CS neurons and RS neurons grows, leading to a stronger 
response in the RS neurons even when only the CS is presented. 

2. Similarly, the bond between the CS and US neurons gets enhanced, reinforcing the 
learned association between the CS and US. 

To sum up, the network improves its weights using Hebbian learning and the Oja rule to 
show the connection between the CS and US. Over time, as learning progresses, the CS 
alone can evoke responses reminiscent of those initially produced only in the presence of 
both the CS and US. 
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2.2 Acquiring the Conditional Stimulus for Enhancing 
Associative Learning 

A conditional stimulus, or CS for short, is a cue or signal that is initially neutral but 
becomes linked with a certain outcome or reaction after being paired with an US 
repeatedly. Over time, the presence of this CS alone can trigger a learned response. For 
instance, if the presentation of food comes right after a bell rings, a dog may start 
salivating just from hearing the bell [109]. 

In simpler terms, a CS is like a hint or sign that points towards an expected event or result 
based on past experiences. Through repeated pairing, our brains come to associate this 
"hint" with a particular outcome, even if the outcome doesn't always follow. 

2.2.1 Acquiring Audio Command Data as the Conditional 
Stimulus 

2.2.1.1 Designing SNN for Audio Command Prediction 
We designed a SNN using the Rockpool library to predict “left” and “right” audio 
command data. An input-to-hidden stage and a hidden-to-output stage make up the two 
main stages of the SNN's overall architecture, which is sequential. The audio perception 
neural network architecture is shown in Figure 2.2 (a). The auditory data exhibited will 
be imported into 16 channels to align with the capabilities of the Xylo chip using a 
microphone, as shown in Figure 2.2 (b). In our work, we deliberately restricted our 
analysis to a subset of commands, specifically “left” and “right”. Transforming the events 
into frames reorganized the auditory data. The Xylo neuromorphic chip used for 
processing audio perception is illustrated in Figure 2.2 (c). 

 

Figure 2:2: (a) Audio perception neural network architecture. (b) The preprocessing 
module of the Xylo neuromorphic chip. (c) XyloA2TestBoard for audio command 

detector model deployment. 
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The network is designed to accept input with a dimensionality of 16 channels. This is 
further processed through a hidden layer composed of 20 neurons. The output from this 
hidden layer is then passed through the final stage, resulting in an output with a 
dimensionality of 3 units. The network simulations utilize a timestep (dt) of 10 
milliseconds. 

The network layering and information flow are as follows: 

Input Layer: Data enters the network via an input layer defined by its 16-channel 
structure. 

Linear Transformation to Hidden Layer: Following the input, the data is subjected to a 
linear transformation designed to map the 16-dimensional input to a 20-dimensional 
hidden layer. 

Hidden Layer with LIF Dynamics: This transformed data then encounters the hidden 
layer, which has 20 neurons. These neurons, governed by LIF dynamics, process the data, 
adding a layer of non-linearity and temporal dynamics to the transformation. 

Linear Transformation to Output Layer: Post-processing in the hidden layer, the data 
is again linearly transformed, this time targeting the final output layer with a 
dimensionality of three. 

Output Layer with LIF Dynamics: Analogous to the hidden layer, the output layer's 
three neurons utilize LIF dynamics to produce the final output, adding another layer of 
non-linear temporal processing. 

In both the hidden and output layers, neurons are based on the Leaky Integrate-and-Fire 
(LIF) dynamics, which is a well-known way to model how biological neurons fire spikes. 
There are several defining parameters that determine the characteristics and behavior of 
these LIF neurons: 

Membrane Time Constant: Set to 80 milliseconds, this parameter gauges the rate of 
decay of the neuron's membrane potential towards its baseline state when devoid of 
external inputs. 

Synaptic Time Constant: Configured at 50 milliseconds, it quantifies the duration over 
which an incoming synaptic transmission affects the receiving neuron's membrane 
potential. 

Bias: A consistent bias of 0.2 is imparted to every neuron, influencing its propensity to 
fire or spike upon receiving synaptic input. 
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Threshold: The neurons are calibrated with a spiking threshold set at a membrane 
potential value of 1. Once this threshold is surpassed due to synaptic inputs, the neuron 
responds by generating and dispatching a spike. 

2.2.1.2 SSC Dataset for Audio Command Detection 

We used the Spiking Speech Command (SSC) dataset [110] to train our spiking neural 
network. This dataset, found in the tonic library, gives us audio commands in a unique 
format known as "spikes.". The SSC dataset is made up of tiny bits of data recorded very 
fast—one every microsecond. Every audio command in this dataset is split into 700 
channels. In total, there are 35 different audio commands. For our work, we decided to 
only focus on two commands: "left" and "right." These are located at positions 22 and 34 
in the dataset. By doing this, we wanted to teach our model to tell the difference between 
these two commands. 

We made a plot to show when and where the spikes for the "left" command happen. On 
this plot, the spikes look like small vertical magenta lines. Time is shown from left to 
right, and the 700 channels go from bottom to top. Figure 2.3 shows spike events for a 
sample left audio command data. 

 

Figure 2:3: Spike events for left audio command data. 
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We made another plot to show when and where the spikes for the "right" command 
happen. On this plot, the spikes look like small vertical magenta lines. Time is shown 
from left to right, and the 700 channels go from bottom to top. Figure 2.4 shows spike 
events for a sample of right audio command data. 

 

Figure 2:4: Spike events for the right audio command data. 

2.2.1.3 Data Preparation and Transformation for Deployment on the Xylo 
Neuromorphic Chip 

To deploy our trained network on the Xylo neuromorphic chip, we need to adjust or 
"transform" the data so that it fits perfectly. The transformation process tailored the 
dataset to be in line with the chip's requirements. The Xylo chip has specific constraints. 
It can process data with a maximum of 16 channels. To accommodate this, we undertook 
a series of transformations to mold the dataset to meet these prerequisites. 

Downsampling: Given the chip's constraints, our first task was to reduce the complexity 
of the data. This involved: 

Temporal Downsampling: The original dataset had a microsecond-level temporal 
granularity, with each timestep being 1*e-6 seconds. For the transformation, we aimed to 
alter the timestep to 10*e-3 seconds. The ratio for this temporal down-sampling was 
determined by dividing the desired timestep (10*e-3) by the original timestep (1*e-6). 
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Spatial Downsampling: We were working with a dataset that had 700 channels. But for 
the Xylo chip, we needed to compress this to 16 channels. By dividing the desired 
channels (16) by the original channels (700), the spatial down-sampling ratio was thus 
determined. 

Rasterizing the Events: Once down-sampling was achieved, we reformatted the dataset 
by converting the events into "frames." Think of this as turning a film reel into individual 
photographs, giving us static snapshots of the data across time. 

Data Conversion to Tensors: For seamless integration with our model, the data was 
transformed into a tensor format. Picture a tensor as a multi-layered grid, storing data 
across several dimensions. 

Duration Adjustment: Our final transformation ensured the data's time length didn't 
exceed 250 seconds, trimming any excess. 

After these transformations, we displayed the "left" audio command's spikes on a graph. 
Each spike appears as a magenta line. This visualization helps us easily see the frequency 
and timing of the spikes after we transformed the data. Figure 2.5 shows the spike events 
for the down-sampled left audio command data. 

 

Figure 2:5: Spike events for a down-sampled left audio command data. 
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We also made a plot for the "right" audio command. This visual representation helps us 
compare the transformed data of both commands before we used it on the Xylo chip.  

Figure 2.6 shows the spike events for the down-sampled right audio command data. 

 

Figure 2:6: Spike events for a down-sampled right audio command data. 

2.2.1.4 Training the Spiking Neural Network Model 

We trained our Spiking Neural Network for 17,500 epochs. The Adam optimizer with a 
learning rate of 1*e-5 guided the learning process, and we used the cross-entropy loss 
function to measure errors. 

At the beginning, the model could only correctly identify "left" and "right" audio 
commands 27% of the time, and the error was measured at 1.87e+04. As the training 
progressed, the model improved significantly. By the end, it achieved an impressive 92% 
accuracy in distinguishing between the two commands, and the error was reduced 
drastically to 6.39e-01. 

For clarity, we plotted the model's performance throughout its training. The plot shows 
how its accuracy increased and error decreased over the 17,500 epochs. 
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Figure 2:7: Loss vs. accuracy plot of the SNN-based audio command detector over 
epochs. 

2.2.1.5 Model Deployment and Visualization on XYLO Platforms 

After training, we tested our model on the Xylo Hardware Development Kit (Xylo HDK) 
and the Xylo Simulator using sample "left," "right" audio commands, and "no input" data. 

We ran the model on the Xylo HDK with the "left" and "right" commands and "no input" 
data. The resulting visualization shows the model's reactions as spikes, with a clear mark 
indicating when the "left" and "right" commands were played. Similarly, the model was 
tested on the Xylo Simulator. The visual output was again shown, with spikes 
representing the model's response. 

Both tests let us compare the model's performance on actual hardware versus a simulated 
environment. The visualizations help us understand how our model responds to the "left" 
and "right" commands and “no input" data in different settings. Figure 2.8, Figure 2.9, 
and Figure 2.10 show the Xylo HDK and simulator outputs for "left," “right” command 
data, and “no input," respectively. 
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Figure 2:8: Output of a Xylo HDK and Simulator for “left” command data. 

 

Figure 2:9: Output of a Xylo HDK and Simulator for “right” command data. 

 

Figure 2:10: Output of a Xylo HDK and Simulator for “no input”. 
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2.2.1.6  Visualization of Output Membrane Potentials and Synaptic Current on 
Xylo Platforms 

After testing the trained model, we wanted to gain deeper insights into its behavior. 
Specifically, we aimed to understand how the model reacts internally to different audio 
commands: "left," "right," and the absence of any command ("no input"). 

Parallel Visualization: Using side-by-side plots, we showcased the model's reactions on 
two platforms: 

Xylo HDK: The left plot shows the neuron's membrane potential and synaptic current 
variations on the Xylo HDK when exposed to the different audio commands. 

Xylo Simulator: The right plot does the same, but for the Xylo Simulator environment. 

The side-by-side plotting offers a clear comparison between how the model operates in a 
real hardware setting and a simulated one. This visualization aids in predicting the robot's 
decisions, especially when the model runs live on the Xylo HDK. 

Figure 2.11 and Figure 2.12 show the output membrane potentials and output synaptic 
currents, respectively, for Xylo HDK and Simulator. 

 

Figure 2:11: Output membrane potentials for Xylo HDK and Simulator. 
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Figure 2:12: Output synaptic currents for Xylo HDK and simulator. 

Furthermore, we also plotted the 20 hidden neurons’ spikes for both Xylo HDK and 
Simulator in Figure 2.13. On both platforms, neuronal behavior looks similar. 

 

Figure 2:13: Hidden neurons’ spikes for Xylo HDK and Simulator. 

2.2.1.7 Energy Usage in the Xylo HDK While Running Spiking Neural Networks 
In the deployment phase of our trained spiking neural network on the Xylo HDK, power 
consumption becomes a critical metric to gauge the efficiency of the network. The Xylo 
HDK provides real-time power measurements, allowing for detailed insights into the 
energy demands of the model when processing the "left" and "right" audio commands. As 
tabulated in Table 2.4, the most significant consumption comes from the logic 
component, drawing 1844.26 µW. The IO components, both direct and associated with 
the Analog Front End (AFE), have consumption values of 213.94 µW and 230.98 µW, 
respectively. Notably, the Logic AFE remains highly efficient with a mere 17.96 µW. 
These metrics offer a comprehensive view of the power demands, underscoring the 
deployment viability and operational efficiency of the neural network on the Xylo HDK 
platform. 
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Table 2.4: Power consumption in Xylo HDK during the deployment of the spiking neural 
network. 

Component Power Consumption (µW) 

IO 213.94 

Logic AFE 17.96 

IO AFE 230.98 

Logic 1844.26 
Notably, when compared to traditional deep learning architectures and platforms, the 
Xylo HDK demonstrates significant power savings. According to Jouppi et al. (2017) 
[111], Tensor Processing Units (TPUs) used for deep learning tasks in data centers 
usually use a lot of power—watts or more—which is a lot more than the Xylo HDK's 
microwatt-level use. Esser et al. (2016) [112] have showcased the energy efficiency of 
neuromorphic computing with convolutional networks, emphasizing the promise of 
neuromorphic chips in reducing power consumption. Horowitz (2014) [113] highlighted 
the growing energy challenges in computing, especially as it relates to intensive tasks like 
deep learning, accentuating the need for more energy-efficient solutions like 
neuromorphic platforms. These measurements and comparisons show that spiking neural 
networks can be deployed and work efficiently on neuromorphic platforms. This makes it 
possible for AI to be used in more long-lasting and effective ways. 

2.2.1.8 Real-time Robot Navigation via Audio Commands with XyloMonitor 
To enable real-time robot navigation based on audio commands, the XyloMonitor 
deployment tool was utilized. This tool processes live audio inputs, specifically 
commands for "left" and "right" directions, and predicts the intended direction for the 
robot. 

The XyloMonitor is meticulously set up to capture and process audio commands. A brief 
waiting period is necessitated for the AFE auto-calibration, ensuring optimal and 
consistent audio data acquisition. 

To account for variations in command delivery, such as differing volumes or distances 
from the microphone, the sensitivity level of the audio capture system is heightened. This 
ensures that the commands are recognized clearly and accurately. 

Once activated, the system processes incoming audio over a designated duration (T = 
60s). Depending on the neuron's membrane potential, indicative of the received audio, it 
identifies the intended direction. A "left" membrane potential prompts the robot to turn 
left, and similarly, a "right" potential signals a right turn. 

Post-processing, the definitive direction, either "left" or "right," is predicted and 
conveyed to the robot, guiding its subsequent movement. 
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2.2.1.9 Real-time Navigation Decision Making for the LIMO Robot 
Upon receiving a "left" or "right" command prediction from the XyloMonitor, an 
auxiliary neural network is employed to drive the LIMO robot's leftward or rightward 
movements. This network, consisting of ten Leaky Integrate-and-Fire (LIF) neurons, is 
designed such that it predictably steers the robot left or right. 

 

Figure 2:14: Auxiliary neural network with ten hidden LIF neurons directing the LIMO 
robot's movement upon receiving XyloMonitor commands. 

The LIF neuron is characterized by two parameters: the membrane time constant and the 
refractory period. The refractory period has been minimized to accelerate neuron firing 
after an output spike. For consistency, the network uses a seed value of 42 to ensure 
reproducibility in neuron properties. 

To ensure the LIMO robot consistently turns left or right, predefined synaptic weights are 
established between the input and neurons and between neurons and the output. 

The network receives a constant input, which, when passed through the neurons with the 
given synaptic weights, produces a specific firing pattern. This pattern translates into a 
mean firing probability, which determines the robot's movement direction. 

If the firing probability exceeds a threshold of 0.5, it prompts the LIMO robot to turn left; 
otherwise, turn right. 
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To ensure the LIMO robot consistently turns left with a mean firing probability of 0.9, 
the synaptic weights and neuron properties are fixed, as shown in Table 2.5, Table 2.6, 
and Table 2.7. Figure 2:15 shows the firing probability of LIF neurons over time for the 
left turn. 

Table 2.5: Synaptic weights from input to neurons for the left turn. 

Neuron Index Weight Value 
1 45.0 
2 -27.0 
3 72.0 
4 -9.0 
5 63.0 
6 -54.0 
7 18.0 
8 81.0 
9 -63.0 
10 9.0 

 

Table 2.6: Synaptic weights from neurons to output for the left turn. 

Neuron Index Weight Value 
1 9.0 
2 -18.0 
3 27.0 
4 -36.0 
5 45.0 
6 54.0 
7 -63.0 
8 72.0 
9 -81.0 
10 9.0 

 

Table 2.7: LIF neuron properties for left turn. 

Parameter Value 
Membrane time constant 0.02 

Refractory period 0.001 
Seed 42 
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Figure 2:15: Firing probabilities of neurons over time for the left turn move of the LIMO 
robot in the T-maze. 

To ensure the LIMO robot consistently turns right with a mean firing probability of 0.2, 
the synaptic weights and neuron properties are fixed, as shown in Table 2.8, Table 2.9, 
and Table 2.10. Figure 2:16 shows the firing probability of LIF neurons over time for the 
right turn. 

Table 2.8: Synaptic weights from input to neurons for the right turn. 

Neuron Index Weight Value 
1 2.9 
2 -0.5 
3 3.7 
4 -0.3 
5 3.0 
6 -0.6 
7 0.8 
8 3.8 
9 -0.7 
10 2.8 
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Table 2.9: Synaptic weights from neurons to output for the right turn. 

Neuron Index Weight Value 
1 0.9 
2 -0.4 
3 0.8 
4 -0.6 
5 0.7 
6 0.8 
7 -0.9 
8 0.7 
9 -1.1 
10 0.6 

 

Table 2.10: LIF neuron properties for the right turn. 

Parameter Value 
Membrane time constant 0.02 

Refractory period 0.002 
Seed 42 

 

 

Figure 2:16: Firing probabilities of neurons over time for the right turn move of the 
LIMO robot in the T-maze. 
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2.3 Acquiring the Unconditional Stimulus for Enhancing 
Associative Learning 

In associative learning, the US refers to a stimulus that naturally and automatically 
triggers a particular response without prior learning. Essentially, it's something that our 
bodies or minds react to instinctively. 

For example, in the classic experiment by Ivan Pavlov, when a dog hears the sound of 
food being prepared, it might salivate. In this case, the food (or the presentation of the 
food) serves as the unconditional stimulus because it elicits an automatic, or 
"unconditioned," response (salivation) without the dog having to learn anything about it 
[109]. 

2.3.1 Acquiring Red Color as the Unconditional Stimulus 
We used spikes of red as an unconditional stimulus for our work. We placed a red color 
curtain in front of the right arm of the T-maze to detect red color spikes from the live 
captured images using the LIMO front-end camera. 

2.3.1.1 Real-Time Image Acquisition Using the LIMO Camera on the ROS 
Platform 

Our methodology capitalizes on the LIMO camera's real-time imaging capabilities 
integrated with the Robot Operating System (ROS). Figure 2:17 shows the captured 
image using the LIMO robot ORBBEC® DaBai Stereo Depth Camera. 

 

Figure 2:17: Captured image using the LIMO robot front camera. 

We connect to the LIMO camera by tapping into its continuous raw image stream within 
ROS, ensuring an uninterrupted flow of visual data in a standard robotic format. To refine 
the received images for color detection, they are transitioned to a format compatible with 
the OpenCV image processing library. This conversion facilitates intricate color analysis, 
enhancing our system's ability to detect and interpret visual nuances. 
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2.3.1.2 Defining the Central Region of the Captured Image 
To isolate and analyze the central region of the captured image, we adopt the following 
mathematical approach: 

Let: 
H represents the total height of the image. 
W represents the total width of the image. 

 
Figure 2:18: Central region calculation of the captured image. 

For the height: 

Starting y-coordinate: 𝑦𝑦1 = 𝐻𝐻
4
 

Ending y-coordinate: 𝑦𝑦2 = 3𝐻𝐻
4

 

Height of the central region: ∆𝑦𝑦 = 𝑦𝑦2 − 𝑦𝑦1 = 𝐻𝐻
2
 

For the width: 

Starting x-coordinate: 𝑥𝑥1 = 𝑊𝑊
4

 

Ending x-coordinate: 𝑥𝑥2 = 3𝑊𝑊
4

 

Width of the central region: ∆𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1 = 𝑊𝑊
2

 

From these calculations, it's evident that the targeted central region encompasses half of 
the image's height and half of its width. Graphically, this equates to a centered rectangle 
that spans 50% of the image's height and width. Consequently, this central region 
occupies 25% of the image's total area in the middle. 
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2.3.1.3 Color Detection Using HSV Color Space 

To facilitate the precise detection of colors in images, we employ the Hue Saturation 
Value (HSV) color space. This choice stems from HSV's robustness against lighting 
variations, as it distinctly segregates color information (hue) from luminance (value). 

• Hue (H) represents the type of color. 
• Saturation (S) denotes the intensity or purity of the color. 
• Value (V) indicates brightness. 

After the image's conversion to HSV, we generate distinct masks for the red color. The 
defined range for the red color in the HSV space is detailed in Table 2.11. 

Table 2.11: Ranges of red color in the HSV space. 

Color Hue (H) Saturation (S) Value (V) 

Red1 0-10 100-255 100-255 

Red2 160-180 100-255 100-255 

The range for red is divided into two intervals (Red1 and Red2) to capture its entirety in 
the HSV circle. 

2.3.1.4 Transforming Pixel Counts into Neural Spikes for Advanced Color 
Detection 

The process starts with counting the number of red pixels centered in the image. This 
involves computing the sum of pixels that are specifically red within the delineated 
central region. 

After the extraction of pixel counts for red hues, this data serves as an input to a Nengo 
neural framework. Nengo operates based on ensembles, collections of neurons designed 
to collaboratively represent data. In our setup, an ensemble of 100 neurons is employed. 
This ensemble is tasked with representing the counts of detected red pixels. 

One of Nengo's distinguishing features is its reliance on spikes for neural communication. 
One way to think of a spike is as a binary signal that a neuron emits. As the input (in our 
case, the red pixel count) changes, so do the spiking patterns of the associated ensemble. 
This pattern provides a nuanced understanding of the color's intensity and presence in the 
given data. 
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With the input integrated, a single timestep in the Nengo simulation is executed. This step 
ensures that the input data circulates through the network, leading the ensemble's neurons 
to produce a distinctive pattern of spikes. 

The subsequent stage involves scrutinizing this spiking activity. Using specialized probes 
within the ensembles, the spikes are recorded and totaled for the ensemble. This 
numerical representation, such as a threshold of 80 spikes, then guides actionable 
decisions, indicating dominant color presences and prompting specific responses. 

In summary, at the beginning, we detect the number of red pixels in the center of an 
image, use those counts as inputs to a spiking neural network, and then observe the 
neuron spikes as outputs. 

Here’s the step-by-step procedure: 

1. Receive an image and process it to detect red pixels. 
2. Set the detected pixel counts as inputs to the respective Nengo nodes. 
3. The nodes send this input to the neural ensemble. 
4. The neural ensemble produces spikes in reaction to the input. 
5. Probes collect the spike data from the ensemble. 
6. If the number of spikes crosses a threshold, a certain condition (stop-and-

reverse) is met. 

The concept here is to use a biologically inspired mechanism (spiking neural network) to 
detect significant concentrations of red colors in the center regions of images. 
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2.3.2 Vibration Data Acquisition as the Unconditional Stimulus 

In our associative learning experiment, we used vibration data as the US. We recorded 
real-time vibration data using the vibration plate. We have a vibration plate under our T-
maze from Vibration Therapeutic, as shown in Figure 2:19. We used this vibration plate 
to generate 35-Hz vibration data with approximately 2.8-mm amplitudes. 

 

Figure 2:19: Vibration plate underneath our T-maze, which is used to record vibration 
data. 

The LIMO robot is equipped with an IMU that captures these vibrations. Agilex's ROS 
software, running on the LIMO robot, processes the IMU data, streaming the robot's 
acceleration to an IMU topic accessible by other ROS nodes. This allows for the 
vibration data to be recorded and replayed, simulating real-time data publication. By 
adding Nengo to a ROS node that is subscribed to the IMU topic, a way for ROS and 
Nengo to talk to each other is created. This makes it easier to add the raw acceleration 
data to the network with little preprocessing. 

The preprocessing step involves removing the z-axis's average acceleration due to Earth's 
gravity (9.81 m/s^2) to normalize the acceleration values of all three axes to zero. 
Initially, the acceleration norm |a| was utilized according to Equation 2.3 to evaluate the 
LIMO robot's vibration state.  

|𝑎𝑎| = �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + (𝑎𝑎𝑧𝑧 − 9.81)2 2.3 
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However, given that the z-axis acceleration significantly deviates from its resting value 
compared to the other axes, it was determined that measuring the z-axis acceleration 
alone is sufficient for detecting vibrations. Thus, the preprocessing equation was 
simplified, as shown in Equation 2.4, to enhance the system's efficiency. This simplified 
process, focusing on z-axis acceleration, aligns with the overall acceleration trends, 
making it the chosen method for vibration preprocessing.  

|𝑎𝑎𝑧𝑧𝑟𝑟| = |𝑎𝑎𝑧𝑧 − 9.81| 2.4 

The IMU data is processed through the US input node, which evaluates the simplified 
equation 2.4 and outputs according to |𝑎𝑎𝑧𝑧𝑟𝑟|. This output is conceptualized as a spike 
generator, with a firing rate proportional to its value.  

We plotted linear x, y, and z acceleration data and their resultant acceleration norm data 
in several scenarios to understand the behavior of the vibration data. Figure 2:20 shows 
the linear x, y, and z acceleration data and their resultant acceleration norm data under a 0 
Hz vibration condition when the robot was moving. From the plot, it seems that due to 
the robot movement, it creates some fake acceleration spikes. Figure 2:21 shows the 
linear x, y, and z acceleration data and their resultant acceleration norm data under a 0 Hz 
vibration condition when the robot was not moving. From the plot, it is evident that there 
were no vibration spikes as the robot was still and no external vibration was given. Figure 
2:22 shows the linear x, y, and z acceleration data and their resultant acceleration norm 
data under a 35 Hz vibration condition while the robot was moving. From the plot, it is 
evident that when the robot was on the vibration plate for approximately 0.8 to 2.4 
seconds, we got a lot of vibration spikes. Figure 2:23 shows the linear x, y, and z 
acceleration data and their resultant acceleration norm data under a 35 Hz vibration 
condition while the robot was still (just sitting on the vibration plate). From the plot, it is 
evident that, as the robot was on the vibration plate all the time, there were a lot of 
vibration spikes throughout the whole-time duration. 
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Figure 2:20: Linear acceleration (X, Y, Z) and their resultant acceleration norm with 0 Hz 
vibration, and the robot was moving. 
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Figure 2:21: Linear acceleration (X, Y, Z) and their resultant acceleration norm with 0 Hz 
vibration, and the robot was still. 
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Figure 2:22: Linear acceleration (X, Y, Z) and their resultant acceleration norm with 35 
Hz vibration, and the robot was moving. 
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Figure 2:23: Linear acceleration (X, Y, Z) and their resultant acceleration norm with 35 
Hz vibration, and the robot was still on the vibration plate. 
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To mitigate the impact on the LIMO robot while fostering an authentic simulation of 
extraterrestrial terrains akin to those found on Mars or on adversarial celestial bodies, our 
study employed vibration data generated from vibration cubes rather than resorting to a 
vibration plate. Positioned beneath the T-maze, the vibration plate can produce 
vibrations; however, to accurately emulate the uneven surfaces the robot would 
encounter, we utilized vibration cubes. These cubes not only generate moderate 
vibrations but also replicate the challenging, rugged terrain akin to that of hostile planets 
like Mars or the Moon, providing a realistic test environment for the robot's mobility. 
Figure 2:24 illustrates the vibration cubes employed in our experiment to produce the 
relevant vibration data. 

 

Figure 2:24: Vibration cubes used to generate vibration. 

Figure 2:25 shows the linear x, y, and z acceleration data and their resultant acceleration 
norm data when the robot was moving, and the vibration cubes are placed on the robot’s 
path. From the plot, it is evident that when the robot was on the vibration cube, 
approximately from 0.5s to 1.5s, we got a good number of vibration spikes. These 
vibration spikes are enough for the vibration neuron to detect vibration. 
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Figure 2:25: Linear acceleration (X, Y, Z) and their resultant acceleration norm when the 
robot was moving, and vibration cubes are placed on the robot’s path. 

Figure 2:26 shows the linear x, y, and z acceleration data and the z-axis rectified 
acceleration data when the robot was moving, and the vibration cubes are placed on the 
robot’s path. From the plot, it is evident that the z-axis rectified acceleration has a similar 
pattern and magnitude as the resultant acceleration norm data. So, we can use z-axis 
rectified acceleration instead of resultant acceleration norm data for vibration detection to 
enhance the system’s computing efficiency and for simplicity.  
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Figure 2:26: Linear acceleration (X, Y, Z) and z-axis rectified acceleration when the 
robot was moving, and vibration cubes were placed on the robot’s path. 

We have designed an ensemble LIF neuron to capture vibration data. The raw 
acceleration data is not converted to a standard range, such as 0 to +1, to cut down on 
preprocessing. Instead, the vibration detection neuron's input synapse and LIF parameters 
are fine-tuned so that it responds correctly to vibration signals. 

In setting 1 of the vibration neuron, it can generate more output spikes, but it also 
generates a good number of spikes during times when it gets false vibration signals, as 
evident in Figure 2:27. From Table 2.12, we can observe that the bias value of the 
vibration neuron is 0.7. The LIF neuron in the network fires more when the bias is 
positive. A bias value of positive 0.7 makes the vibration neuron more responsive, 
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making sure that there is a certain level of output-spiking activity. A positive bias 
effectively means adding a constant positive current to the neuron. This makes the neuron 
more likely to reach its threshold voltage and fire spikes, even in the absence of external 
inputs. The higher the positive bias, the higher the baseline firing rate of the neuron. 
Neurons with a positive bias can respond more quickly to incoming positive inputs since 
they are closer to their threshold at rest. 

Table 2.12: Properties of LIF neurons. 

Neuron Parameters 𝝉𝝉𝑹𝑹𝑹𝑹 𝝉𝝉𝒓𝒓𝒓𝒓𝒓𝒓 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 (𝑽𝑽) 𝑽𝑽𝒓𝒓𝒕𝒕(𝑽𝑽) Gain (A) Bias 
Vibration Neuron 0.02 0.002 0 1 1.3 0.7 

Color neuron 0.03 0.02 0 1 0.9 0.15 
Movement neuron 0.04 0.002 0 1 1 0.01 

 

Figure 2:27: Vibration detection neuron response to acceleration. 

In setting 2 of the vibration neuron, it can generate a good number of output spikes, but it 
also generates some spikes during times when it gets false vibration signals, as evident in 
Figure 2:28. From Table 2.13, we can observe that the bias value of the vibration neuron 
is 0. Zero bias means no constant current is added to or subtracted from the neuron. The 
neuron's firing activity will then solely depend on the incoming inputs. Without external 
inputs, neurons with zero bias will not fire. These neurons have a balanced approach to 
incoming signals, neither predisposed to firing nor artificially suppressed. Their activity 
directly reflects the dynamics and magnitude of the input signals they receive. Zero 
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biases are useful for creating networks that closely reflect the properties of the input 
signals without intrinsic biases towards higher or lower activity levels. 

Table 2.13: Properties of LIF neurons. 

Neuron Parameters 𝝉𝝉𝑹𝑹𝑹𝑹 𝝉𝝉𝒓𝒓𝒓𝒓𝒓𝒓 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 (𝑽𝑽) 𝑽𝑽𝒓𝒓𝒕𝒕(𝑽𝑽) Gain (A) Bias 
Vibration Neuron 0.02 0.002 0 1 1.3 0 

Color neuron 0.03 0.02 0 1 0.9 0.15 
Movement neuron 0.04 0.002 0 1 1 0.01 

 

Figure 2:28: Vibration detection neuron response to acceleration. 
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3 Associative Learning Experiment 
In this section, we delve into the techniques, strategies, and experimentation for 
simulating associative learning in rats using mobile robotics within a T-maze framework. 
Our research involved conducting associative learning experiments using two distinct 
approaches. In the initial approach, we substituted the electric shock, traditionally 
employed as an US in standard T-maze experiments, with the use of red colors. 
Additionally, we replaced the buzzer sound, which typically acts as a CS, with audio 
command signals. For our second approach, we employed vibrations from cubes as the 
US and red color as the CS. To navigate the robot through the T-maze's left and right 
paths, we processed left and right audio commands using the Xylo neuromorphic chip. 
We adopted a neural network model comprising the assembly of three Leaky Integrate-
and-Fire (LIF) neurons to facilitate associative learning, dedicating one neuron each for 
processing the conditional and unconditional stimuli and another for integrating the 
responses from these two neurons. LIF neurons were chosen for their efficiency in 
simulating the transmission and processing of signals by brain cells, offering a balance 
between complexity and computational cost. The LIF neural network was executed using 
Nengo, a neuromorphic simulation tool designed by Applied Brain Research [114]. The 
operation of the Agilex LIMO robot and the exchange of data with the Nengo software 
were managed using the ROS framework [115]. 

3.1 Associative Learning with Visual and Auditory 
Stimuli in a T-Maze Using a Neuromorphic Robot  

In our first approach, the perception of the red color serves as an US, while the audio 
command functions as a CS. When the robot detects the red color ahead of it, it stops and 
reverses direction to simulate a rat's fear response.  

To enable the robot to replicate a fear-conditioning response, we have created multiple 
specialized neuron models that are capable of converting audio commands and color data 
into spike signals. Furthermore, the specific motion neurons are designed for controlling 
the robot's movement. 

These neurons are adapted from the traditional Leaky Integrate and Fire (LIF) neurons, 
described by Equation 3.1. 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

=
𝐶𝐶𝑚𝑚
𝜏𝜏𝑅𝑅𝑅𝑅

(𝐸𝐸𝐿𝐿 − 𝑑𝑑𝑚𝑚) + 𝐴𝐴 × 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 3.1 

where A denotes the input signal gain, 𝜏𝜏𝑅𝑅𝑅𝑅 is the membrane RC time constant, 𝐶𝐶𝑚𝑚 defines 
the membrane capacitance, and 𝑑𝑑𝑚𝑚 is the membrane potential, 𝐸𝐸𝐿𝐿 leak potential.  

Table 3.1 documents all the parameter values of LIF neurons. The values are computed 
and refined to ensure they yield the intended results for their experiments. The gain and 
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bias of the color-detecting neuron were determined empirically so that it fires when 
stimuli are red but not when stimuli are other colors.  

Table 3.1: LIF neuron parameters. 

Neuron 
Parameters 𝝉𝝉𝑹𝑹𝑹𝑹 𝝉𝝉𝒓𝒓𝒓𝒓𝒓𝒓 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 

(𝑽𝑽) 
𝑽𝑽𝒓𝒓𝒕𝒕 
(𝑽𝑽) Gain (A) 

Color neuron 0.02 0.002 0.5 1.0 1.5 

Command neuron 0.03 0.02 -0.5 0.9 1 

Movement neuron 0.04 0.002 -0.1 0.8 1 

Only when the audio features have a high enough aggregate output—the command 
neuron, a LIF neuron with experimentally calculated gain and bias—fire. The movement 
neuron fires whenever it receives continuous input spikes from command or color 
neurons. The firing activations of these neurons are illustrated in Figure 3.1, Figure 3.2, 
and Figure 3.3, respectively. 

 

Figure 3:1: Command neuron firing activity. 
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Figure 3:2: Color neuron firing activity. 

 

Figure 3:3: Movement neuron firing activity. 

Figure 3.4 illustrates the practical implementation methodology of associative learning 
that we have employed for both simulation and experiment. 

 

Figure 3:4: Practical implementation methodology of associative learning for simulation 
and experiment. 

Figure 3.5 depicts the experimental setup using our neuromorphic robot. In facilitating 
real-time robot navigation via audio commands, the XyloMonitor deployment tool was 
employed. This tool processes live audio inputs specifically directed in "left" and "right" 
directions and predicts the intended direction for the robot. The XyloMonitor is 
configured to capture and process audio commands, with a brief waiting period mandated 
for the Analog Front-End (AFE) auto-calibration, ensuring optimal and consistent audio 
data acquisition. 
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Figure 3:5: Experimental setup of a mobile robot and a Xylo neuromorphic chip. 

To accommodate variations in command delivery, such as differences in volume or 
distances from the microphone, the sensitivity level of the audio capturing system is 
elevated using XyloMonitor. This enhancement ensures that the commands are 
recognized clearly and accurately. 

The Xylo neuromorphic chip processes incoming audio over a duration of 250 
milliseconds. Based on the neuron's membrane potential, indicative of the received audio, 
it identifies the intended direction. A "left" membrane potential prompts the robot to turn 
left, and similarly, a "right" potential signals a right turn. Post-processing, the definitive 
direction, either "left" or "right," is predicted and conveyed to the robot, guiding its 
subsequent movement. 

In response to commands to turn the robot to the left or right, Figure 3.6 shows the 
membrane potential of audio neurons and the synaptic currents that go with them on the 
neuromorphic Xylo chip. 
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Figure 3:6: Output membrane potentials and synaptic currents of the Xylo chip. 

Upon receiving a "Left" or "Right" command prediction from the Xylo neuromorphic 
chip, an additional neural network is engineered to dictate the neuromorphic robot 
movement towards left and right. This network comprises ten leaky integrate-and-fire 
(LIF) neurons designed to predictably steer the robot left or right. 

The membrane time constant and the refractory period are the two parameters that define 
the chosen neuron model, Leaky Integrate-and-Fire (LIF). The refractory period has been 
minimized to accelerate neuron firing after an output spike. 

Table 3.2: Synaptic weights of the neurons for the left turn. 

Neuron 
Index 

Synaptic Weights 
from Input to 

Neurons 

Synaptic Weights 
from Neurons to 

Output 
1 45.0 9.0 
2 -27.0 -18.0 
3 72.0 27.0 
4 -9.0 -36.0 
5 63.0 45.0 
6 -54.0 54.0 
7 18.0 -63.0 
8 81.0 72.0 
9 -63.0 -81.0 
10 9.0 9.0 

 

The network receives a constant input, which, when passed through the neurons with the 
given synaptic weights, produces a specific firing pattern. This pattern translates into a 
mean firing probability, determining the robot's movement direction as part of the 
decision-making process. If the firing probability exceeds a threshold of 0.5, it prompts 
the neuromorphic robot to turn left; otherwise, it turns right. 
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To ensure the neuromorphic robot consistently turns left with a mean firing probability of 
0.9, specific synaptic weights and neuron properties are fixed. Figure 2:15 illustrates the 
firing probability of LIF neurons over time for the left turn. 

Table 3.3: Neuron properties for the left turn. 

Parameter Value 
Membrane time constant 0.02 

Refractory period 0.001 
Seed 42 

 

To guarantee the neuromorphic robot consistently turns right with a mean firing 
probability of 0.2, specific synaptic weights and neuron properties are established. Figure 
2:16 illustrates the firing probability of Leaky Integrate-and-Fire (LIF) neurons over time 
for the right turn. 

Table 3.4: Synaptic weights of right-turning neurons. 

Neuron 
Index 

Synaptic Weights 
from Input to 

Neurons 

Synaptic Weights 
from Neurons to 

Output 
1 2.9 0.9 
2 -0.5 -0.4 
3 3.7 0.8 
4 -0.3 -0.6 
5 3.0 0.7 
6 -0.6 0.8 
7 0.8 -0.9 
8 3.8 0.7 
9 -0.7 -1.1 
10 2.8 0.6 

 

Table 3.5: Right-turning neuron properties. 

Parameter Value 
Membrane time constant 0.02 

Refractory period 0.002 
Seed 42 

 

Hebbian learning is used to adjust the synaptic weights [116]. Oja's rule defines the 
change in presynaptic weights given the output response of a neuron to its inputs [117]. 
Mathematically, it is possible to calculate the change in synaptic weight w by: 
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∆𝑤𝑤 =  𝜂𝜂 (𝑥𝑥𝑦𝑦 − 𝛽𝛽𝑤𝑤𝑦𝑦2) 3.2 

where: η is the learning rate. x is the firing rate of the presynaptic neuron. y is the firing 
rate of the postsynaptic neuron. β is a constant that determines the strength of the 
normalization. w is the current synaptic weight. 

The term 𝛽𝛽𝑤𝑤𝑦𝑦2 serves as a mechanism to prevent weights from growing without being 
bound. It functions as a subtractive normalization, adjusting the scale of weight changes 
based on both the size of the weight and the postsynaptic activity. This approach helps 
maintain stability and control in the learning process, ensuring that synaptic weights do 
not undergo uncontrolled growth. 

When both pre- and postsynaptic neurons are simultaneously active, Equation 3.2 [118] 
will change the synaptic weights between them. The rate at which synaptic weight 
changes depends on the learning rate as well as the firing rates of the pre- and 
postsynaptic neurons, respectively. The learning rate in our experiment is 1*e-4. Figure 
3.7 demonstrates the results of our associative learning. 

Initially, the movement neurons and the audio command neuron (CS) have small synaptic 
weights. Consequently, the movement neuron will not respond to the auditory commands 
of the "left" and "right" turns, leading to no turning in the T-maze. Through associative 
learning, the synaptic weights between the movement neurons and the audio command 
neurons are updated over time. As a result, when the color-detection neuron detects the 
red color (US) that the camera captured, the movement neuron fires. Both the command 
detection neuron and the movement neuron become active when color and audio stimuli 
are presented, leading to an increase in synaptic weights in the conditional signal 
pathway. Figure 3.7 illustrates that the simultaneous application of red color and audio 
command stimuli results in an increment of synaptic weights. In the initial timeframe, 
there is insufficient overlap, which cannot lead to a considerable increase in synaptic 
weight. Consequently, the application of audio commands alone cannot stimulate the 
movement neuron to become active, as shown in Figure 3.7. The second overlapping 
phase, which has a longer overlapped timeframe, successfully leads to a more substantial 
increase in synaptic weights. Subsequently, even in the absence of a red color input, the 
movement neuron will fire in response to an auditory stimulus (a "left" or "right" 
command). This illustrates the achievement of associative learning. 
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Figure 3:7: Results of associative learning. 

To evaluate and validate our associative learning system, we established a T-maze to 
replicate rat associative learning experiments. The simulation and experimental scenarios 
of associative learning in the T-maze are illustrated in Figure 3.8. 
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Figure 3:8: Replicating Associative Learning in a T-Maze: Simulation and Experimental 
Exploration with a Neuromorphic Robot. (a) Gazebo simulation depicting the T-maze for 
robot navigation. (b) Detection of red color. (US) input at position B. (c) The robot will 

learn to stop and turn to the arm with no red color presented. (d) The actual experimental 
setup of T-maze. (e) Detection of red color (US) input at position B in the actual T-maze. 

(f) The robot will learn to stop and turn to the arm with no red color presented. 

In our setups, the red color serves as an US, and the audio commands act as the CS. For 
both simulation and experimentation, we have implemented the following associative 
learning steps: 

1. When the right command is given, the robot moves in the direction of the right 
arm of the T-maze (assessing the performance of the conditional signal pathway). 

2. Upon resetting the robot's position, present the right arm with the red color only, 
and the robot will reverse and move in the direction of the left arm (assessing the 
performance of the unconditional signal pathway). 

3. Upon resetting the robot's position, give the right command (CS) and the red color 
(US) together, and the robot will stop and reverse in the direction of the left arm 
upon seeing the red color in the right arm direction of the T-maze. (Learning: CS 
and US together) 

4. Repeat step 3 to increase the synaptic weights further. 

5. Reset the robot's position. Give only the right command; the robot stops and 
reverses in the opposite direction when it sees the right arm because of associative 
learning, even though the red color is not present this time. 

Initially, the robot starts moving forward from the starting chamber, marked as position 
A. The robot proceeds from position A to the turning point, annotated as position B. 
When the robot reaches position B, based on the "left" or "right" command provided, it 
turns 90 degrees either left or right and moves forward into the left or right arms of the T-
maze, as shown in Figure 3.8 (a). 

The red color is assigned as an unpleasing stimulus. The response to this unpleasure is 
that the robot decides to turn in the opposite direction, towards the arm with no red color 
presented. 

During associative learning, initially, the robot conducts a similar movement from 
location A to B, where the turning commands and red color are presented simultaneously. 
Consequently, the color detection neuron fires, and the robot chooses to move towards 
the arm with no red color presented, as shown in Figure 3.8 (b). During this time, 
synaptic weights increase from the unconditional stimulus (red color) and the motion 
neurons as both audio spikes and color spikes are present together. 
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After 2-3 associative learning trials in the T-maze, the neuromorphic robot memorizes 
and relates the red color and audio commands together by enhancing the corresponding 
synaptic strengths. As a result, even with no red color presented, the robot will still move 
the “safe” arm it memorized. The safe here refers to the arm that was not placed on the 
red color board. As illustrated in Figure 3.8 (c), when the robot moves to position B, it 
stops, reverses 180 degrees to the right, and moves forward into the arm, which is 
memorized as "safe.". The experiments in the actual T-maze replicate the same 
associative learning, which is shown in Figure 3.8 (d-f). 

3.2 Exploring Vibration and Color Cues for Associative 
Learning in a T-Maze with a Neuromorphic Robot 

In our 2nd approach, the vibration data from vibration cubes serves as an US, while the 
perception of red color serves as a CS. When the robot detects the vibration, it stops and 
reverses direction to simulate a rat's fear response. 

The vibration detection method, designed for real-time vibration data monitoring and 
analysis, leverages the IMU's ability to capture precise linear acceleration data along 
three axes. The core steps of the procedure include: 
1. Acceleration Norm Calculation 
The initial step involves calculating the norm of the acceleration vector derived from the 
IMU sensor data. This vector norm serves as a quantitative measure of the total 
acceleration magnitude the sensor experiences at any given moment. The calculation is 
performed using the Euclidean norm formula for a three-dimensional vector, which is 
expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑑𝑑𝑖𝑖𝐴𝐴𝑒𝑒 𝑁𝑁𝐴𝐴𝐴𝐴𝑚𝑚 = �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + (𝑎𝑎𝑧𝑧 − 9.81)2 3.3 

Here, ax, ay, and az represent the linear acceleration components measured along the x, y, 
and z axes, respectively. 9.81 ms-2 is due to gravity, which is subtracted from az. 
2. Single Vibration Event Detection 
Upon determining the acceleration norm, the method involves comparing this value 
against a predefined threshold to identify significant vibration events. The logic for single 
vibration event detection is defined as: 

𝑑𝑑𝑖𝑖𝑉𝑉𝐴𝐴𝑎𝑎𝑑𝑑𝑖𝑖𝐴𝐴𝑒𝑒 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑑𝑑 = �𝑇𝑇𝐴𝐴𝑇𝑇𝑒𝑒           𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑑𝑑𝑖𝑖𝐴𝐴𝑒𝑒 𝑁𝑁𝐴𝐴𝐴𝐴𝑚𝑚 > 𝑇𝑇ℎ𝐴𝐴𝑒𝑒𝑟𝑟ℎ𝐴𝐴𝐴𝐴𝑑𝑑 
𝐹𝐹𝑎𝑎𝑟𝑟𝐴𝐴𝑒𝑒                                                            𝐴𝐴𝑑𝑑ℎ𝑒𝑒𝐴𝐴𝑤𝑤𝑖𝑖𝑟𝑟𝑒𝑒

 3.4 

This equation categorizes an event as significant if the acceleration norm exceeds the set 
threshold, indicating a potential state of vibration. For our work, we used a threshold 
value of 15 ms-2. 
3. Temporal Filtering and Event Timestamping 
Following the identification of significant vibration events, timestamps are recorded. 
These timestamps are then filtered to focus on recent events, typically within the last 1 
second, to ensure the analysis remains relevant to the system's current state. The filtering 
criterion is represented as: 
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𝐹𝐹𝑖𝑖𝐴𝐴𝑑𝑑𝑒𝑒𝐴𝐴𝑒𝑒𝑑𝑑 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑑𝑑𝑎𝑎𝑚𝑚𝑇𝑇𝑟𝑟
= {𝑑𝑑| 𝑑𝑑 ∈ 𝑑𝑑𝑖𝑖𝑉𝑉𝐴𝐴𝑎𝑎𝑑𝑑𝑖𝑖𝐴𝐴𝑒𝑒 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑑𝑑 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑑𝑑𝑎𝑎𝑚𝑚𝑇𝑇𝑟𝑟,𝐶𝐶𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑑𝑑 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 − 𝑑𝑑
≤ ∆𝑇𝑇 } 

3.5 

 Here, ΔT signifies the chosen time window for retaining relevant vibration events, with t 
denoting the timestamps of these events. For our work, ΔT is set to 1 second. 
4. Vibration Detection 
The final step quantifies whether the observed frequency of significant vibration events 
within the designated time window suggests abnormal activity. The condition for 
confirming the detection of a vibration anomaly is: 

𝑑𝑑𝑖𝑖𝑉𝑉𝐴𝐴𝑎𝑎𝑑𝑑𝑖𝑖𝐴𝐴𝑒𝑒 𝐷𝐷𝑒𝑒𝑑𝑑𝑒𝑒𝐴𝐴𝑑𝑑𝑒𝑒𝑑𝑑 = 𝐶𝐶𝐴𝐴𝑇𝑇𝑒𝑒𝑑𝑑(𝐹𝐹𝑖𝑖𝐴𝐴𝑑𝑑𝑒𝑒𝐴𝐴𝑒𝑒𝑑𝑑 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑑𝑑𝑎𝑎𝑚𝑚𝑇𝑇𝑟𝑟) ≥ 𝑁𝑁 3.6 
N is the threshold for the number of vibration events required to identify the observation 
as indicative of an unusual vibration pattern or anomaly. For our work, we set N to 10, 
which means if the acceleration norm spikes exceed 15 ms-2 10 times in a quick 1-second 
period, then the vibration will be detected.  

To enable the robot to replicate a fear-conditioning response, we have created multiple 
specialized neuron models that are capable of converting vibration and color data into 
spike signals. Furthermore, the specific motion neurons are designed for controlling the 
robot's movement. The movement neuron fires whenever it receives continuous input 
spikes from vibration or color neurons. These neurons are all modified from the standard 
LIF neurons, which are defined using Equation 3.1. 

Table 3.6 documents all the parameter values of LIF neurons. The values are computed 
and refined to ensure they yield the intended results for their experiments. The gain and 
bias of the color-detecting neuron were determined empirically so that it fires when 
stimuli are red but not when stimuli are other colors. Similarly, the gain and bias of the 
vibration neuron were determined empirically so that it fires only when there is vibration. 

Table 3.6: Properties of LIF neurons. 

Neuron Parameters 𝝉𝝉𝑹𝑹𝑹𝑹 𝝉𝝉𝒓𝒓𝒓𝒓𝒓𝒓 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 (𝑽𝑽) 𝑽𝑽𝒓𝒓𝒕𝒕(𝑽𝑽) Gain (A) Bias 
Vibration Neuron 0.02 0.002 0 1 1.3 -0.7 

Color neuron 0.03 0.02 0 1 0.9 0.15 
Movement neuron 0.04 0.002 0 1 1 0.01 

The vibration neuron can generate a good number of output spikes, but there are no 
spikes during times when it gets false vibration signals, as evident in Figure 3.9. From 
Table 3.6, we can observe that the bias value of the vibration neuron is -0.7. A negative 
bias applies a constant negative current, making it harder for the neuron to reach its firing 
threshold. This can reduce the baseline firing rate or even prevent the neuron from firing 
altogether in the absence of sufficiently strong positive inputs. Neurons with a negative 
bias are less likely to fire spontaneously and require stronger positive inputs to become 
active. This can be used to model inhibitory effects or to fine-tune the network's 
sensitivity to inputs. The negative bias of -0.7 can help in dampening noise, reducing 
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unnecessary firing, and increasing the contrast in the network's response to different 
inputs. 

 

Figure 3:9: Vibration detection neuron response to acceleration. 

Furthermore, we have designed a LIF neuron for color detection with a gain of 0.9 and a 
bias of 0.15, as tabulated in Table 3.6. The gain and bias of the color-detecting neuron 
were determined empirically so that it fires when stimuli are red but not when stimuli are 
other colors. From Figure 3.10, it is evident that the color detection neuron spikes on 
when the red color is available. 
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Figure 3:10: Color detection neuron response to red color. 

Figure 3.11 illustrates the practical implementation methodology of associative learning 
that we have employed for the experiment. 

 

Figure 3:11: Practical implementation methodology of associative learning for the 
experiment. 

Figure 3.5 depicts the experimental setup using our neuromorphic robot. In facilitating 
real-time robot navigation via audio commands, the XyloMonitor deployment tool was 
employed. This tool processes live audio inputs specifically directed in "left" and "right" 
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directions and predicts the intended direction for the robot. The XyloMonitor is 
configured to capture and process audio commands, with a brief waiting period mandated 
for the Analog Front End (AFE) auto-calibration, ensuring optimal and consistent audio 
data acquisition. 

To accommodate variations in command delivery, such as differences in volume or 
distances from the microphone, the sensitivity level of the audio capturing system is 
elevated using XyloMonitor. This enhancement ensures that the commands are 
recognized clearly and accurately. 

The Xylo neuromorphic chip processes incoming audio over a duration of 250 
milliseconds. Based on the neuron's membrane potential, indicative of the received audio, 
it identifies the intended direction. A "left" membrane potential prompts the robot to turn 
left, and similarly, a "right" potential signals a right turn. Post-processing, the definitive 
direction, either "left" or "right," is predicted and conveyed to the robot, guiding its 
subsequent movement. 

In response to commands to turn the robot to the left or right, Figure 3.6 shows the 
membrane potential of audio neurons and the synaptic currents that go with them on the 
neuromorphic Xylo chip. 

Upon receiving a "Left" or "Right" command prediction from the Xylo neuromorphic 
chip, an additional neural network is engineered to dictate the neuromorphic robot 
movement towards left and right. This network comprises ten Leaky Integrate-and-Fire 
(LIF) neurons designed to predictably steer the robot left or right. 

The membrane time constant and the refractory period are the two parameters that define 
the chosen neuron model, Leaky Integrate-and-Fire (LIF). The refractory period has been 
minimized to accelerate neuron firing after an output spike. 

The network receives a constant input, which, when passed through the neurons with the 
given synaptic weights, produces a specific firing pattern. This pattern translates into a 
mean firing probability, determining the robot's movement direction as part of the 
decision-making process. If the firing probability exceeds a threshold of 0.5, it prompts 
the neuromorphic robot to turn left; otherwise, it turns right. 

To ensure the neuromorphic robot consistently turns left with a mean firing probability of 
0.9, specific synaptic weights and neuron properties are fixed. Figure 2:15 illustrates the 
firing probability of LIF neurons over time for the left turn. Table 3.2 and Table 3.3 
document the synaptic weights of neurons and neuron properties, respectively, for the left 
turn. 

To guarantee the neuromorphic robot consistently turns right with a mean firing 
probability of 0.2, specific synaptic weights and neuron properties are established. Figure 
2:16 illustrates the firing probability of Leaky Integrate-and-Fire (LIF) neurons over time 
for the right turn. Table 3.4 and Table 3.5 document the synaptic weights of neurons and 
neuron properties, respectively, for the right turn. 



63 

Hebbian learning is used to adjust the synaptic weights [116]. Oja's rule defines the 
change in presynaptic weights given the output response of a neuron to its inputs [117]. 
Mathematically, it is possible to calculate the change in synaptic weight w using Equation 
3.2. 

The term 𝛽𝛽𝑤𝑤𝑦𝑦2 serves as a mechanism to prevent weights from growing without being 
bound. It functions as a subtractive normalization, adjusting the scale of weight changes 
based on both the size of the weight and the postsynaptic activity. This approach helps 
maintain stability and control in the learning process, ensuring that synaptic weights do 
not undergo uncontrolled growth. 

When both pre- and postsynaptic neurons are simultaneously active, Equation 3.2 [118] 
will change the synaptic weights between them. The rate at which synaptic weight 
changes depends on the learning rate as well as the firing rates of the pre- and 
postsynaptic neurons, respectively. The learning rate in our experiment is 6*e-2. Figure 
3.12 demonstrates the results of our associative learning. 

Initially, the movement neurons and the red color neuron (CS) have small synaptic 
weights. Consequently, the movement neuron will not respond to the red color, leading to 
no turning in the T-maze. Through associative learning, the synaptic weights between the 
movement neurons and the red color neurons are updated over time. As a result, when the 
vibration neuron detects the vibration (US) that the IMU captured, the movement neuron 
fires. Both the red color neuron and the movement neuron become active when vibration 
and red color stimuli are presented, leading to an increase in synaptic weights in the 
conditional signal pathway. Figure 3.12 illustrates that the simultaneous application of 
vibration and red color stimuli results in an increment of synaptic weights. In the initial 
timeframe, there is insufficient overlap, which cannot lead to a considerable increase in 
synaptic weight. Consequently, the application of red color alone cannot stimulate the 
movement neuron to become active, as shown in Figure 3.12. The second overlapping 
phase, which has a longer overlapped timeframe, successfully leads to a more substantial 
increase in synaptic weights. Subsequently, even in the absence of a vibration input, the 
movement neuron will fire in response to a red color stimulus. This illustrates the 
achievement of associative learning. 
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Figure 3:12: Results of associative learning. 

To evaluate and validate our associative learning system, we established a T-maze to 
replicate rat associative learning experiments. The experimental scenarios of associative 
learning in the T-maze are illustrated in Figure 3.13. 
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Figure 3:13: Replicating Associative Learning in a T-Maze: Experimental Exploration 
with a Neuromorphic Robot. (a) The actual experimental setup of T-maze. (b) Detection 

of vibration (US) input in between positions B and C in the actual T-maze. (c) Present the 
robot with both vibration and red color stimuli. (d) The robot will learn to stop and turn to 

the arm with no vibration presented. 

In our setups, the vibration serves as an US, and the red color acts as a CS. For 
experimentation, we have implemented the following associative learning steps: 

1. When only the red color (CS) is present, the robot moves towards the right arm 
based on the right command. (conditional signal pathway) 

2. Upon resetting the robot position with only vibration (US), the robot will stop and 
reverse upon moving over the vibration cubes in the direction of the left arm (arm 
with no vibration presented) of the T-maze, though the right arm moving 
command is given. (unconditional signal pathway) 

3. Upon resetting the robot position, present the red color (CS) and the vibration 
(US) together. The robot will stop and reverse upon moving over the vibration 
cubes in the direction of the left arm (arm with no vibration presented) of the T-
maze, though the right arm moving command is given. (Learning: CS and US 
together) 

4. Repeat step 3 to increase the synaptic weights further. 

5. Repeat step 3 to increase the synaptic weights further. 
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6. Reset the robot's position. Present with only red color (CS), the robot stops and 
reverses towards the left arm (the robot memorizes the left arm as a safe arm as no 
vibration was presented in the left arm) of the T-maze due to associative learning, 
though the right command is given and vibration is not present.  

Initially, the robot starts moving forward from the starting chamber, marked as position 
A. The robot proceeds from position A to the turning point, annotated as position B. 
When the robot reaches position B, based on the "right" command, it turns 90 degrees 
right and reaches position C, and as we have only presented conditional stimulus (red 
color), it moves forward into the right arms of the T-maze from position C, as shown in 
Figure 3.13 (a). 

The vibration is assigned as an unpleasing stimulus. The response to this unpleasure is 
that the robot decides to turn in the opposite direction, towards the arm, with no vibration 
presented. The robot proceeds from position A to the turning point, annotated as position 
B. When the robot reaches position B, based on the "right" command, it turns 90 degrees 
right and reaches position C, and as we have vibration cubes in between position B and 
C, the robot senses unconditional stimulus (vibration), stops and reverses at position C, 
and moves towards the left arms of the T-maze from position C, as shown in Figure 3.13 
(b). 

During associative learning, initially, the robot conducts a similar movement from 
location A to B to C, where the vibration and red color are presented simultaneously. 
Consequently, the vibration detection neuron fires, and the robot chooses to move 
towards the arm with no vibration presented from position C, as shown in Figure 3.13 (c). 
During this time, synaptic weights increase from the unconditional stimulus (vibration) 
and the motion neurons as both red color spikes and vibration spikes are present together. 

After 2-3 associative learning trials in the T-maze, the neuromorphic robot memorizes 
and relates the vibration and red color together by enhancing the corresponding synaptic 
strengths. As a result, even with no vibration presented, the robot will still move to the 
“safe” arm it memorized from position C. The safe here refers to the arm that was not 
placed on the vibration cubes. As illustrated in Figure 3.13 (d), when the robot moves to 
position C, it stops, reverses 180 degrees to the left, and moves forward into the arm, 
which is memorized as "safe.".  
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3.3 Comparisons with State-of-the-Art Research Works 
Table 3.7 presents a comprehensive comparison of scale and association capabilities 
between our work and other state-of-the-art research in the field. The comparison is 
structured around the number of neurons, the specific tasks they were designed to 
address, the learning methods employed, and the context in which validation occurred—
ranging from pure simulation to actual experimental setups. References [33-35, 37, 119, 
120] show how to use a small group of neurons in simulated environments without saying 
what the tasks are or how the neurons are trained. Reference [31] takes this a step further 
by using 20 neurons that have already been trained. Our experiments, which can be seen 
in the entries for the first and second experiments, show a big increase to 259 neurons 
that work on spatial learning and memory, using self-learning and no pretraining methods 
in both simulated and real-life experiments. This contrast highlights our work's 
substantial advancement in neuron count and complexity, particularly in applying these 
systems to concrete tasks like fear conditioning, as demonstrated in the work referenced 
[121, 122]. 

Table 3.7: Assessing scale and association capability in comparison with modern 
benchmark studies. 

Research 
Works 

Number 
of 

Neurons 
Task Learning 

Methods Validation 

[34] 6 N/A N/A Simulation 

[35] 3 N/A N/A Simulation 

[37] 5 N/A N/A Simulation 

[33] 3 N/A N/A Simulation 

[119] 3 N/A N/A Simulation 

[120] 3 N/A N/A Simulation 

[31] 20 N/A Pretraining Simulation 

[121, 122] 1419 Fear 
conditioning 

No 
pretraining Experiment 

1st 
experiment 259 

Spatial 
learning and 

memory 

Self-
learning 

Simulation & 
Experiment 

2nd 
experiment 259 

Spatial 
learning and 

memory 

No 
pretraining   Experiment 
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4 Conclusion and Future Work 
This research work implements rodent associative learning in a T-maze using a mobile 
robot and an advanced neuromorphic chip (Xylo) in a real-time learning environment. By 
integrating the Xylo neuromorphic chip into a mobile robot, the system replicates the 
classic T-maze experiments observed in rodents. Specifically, the mobile robot takes the 
place of rats in the T-maze spatial learning and memory experiment. It processes two 
types of stimuli: one conditional and the other unconditional. In our first experimental 
setup, the robot associates red color (US) with audio commands (CS) through LIF 
neurons and Hebbian learning. In our second experimental setup, the robot uses vibration 
as the unconditional stimulus and color as the conditional one. Initially, the robot was 
programmed to stop and reverse in the direction of the opposite arm of the T-maze only 
in response to vibrations. However, after repeated simultaneous exposure to both stimuli, 
the robot began to stop and reverse in response to the red color alone. Leaky integrate and 
fire neurons power this detection and response system, while specialized response 
neurons control the robot's movement. The Xylo neuromorphic chip is responsible for 
controlling the left and right movements in the left and right directions of the T-maze, 
respectively. Associative memory formation through signal pathway alteration is 
facilitated using Hebbian learning. This approach distinguishes itself from others by 
effectively mimicking rat fear conditioning in a T-maze setting without needing any 
labeled data or preliminary training sessions. The study demonstrates real-time 
associative learning, providing insights into potential applications for autonomous robots 
in environments with energy constraints and adaptive capabilities.  

My contributions to the integration of neuromorphic computing in autonomous robotic 
systems include:  

• Conducting an extensive review of neuromorphic computing and its applications 
[123].  

• Successfully replicating rat spatial learning and memory experiments in a T-maze 
environment using the neuromorphic robot. 

• Implementing associative learning techniques for mobile robots through 
neuromorphic computing. 

As a next step in research, we should create different T-maze configurations to look at 
how adaptable and cognitively deep the neuromorphic system is, add different types of 
sensors (like tactile and olfactory ones) to improve the associative learning framework, 
and do longitudinal studies to see how stable and long-lasting neuromorphic memory is 
over time. Technically, the work could investigate precise energy metrics to test how well 
the neuromorphic chip works under different operational loads. It could also put these 
advanced systems to use in real-life situations that stress dynamic adaptability and 
improve learning algorithms to make synapses more flexible and speed up the learning 
process. Using detailed behavioral metrics could improve comparisons with biological 
counterparts, and researchers from different fields should try to use what they learn from 
neuroscience to improve algorithms and system architectures in neuromorphic robotics. 
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