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Abstract: Mapping benthic habitats with bathymetric, acoustic, and spectral data requires georef-
erenced ground-truth information about habitat types and characteristics. New technologies like
autonomous underwater vehicles (AUVs) collect tens of thousands of images per mission making
image-based ground truthing particularly attractive. Two types of machine learning (ML) models,
random forest (RF) and deep neural network (DNN), were tested to determine whether ML models
could serve as an accurate substitute for manual classification of AUV images for substrate type
interpretation. RF models were trained to predict substrate class as a function of texture, edge, and
intensity metrics (i.e., features) calculated for each image. Models were tested using a manually
classified image dataset with 9-, 6-, and 2-class schemes based on the Coastal and Marine Ecological
Classification Standard (CMECS). Results suggest that both RF and DNN models achieve comparable
accuracies, with the 9-class models being least accurate (~73–78%) and the 2-class models being the
most accurate (~95–96%). However, the DNN models were more efficient to train and apply because
they did not require feature estimation before training or classification. Integrating ML models into
benthic habitat mapping process can improve our ability to efficiently and accurately ground-truth
large areas of benthic habitat using AUV or similar images.

Keywords: remote sensing; machine learning; benthic habitat mapping; autonomous underwater
vehicle; underwater photography

1. Introduction

A major goal of underwater benthic mapping is to describe and map geologic sub-
strates in a manner that improves our understanding of the relation between the physical
properties of sea-, lake-, or riverbed environments and the species that use them. Here,
a geologic substrate is defined as “. . . a surface or volume of sediment or rock where
physical, chemical, and biological processes occur” [1]. Swath sonar and aerial remote
sensing methods have made it possible to map bathymetric, acoustic, and spectral proxies
of geologic substrates with continuous coverage at high resolutions and over large spatial
extents [2–5]. However, conversion of bathymetric, acoustic, or spectral proxy data into
maps of geologic substrate requires interpretation and analysis relative to georeferenced
ground truth observations. Regardless of the specific analytical approach used to produce
substrate maps, the quality of the maps will always benefit from robust ground truth data.

Ground truth observations can consist of physical samples of sediments, photographs,
or video footage of benthic environments [6]. Requirements for spatial accuracy, replication,
and post-processing of ground truth observations depend on mapping objectives and
context. Visual imaging of the benthic environment using still or video cameras has become
a particularly important source of ground truth information, with clear applications for the
interpretation of geologic substrates [4]. A distinct advantage of visual imagery as a ground
truth source for interpreting bathymetric, acoustic, or spectral data is that still and/or video
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images can be gathered quickly over relatively large areas, particularly when cameras are
deployed from autonomous underwater vehicles (AUVs) that can travel tens or hundreds
of kilometers on a single battery charge gathering images continuously [3,7]. However,
acquisition of imagery in a way that encompasses characteristic variation in substrates
is only part of the challenge. Effective use of imagery in substrate mapping may also
require post-processing of imagery (i.e., corrections for over/underexposure, color, lighting,
etc.) to make them more visually interpretable, assignment of substrate classes to imagery,
and supervised classification to produce predictive maps across continuous areas. The
assignment of substrate classes to imagery at specific locations (i.e., image “annotation”)
can be particularly time consuming if it requires human observer(s) to evaluate each
image or video clip to determine the substrate class(es) present [8,9]. Automation of class
assignments using computational methods has potential to both accelerate the preparation
of ground truth data and to increase the number of ground truth observations available
for supervised classification [5,9,10]. Here, we focus on the challenge of automated image
annotation for geologic substrate classes in still images gathered from AUVs.

An important consideration for classifying any data is the scheme to be used (i.e., the
definitions of the substrate classes to be assigned to the ground truth data and eventually
mapped to large areas). Bathymetry classification schemes vary by application, image
type, and research objective. Numerous schemes have been proposed and utilized for this
purpose, including the Wentworth grade scale [11], Trefethen’s classification scheme [12],
Shepard’s classification scheme [13,14], and Folk’s classification scheme [15]. National
Oceanographic and Atmospheric Administration’s (NOAA) Coastal and Marine Ecological
Classification Standard (CMECS) utilizes the Wentworth grade scale for geologic substrates
in a broader classification framework, describing coastal and marine environments based
on four components: water column, biotic, substrate, and geoform [16]. Each of these
components can have multiple modifiers and come together to form a biotope (i.e., com-
bination of abiotic features and associated species). Mapping the geologic substrate from
imagery specifically focuses on the CMECS geologic substrate component at fine spatial
scales (100 to 101 sq m image footprint). CMECS provides a well-established framework to
classify benthic substrate in marine environments that is the standard for many U.S. federal
agencies [5,17].

Annotation of substrates in benthic images can be done manually, but the process
of interpreting each image is time-intensive and thus not scalable for larger datasets [8].
Depending on the scale of the project and amount of imagery gathered, image annotation
can consist of assigning one or more substrate classes to an entire image, identifying
objects within the image, or segmenting the image into multiple classes on a pixel-by-pixel
basis. While manual annotation of classes in whole images may be more straightforward
than automated object detection or image segmentation, it is only likely to be suitable for
datasets up to several hundred or thousands of images. For datasets containing hundreds
of thousands or more images or video frames, such as those produced by AUVs, the effort
involved in human-labeling becomes unwieldy or impossible. We propose that a more
efficient alternative to manual substrate classification is through the development and
application of machine learning (ML) models [18–24]. Machine learning provides the
opportunity to efficiently classify points, parts of an image, or whole images based on
underlying mathematical relationships within a set of training data. When developed
and trained appropriately, ML models can help efficiently and accurately classify whole
images and parts of images in large datasets that were previously intractable with manual
labeling [25]. ML classification of geologic substrates, therefore, offers the possibility to
greatly densify ground truth observations when used in conjunction with image acquisition
technologies with large spatial ranges and frequent sampling.

The use of ML to classify benthic imagery is a well-explored topic [5,10,25–28]. Classi-
fying an entire image into pre-defined categories such as CMECS substrate classes requires
some degree of a supervised learning approach. Supervised learning algorithms are trained
using datasets that have input and output pairs. For instance, an input could be an AUV
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image, and an output is that image’s substrate class. The accuracy of the resulting algorithm
depends both on the quality of the labeled dataset and the model architecture.

Machine learning is a broad term that includes a wide range of algorithms that use
training data to learn patterns and make predictions from those patterns. There are tradeoffs
in choosing which model to use. Algorithms vary in terms of the number of hand-tuned
parameters required, the ability to discern abstract patterns from low-level data, and the
computational complexity both during training and application. Conventional ML models,
such as support vector machines (SVMs), often are easier to interpret and understand
and have been used to classify benthic habitat in the Laurentian Great Lakes [5] and
elsewhere [25,29]. Reif and others used SVMs to classify a relatively small area (11.7 sq.
km.) of southwestern Lake Michigan into “Tier I” and “Tier II” biogeological classes, where
the two tiers are hierarchically nested and based on CMECS biogeological classifications,
with an accuracy greater than 89%, demonstrating the direct application of ML techniques
to more efficiently and accurately map biogeological classes [5]. However, as more and
more data are collected, it becomes increasingly important to explore alternative ML models
that are more scalable and require less subjective tuning.

The purpose of this paper is to explore the utility of two different ML approaches for
assigning geologic substrate classes to whole AUV images for benthic habitat mapping—
random forest (RF) and deep neural network (DNN) models. Random forest and DNN
models were developed to classify images into a 9-class scheme adapted from the CMECS
substrate standard for use with visual image interpretation in lieu of physical grab samples.
Under this approach, each image receives a single substrate class assignment. The 9-class
training data were also aggregated to 6-class and 2-class schemes to explore the impact of
the number of classes on model accuracy. Model accuracy and the computational cost of
model training and imputation were compared between the two ML models on a desktop
PC with 2 Intel Xeon Gold 6238R CPUs with 28 cores each, 64 GB of RAM, and an NVIDIA
RTX A6000 GPU. Comparison of the required data pre-processing steps for each model
type is also discussed, as it provides valuable context about required resources and can be
used to guide future model development.

2. Materials and Methods
2.1. Description of Dataset

All supervised ML models must be trained using a dataset where every input, in this
case each image, has already been classified. The training processes search for the model
parameters that minimize error in the prediction of these training data. Often, this process
is stochastic and iterative using techniques like stochastic gradient descent or Adam [30] to
optimize some loss function. Model accuracy is determined by making a prediction from
the trained model to another labeled dataset (i.e., validation data) to test how effective the
trained parameters generalize to unseen data.

Creating the training and validation datasets required a manual labeling effort and
some important choices. Ideally, the model would be trained on images encompassing the
full range of optical conditions encountered by the AUV across the study area, inclusive of
variation driven by ambient light levels, water hues, and the appearance of the substrate
itself. For instance, an image of fine sediment on a sunny day in clear shallow water
should be classified the same as an image of fine sediment on a dark, overcast day in deep,
dark, turbid water. Having high levels of variation in the training data should allow the
models to discern which features are important in differentiating between classes. This
also helps to avoid the problem of overfitting—where a model effectively “memorizes” a
dataset and thus predicts extremely well on the training data but very poorly on unseen
data. The overarching goal of model development was to produce trained models that
were generalizable.
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2.1.1. AUV Image Dataset

An L3Harris-Ocean Server Iver3 autonomous underwater vehicle (AUV) was used to
collect nadir images of the lakebed at a rate of five images per second at a forward velocity
of 1.5 knots (0.77 m/s). The Iver3 was modified to carry a custom camera payload that
included an 8.95-megapixel color machine vision camera (Allied Vision Manta 895C with a
10 mm lens) and a Nerian brand Karmin2, 10 cm baseline, grayscale stereo camera (carrying
two 2.0-megapixel E2v EV76C570 grayscale sensors with 10 mm lenses) triggered by a
Nerian SceneScanPro FPGA stereo vision sensor (sourced from Stadtroda, Germany). The
SceneScanPro produced real-time stereo disparity maps and elevation point clouds at 4
frames per second. An iXBlue Phins Compact C3 inertial navigation system (INS) onboard
the Iver3 provided real-time estimates of latitude and longitude, with a horizontal error
less than 0.3% of distance traveled (i.e., 3 m error per 1000 m traveled).

Approximately 2.6 million geotagged still images were acquired across more than
400 km of transect distance traveled by the AUV in the nearshore environments of all
five Laurentian Great Lakes during the timeframe of this study. These images represent a
valuable source of georeferenced substrate ground truth data. The greatest challenge with
using these data for ground truth is annotating images with known or predicted substrate
classes. Annotating millions of images manually for substrate type would not only be
prohibitively time intensive, but would also require a large group of experienced image
annotation specialists with a high degree of label agreement. Automated classification
using a machine learning (ML) model offers the potential to fully utilize this dataset by
automating the image annotation task.

Substrate prediction models were primarily trained from the RGB intensity data from
the color camera or their derivatives, but other sensor data on board the AUV can provide
useful information. The point clouds from the stereo camera contain information about the
roughness of the lakebed. The first and second principal components of the point cloud,
excluding outliers, define the plane of best fit for the points. The standard deviation of the
points’ heights off this plane (i.e., along the third principal component, orthogonal to the
others) was calculated and provided a proxy for the roughness of the surface. This was
used as additional information for the RF classifiers. Henceforth, this calculated point cloud
standard deviation will be referred to as the “plane standard deviation.” Plane standard
deviation was calculated as a time series throughout each AUV mission, and a plane
standard deviation value was interpolated for color images, serving as an approximation of
surface roughness below the AUV when a given color image was taken. The interpolation
step was necessary because the color and stereo cameras were not synchronized but imaging
independent of one another.

2.1.2. Classification Scheme

The Coastal and Marine Ecological Classification Standard (CMECS) defines substrate
as “the non-living materials that form an aquatic bottom or seafloor, or that provide a
surface (e.g., floating objects, buoys) for growth of attached biota.” [16]. The Substrate
Component of CMECS contains three “origins”—geologic, biogenic, and anthropogenic.
Anthropogenic substrates are rare in our images, although biogenic origin substrates, such
as shell hash, were present. Here, the focus was on substrates of geologic origin only. Within
geologic substrates there are 2 classes: rock substrate and unconsolidated mineral substrate.
Rock substrate is divided into bedrock and megaclast substrates. Unconsolidated mineral
substrate is divided into coarse and fine unconsolidated substrate subclasses, which are
further characterized by groups and subgroups, with empirical breakpoints between classes
based on the maximum dimension of substrate particles (Table 1).
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Table 1. CMECS hierarchy for substrates within the Geologic Origin CMECS class descriptions [16].
Size cutoffs for the substrate classes discussed in the paper are presented in parentheses.

CMECS
Substrate Class

CMECS
Substrate Subclass

CMECS
Substrate Group CMECS Substrate Subgroup Label

Consolidated Mineral
Bedrock Bedrock

Megaclast (>4096 mm)

Unconsolidated
Mineral

Coarse
Unconsolidated

Gravel

Boulder
Boulder

(256 mm to <4096 mm)

Cobble
Cobble

(64 mm to <256 mm)

Pebble
Pebble

(4 mm to <64 mm)

Granule
Granule

(2–4 mm)

Gravel Mixes

Sandy Gravel

Gravel MixesMuddy Sandy Gravel

Muddy Gravel

Gravelly

Gravelly Sand

GravellyGravelly Muddy Sand

Gravelly Mud

Fine
Unconsolidated

Slightly Gravelly

Slightly Gravelly Sand

Slightly Gravelly
Slightly Gravelly Muddy Sand

Slightly Gravelly Sandy Mud

Slightly Gravelly Mud

Sand

Very Coarse Sand

Fine (<2 mm)

Coarse Sand

Medium Sand

Fine Sand

Very Fine Sand

Muddy Sand

Silty Sand

Silty-Clayey Sand

Clayey Sand

Sandy Mud

Sandy Silt

Sandy Silt-Clay

Sandy Clay

Mud

Silt

Silt-Clay

Clay

CMECS uses a modified version of Wentworth [11] mineral grain size descriptors for
categorizing particles by diameter (Table 1). For example, gravel particles have a maximum
dimension of between 2 mm and 4096 mm, and particles smaller than this are considered
sand, mud, clay, or silt. A substrate within the Gravel group contains greater than 80%
gravel particles, with subgroups differentiated by the “median Gravel size”. However,
this classification was problematic for classifying sediment size and substrate classification
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in AUV images because any substrates not directly visible at the lakebed surface were
impossible to quantify.

Not collecting sediment grabs limits the ability for characterizing the volumetric
distribution and median sizes of different sediment classes, but collecting AUV images
is more efficient and less invasive, meaning larger areas can be mapped more quickly.
Calculating the median particle size from a typical image would require measuring every
individual particle present. However, variations in environmental (water clarity/turbidity),
camera hardware (lens focal length, exposure settings, sensor resolution), and AUV position
(altitude above lakebed, roll, and pitch) combined to limit our ability to resolve particles
finer than 2 mm. These limitations affected the classification process in two important ways.
First, all substrates finer than 2 mm were attributed to a single “Fine” class that combines
sand, mud, and their mixes. Second, classes were determined based on areal coverage of
particle size groups in an image, rather than by calculating the median particle size. On the
upper end of the particle size gradient, it was not possible to distinguish subclasses in the
rock substrate class because megaclast particles are greater than 4.0 m in diameter, which is
larger than the 1.95 m2 imaged area from the AUV at 1.75 m altitude. Due to the limitations
inherent to image-based classification, the CMECS substrate scheme was simplified to only
those classes that could be reliably resolved, leading to sum aggregation at the subgroup
level (see “label” column of Table 1), and the definitions for each class were defined relative
to the aerial coverage of different particle sizes in whole images (Table 2).

Table 2. Substrate classes, abbreviations used for each throughout this paper (in parentheses), and
their definitions. Dominant particle by areal extent is used rather than median particle size as defined
in CMECS.

Label (Abbreviation) Image Class Definition

Bedrock (Be)

The substrate in the image belongs to the Rock CMECS class, either
bedrock or megaclast. This is a substrate with continuous
formations of bedrock or megaclast (particles ≥ 4.0 m) that cover
50% or more of the image surface.

Boulder (Bo)

The substrate in the image belongs to the CMECS Boulder
Subgroup. The Geologic Substrate contains >80% Gravel, with the
areal extent dominated by Gravel particles of size 256 mm
to <4096 mm.

Cobble (Co)

The substrate in the image belongs to the CMECS Cobble
Subgroup. The Geologic Substrate contains >80% Gravel, with the
areal extent dominated by Gravel particles of size 64 mm
to <256 mm

Pebble (Pe)
The substrate in the image belongs to the CMECS Boulder
Subgroup. The Geologic Substrate contains >80% Gravel, with the
areal extent dominated by Gravel particles of size 4 mm to <64 mm.

Granule (Gran)
The substrate in the image belongs to the CMECS Boulder
Subgroup. The Geologic Substrate contains >80% Gravel, with the
areal extent dominated by Gravel particles of size 2 mm to <4 mm.

Gravel Mixes (GM)
The substrate in the image belongs to the CMECS Gravel Mixes
Group. The Geologic Substrate surface layer contains 30% to <80%
Gravel (particles 2 mm to <4096 mm).

Gravelly (Gr)
The substrate in the image belongs to the CMECS Gravelly Group.
The Geologic Substrate surface layer contains 5% to <30% Gravel
(particles 2 mm to <4096 mm).

Slightly Gravelly (SGr)
The substrate in the image belongs to the CMECS Slightly Gravelly
Group. The Geologic Substrate surface layer contains from a trace
(0.01%) of Gravel to 5% Gravel (particles 2 mm to <4096 mm).

Fine (F)

The substrate in the image belongs to the CMECS Fine
Unconsolidated Substrate Subclass, but not the Slightly Gravelly
Group. The Geologic Substrate surface layer contains no trace of
Gravel and is composed entirely of particles <2 mm, including
sand, mud (clay and silt), and mixed types.
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A variety of factors made it challenging to classify some images. For instance, benthic
algae sometimes partially or completely obscured the underlying substrate in many of the
images. When less than 50% of the image was obscured by algae, the remaining visible
substrate was used to classify the image. However, it was common for images to be more
than 50% covered by algae. If the obscured substrate, inferred underneath the algae, could
not be reliably associated with a coarse unconsolidated substrate subclass, then the image
was classified as ‘Coarse Algae’ (i.e., coarse unconsolidated substrates were present, but not
able to be attributed with a subclass label). In some cases, it was completely impossible to
determine the image substrate class, in which case the image was classified as ‘Unknown’.
This was often caused by poor lighting conditions (i.e., underexposure or overexposure),
water turbidity, image blur, co-dominant classes, or another inability to decipher the image.
Images labeled as Unknown were not used in any of the ML models.

All images in the AUV training dataset were classified according to the 9 classes listed
in the Label column of Table 1, in addition to Coarse Algae and Unknown. However, only
the 9 classes listed in Table 1 were used in the substrate classification model development.
The 9-class scheme was further aggregated to 6-and 2-class schemes (Table 3). The 6-class
scheme was based on the perceived functional role of similar substrate classes to species.
For instance, boulder and cobble may serve similar functions for spawning fishes in the
Laurentian Great Lakes and thus can be combined into a single “very coarse” class. Bedrock
is considered consolidated, boulder and cobble are combined into a very coarse class, pebble
and granule become moderately coarse, and gravelly and gravel mix are mixed coarse
(Table 3). The 2-class scheme further simplified class labels by aggregating boulder, cobble,
pebble, granule, gravel mixes, and gravelly to a single “coarse” class, while slightly gravelly
and fine were mapped to a single “fine” class. In addition, the coarse algae images were
included in the coarse class in the 2-class scheme.

Table 3. Image annotation scheme modified from CMECS, with the number of images in each class
in parentheses. Images were annotated at the 9-class level and subsequently aggregated into 6-class
and 2-class schemes.

9-Class 6-Class 2-Class

Bedrock (Be)
(21)

Consolidated (Con)
(21)

Boulder (Bo)
(894) Very Coarse (VC)

(1632)

Coarse * (C)
(3497)

Cobble (Co)
(738)

Pebble (Pe)
(83) Moderately Coarse (MoC)

(90)Granule (Gran)
(7)

Gravel Mix (GM)
(293)

Mixed Coarse (MiC)
(370)Gravelly (Gr)

(77)

Slightly Gravelly (SGr)
(96)

Mixed (M)
(96) Fine (F)

(1438)Fine (F)
(1342)

Fine (F)
(1342)

Coarse Algae (CA) (1405)
* The 2-class scheme (coarse-fine) also included coarse algae (CA) images in the coarse class.

2.1.3. Creation of Training Dataset

Both conventional and deep convolutional machine learning models require input
data with assigned labels to learn (i.e., train) patterns and relationships within the data that
produce the desired label. Additional labeled data are essential to assess the accuracy of
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model predictions for data not used in the training process (i.e., validation). The accuracy of
an image classification model depends in part on the quantity and quality of training images
and associated class labels. Large datasets reduce the likelihood of model overfitting, which
occurs when the model essentially memorizes the training data rather than identifying
the underlying patterns that predict a class. For instance, using training data where all
pebble images were drawn from the same AUV mission might “teach” the model that
the specific lighting conditions present on that day are the best way to predict pebble
images in general. If the model were then applied to pebble images from another mission
with different lighting, the model may predict the class inaccurately. Here, we sought to
assemble a training dataset large and diverse enough to represent the varied environmental
and lighting conditions encountered in the Laurentian Great Lakes, while ensuring that
substrate classes were approximately evenly represented in the dataset. Imbalances in
the number of training images between classes can result in overprediction of the most
abundant classes. Even if the AUV had encountered fine substrates 90% of the time, a
well-performing model would still accurately predict the other 10% of substrate types.

A manually labeled dataset of images was created and split into training and validation
datasets used in model training. Images were selected from eighteen AUV missions from
Lake Michigan, representing different geographies, light conditions, and times of day
(Figure 1). Images from the missions were included in the dataset if they had complete and
valid metadata, were taken at altitudes ranging from 0.5 and 5 m above the lake bottom, and
were clear enough that bottom features were readily identifiable. In all, a set of 7282 images
were subsequently labeled for benthic substrate classification.
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Images were initially labeled using the 9-class scheme (Table 2; Figure 2), plus a coarse
algae class consisting of images that are clearly coarse but were more than 50% obscured
by vegetation. Each image was independently labeled by three trained observers using a
custom program with a graphical user interface (GUI) that included a toggle for 1-, 10-, and
100 cm grids over each image for scale. Scale was established using the pixel size calculation
that accounted for lens characteristics and magnification effects caused by different indices
of refraction between air and water.
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To calculate scale in an image, we assumed a pinhole camera model viewing a planar
lakebed at a known altitude [31]. We then calculated a magnification factor, which would
account for scaling due to the lens port between the camera and the water. The length in
pixels of a given distance in an image could then be calculated using the following equation:

l = (nf/wα) * L/a, (1)

where l is the length in pixels on an image, L is the length on the lakebed in meters, n is the
number of pixels on the wide length of the sensor, f is the focal length of the camera lens, w
is the width of the camera sensor, α is the magnification factor, and a is the altitude of the
drone. The GUI calculates the distance between grid lines based on this equation, given
the altitude of each image, and overlays the grids on the image. This allowed labelers to
have a relative scale for objects in an image and more accurately assign a classification for
that image.

The three assigned labels for each image were compared, and a final definitive label
was determined based upon decision rules (Table 4). Images with full consensus among
the three labelers were assigned with the consensus label as their final class. Images where
two labelers agreed on the classification but the third did not were assigned the majority
classification of the two labelers in agreement. For example, if two people labeled an image
as boulder and the third person labeled the image as cobble, a class directly adjacent to
boulder and easily confused for edge-cases, the image was assigned a final label of boulder.
When there was no agreement among the three labels for an image, it was arbitrated by
the senior scientist (Esselman) for a final assigned label. However, if two or more labelers
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assigned the image class as “unknown” for any reason or if the arbitrator determined the
image class was “unknown”, then the image was discarded from the training dataset.

Table 4. Rules for determining a final class from the results of three independent expert labelers.

Condition Final Label

All three labelers agree on classification Three-way agreed-upon class
Two labelers agree on the classification, one

labeler assigns a different classification Two-way agreed-upon class

No labelers agree on classification Arbitrated by senior author and assigned final class

Of the 7282 total images labeled in the complete Geisz et al. (2024) dataset [32],
full consensus was reached on 1873 images (25.7% of all images). These images were
assigned the agreed-upon label. Agreement was reached by two labelers for 4079 images,
representing just over half (56%) of the total labeled images. These image labels were
assigned the two-out-of-three consensus class label. The remaining 1330 images (18.3%
of all images) had complete disagreement between the three trained labelers and were
arbitrated by the senior scientist, who determined the final class assignment.

Although the AUV was programmed to travel 1.75 m above the lakebed, the actual
altitude varied because of the onboard altitude sensor. As a result, altitude varied by image.
To minimize variation in the ground sample resolution (GSR) from one image to another,
we subsampled a larger labeled dataset of 7282 images to include 4956 images with an
altitude between 1.60 m and 2.10 m (Table A1). These thresholds were selected based on
the histograms of the altitude values for all images to limit the outside influence of image
scaling. The mean altitude of this subset was 1.88 ± 0.13 m. Since image altitude varied,
the GSR of a pixel ranged from 0.44 mm to 0.57 mm per image, where images taken farther
from the lakebed had a coarser GSR than images taken closer to the lakebed. The GSR of an
image at the average altitude of 1.88 m was 0.51 mm. See Table A2 for the GSR of images
by altitude.

2.2. Machine Learning Classification Models

The ML classification models used 4956 images taken from the AUV color camera
taken between 1.6 m and 2.1 m from the lakebed to classify benthic images by substrate
type. The labeled dataset was used to train and compare two types of ML models: (1) an RF
classifier using a vector of engineered features derived from each image plus plane standard
deviation derived from the stereo point cloud, and (2) a DNN classifier using the raw images
only. Each of the two types of ML models were trained to classify AUV images based on the
9-class, 6-class, and 2-class schemes (Table 3). Random forest models were selected because
they are very efficient at classifying tabular data without overfitting for smaller datasets,
although using RF models to classify images necessitates pre-computing a series of features
from each image. In contrast, neural networks were selected as a comparison because they
are effective at image classification problems without pre-computing any features but can
require larger amounts of data for training. Five-fold cross-validation was applied on all
models to compare the RF and DNN models and test for model stability (i.e., that a single
model training run was not anomalously high, low, or highly variable).

All ML models were trained using down-sampled images at 60% of the native spatial
resolution to reduce the number of trainable model parameters and allow the program to
run on a desktop workstation as previously described. Based on a series of experiments,
training with full native resolution images was computationally prohibitive because the
number of model parameters was too great, but training on excessively down-sampled
images (down-sampled to less than 60% of native resolution) significantly reduced the
model accuracy. Since excessive down-sampling likely was missing valuable texture
information, all images were down-sampled from 4096 × 2176 pixels (native resolution)
to 2458 × 1306 pixels (60% of native resolution). Previous research comparing ML model
accuracy and performance utilized k-fold cross-validation because it reduced the likelihood
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of model overfitting to a single subset of training data, improved model generalization,
and facilitated objective comparison of different types of ML models [33,34].

To explore issues of scale and the importance of the image altitude from the lakebed,
two variations of RF and DNN models were trained. One set of RF and DNN models was
trained without including image altitude as a model input, while the second set of RF and
DNN models did include this value explicitly for every image.

2.2.1. Random Forest (RF) Models

RF are a type of ensemble model that predict class membership based on the most
common label predicted from many individual decision trees, usually several hundred to
thousands [35]. Each tree was trained on a random sample of the labeled image dataset.
The first step in RF model development was to create a feature vector of various metrics
that were heuristically expected to correlate with the substrate type described below
and summarized in Table 5. The features were calculated for each image. This “feature
engineering” step potentially improves the interpretability of the model by providing
control over the model inputs. In addition, the feature vector requires far less memory
to train on than whole images, which allowed for faster training and prediction once the
features were calculated. However, computing the features was time consuming.

Table 5. Features derived for each image used in the local classification of substrate type. With
16 Local Binary Pattern metrics and 4 FFT annuli, the final feature vector included 30 elements to be
predicted by the RF model.

Feature Vector Index Metric

1 Intensity Variance
2 Edgeness
3 GLCM Contrast
4 GLCM Dissimilarity
5 GLCM Homogeneity
6 GLCM ASM
7 GLCM Energy
8 GLCM Correlation

9–24 LBP 1–16
25 FFT Norm

26–29 FFT Annulus Norms
30 Plane Standard Deviation

In addition to downscaling, the images were converted to grayscale and their his-
tograms were equalized. The histogram equalization and grayscale conversion were
implemented to prevent the model from overfitting due to the hue and lighting conditions
that may be similar in certain AUV missions but may not transfer to other data, making
the model less robust. Any metrics calculated from the images had these preprocessing
steps implemented prior to calculation. Both preprocessing and metric calculation was
conducted using Python scripts, which rely on the numpy [36], OpenCV [37], pandas [38],
and scikit-image [39] libraries.

• Intensity Variance: The brightness, or intensity, of a pixel in a grayscale image is sim-
ply an 8-bit integer, a number between 0 to 256. The variance of these values indicates
how much these numbers are dispersed about their mean. Heuristically, we would
expect to see more variation where there are more shadows and reflective surfaces.

• Edgeness: We would expect images with more “things” in them—usually rocks or
shells or plants—would have more edges. We apply a canny edge detection algo-
rithm [40] with sigma set to 3 to the image and calculate the proportion of pixels in
the image that are considered edges. This metric we call “Edgeness”.

• Gray Level Co-Occurrence Matrix: Gray Level Co-Occurrence Matrices (GLCMs) are
often used for analyzing texture in images. Four GLCMs were calculated for each
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pre-processed image, using an offset of 1 and angles of 0, π/4, π/2, and 3π/4. The
contrast, dissimilarity, ASM, energy, and correlation, all defined in paper [41], were
calculated from these matrices and averaged over the four angles. Each metric was a
separate feature in the feature vector.

• Local Binary Patterns: Local Binary Patterns (LBPs), first defined in [42], are com-
monly used for texture analysis. Using only 4 neighbors 1 pixel away, a histogram of
the number of pixels falling into each of the 16 local binary pattern bins in the image
was obtained. The number of pixels in each bin became a metric in the feature vector,
resulting in 16 features.

• Fourier Metrics: The discrete 2D Fast Fourier Transform (FFT) of each image was
taken [43]. Then, the Frobenius Norm was taken, first of the entire FFT matrix, then of
the FFT matrix masked to highlight certain frequencies in the image. In total, 4 annuli-
shaped masks were used so that the angle of the frequency was ignored. With the
minimum side length of the images being 1306 pixels, the 4 masks were from 0 to
326 pixels, 326 to 653 pixels, 653 to 979 pixels, and 979 to 1306 pixels. The norms
for each of the different matrices each gave a metric for the feature vector, totaling
5 feature metrics.

• Point Cloud Standard Deviation: In addition to color images, the AUV collects stereo
imagery from two 2 Mp grayscale cameras and calculates disparity maps and point
clouds at four frames per second (the cameras are not synchronized so there may have
been some offset to the images). The roughness of the point clouds was assumed to
correlate to the roughness of the benthic surface in the color image. We calculated
the standard deviation of the heights of the points as a measure of roughness, where
height is defined to be the distance from the plane of best fit through the point cloud.
The plane of best fit was identified using principal components analysis (PCA) by
taking the first and second principal components (PC1 and PC2) to represent lateral
dimensions of the data. The third principal component (PC3) is orthogonal to the
lateral plane and should capture vertical dispersion in the data. This metric was
calculated for each point cloud in a mission and treated as a time series. Each color
image was assigned a plane standard deviation value by linearly interpolating the
plane standard deviation time series to the timestamp of the image.

Random forest modeling was conducted using the scikit-learn Python library. Each
forest was composed of 100 decision trees, using the default parameters defined by the
Python library. Five-fold cross-validation was used for RF model development to reduce
the disproportionate influence of one training–validation split. Five-fold cross-validation
uses a different randomly selected 80% of the dataset for model training and the remaining
20% applied as a test set to measure model performance. This process was repeated five
times without replacement, resulting in five different RF models, where each one was
trained and evaluated on a different 80% and 20% of the data, respectively. A final model is
trained on the entire dataset.

2.2.2. Deep Neural Network (DNN) Models

The 9-, 6-, and 2-class DNN image classifiers were developed in Python using Tensor-
flow 2.09 [44] and Keras [45]. Each model consisted of a data normalization layer, multiple
random image augmentation layers (i.e., hue adjustment, brightness adjustment, contrast
adjustment, image rotation, and horizontal and vertical image flip), five 2D convolutional
sequences (i.e., 2D convolution and 2D max pooling), two dense layers with dropout
between them, and a softmax activation layer (Figure 3).

All input images were first normalized from 8-bit color depth (0 to 255) to 0 to 1. Data
normalization was important because it equalized the input data ranges such that each
model was more stable and avoided exploding gradients. This normalization also improved
model transferability to images without 8-bit color depth by adjusting the normalization
equation denominator to equal the maximum value for the color depth. Although the
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dataset used here consisted of 8-bit color images, the models could be easily adapted to
16-bit color images.
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Image augmentation is an important step in developing generalizable ML models [25,33,34]
and was included at the beginning of the model. Here, it consisted of a random hue
adjustment, random brightness adjustment, random contrast adjustment, random image
rotation, and random horizontal and/or vertical flipping. While all these augmentation
steps were implemented to improve model performance and transferability, random hue,
brightness, and contrast adjustments were especially important in context of the AUV
image data because of the variation in natural lighting, imaging altitude, water turbidity,
and camera parameters. Taken together, these factors can cause images from the same
AUV transect to appear more green, blue, or gray and/or cause the images to appear
underexposed relative to other surveyed areas. Since images along a single AUV transect
were more likely to have a similar class, care was taken to avoid classifying all images
with a given color palette as the same class. Random image hue adjustment was also
included in the image augmentation process to alleviate this potential confusion and
decrease model sensitivity to color biases introduced by any single AUV survey or any
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parameters. Subsequent image rotation and flipping were included to limit models from
using a particular region or orientation of features to determine the image classification.
Randomly augmenting the dataset improved the transferability of each model by reducing
overfitting to a given set of images.

Following image augmentation, a series of five 2D convolutional layer sequences were
performed. Each 2D convolutional sequence included a 2D convolution layer and 2D max
pooling layer, in order, and the dimensionality of the output space (i.e., filters) increased
with each successive layer. The first 2D convolution layer started with 16 filters, and the
number of filters increased by a power of 2, with the final 2D convolutional layer having
256 filters. Output from the final 2D convolutional layer sequence was then flattened to
a single dimension and passed to a dense layer sequence. Two dense layers were used
to determine the final image classification, with a dropout layer with a 0.4 probability of
dropping a given node included between the dense layers. Dropout between the 128-node
and 64-node dense layers was another step used to avoid model overfitting.

The last dense layer had the same number of nodes as input classes in the dataset.
For example, the final dense layer in the 9-class model included nine nodes, whereas the
final dense layer in the 2-class scheme models had only two nodes. The output of this
layer is a probability of belonging to each of the n-classes. Condensing these probabilities
to a single class label was accomplished through an activation layer using a Softmax
activation function. The sparse categorical cross-entropy loss function was used for all
DNN models, and learning rate scheduling and early stopping training callbacks were used
to maximize the likelihood that the model found the best possible solution (i.e., finding a
global minimum and maximum validation loss accuracy, respectively).

Prior to full model development, several benchmarks were tested to determine
whether simpler model architectures with fewer layers or nodes per layer and/or not
including one or more dropout layers would improve model performance. Changing
the number of 2D convolutional sequences beyond five had no effect on model perfor-
mance, aside from a substantial increase in the number of trainable model parameters and a
longer training time. Decreasing the number of 2D layer sequences did, however, decrease
model performance, as measured by validation training accuracy. In addition, two dense
layers with a single dropout layer between them optimized model performance without
overfitting or significantly increasing the number of trainable parameters. Due to the
model architecture tests, the DNN models employed here included five 2D convolutional
sequences and two dense layers with dropout.

Similar to RF model development, 5-fold cross-validation was applied during DNN
model development. Gómez-Ríos and others used a similar approach to evaluate different
convolutional neural networks (CNNs) for classifying underwater images of different coral
species [34]. Final DNN model accuracy was based on a combination of all five trained
models. Since training accuracy, training loss, validation accuracy, and validation loss
were all logged during the training process of each model, it was possible to identify the
epoch when a model began overfitting to the training data. Two training callbacks were
used during model training: early stopping and learning rate scheduler. These were used
during the model training process to monitor the validation loss and protect against model
overfitting. Learning rate was scheduled to halve if the validation loss did not improve
after 7 epochs, and this process would repeat as long as the model was training. Under the
early stopping callback, model training was stopped if the validation loss did not improve
after 20 epochs, and then the model weights from the best training epoch were restored.

3. Results

Preliminary comparison of the RF and DNN models with and without image altitude
suggest that RF models were the same when image altitude was included, while DNN
models were significantly less accurate when they included image altitude (Table A3). As
a result, the remainder of this manuscript will focus on RF and DNN models that did
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not utilize image altitude as a model input and were trained on the Geisz et al. (2024)
dataset [32] cropped to images acquired between 1.6 m and 2.1 m above the lakebed.

Despite aiming for a dataset with a balanced class representation, the number of images
in each class were not equal in the final annotated training dataset (Table 3). Boulder, cobble,
and fine images were over-represented with over 700 images per class, while bedrock and
granule were substantially under-represented with less than 25 images per class. The 6-class
scheme had an improved class balance, although consolidated and mixed classes remained
severely under-represented. A simple 2-class binary classification scheme was the most
balanced, and although there was some imbalance between the coarse (3497 images) and
fine (1438 images) classes, the dataset was sufficiently large to overcome this imbalance.

Five-fold cross-validation was applied for each of the three classification schemes to
avoid model overfitting to the sample of data used for training. The overall accuracy for
each class aggregation scheme model was calculated as the average of all 5-fold model iter-
ations (Table 6). A confusion matrix was calculated for the aggregated 5-fold models. The
diagonal boxes and values represent the number of images correctly classified as the class
on the vertical axis, and the off-diagonal boxes and values represent the number of images
of the vertical class incorrectly classified as the horizontal class. Together, these confusion
matrices provide more detailed insight into model performance by substrate class.

Table 6. Model accuracy and standard deviation over the 5 folds for the RF and DNN models without
altitude, trained using AUV images acquired between 1.60 m and 2.10 m altitude from the lakebed.

RF DNN

9-class 78.1 ± 0.9% 73.1 ± 0.9%
6-class 86.3 ± 0.9% 84.1 ± 1.4%
2-class 96.2 ± 1% 96.2 ± 0.8%

The 9-class DNN model took 214,505 s to train, and the RF model only took 4094 s to
train. For the 9-class DNN model training, this total time includes training five independent
models for the 5-fold cross-validation as well as a final model trained on all available data.
The average time to train a single 9-class DNN model was ~35,750 s. Additional tests were
conducted to determine how efficient each of these two 9-class models was when applied
to an independent dataset of 1000 randomly selected AUV images. The 9-class DNN and
RF models took 95 and 460 s, respectively, to classify the new images. For the RF model,
approximately 455.5 s was required for feature engineering and only <0.05 s was required
to classify the images.

3.1. RF Image Classification Models

Model accuracy was inversely related to the number of classes modelled, and the
average accuracy for the 9-, 6-, and 2-class RF models was 78.1 ± 0.9%, 86.3 ± 0.9%, and
96.2 ± 1.0%, respectively (Table 6). RF confusion matrices (Figure 4) indicate that all RF
models very accurately classified fine images, with a classification accuracy of 93.4% for
fine images in the 2-class model. Other classes were more challenging to predict, as evident
by the 9-class confusion matrices (Figure 4a,b). A perfect model would have values of
100% in the diagonal and 0% in all non-diagonal boxes. The 9-class RF model predicted
boulder images accurately (84.8%), followed by cobbles (73.4%) and gravel mixes (52.2%).
The remaining six classes of images were predicted with relatively poor accuracy, all below
30%. The greatest misclassification for the 9- and 6-class models was their tendency to
misclassify many under-represented classes as belonging to the fine class, as evident by
the greater numbers and darker colors along the far-right column in Figure 4a,b. Another
misclassification challenge is the confusion between boulder and cobble images.
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The 6-class RF model predicted very coarse and fine images with 96.1% and 95.2%
accuracy, respectively, with the next most accurate class being mixed coarse at 53.0%.
Combining the boulder and cobble classes from the 9-class to the 6-class scheme appeared
to reduce the amount of misclassification and improved model performance because the
model did not have to differentiate between two similar classes. Like the 9-class model, the
6-class RF model tended to misclassify some under-represented classes as belonging to the
fine class (see far right column in Figure 4d).

Classification with the 2-class scheme yielded the most accurate RF model, with 96.2%
of images accurately classified. A total of 97.4% and 93.4% of coarse and fine images,
respectively, were predicted correctly. While neither of the 9- or 6-class models classified
any images as bedrock or consolidated classes, the 2-class RF model did not include any
bedrock/consolidated images and did not exhibit the same misclassification issue as the 9-
and 6-class models. It is important to note that the 2-class model included the additional
1405 coarse algae images as representatives of the coarse class.

3.2. DNN Image Classification Models

DNN models were successfully trained on down-sampled images with the 9-class,
6-class, and 2-class schemes. The number of trainable parameters did not vary substan-
tially between the DNN models, although the 9-class model did have the most parameters
(467,113) and the 2-class had the fewest (466,658). However, a difference of only 455 param-
eters was negligible and had no observable effect on model training time or performance.
Model weights of the best training epoch were automatically restored for each trained
model with the early stopping callback. Since validation loss was monitored and model
training ceased if it did not improve over 20 consecutive epochs, none of the DNN models
required all 150 training epochs available to arrive at a solution.

All training and validation training history plots tracked tightly within a given classi-
fication scheme (Figure 5), although the number of training epochs in each 5-fold model
did vary. Since the number of training epochs was determined by the early stopping and
learning rate scheduler criteria relative to the validation loss training curve, some models
converged more efficiently than other models, resulting in minor variations in plotted
training loss and accuracy curves. Training and validation loss and accuracy followed each
other very closely for all DNN model realizations.

The 9-class model had the highest validation loss and lowest validation accuracy
of the classification schemes tested here, followed by the 6-class model (Figure 5). The
2-class model performed the best, with the overall lowest validation loss and greatest
validation accuracy. While comparing the validation accuracy metrics across the different
DNN models provided insight about the general performance of a model, inspection of the
confusion matrices for each DNN model provided greater insight about how well a given
model predicted each substrate class.

Confusion matrix plots of the DNN models (Figure 6) help illustrate the sources of
inaccuracy in each model. The 9-class DNN model accurately predicted images belonging
to the fine substrate class (accuracy: 96.1%) but had very poor prediction accuracy with
images belonging to the bedrock, pebble, granule, gravel mix, gravelly, and slightly gravelly
classes (Figure 6a). All under-represented classes had a classification accuracy of less than
3%. Gravel mix images had a low prediction accuracy of only 23.5% and were most
often conflated with pebble and granule image classes. Boulder and cobble images were
frequently misclassified between each other, although the boulder image classification
accuracy (80.4%) was greater than the cobble image classification accuracy (64.7%).
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The 6-class model also accurately predicted images belonging to the fine class (97.0%).
A significant improvement in the 6-class over the 9-class scheme is its ability to accurately
classify 6-class aggregated classes better than the individual 9-class scheme. Aggregating
boulder and cobble to the 6-class label very coarse unconsolidated (VC) resulted in a
classification accuracy of 96.4%. Mixed coarse unconsolidated (MiC) images, composed
of gravel mix and gravelly classes, were classified more accurately (35.3%) than either of
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the two 9-classes that compose this 6-class category. The 6-class model still struggled to
accurately moderate coarse (MoC) and MiC and tended to confuse these two categories
with images from the fine category.

The 2-class DNN model had the best classification accuracy for coarse and fine classes,
with a classification accuracy of 96.1% for both coarse and fine images. Only 3.9% of the
labeled fine images were misclassified as coarse, and the same percentage of coarse images
were misclassified as fine.

4. Discussion
4.1. Manual Image Labeling

The results demonstrate that RF and DNN models can reasonably predict the dom-
inant substrate classes present in whole images collected at altitudes suitable for AUV
operations. Given the large numbers of images that AUVs can collect (i.e., ~63,000 per
3.5 h deployment for our AUV), automated image classification presents one of the only
means to fully analyze such data. Compared to the alternative of manual classification, the
automated classification of images offers specific advantages for scalability, objectivity, and
transferability.

The ML models presented here are substantially more scalable than manual image
labeling. Manual labeling can be reasonably accomplished for relatively small datasets of
up to a few thousand images. However, manual labeling becomes prohibitively expensive
or impossible for datasets composed of tens of thousands of images or more, and ML
models are well poised to eliminate these issues. Whereas an expert may take 10 s or more
to accurately determine the substrate class in an image, a well-validated ML model can
predict the substrate class within a fraction of that time. As a result, classifying the substrate
present in an image becomes more advantageous as the number of images required for
labeling continues to grow.

ML models can be less subjective compared to manual image labeling [46]. It is
possible for a single person or group of people to classify many images, in which case
the ML model trained on these data would likely capture subtle biases or errors from
the sole person annotating the training data. However, ML models trained on a dataset
generated by multiple people may attenuate this subjectivity by leveraging the knowledge
imparted by the different people generating the labels. In this way, the ML models would
be buffered from biases or errors introduced by any single person annotating the training
data. Both human labelers and ML models will tend to assign a single class label to a new
image where class membership is ambiguous (i.e., edge cases) instead of classifying it as
“unknown.” The accuracy of any ML model is at least partially determined by the accuracy
and consistency of the training data. While it is possible for an ML model to misclassify
images, a well-developed ML model can more consistently classify images compared to
manual image classification.

ML models may allow for greater transferability of algorithms to new geographies
and datasets. In cases where the underlying surface geology, image characteristics, classes
present, or geography have changed, it may be necessary to re-train the ML model, although
this re-training may be more efficient than a person re-learning with the new dataset. For
instance, the ML models presented here were trained exclusively on images from Lake
Michigan, which shares some similarities to the surface geology of Lake Huron and Lake
Erie but different surface geology than Lake Superior and Lake Ontario [47,48]. Image
classification within a single dataset for a single person can be relatively simple when that
individual has adequate knowledge of the local geology and physical processes; however,
applying the same set of criteria to a new dataset representing a different time or geography
can necessitate an extensive re-learning process where drift can also be introduced, as
previously discussed. Image classification with ML models may be more transferable to a
new dataset and geographies, even if some model re-training is required.
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4.2. RF Image Classification Models

The relatively high number of images represented by boxes along the diagonal in all
RF model confusion matrices demonstrate that although the model does misclassify some
images, misclassified images were generally predicted as belonging to a closely related class.
This is consistent with previous work, where the misclassification of cobble and boulder
images presented a challenge [25]. Model accuracy was inversely related to the number
of classes, which suggests that RF models were able to capture inter-class variability well
enough to reasonably distinguish between classes, but additional criteria may improve
models with more classes.

The RF model results presented here suggest that misclassification issues may be at
least partially addressed by class aggregation. The 9-class RF model misclassified 13.9%
of the labeled boulder images as cobble and misclassified 18.4% of the labeled cobble
images as boulder. However, when these two classes were aggregated to a combined very
coarse class, as in the 6-class scheme, the classification accuracy for the aggregated class
improved to 96.1%. Further improvements in classification accuracy for both classes in
the 2-class scheme support aggregation as one possible approach to improving ML model
performance by reducing ambiguity between classes. Although having a high degree of
specificity in classes can be beneficial depending on the application, aggregating adjacent
classes can substantially reduce misclassification by ML models.

Among the 29 total features engineered for RF models, the planar standard deviation
was the most influential for all classification schemes. While this influence was dispropor-
tionate for the 9-class RF model, its influence was closely followed by three additional LBP
metrics in the 6-class RF model (LBP 6, LBP 11, and LBP 13). The same four features (plane
standard deviation, LBP 6, LBP 11, and LBP 13) were most influential for the 2-class RF
model, although the plane standard deviation and LBP 6 were slightly more influential than
the other LBP features. These feature importance rankings suggest that 3D information,
such as plane standard deviation, may be particularly helpful for distinguishing between
classes in the RF models. We conjecture that the LBP metrics become more important in the
2-class model due to the introduction of the coarse algae images, and the model uses the
texture of the algae as a predictive factor.

4.3. DNN Image Classification Models

The 9-class DNN model had a lower accuracy than the 6- and 2-class DNN models.
It is unlikely that this discrepancy in DNN model performance was caused by model
architecture or hyperparameters since all DNN models had the same model architecture
and hyperparameters. Rather, differences in model performance were more likely a result
of the 6- and 2-class schemes being simpler with clearer distinction between the classes.
As discussed with the RF models, class aggregation can enhance classification by pushing
some of the inter-class variability into a single class’s variability.

The DNN models did not appear to overfit the training data for any of the 5-fold mod-
els in the different classification schemes. Training and validation lines tracked very well
with each other in Figure 5, suggesting that the model architecture and data augmentation
steps employed here were effective to develop a robust 9-, 6-, and 2-class DNN model.

Developing and training robust ML models is predicated on employing appropriate
model architecture and augmentation processes. Previous research demonstrates that
incorporating image augmentation and random dropout layers can effectively improve
ML model robustness [19,33]. Prior to settling on the presented DNN model architecture,
multiple architectures were tested, including some without image augmentation, different
number and order of image augmentation processes, and/or dropout layers. Different
training, validation, and testing splits were also tested to determine what architecture,
augmentation scheme, and training split produced the most generalizable model based
on an independent evaluation data split. None of the DNN models exhibited overfitting
(Figure 5) because of the architecture experiments and care taken during model develop-
ment. Each set of training and validation loss and accuracy lines in Figure 5 track well
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and do not substantially deviate from each other for any given 5-fold model realization.
Employing learning rate scheduling and early stopping criteria further improved model
performance and generalization by limiting model overfitting and restoring the model at
the epoch with the lowest validation loss. Model loss and accuracy were relatively similar
across the different 5-fold model realizations for all DNN models, highlighting the stability
and robustness of the models to any given data.

4.4. Model Comparison

Overall, the RF and DNN models performed comparably for each classification scheme.
Using a 5-fold cross-validation approach for both types of ML models decreased the
likelihood of model overfitting, improved model generalization, and facilitated comparison
of the RF and DNN models. The 9-class models were less accurate than the 6- and 2-
class models for both model types, likely because of simpler classification schemes, more
equitable class representation, and less sensitivity to image scaling issues with the 6- and
2-class models.

Multi-class classification becomes increasingly challenging as the number of classes
increases because the visual characteristics used to distinguish any additional classes
become more nuanced and subtle. Reif and others found a similar pattern using support
vector machines (SVMs) to classify benthic habitat in southwestern Lake Michigan from
a combination of in situ images and videos, satellite, and airborne sensors [5]. Their ML
models were more accurate for Tier II classification with two classes compared to their Tier
I classification models with three classes. Classification using a scheme with fewer classes
was more accurate than classification with more classes. In the current paper, both RF and
DNN models exhibited an inverse relationship between the number of classes and model
accuracy. Ternon and others also noted a similar pattern when mapping temperate rocky
reefs using underwater photogrammetry and proposed a strategy to mitigate this issue by
aggregating neighboring classes in the context of ecological function and context [25]. Our
aggregation scheme from the 9-class to 6-class and again from 6-class to 2-class and the
associated improvements in model accuracy with decreasing number of classes demonstrate
that aggregating functionally similar or equivalent substrate classes is an effective strategy
to improve ML model accuracy and generalization.

Much of the misclassification for both RF and DNN models occurred between adjacent
classes, most notably misclassifying boulder and cobble images in the 9- and 6-class models.
Previous research highlights the challenge of accurately classifying boulder to pebble size
substrates, noting a substantial misclassification of substrates with cobble and boulder
size particles [25], possibly due to the lack of explicit image or data scale information. By
extension, the simpler classification scheme of the 2-class scheme allowed the RF and DNN
models to better solve a binary classification problem where images are either one substrate
type or another. The two classes are also more visually distinct from each other, where
coarse images tend to be more heterogenous and have more edges than a smoother fine
image. Building on previous research, we support the proposal that simplification of the
classification scheme, where possible, can improve ML model accuracy and generalizability.

One limitation of the ML models in this paper is their inability to directly account
for differences in the altitudes at which images were collected and the resulting variation
in GSR and the area captured within each image. The impact of scale and varying image
footprint size is a potential reason the 9-class models struggled to classify boulder, cobble,
and pebble images accurately and consistently. For instance, both 9-class models had
challenges resolving the boulder class from the cobble class, possibly because subtle changes
in the AUV altitude from one image to the next caused boulders in one image taken
farther from the lakebed to appear similar in size to cobbles in another image taken closer
to the lakebed. The program used to annotate images during the development of the
training dataset did include an optional grid overlay corresponding to 0.01-, 0.1-, and 1.0 m
cells, which provided valuable image scale information that was useful when accurately
differentiating boulder and cobble images. However, when AUV altitude was explicitly
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included in the RF or DNN models, none of the models improved significantly. The DNN
models with altitude even displayed a significant decrease in accuracy compared to DNN
models without altitude. Cropping the dataset to include only AUV images acquired
between 1.60 m and 2.10 m altitude above the lakebed substantially reduced the altitudinal
variation and variability in GSR between images, thereby minimizing the direct effect of
varying image altitude on the models and classification results.

Class imbalance in training data represents a challenge for developing generalizable
ML models [34] and is another reason the 6-class and 2-class models may have performed
better than the 9-class model. RF and DNN 9-class models performed poorly at predicting
the under-represented classes in the training dataset: bedrock, pebble, granule, gravel
mix, gravelly, and slightly gravelly. Under-represented classes presented a challenge to
developing accurate ML models because the models were less likely to encounter an image
of these classes during the training process. Since they were less likely to “see” an image
from under-represented classes, the models may have had a difficult time learning how
to distinguish these from adjacent classes. In contrast, the 9-class models did accurately
predict fine class images because fine images were well represented in the training data and
tended to be more homogenous in appearance with fewer hard edges visible in the image.
This is not a unique challenge and is well documented by previous coral reef mapping
and classification literature [22,34,49,50], where poor representation of one or more classes
can disrupt the model’s ability to accurately classify those classes/objects. While under-
and over-sampling may help mitigate class imbalance effects, how the data are under-
or over-sampled can significantly affect the model and its robustness to new data [51].
Ultimately, a better long-term solution to class imbalance is to cultivate more balanced
training data and improve the likelihood that a ML model “sees” all classes during the
training and evaluation processes.

The most notable difference between RF and DNN model development was the feature
engineering conducted for the data fed into the RF model. The DNN model essentially
engineers or learns these features through the series of 2D convolutional layers in the model.
The feature engineering step took 4073 s but allowed the RF models to train 8.7 times faster
(21 s for model training) than DNN models (35,750 s for model training), but the feature
estimation preprocessing required substantial time and resources. In contrast, predictions
can be made from the trained DNN (95 s to classify 1000 images; 0.09 s per image) more
quickly than the RF (460 s to classify 1000 images; 0.46 s per image), because the DNN does
not require the pre-calculation of engineered feature values, which took almost the entire RF
model prediction time. Considering the aggregate time required to prepare for, train, and
apply both model types, the DNN is better suited for application to large datasets. Given
comparable RF and DNN model accuracies for each of the three classification schemes, the
DNN model can reasonably be seen as the preferred model on the grounds of computational
efficiency for applications.

4.5. Future Work

Depending on the application, the 2-class model and 6-class models may have im-
mediate utility. The high accuracy of the 2-class models indicates that either the RF or
DNN approaches can be used now to produce highly accurate predictions for data with
similar altitudes and other visual characteristics (lighting, hue, etc.). Since the DNN models
included image augmentation procedures within the training process, these models may
be more robust to classifying new data of varying hue, lighting, and other characteristics.
For the 6-class model, the main confusion was for MoC and MiC images, which are more
heterogeneous than other classes. Given that boulders and cobbles in the VC class may
provide similar functions in an ecological context (e.g., for fish spawning and hatching [52]),
the 6-class model may have sufficient accuracy now for many ecological purposes.

Future work should: (1) continue to test model performance on images gathered from
a broader geography (and improve the models if necessary), (2) explore how sensor and
mission parameters affect classification accuracy, (3) explore how new information from
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geophysical sensors may enhance classification, and (4) continue to explore new ML model
types and architectures for image classification and/or segmentation for habitat mapping
applications. In addition, collaboration among various organizations and agencies should
be coordinated to develop quality datasets that can be used for model development and
application across broad, diverse geographic areas such as the Laurentian Great Lakes. It is
notable that the parent material and glacial processes that formed the contemporary Great
Lakes lakebed are very similar to those in other parts of the North American marine coast
(i.e., the Gulf of Maine). Therefore, the trained models used here may be directly applicable
to similar geographies outside the Great Lakes region or be useful for transfer learning
applications [9].

The issue of generalizing localized or per-image classification to an entire lake basin is
not trivial, as natural geographic variability in lakebed composition can be substantial. Scal-
ing image classification to an entire lake basin is further complicated by natural variability
in lighting conditions during the various AUV missions. For projects spanning multiple
years, it is likely that the sensor and/or mission parameters may also change, which can
further complicate the ability to efficiently train an accurate and parsimonious model that
is robust to new data. Due to natural geographic and geologic variability, a new model
may be required to be trained on imagery acquired in the new lake where hue, lighting,
and even substrate type can vary from the training data used here.

One limitation of using AUV images to classify substrate composition and classification
is their inability to resolve more subtle differences within and between some of the CMECS
groups. The most notable examples of this are the inability to resolve particles smaller than
2 mm and the general inability to differentiate between bedrock, hardpan clay, and other
hard surfaces. Despite the inherent differences in the geophysical properties of sand, silt,
and clay, it is also not possible to accurately resolve differences between these particles with
AUV images alone. Supplementing the AUV images with geophysical information, such as
backscatter from an acoustic sensor (i.e., the doppler velocity logs common to AUVs), could
aid significantly in differentiating the finer fractions of the substrate. Similarly, backscatter
or other geophysical data may be useful in distinguishing bedrock from hardpan clay and
other hard surfaces based on the differences in their sound absorption properties. Such
additional instrumentation may also provide valuable data that could be used to map
the water column component of the CMECS classification scheme and, therefore, result
in a more complete habitat characterization. Future work should explore how additional
geophysical instrumentation may effectively enhance benthic habitat characterization and
mapping [3,4,33,53].

Advances in ML technologies are likely to continue, and such improvements should
be explored for image classification. Developing a relatively simple, yet intuitive work-
flow leveraging emerging ML technologies can increase the ability of managers to map
benthic habitat more efficiently in non-invasive ways. In addition, improvements with ML
techniques will likely enable us to integrate new data with past information, such as field
surveys and trawl surveys, which may improve our ability to accurately predict future
environmental changes and focus environmental management in areas of maximum benefit.

It is possible that the feature vectors explored here contain correlated variables. Fur-
ther exploration of different feature vectors should be explored as different inputs to RF
models. A variable reduction approach to the feature vector creation could be beneficial
in determining the most parsimonious model that is yet robust to new images. Equally
as possible is that one or more essential feature vectors were absent from the stack of
features included in the RF models here. The addition of other features may improve model
performance and result in more robust models for benthic habitat mapping.

While the 9-class model accuracies (78.1% for RF model and 73.1% for DNN model)
may be less than desired, it is important to remember that ML models can only be as
good as the data and labels used to train them [46]. Generating the training dataset for
the models here required coordinating multiple domain experts, and the time required to
classify the entire dataset and reconcile classification labels was substantial. Since each
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expert approaches image classification with their own conceptual understanding and biases,
image classification by humans may introduce human subjectivity into training dataset.
Reconciling the image classification labels from all three experts highlights the challenges
with developing a quality training dataset and, by extension, quality image classification
models. Although the goal is to develop accurate models, it is unrealistic to expect a
complex multi-class model (e.g., the 9-class and 6-class models used here) to be over 90%
accurate for all classes when the three experts used to develop the current dataset only
agreed completely on 25.7% of image labels. Challenges with manual image classification
suggest our ability to develop automated image classification models may be limited
by ambiguity in dataset development. Future work should focus on developing a more
extensive image dataset to help mitigate ambiguity and subjectivity in model classification
and reduce significant class imbalance issues.

One limitation of the models presented here is their exclusive focus on geologic
substrates. The classification scheme used in this work was specific to geologic substrate
composition and did not include biogenic substrates or the biotic and water column
components. The complete CMECS scheme includes a biotic component, which previous
research has integrated into another modified CMECS scheme [5]. Incorporating the biotic
component should be explored further, as it can directly aid in identifying and mapping
important habitat modifiers like zebra and quagga mussels and/or submerged aquatic
vegetation in the Laurentian Great Lakes [24,54]. Explicitly including both abiotic and biotic
components of the benthic habitat mapping process could aid researchers and managers in
better understanding and managing aquatic ecosystems.

5. Conclusions

The CMECS geologic substrate classification is based on the volumetric distribution
of different particle sizes within a given area and therefore requires a physical substrate
sample. While the information derived from this physical sample is valuable for a variety
of different geological, habitat, and engineering purposes, the collection and processing
of physical samples is labor/time intensive compared to the interpretation of imagery.
This paper demonstrates that automated interpretation of large volumes of images is
feasible using ML with reasonable accuracy, particularly if some loss of class distinctions
is acceptable. Further refinement of ML approaches to classifying geologic substrates on
whole images will likely lead to further improvements in accurate assignment substrates in
multi-class schemes like the 9-class scheme used here.

Machine learning models have the potential to efficiently classify large volumes of
AUV images compared to manual image classification and with less bias in class assignment.
The classified images can be beneficial for habitat mapping and management applications.
Mapping substrate composition to binary coarse and fine classes can be done with very
good accuracy, although a 6-class scheme performed relatively well. Random forest models
are generally more intuitive in understanding and communicating to a lay audience because
the image characteristics or features can be described individually, but DNN models may be
especially valuable when these features used to differentiate classes are unclear or unknown
to the user, or when computational efficiency is necessary.

Images classified using RF or DNN models can provide valuable information used
to classify benthic habitat more completely with the CMECS (or similar) scheme. While
the original CMECS classification scheme does include other components like water col-
umn and biotic information, the modified CMECS scheme used here provides a simpler
framework that can be used to map and predict benthic habitat without ambiguity from
biotic habitat modifiers. Mapping benthic habitat is essential for the adaptive management
of coastal environments around the world, providing invaluable information on the cur-
rent state of the benthic physical, ecological, and chemical environment. High-resolution
benthic maps and images can be valuable to coastal and fisheries managers by informing
decision makers about native, invasive, and nuisance benthic species’ abundance and
distribution. Local, state, and federal agencies as well as coastal communities can also use
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high-resolution maps and benthic images for mapping and monitoring the presence and
distribution of sediments and pollutants. The fusion of robotics with machine learning
offers great promise for providing georeferenced local predictions of geologic substrates
across large spatial domains. When merged with other technologies like swath sonar,
LiDAR, or satellite remote sensing, spatially extensive AUV ground truth data can serve as
a valuable input to large-scale ocean and coastal mapping.
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Appendix A

Table A1. Number of images by classification type in the complete dataset [32], the dataset cropped
to include only images between 1.25 m and 3.00 m altitude from the lakebed, and the dataset cropped
to include only images between 1.60 m and 2.10 m altitude from the lakebed.

Full Dataset
(All AUV Images)

1.25–3.00 m AUV
Images

1.60–2.10 m AUV
Images

Bedrock 46 43 21
Boulder 1488 1435 894
Cobble 1133 1096 738
Pebble 136 127 83

Granule 13 13 7
Gravel Mix 500 475 293

Gravelly 124 120 77
Slightly Gravelly 138 136 96

Fine 1768 1740 1342
Coarse Algae 1936 1901 1405

Total Images 7282 7086 4956

Table A2. Calculated ground-sample resolution (GSR) in mm for different AUV altitudes from the
lakebed for different portions of the complete AUV image dataset [32]; GSR is a function of the AUV
altitude and camera parameters.

Altitude GSR (mm)

Dataset Programmed AUV altitude 1.75 0.477

Full
Minimum 0.51 0.139
Mean 2.01 0.548
Maximum 4.91 1.339
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Table A2. Cont.

Altitude GSR (mm)

1.25–3.00 m
Minimum 1.25 0.341
Mean 1.98 0.540
Maximum 3.00 0.818

1.60–2.10 m
Minimum 1.60 0.436
Mean 1.88 0.513
Maximum 2.10 0.573

Table A3. Accuracy values for all models trained, including those on the full dataset, 1.25 m–3.00 m
dataset, and 1.60 m–2.10 m dataset. A RF and DNN model were trained for the 9-, 6-, and 2-class
schemas for each dataset.

Dataset Model Type Number of Classes Without Altitude With Altitude

Full

RF
9 74.8 ± 0.4% 75.3 ± 0.5%
6 85.8 ± 0.5% 85.8 ± 0.6%
2 96 ± 0.6% 96.1 ± 0.7%

DNN
9 72.1 ± 3.2% 33.2 ± 1%
6 83.8 ± 2.4% 49.4 ± 0.7%
2 96.5 ± 0.9% 73.9 ± 1.3%

1.25–3.00 m

RF
9 75.5 ± 0.8% 75.4 ± 0.5%
6 85.7 ± 1.1% 85.8 ± 1.1%
2 96.2 ± 0.3% 96.1 ± 0.4%

DNN
9 72.3 ± 3.7% 33.6 ± 0.8%
6 84.5 ± 1.7% 48.8 ± 1.4%
2 95.4 ± 0.7% 73.3 ± 1.1%

1.60–2.10 m

RF
9 78.1 ± 0.9% 78.2 ± 0.8%
6 86.3 ± 0.9% 86.6 ± 1.1%
2 96.2 ± 1% 96.2 ± 1.1%

DNN
9 73.1 ± 0.9% 37.9 ± 1.5%
6 84.1 ± 1.4% 46.5 ± 1.9%
2 96.2 ± 0.8% 70.7 ± 1.7%
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