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Abstract

A classification of Hadamard matrices of order 2p + 2 with an automorphism
of order p is given for p = 29 and 31. The ternary self-dual codes spanned by
the newly found Hadamard matrices of order 60 with an automorphism of order
29 are computed, as well as the binary doubly even self-dual codes of length 120
with generator matrices defined by related Hadamard designs. Several new ternary
near-extremal self-dual codes, as well as binary near-extremal doubly even self-dual
codes with previously unknown weight enumerators are found.

Mathematics Subject Classifications: 05B05, 05B20, 94B05

1 Introduction

We assume familiarity with basic notions from error-correcting codes, combinatorial de-
signs and Hadamard matrices [5], [8], [17] and [32]. Hadamard matrices appear in many
research areas of mathematics and practical applications (see e.g., [16] and [28]).

It is known that for every odd prime p there exists a Hadamard matrix of order 2p+ 2
with an automorphism of order p, found by Paley [26], and known in the combinatorial
literature as the Paley-Hadamard matrix of type II. If p is an odd prime such that p ≡ −1
(mod 3) then the Paley-Hadamard matrix of type II of order 2p+ 2 is a generator matrix
of a Pless symmetry code [27], being a ternary self-dual code of length 2p + 2. In the
context of ternary codes, we consider the elements 0, 1,−1 of Z as the elements 0, 1, 2 of
the finite field F3 of order 3. By the Assmus–Mattson theorem [4], the Pless symmetry
codes of length 2p+2 for p = 5, 11, 17, 23 and 29 are ternary extremal self-dual codes that
support 5-designs [27]. The ternary extended quadratic residue codes of length 2p + 2
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are ternary extremal self-dual codes that support 5-designs for p = 5, 11, 23 and 29, and
these codes have generator matrices, being Hadamard matrices of order 2p + 2 with an
automorphism of order p [33]. In 2013, Nebe and Villar [25] gave a series of ternary
self-dual codes of length 2p + 2 for a prime p ≡ 5 (mod 8). The self-dual codes are also
ternary extremal self-dual codes that support 5-designs for p = 5 and 29 [25]. Recently,
it was shown in [2] that these codes found by Nebe and Villar [25] also have generator
matrices, being Hadamard matrices of order 2p+2 for p ≡ 5 (mod 24). In addition, it was
also shown that there are at least two inequivalent Hadamard matrices in a third ternary
extremal self-dual code of length 60. This implies that there are at least four inequivalent
Hadamard matrices of order 60 formed by codewords of weight 60 in the known three
ternary extremal self-dual codes of length 60. In addition, each of these four Hadamard
matrices has an automorphism of order 29. This motivates us to classify the Hadamard
matrices of order 60 with an automorphism of order 29.

The Paley-Hadamard matrices of type II for p = 3 and p = 5 coincide with the unique,
up to equivalence, Hadamard matrices of orders 8 and 12, respectively. The Hadamard
matrices of order 2p+ 2 with an automorphism of orders p = 7, 11, 13, 17, 19 and 23 have
been previously classified up to equivalence. A short summary on these matrices is given
in Section 5, along with relevant references.

In this paper, we present the classification of Hadamard matrices of order 2p + 2
with an automorphism of order p for the next two odd primes, p = 29 and 31. As an
application, we compute the ternary self-dual codes and self-dual codes over the finite
field F5 of order 5 spanned by the newly found Hadamard matrices of order 60 with an
automorphism of order 29, as well as some binary doubly even self-dual codes of length
120 with generator matrices defined by related Hadamard designs. In addition, we study
the binary self-dual codes defined by Hadamard designs arising from Hadamard matrices
of order 64 with an automorphism of order 31.

This paper is organized as follows. In Section 2, we give definitions and some known
results about Hadamard matrices, designs and codes used in this paper. We also review
a method from [10], [29] and [31] for classifying Hadamard matrices of order 2p+ 2 with
an automorphism of order p, where p is an odd prime.

In Section 3, we give the classification of Hadamard 2-(59, 29, 14) designs with an au-
tomorphism of order 29 having one fixed point, and show that there are exactly 531 non-
isomorphic such designs. Using these designs, we classify up to equivalence the Hadamard
matrices of order 60 with an automorphism of order 29 and show that the total number
of inequivalent Hadamard matrices with this property is 266. The ternary code and the
code over F5 spanned by the rows of a Hadamard matrix of order 60 are self-dual. A com-
putation of the minimum weights of the ternary codes spanned by the 266 inequivalent
Hadamard matrices of order 60 with an automorphism of order 29 shows that only four
of these matrices span a ternary extremal self-dual code, and these four matrices appear
in the three known inequivalent ternary extremal self-dual codes. Among the remaining
codes, several new ternary near-extremal self-dual codes with previously unknown weight
enumerators are found. Self-dual codes over F5 spanned by the newly found Hadamard
matrices of order 60 with an automorphism of order 29 are also computed. In addi-
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tion, new binary near-extremal doubly even self-dual codes of length 120 with previously
unknown weight enumerators are constructed from some of the Hadamard 2-(59, 29, 14)
designs with an automorphism of order 29.

In Section 4, we give the classification of Hadamard 2-(63, 31, 15) designs with an
automorphism of order 31 having one fixed point. There are exactly 826 non-isomorphic
designs with this property. Using these designs, we classify the Hadamard matrices of
order 64 with an automorphism of order 31, and show that there are 414 inequivalent
matrices with this property. The extended code of a binary code of length 63 spanned
by the incidence matrix of a Hadamard 2-(63, 31, 15) design is doubly even. Among the
extended codes of the 826 non-isomorphic 2-(63, 31, 15) designs with an automorphism of
order 31, there are 794 self-dual codes, and among these codes there are 28 inequivalent
extremal doubly even self-dual codes of length 64 with an automorphism of order 31.

In Section 5, we give a summary of the classification of Hadamard 2-(2p+1, p, (p−1)/2)
designs with an automorphism of order p having one fixed point and Hadamard matrices
of order 2p+ 2 with an automorphism of order p, where p 6 31 is an odd prime.

All computer calculations in this paper were done by programs in the language C and
programs in Magma [6].

2 Preliminaries

In this section, we give some definitions and known results about Hadamard matrices,
designs and codes used in this paper. We also review a method from [10], [29] and [31] for
classifying Hadamard matrices of order 2p+ 2 with an automorphism of order p, where p
is an odd prime.

2.1 Hadamard matrices, designs and codes

Throughout this paper, In denotes the identity matrix of order n, AT denotes the transpose
of a matrix A, and J denotes the all-one matrix of appropriate size.

A Hadamard matrix H of order n is an n× n matrix whose entries are from {1,−1}
such that HHT = nIn. It is known that the order n is necessarily 1, 2, or a multiple of 4.
Two Hadamard matrices H and K are equivalent if there are (1,−1, 0)-monomial matrices
P and Q with K = PHQT . An automorphism of a Hadamard matrix H is an equivalence
of H to itself. The set of all automorphisms of H forms a group under composition called
the automorphism group Aut(H) of H. For orders up to 32, all inequivalent Hadamard
matrices are known (see [19] for order 32).

A t-(v, k, λ) design D is a pair of a set P of v points and a collection B of k-element
subsets of P (called blocks) such that every t-element subset of P is contained in exactly
λ blocks. Often a t-(v, k, λ) design is simply called a t-design. Two t-(v, k, λ) designs are
isomorphic if there is a bijection between their point sets that maps the blocks of the first
design into the blocks of the second design. An automorphism of a t-(v, k, λ) design D is
any isomorphism of the design with itself and the set consisting of all automorphisms of
D is called the automorphism group Aut(D) of D. A t-design can be represented by its
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(block by point) incidence matrix A = (aij), where aij = 1 if the i-th block contains the
j-th point and aij = 0 otherwise. The complementary (resp. dual) design of a t-design
with incidence matrix A is the design with incidence matrix J−A (resp. AT ). The blocks
of a t-(v, k, λ) design D which contain a given point form a (t− 1)-(v− 1, k− 1, λ) design
called a derived design of D. A 2-design is called symmetric if the numbers of points
and blocks are the same. A symmetric 2-(4t + 3, 2t + 1, t) design is called a Hadamard
2-design.

Let Fp = {0, 1, . . . , p − 1} denote the finite field of order p, where p is a prime.
An [n, k] code C over Fp is a k-dimensional vector subspace of Fn

p . In this paper, we
consider codes over Fp (p = 2, 3, 5) only. A code over F2 and F3 are called binary and
ternary, respectively. The parameters n and k are called the length and dimension of C,
respectively. The weight wt(x) of a vector x ∈ Fn

p is the number of non-zero components
of x. A vector of C is called a codeword. The minimum non-zero weight of all codewords
in C is called the minimum weight of C. The weight enumerator of C is defined as the
polynomial

∑
c∈C y

wt(c). Two codes C and C ′ over Fp are equivalent if there is a monomial
matrix P over Fp with C ′ = C · P , where C · P = {xP | x ∈ C}.

The dual code C⊥ of a code C of length n is defined as C⊥ = {x ∈ Fn
p | x · y =

0 for all y ∈ C}, where x · y is the standard inner product. A code C is self-dual if
C = C⊥. A binary code C is doubly even if wt(x) ≡ 0 (mod 4) for all codewords x ∈ C.
A binary doubly even self-dual code of length n exists if and only if n is divisible by eight.
A ternary self-dual code of length n exists if and only if n is divisible by four. It was
shown in [22] that the minimum weight d of a binary doubly even self-dual code (resp.
ternary self-dual code) of length n is bounded by d 6 4bn/24c+4 (resp. d 6 3bn/12c+3).
If d = 4bn/24c + 4 (resp. d = 4bn/24c), then the binary doubly even self-dual code is
called extremal (resp. near-extremal). If d = 3bn/12c + 3 (resp. d = 3bn/12c), then the
ternary self-dual code is called extremal (resp. near-extremal).

2.2 Hadamard matrices of order 2p + 2 with an automorphism of order p

A method for classifying Hadamard matrices of order 2p + 2 with an automorphism of
order p, where p is an odd prime with p > 3, is given in [10], [29] and [31]. Using this
method, a classification of Hadamard matrices of order 2p + 2 with an automorphism of
order p was completed in [10], [29] and [31] for p = 13, 17, 19, 23. Here we review the
method.

Let p > 3 be an odd prime. If a Hadamard matrix H of order 2p + 2 has an au-
tomorphism of order p, then H is constructed from a Hadamard 2-(2p + 1, p, (p − 1)/2)
design with an automorphism of order p having one fixed point. Note that this follows
from a well-known connection between Hadamard matrices and symmetric designs, to-
gether with a bound on the number of fixed points [11, p. 82]. Let D be a Hadamard
2-(2p + 1, p, (p − 1)/2) design with an automorphism of order p having one fixed point.
Then D has an incidence matrix of the form:

A =

 M N 1T

P J −Q 0T

1 0 0

 , (1)
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where M,N,P and Q are p× p circulant matrices satisfying

MJ = NJ = PJ = QJ =
p− 1

2
J, (2)

and 1 and 0 denote the all-one’s vector and the zero vector, respectively. If the circulant
matrices M,N,P and Q satisfy (2), the matrix A in (1) is an incidence matrix of a
Hadamard 2-(2p+ 1, p, (p− 1)/2) design if and only if the following equalities hold:

MMT +NNT =
p+ 1

2
Ip +

p− 3

2
J, (3)

PP T +QQT =
p+ 1

2
Ip +

p− 3

2
J, (4)

MMT + PP T =
p+ 1

2
Ip +

p− 3

2
J, (5)

NNT +QQT =
p+ 1

2
Ip +

p− 3

2
J, (6)

MP T = NQT . (7)

Define a (2p+ 2)× (2p+ 2) (1,−1)-matrix

H = ((−1)bij), (8)

where

(bij) =


1 1 1 1
1T M N 1T

1T P J −Q 0T

1 1 0 0

 . (9)

Then H is a Hadamard matrix of order 2p+ 2 with an automorphism of order p.
In the next two sections, we use the above method to extend the classification of

Hadamard matrices of order 2p+ 2 with an automorphism of order p = 29 and p = 31.

3 Hadamard matrices of order 60 with an automorphism of or-
der 29

Using the method given in Section 2.2, in this section, we give the classification of
Hadamard 2-(59, 29, 14) designs with an automorphism of order 29 having one fixed point.
Using this classification, we give the classification of Hadamard matrices of order 60 with
an automorphism of order 29. We construct ternary self-dual codes and self-dual codes
over F5 from the Hadamard matrices of order 60. We also construct binary doubly even
self-dual codes from the Hadamard 2-(59, 29, 14) designs.

3.1 Hadamard 2-(59, 29, 14) designs D59,i and Hadamard matrices H60,i of
order 60

As a first step, we completed the classification of Hadamard 2-(59, 29, 14) designs with
an automorphism of order 29 having one fixed point. In order to classify such 2-designs,
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we consider incidence matrices of the form (1). By a program implemented in the lan-
guage C using functions from the GNU Scientific Library (GSL), our exhaustive computer
search found all circulant matrices M,N,P and Q satisfying the conditions (2)–(7). In
this calculation, we identify 14-element subsets SM , SN , SP and SQ of {1, 2, . . . , 29} with
the supports of the first rows of M,N,P and Q, respectively. In this way, we found
all Hadamard 2-(59, 29, 14) designs with an automorphism of order 29 which need to be
checked further for isomorphism. To test an isomorphism of Hadamard 2-(59, 29, 14) de-
signs, we employed the algorithm given in [24, p. 15, Theorem 1 (b)]. This algorithm
considers coloured graphs corresponding to Hadamard 2-(59, 29, 14) designs. In this cal-
culation, we used nauty software library [23] for coloured graphs isomorphism testing.
After isomorphism testing, we completed the classification of Hadamard 2-(59, 29, 14)
designs with an automorphism of order 29 having one fixed point.

Using this classification, all Hadamard matrices of order 60 with an automorphism of
order 29 are obtained as matrices of the form (8) and (9), which need be checked further
for equivalence. After equivalence testing, we completed the classification of Hadamard
matrices of order 60 with an automorphism of order 29. This was done by using the
Magma function IsHadamardEquivalent. Then we have the following:

Proposition 1. There are 531 non-isomorphic Hadamard 2-(59, 29, 14) designs with an
automorphism of order 29 having one fixed point. There are 266 inequivalent Hadamard
matrices of order 60 with an automorphism of order 29.

The incidence matrices of the above 531 non-isomorphic Hadamard 2-(59, 29, 14) de-
signs D59,i (i = 1, 2, . . . , 531) and the above 266 inequivalent Hadamard matrices H60,i

(i = 1, 2, . . . , 266) of order 60 can be obtained electronically from [3].
The automorphism group orders |Aut(D59,i)| of D59,i were computed with the Magma

function AutomorphismGroup, and are listed in Table 1.

Table 1: Orders of the automorphism groups of D59,i

|Aut(D59,i)| i

29 · 59 24
2 · 7 · 29 531
7 · 29 527, 528, 529, 530
29 others

The automorphism group orders |Aut(H60,i)| of H60,i were computed with the Magma
function HadamardAutomorphismGroup, and are listed in Table 2.

3.2 Ternary self-dual codes C3(H60,i)

Let H be a Hadamard matrix of order 60. We denote by C3(H) the ternary code generated
by the rows of H. In the context of ternary codes, we consider the elements 0, 1,−1 of
Z as the elements 0, 1, 2 of F3, respectively. It is trivial that if H and H ′ are equivalent
Hadamard matrices of order 60 then C3(H) ∼= C3(H

′). Since 3 divides 60 and 32 does
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Table 2: Orders of the automorphism groups of H60,i

|Aut(H60,i)| i

23 · 3 · 5 · 29 · 59 21
25 · 3 · 5 · 7 · 29 266
23 · 3 · 5 · 7 · 29 264
22 · 7 · 29 265
22 · 29 others

not divide 60, by considering the elementary divisors of H60,i, it follows that the codes
C3(H60,i) (i = 1, 2, . . . , 266) are self-dual (see [20, Section IV]). The minimum weights d
of C3(H60,i) were computed with the Magma function MinimumWeight, and are listed in
Table 3. Using the Magma function IsIsomorphic, we found the following pairs (i, j) of
equivalent codes C3(H60,i) ∼= C3(H60,j):

(i, j) =(20, 146), (57, 179), (75, 103), (95, 114), (96, 190),

(129, 194), (132, 140), (167, 221), (223, 241), (264, 265),
(10)

and there is no other pair of equivalent codes among C3(H60,i).

Table 3: Minimum weights of ternary self-dual codes C3(H60,i)

d i

9 239, 256
12 2, 6, 7, 11, 12, 16, 20, 25, 26, 30, 31, 32, 33, 34, 36, 37, 40, 44, 45, 53, 54,

55, 56, 59, 62, 68, 75, 79, 81, 85, 87, 88, 93, 95, 96, 101, 103, 104, 105,
106, 111, 112, 113, 114, 115, 117, 120, 123, 125, 127, 129, 130, 132, 134,
135, 137, 140, 143, 144, 146, 148, 152, 154, 155, 160, 164, 165, 168, 172,
176, 180, 181, 182, 184, 186, 188, 189, 190, 191, 192, 194, 198, 200, 202,
203, 206, 212, 216, 217, 218, 219, 222, 223, 226, 227, 230, 234, 235, 241
244, 245, 250, 252, 261, 262, 263

15 others
18 21, 264, 265, 266

It is trivial that an automorphism of order 29 ofH60,i induces an automorphism of order
29 of C3(H60,i). There are three inequivalent ternary extremal self-dual codes of length
60 with an automorphism of order 29 [7]. The three codes are the extended quadratic
residue code QR60, the Pless symmetry code P60 and the code NV60 found by Nebe and
Villar [25]. The codes QR60 and P60 contain a type I Paley-Hadamard matrix HPI

and
a type II Paley-Hadamard matrix HPII

, respectively (see [33]). The code NV60 contains
two inequivalent Hadamard matrices HNV1 and HNV2 of order 60 [2]. From Table 3, we
have the following:

Proposition 2. Let H be a Hadamard matrix H of order 60 with an automorphism of
order 29 such that C3(H) generates a ternary extremal self-dual code. Then H is equivalent
to one of the four inequivalent Hadamard matrices HPI

, HPII
, HNV1 and HNV2.
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Table 4: Ternary near-extremal self-dual codes of length 60

β i

2552 13
2668 167, 221
2697 52, 138
2726 51, 100, 248
2755 243, 260
2784 4
2813 163, 201, 257
2842 61, 86, 92, 153, 254
2871 28, 39, 83, 108, 229
2900 38, 84, 118, 122, 142, 177, 224
2929 14, 23, 43, 76, 102, 170, 242, 255
2958 5, 42, 58, 73, 82, 91, 174, 211, 215
2987 24, 57, 77, 107, 133, 139, 179, 197, 208, 210, 238
3016 49, 69, 141, 171, 175, 231
3045 17, 78, 119, 157, 185, 251
3074 8, 15, 35, 67, 90, 116, 128, 145, 193, 195, 213, 228, 236, 246, 253
3103 18, 46, 74, 89, 98, 150, 158, 196, 204, 209, 214, 258
3132 29, 48, 64, 66, 80, 94, 131, 147, 156, 187, 207, 237, 240
3161 3, 9, 47, 70, 259
3190 41, 50, 65, 161, 162, 166, 169, 173, 199, 233
3219 27, 60, 97, 136, 178, 220
3248 63, 99, 121, 149, 159, 247, 249
3277 1, 19, 71, 72, 183, 205
3306 124, 126, 225
3335 109, 110, 232
3364 22
3393 151
3422 10

Recently, some restrictions on the weight enumerators of ternary near-extremal self-
dual codes of length divisible by 12 were proved in [1], namely, the weight enumerator of
a ternary near-extremal self-dual code of length 60 is of the form:

W3,60 = 1 + αy15 + (3901080− 15α)y18 + (241456320 + 105α)y21 + · · · ,

where α = 8β with β ∈ {1, 2, . . . , 5148} [1]. It is known that there is a ternary near-
extremal self-dual code of length 60 having weight enumerator W3,60 for

α ∈ {24β | β ∈ Γ60,1} ∪ {8β | β ∈ Γ60,2},

where Γ60,1 and Γ60,2 are listed in [1, Tables 22 and 27]. It follows from Table 3 that 154
of the codes C3(H60,i) are near-extremal. The values α = 8β in the weight enumerators
W3,60 for the 154 near-extremal self-dual codes C3(H60,i) are listed in Table 4. This was
calculated by the Magma function NumberOfWords. From Table 4, we have the following:
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Proposition 3. There is a ternary near-extremal self-dual code of length 60 having weight
enumerator W3,60 for α ∈ {8β | β ∈ Γ60,3}, where

Γ60,3 =


2552, 2668, 2697, 2726, 2755, 2784, 2813, 2842, 2871,
2900, 2929, 2987, 3016, 3074, 3103, 3132, 3161, 3190,
3219, 3248, 3277, 3306, 3335, 3364, 3422

 .

We note that no ternary near-extremal codes with weight enumerators given in Propo-
sition 3 were previously known.

3.3 Binary doubly even self-dual codes C2(D59,i)

Let A59,i be the incidence matrix of a Hadamard 2-(59, 29, 14) designD59,i and let C2(D59,i)
be the binary [120, 60] code generated by the rows of the following matrix:

0 1 · · · 1
1

I60
... B59,i

1

 ,

where B59,i = J − A59,i is the incidence matrix of the complementary design of D59,i. In
the context of binary codes, we consider the elements 0, 1 of Z as the elements 0, 1 of
F2, respectively. It is trivial that if D and D′ are isomorphic Hadamard 2-(59, 29, 14)
designs then C2(D) ∼= C2(D

′). The binary codes C2(D59,i) are doubly even self-dual
codes [30]. The minimum weights d of C2(D59,i) were computed with the Magma function
MinimumWeight, and are listed in Table 5. It is trivial that an automorphism of order 29
of D59,i induces an automorphism of order 29 of C2(D59,i). Note that there is no binary
extremal doubly even self-dual code of length 120 with an automorphism of order 29 [9].
Also, it is currently not known whether there is a binary extremal doubly even self-dual
code of length 120.

Table 5: Minimum weights of binary doubly even self-dual codes C2(D59,i)

d i

8 531
12 7, 8, 19, 20, 123, 124, 125, 126, 131, 132, 133, 134, 167, 168, 185, 186,

197, 198, 217, 218, 221, 222, 251, 252, 281, 282, 285, 286, 337, 338,
371, 372, 397, 398, 407, 408, 417, 418, 421, 422, 497, 498, 511, 512

16 others
20 21, 24, 209, 210, 529, 530

From Table 5, the codes C2(D59,i) (i = 21, 24, 209, 210, 529, 530) are binary near-
extremal doubly even self-dual codes of length 120. We verified with the Magma function
NumberOfWords that the numbers of codewords of weight 20 in these codes are 71862,
71862, 98484, 98484, 104052 and 104052, respectively. If D59,i and D59,j are Hadamard
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2-(59, 29, 14) designs which are derived designs of isomorphic 3-(60, 30, 14) designs, then
C2(D59,i) and C2(D59,j) are equivalent [30, Theorem 2]. For (i, j) ∈ {(21, 24), (209, 210),
(529, 530)}, we verified with the Magma function IsIsomorphic that D59,i and D59,j

are derived designs of isomorphic 3-(60, 30, 14) designs. This implies that C2(D59,i) and
C2(D59,j) are equivalent.

The weight enumerator of a binary near-extremal doubly even self-dual code of length
120 is of the form:

W2,120 =1 + αy20 + (39703755− 20α)y24 + (6101289120 + 190α)y28

+ (475644139425− 1140α)y32 + (18824510698240 + 4845α)y36

+ (397450513031544− 15504α)y40 + · · · ,

(see [15, Section 4]). The existence of 528 inequivalent binary near-extremal doubly even
self-dual codes of length 120 is known (see [15, Proposition 2] and [35, Table 1]). These
codes have difference weight enumerators W2,120, where α are given in [15, Table 3] and [35,
Table 1].

Remark 4. The number of inequivalent binary near-extremal doubly even self-dual codes
of length 120 constructed in [15] was incorrectly reported as 500. We point out that the
correct number is 502. Hence, 528 inequivalent binary near-extremal doubly even self-dual
codes of length 120 were previously known.

Proposition 5. (i) There is a binary near-extremal doubly even self-dual code of length
120 with weight enumerator W2,120 for α = 98484 and 104052.

(ii) There are at least 530 inequivalent binary near-extremal doubly even self-dual codes
of length 120.

We note that no binary near-extremal codes with weight enumerators given in Propo-
sition 5 (i) were previously known.

3.4 Self-dual codes C5(H60,i) over F5

Let H be a Hadamard matrix of order 60. We denote by C5(H) the code over F5 gen-
erated by the rows of H. In the context of codes over F5, we consider the elements
0, 1,−1 of Z as the elements 0, 1, 4 of F5, respectively. It is trivial that if H and H ′ are
equivalent Hadamard matrices of order 60 then C5(H) ∼= C5(H

′). In addition, C5(H)
is self-dual [21]. The minimum weights d of C5(H60,i) (i = 1, 2, . . . , 266) were computed
with the Magma function MinimumWeight, and are listed in Table 6. Let d(C5(H60,i))
and N(C5(H60,i)) denote the minimum weight and the number of codewords of minimum
weight in C5(H60,i), respectively. For the pair (i, j) such that d(C5(H60,i)) = d(C5(H60,j))
and N(C5(H60,i)) = N(C5(H60,j)), using the Magma function IsIsomorphic, we de-
termined whether C5(H60,i) ∼= C5(H60,j) or not, where the numbers N(C5(H60,i)) were
computed with the Magma function NumberOfWords. Then we found equivalent codes
C5(H60,238) ∼= C5(H60,257) and there is no other pair of equivalent codes among C5(H60,i).
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Note that the extended quadratic residue code QR60 of length 60 is a self-dual code
having minimum weight 18. The largest minimum weight among self-dual codes of length
60 is between 18 and 24 [12, Table 9]. From Table 6, C5(H60,21) and C5(H60,266) have the
largest minimum weight among currently known self-dual codes of length 60. We verified
with the Magma function NumberOfWords that the numbers of codewords of minimum
weight in QR60, C5(H60,21) and C5(H60,266) are 410640, 410640 and 288840, respectively.
Therefore, there are at least two inequivalent self-dual codes over F5 of length 60 and
minimum weight 18.

Table 6: Minimum weights of self-dual codes C5(H60,i) over F5

d i

12 66, 103, 129, 142, 170, 198, 209, 248, 259
14 1, 3, 4, 11, 19, 25, 28, 33, 35, 36, 38, 47, 49, 51, 52, 54, 58, 59, 64,

68, 72, 76, 78, 79, 81, 84, 85, 87, 89, 90, 91, 94, 96, 97, 105, 108,
109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 123, 128, 132,
133, 135, 139, 149, 150, 152, 155, 157, 161, 162, 164, 165, 169,
172, 176, 178, 181, 183, 185, 188, 189, 194, 195, 196, 199, 200,
202, 206, 208, 211, 212, 218, 221, 222, 223, 224, 225, 226, 228,
233, 235, 236, 238, 240, 244, 245, 246, 252, 253, 256, 257, 260

15 7, 45, 48, 50, 53, 60, 61, 62, 65, 70, 92, 95, 101, 102, 107, 121,
127, 136, 144, 146, 159, 160, 171, 174, 177, 186, 192, 193, 210,
215, 219, 220, 230, 239, 243, 247, 255, 263

16 others
18 21, 266

4 Hadamard matrices of order 64 with an automorphism of or-
der 31

Using the method described in Section 2.2, we give in this section the classification of
Hadamard 2-(63, 31, 15) designs with an automorphism of order 31 having one fixed point.
Using this classification, we give a complete classification of Hadamard matrices of order
64 with an automorphism of order 31. We construct binary doubly even codes from the
Hadamard 2-(63, 31, 15) designs.

4.1 Hadamard 2-(63, 31, 15) designs D63,i and Hadamard matrices H64,i of
order 64

The approach used in the classification is similar to that given in the previous section, so
in this section, only results are given.

Proposition 6. There are 826 non-isomorphic Hadamard 2-(63, 31, 15) designs with an
automorphism of order 31 having one fixed point. There are 414 inequivalent Hadamard
matrices of order 64 with an automorphism of order 31.
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Remark 7. If p is an odd prime dividing the order of the automorphism group of a
Hadamard matrix of order n > 4, then either p divides n or n − 1, or p 6 n/2 − 1 [29].
Hence, the largest prime which can divide the order of the automorphism group of a
Hadamard matrix of order 64 is 31.

The incidence matrices of the above 826 non-isomorphic Hadamard 2-(63, 31, 15) de-
signs D63,i (i = 1, 2, . . . , 826) and the above 414 inequivalent Hadamard matrices H64,i

(i = 1, 2, . . . , 414) from Proposition 6 can be obtained electronically from [3].
The automorphism group orders |Aut(D63,i)| of D63,i and the automorphism group

orders |Aut(H64,i)| of H64,i are listed in Tables 7 and 8, respectively.

Table 7: Orders of the automorphism groups of D63,i

|Aut(D63,i)| i

215 · 34 · 5 · 72 · 31 805
25 · 5 · 31 790, 791, 793, 797, 806, 807, 808, 809, 810, 812,

813, 816, 820, 823
3 · 5 · 31 789, 792, 799
5 · 31 794, 795, 796, 798, 800, 801, 802, 803, 804, 811,

814, 815, 817, 818, 819, 821, 822, 824, 825, 826
3 · 31 765, 766, 767, 768, 769, 770, 771, 772, 779, 780,

781, 782, 783, 784, 785, 786
31 others

Table 8: Orders of the automorphism groups of H64,i

|Aut(H64,i)| i

228 · 34 · 5 · 72 · 31 406
213 · 5 · 31 407, 410
212 · 5 · 31 408, 409, 411, 413
28 · 3 · 5 · 31 395, 398, 405
27 · 5 · 31 396, 397, 399, 403
22 · 5 · 31 400, 404, 412, 414
22 · 3 · 31 387, 388, 389, 390, 391, 392, 393, 394
2 · 5 · 31 401, 402
22 · 31 others

4.2 Binary doubly even codes C′
2(D63,i)

Let A63,i be the incidence matrix of a Hadamard 2-(63, 31, 15) designD63,i and let C ′
2(D63,i)

be the binary code generated by the rows of the following matrix: 1

A63,i
...
1

 .
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It is trivial that if D and D′ are isomorphic Hadamard 2-(63, 31, 15) designs then we
have C ′

2(D) ∼= C ′
2(D

′). In addition, it is trivial that C ′
2(D63,i) are doubly even. The

dimensions dim(C ′
2(D63,i)) were computed with the Magma function Dimension, and are

listed in Table 9. The minimum weights d of the 794 doubly even self-dual codes C ′
2(D63,i)

were computed with the Magma function MinimumWeight, and are listed in Table 10.
In addition, we verified that the 520 extremal doubly even self-dual codes C ′

2(D63,i) are
divided into 28 equivalence classes. More precisely, each of the 520 codes is equivalent to
one of the 28 inequivalent extremal doubly even self-dual codes C ′

2(D63,i), where

i ∈
{

1, 2, 3, 4, 6, 8, 9, 10, 11, 14, 15, 17, 18, 20, 24,
25, 30, 35, 36, 47, 54, 55, 59, 67, 69, 87, 150, 195

}
.

This was calculated with the Magma function IsIsomorphic. It is trivial that an auto-
morphism of order 31 of D63,i induces an automorphism of order 31 of C ′

2(D63,i). Note
that there are 38 inequivalent extremal doubly even self-dual codes of length 64 with an
automorphism of order 31 [34].

Table 9: Dimensions of C ′
2(D63,i)

dim(C ′
2(D63,i)) i

7 805
12 806, 807, 808, 809, 810, 812, 813, 816, 820, 823
17 789, 790, 793, 800, 804
22 791, 795, 796, 797, 801, 802, 811, 814, 815, 817,

818, 819, 821, 822, 824, 826
32 others

5 Summary

We end this paper by listing a summary of the classification of Hadamard 2-(2p+1, p, (p−
1)/2) designs with an automorphism of order p having one fixed point and the classification
of Hadamard matrices of order 2p + 2 with an automorphism of order p for p 6 31. The
number N(D2p+1) of non-isomorphic Hadamard 2-(2p + 1, p, (p − 1)/2) designs with an
automorphism of order p having one fixed point and the number N(H2p+2) of inequivalent
Hadamard matrices of order 2p+2 with an automorphism of order p are listed in Table 11,
along with relevant references.
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Table 10: Minimum weights of doubly even self-dual codes C ′
2(D63,i)

d i

4 792
8 5, 14, 16, 17, 19, 21, 28, 30, 32, 34, 35, 36, 37, 41, 43, 49, 51, 53, 54, 59,

60, 61, 64, 66, 67, 70, 73, 75, 78, 82, 85, 92, 93, 103, 107, 113, 114, 118,
120, 123, 124, 135, 136, 138, 140, 141, 142, 143, 146, 153, 155, 156, 162,
166, 171, 172, 173, 180, 182, 185, 186, 188, 189, 200, 205, 206, 208, 211,
212, 213, 214, 229, 231, 232, 237, 242, 243, 244, 246, 248, 250, 251, 254,
257, 259, 263, 264, 265, 266, 267, 270, 271, 272, 274, 275, 279, 280, 281,
285, 287, 295, 297, 298, 300, 305, 309, 310, 313, 316, 319, 322, 323, 325,
333, 337, 338, 341, 342, 343, 347, 354, 357, 358, 359, 369, 370, 381, 382,
383, 390, 403, 407, 412, 413, 418, 420, 423, 425, 430, 432, 434, 441, 442,
444, 446, 456, 458, 468, 471, 476, 477, 478, 483, 484, 485, 490, 497, 500,
504, 505, 507, 509, 510, 515, 516, 519, 521, 527, 536, 537, 538, 546, 547,
548, 553, 555, 558, 559, 565, 572, 575, 587, 588, 591, 594, 596, 598, 599,
600, 601, 604, 606, 609, 610, 611, 612, 614, 617, 628, 634, 635, 636, 637,
639, 642, 643, 645, 646, 647, 648, 651, 653, 654, 656, 657, 658, 659, 661,
662, 663, 669, 672, 673, 674, 682, 686, 688, 689, 690, 697, 707, 711, 712,
713, 715, 717, 718, 728, 730, 739, 743, 748, 752, 753, 756, 757, 758, 762,
763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 775, 779, 780, 781,
782, 783, 784, 785, 786, 787, 788, 798, 799, 825

12 others

Table 11: Summary

p N(D2p+1) N(H2p+2) References

3 1 1 [26]
5 1 1 [26] (see [14])
7 3 3 [13]
11 5 4 [18]
13 7 4 [29]
17 21 11 [31]
19 33 18 [10]
23 109 56 [10]
29 531 266 Section 3
31 826 414 Section 4
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