
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications, Part 2 

1-18-2024 

Sphere-Graph: A Compact 3D Topological Map for Robotic Sphere-Graph: A Compact 3D Topological Map for Robotic 

Navigation and Segmentation of Complex Environments Navigation and Segmentation of Complex Environments 

Meryl Spencer 
Michigan Technological University, maspence@mtu.edu 

Reid W. Sawtell 
Michigan Technological University, rwsawtel@mtu.edu 

Sarah Kitchen 
Michigan Technological University, snkitche@mtu.edu 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2 

Recommended Citation Recommended Citation 
Spencer, M., Sawtell, R. W., & Kitchen, S. (2024). Sphere-Graph: A Compact 3D Topological Map for 
Robotic Navigation and Segmentation of Complex Environments. IEEE Robotics and Automation Letters. 
http://doi.org/10.1109/LRA.2024.3355735 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/430 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p2
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.1109/LRA.2024.3355735
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages


IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 3, MARCH 2024 2567

Sphere-Graph: A Compact 3D Topological Map for
Robotic Navigation and Segmentation of

Complex Environments
Meryl Spencer , Member, IEEE, Reid Sawtell , and Sarah Kitchen , Member, IEEE

Abstract—Topological maps are a common framework for en-
abling autonomous robotic navigation. To be effective for robotic
exploration the maps must be able to be generated quickly and
compact enough to store on lightweight hardware. Here we pro-
pose a novel 3D topological map called Sphere-Graph which has
adaptive edge lengths, can be quickly generated, and can be used
to semantically identify hallways and rooms to produce a compact
representation of complex environments. We give examples of the
Sphere-Graph representation of large 3D urban and cave environ-
ments.

Index Terms—Autonomous vehicle navigation, mapping, object
detection, segmentation and categorization.

I. INTRODUCTION

R EDUCING a complex 3D environment to a more com-
pact description is necessary for many tasks including

robotic exploration and navigation. Graph structures are a pop-
ular method of reducing the complexity of the environment
to a manageable degree, but the problem of translating a 3D
volumetric space to a graph is non-trivial, particularly since there
are an infinite variety of ways to encode such volumes, each
with varying degrees of usefulness. The objective of the Sphere-
Graph algorithm is to compute one such mapping with several
desirable properties. In particular, we would like the graph to
stay relatively sparse by maximizing the volume represented by
each node in the graph, yet relatively complete in the sense that
it extends to approximately all volume. Additionally, we would
like nodes to be placed near the maximally free space in the 3D
volume to assist with navigating along obstacle-free paths.

Our method is inspired by the medial axis [1], which in the
case of a 2D world naturally forms a continuous graph-like
skeleton of the interior of a closed bounded region. However,
in three dimensions, this method produces a set of intersecting
surfaces rather than a graph. Sphere-Graph instead computes
a graph approximation of the medial axis (in any dimension),
parameterized by a minimum sphere size. When the minimum
sphere size is the robot clearance the graph forms an obstacle-
free representation of the environment.
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The adaptive scale and medial-axis approximating properties
of the Sphere-Graph representation of a closed space allows one
to extract the underlying topology of complex 3D environments.
This information is useful in tasking teams of robots, as well
as understanding important bottlenecks and alternate routes
through the space. Additionally, semantic information such as
hallways, doorways, and rooms can be extracted solely from the
Sphere-Graph through straightforward graph operations. This
information is entirely geometry based and does not require any
training. Additionally, it works in both man-made and natural
environments.

A. Related Work

Though topological methods for environment segmentation
and route planning have been acknowledged for decades [2],
they are not yet fully integrated into active SLAM approaches,
in which occupancy-grids are still the dominant approach [3] to
environment representation. Occupancy grids and octrees can be
turned into topological maps by making each free voxel a node
and placing edges between adjacent free voxels [4], [5], [6],
[7]. However, this does not compact the environment any more
than the occupancy map. There are several similar approaches
to Sphere-Graph but they are all not medial axis approximating
or not appropriate for online generation, as we will discuss.

Random graphs generated in the local free space of an envi-
ronment have been used for creating local topological graphs
of complex subterranean environments [8], [9]. In practice,
such graphs provide a 3D interior mesh of the space at a high
resolution, which while convenient for local navigation are not
appropriate for large-scale topological semantic navigation. In
contrast, Sphere-Graph intrinsically compresses open volume
into the datum of a sphere center for a sphere appropriately
scaled to that volume, and furthermore, features of the resulting
global graph of the environment can be used to semantically
separate e.g. hallways from rooms based purely on topology as
described in Section V.

A method of producing a 3D Voronoi topological graph of an
environment is provided in [10]. However, it is not guaranteed
to be connected and does not incorporate non-zero robot size
into collision-free paths. GNGraph [11] proposes solutions to
these problems, but the method is stochastic and requires the
full boundary of the environment to be known.

In [12], the authors propose a 3D topological graph of the en-
vironment based on connecting stochastically placed free-space
polyhedrons. This approach is designed for tight integration into
a high-level exploration planner and the resulting topological
graph is unstable as new nodes are merged with existing explored
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Fig. 1. Example of the Sphere-Graph algorithm in 2D. The sphere centers are blue and the points n ∈ N are pink. The shade of the points in N corresponds to
their distance to the nearest point on the boundary where darker shades indicate greater distance from the boundary. Nodes are added successively at the farthest
point from the closed space in panels 1–4. The resulting graph is shown in panel 5.

spaces. It is unclear what properties the topological graph would
have if run on a fully known environment for the purposes of
extracting semantic properties.

SphereMap uses a similar approach to Sphere-Graph in which
each node represents a sphere with a radius equal to the distance
to the nearest obstacle [13]. New sphere positions in SphereMap
are generated stochastically as opposed to deterministically (as
in Sphere-Graph) so the method does not necessarily approxi-
mate the medial axis of the environment, and is not guaranteed
to have the degree properties necessary for the type of semantic
segmentation in Section V.

B. Contributions

The main contribution of this work is the algorithm for
creating a topological graph of a complex three-dimensional
environment with the following properties:

1) Adaptive edge lengths
2) Guaranteed minimum free space for robotic navigation in

cluttered environments
3) Automatic semantic segmentation of “room-like” and

“hallway-like” locations. “Hallway-like” locations only
allow for forward or backward movement whereas “room-
like” locations have multiple entrances and exits and re-
quire high-level choices to be made when path planning.

4) Simple extraction of underlying environment topology as
described in Section V

These properties make the graph especially useful for multi-
robot navigation by providing a high-level understanding of the
intersection routes through the environment with a low-level
obstacle-free path for local navigation. Additionally, we provide
two explicit examples of the graph on large three-dimensional
urban and natural environments.

II. SPHERE-GRAPH ALGORITHM

A. Base Algorithm

The SphereGraph algorithm is built on a greedy space-filling
algorithm and produces a graph by connecting the centers of
the spheres used to fill the interior space of a closed bounded
environment. The space filling algorithm begins at a seed loca-
tion within the interior volume of closed space X defined by a
boundary ∂X that may not be connected (e.g. interior walls may
not connect directly to exterior walls in a building, but jointly
are required to define the boundary of the unobstructed interior
space). The algorithm assumes that the whole environment
has been sensed. The extension to an unexplored boundary is
straightforward, but out of scope for this paper. The choice of
starting location makes little practice difference for the final

graph as long as the starting point is in the open space and at
least the minimum sphere size away from the boundary.

The radius of the sphere is set to the distance to the closest
point on the surface of the surrounding environment. As a
consequence, the resulting sphere is the largest that can be
formed including only unobstructed space surrounding the seed
location. At each consecutive step of the algorithm, a new center
location is chosen among points on the boundary of the union of
the previously generated spheres, and a new sphere of maximum
unobstructed size is generated there. The new center location
chosen is furthest from the boundary of the interior volume,
thus we are greedily choosing the next point to maximize the
volume of unobstructed space enclosed therein, while also not
lying in the interior of previously generated spheres.

Another important consequence of selecting the new point
on the surface of an existing sphere in each iteration is that
we are guaranteed that the spheres overlap and that the straight
line distance between the sphere centers is unobstructed. This
process continues until there is no such point that can be chosen
without the sphere radius being smaller than a pre-specified
minimum size rmin. The resulting union of spheres represents
a volumetric approximation of the unobstructed space of the
environment, in which each sphere is guaranteed to significantly
overlap with at least one other sphere.

The Sphere-Graph Algorithm (Algorithm 1) produces a graph
where each node has an associated radius r within which there
are guaranteed to be no obstacles. If after i iterations of the
algorithm, we have a set

S(i) = {(�v1, r1), . . . , (�vi, ri)}
of pairs consisting of sphere centers �vj and radii rj , denote
the boundary of the union of the associated spheres by ∂S(i).
Formally, letBrj (�vj) denote the closed ball of radius rj centered
at �vj , then ∂S(i) := ∂

⋃i
j=1 Brj (�vj). The next sphere center

�vi+1 selected in the algorithm is the point on ∂S(i) furthest from
any point in ∂X , and ri+1 = min�p∈∂X d(�vi+1, �p), where d is a
distance metric. That is, we select the point on the boundary
furthest from all obstructions, and the radius to be the minimum
distance from that point to any obstruction. Then

S(i+1) := S(i) ∪ {(�vi+1, ri+1)},
and any points in the intersection of ∂S(i) and the sphere defined
by (�vi+1, ri+1) are marked invalid (i.e. removed from the list of
candidate spheres for the next iteration of the algorithm). The
algorithm terminates when no new spheres can be generated with
radius> rmin. In this way, we guarantee all spheres generated are
contained in the interior of the volume. The two helper functions
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Algorithm 1: Function for generating a Sphere-Graph.

procedure Sphere-Graph�v0, rmin, ∂X
S = [] � Initialise an empty list of sphere nodes
E = [] � Initialise an empty list of edges
�p = min(|�v0 − �p′|) for �p′ ∈ ∂X ��p is the point in the boundary ∂X closest to v0
d = |�v0 − �p| �d is the distance from v0 to the closest point on the boundary ∂X
�v = �v0
while d > rmin do � While the new sphere radius is greater than the minimum radius
� Make a sphere centered at �v with radius d. Calculate the distance to the boundary for a set of discretized points on the
surface of the sphere Ns. See Algorithm 2

s = {�vs, rs, ds, �ns, Ns} = CONSTRUCTSPHERE(�v, d, ∂X)
for s′ ∈ S do � For every existing sphere check for overlap with s
o1, ds′ , �ns′ = MARKINVALIDPTS(s′, �v, d) � Mark the points on s′ that intersect s
o2, ds, �ns = MARKINVALIDPTS(s, �vs′ , rs′) � Mark the points on s that intersect s′
if o1oro2 then � If the spheres intersect
{s, s′} ∈ E � Add the pair of spheres to the edge list

end if
if ds′ > d then � Update the maximum distance to the closest point on the boundary

d = ds′ , �v = �ns′

end if
end for
s ∈ S � Add the new sphere to the list of nodes
if sd > d then � Update the maximum distance to the closest point on the boundary
d = sd, �v = s�n

end if
end while
return S, E

end procedure

in the algorithm are presented as Algorithm 2 and Algorithm 4
(see Appendix).

Fig. 1 gives an example of the first four iterations of the
algorithm in a 2D environment. A starting point �v0 is chosen
in the lower left of the space and a circle centered at that
point is generated that just touches the boundary of the closed
space. At a set of discretized points on the boundary of the
circle, the distance to the closest point in the closed space is
determined. These points constitute Ns in Algorithm 1. The
fundamental algorithm does not require discretization of the
boundary. However, in practice, it is necessary for computation
in spaces where the boundary can not be expressed in closed
form. In Fig. 1 the relative distance to ∂X is denoted by the
darkness of the pink point on the boundary of the circle. The
point in this set with the farthest distance to the closed space is
in the upper left of the sphere. It is used as the center of the next
sphere as shown in the second panel. Once again, the distance to
the boundary of the closed space is determined for the marked
points on the surface of the sphere. All points in the intersection
of the two spheres are marked as invalid and removed from the
set of candidates for the next sphere center. The remaining valid
points are shown in pink with darker colors indicating farther
distances to the closed space boundary. In this union of points,
the one with the farthest distance to the boundary is located on
the lower right of the initial sphere. This point is the center of the
third. The algorithm continues until the space is filled as shown
in the last panel.

The result of the algorithm is a graph consisting of a set
of nodes S and edges E. Each node in the graph has a set of
associated information derived from the sphere that generated
the node. This datum is formally defined as s = {�vs, rs, Ns},

where (�vs, rs) are the sphere center and radius, as described
above, and Ns is the set of points on the boundary of the sphere
and their distances to the closest point in the closed space ∂X .
Depending on the desired use of the graph, some or all of the
data may be dropped. For most cases keeping only (�vs, rs) is
sufficient. The graph is deterministic up to choosing the starting
location v0, which must be in the free space of the environment
and be more than rmin from the nearest obstacle. Since the graph
grows rapidly to the midline of the environment the choice of
v0 has only minor effects on the placement of nodes that does
not meaningfully change the reduced graph or the topological
reduction in Section V.

B. Edge Reduction

In the base Sphere-Graph Algorithm, an edge is added be-
tween any two spheres whose volume intersects. Adding edges
in this way is computationally efficient because it can be done
during the check for newly invalidated candidate sphere centers,
which requires first checking for sphere overlap. However, this
produces a very large number of edges as well as producing
edges that pass very near nodes as shown in Fig. 2. While this
is fine in theory, in practice for robot navigation, it manifests
in routing challenges, as a robot will unexpectedly “arrive” at a
node it is proximal to while traversing an edge, which tends to
produce errors in higher-level path planning algorithms that can
cause robots to get stuck in loops between nodes. Our solution
is to remove all such edges for which the second shortest path
between the node endpoints of an edge e is less than τ |e|, where
|e| is the length of the edge. The parameter τ is a scalar greater
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Algorithm 2: Given a sphere center �vs and radius rs this
algorithm constructs a sphere s = {�vs, rs, ds, �ns, Ns}. The
point on the sphere closest to the boundary is �ns, with
distance to the boundary ds. Ns is a set of tuples of all
discretized points on the sphere and their distance to the
closest point on the boundary.

procedure construct sphere�vs, rs, ∂X �N ′ a list of
discretized points on the surface of the sphere
N ′ = discrete(�vs, rs)
Ns = [] � Initialize

an empty list Ns

ds = 0 � Initialize the maximum distance to
∂X � For each discretized point on the sphere
for �n ∈ N ′ do � Get the closest point on ∂X and

its distance
�p = min(|�n− �p′|) for �p′ ∈ ∂X
dn = |�n− �p|
f = 1 �f is a flag

for use in Algorithm 4 (see Appendix)
{�n, dn, f} ∈ Ns

� Append the tuple to Ns� Update the closest point to
the boundary

if dn > ds then
ds = dn, �ns = �n

end if
end for
return s = {�vs, rs, ds, �ns, Ns}

end procedure

Fig. 2. Example of edge reduction. The edge C-H nearly passes through node
E, which may cause path planning issues when traversing from A to J if the robot
localization has noise. The robot is likely to become confused as if it is on edge
C-H or at node E, which may cause it to become stuck in a higher-level reasoning
loop. Removal of the edge clears any confusion. This problem is exacerbated in
3D where the error in the pose estimation in the z-axis can differ greatly from
the x-y axis.

than one, where larger values lead to more edge pruning. In
practice, we find 1.25 < τ < 2.5 works well.

C. Node Reduction

Although the base Sphere-Graph Algorithm can be used
for navigation and mapping, there are several graph reduction
techniques that make navigating and sharing the graph more
robust to errors in pose estimation and limited communications
bandwidth.

A positive feature of the Sphere-Graph Algorithm is that it
is multi-scale and not tied to a grid. This makes it robust when
used to generate navigation graphs for exploration in cave-like

TABLE I
COMPARISON OF SIZE OF DIFFERENT TOPOLOGICAL GRAPHS

environments where very small winding passages coexist with
large open spaces. In order to guarantee an obstacle-free nav-
igational graph the minimum sphere size rmin should be set to
the minimum area required for safe movement of the robot. It
is therefore the property of the robot’s size and maneuverability
and not the environment.

In practice when the robotic platform is small and highly ma-
neuverable (such as a small drone) the small value of rmin leads
to many small spheres being generated in clusters filling corners
and nooks in otherwise large open spaces. These wall-hugging
spheres are often uninteresting from the perspective of mapping
and exploration and greatly increase the size of the graph. In
practice, it is generally good to set a larger cutoff rmed which is
the minimum “interesting” volume for exploration. This cutoff
is application and environment-dependent. For example in a
large office building, rmed = 0.5m would capture the openings
of doors and the space inside cubicles, but not the open area
inside a trashcan. In a cave environment, rmed should be the
approximate radius of the smallest passageway of interest.

After the base graph is created we remove any spheres that
are smaller than rmed whose removal does not result in a dis-
connected graph. This greatly reduces the number of nodes in
the graph while preserving the connectedness and navigability of
tight passageways. It also makes the graph robust to the existence
of passageways only slightly smaller than rmed that connect two
larger spaces since nodes are NOT removed if doing so would
cause the graph to be disconnected.

For the rest of the paper we refer to a Sphere-Graph that
has had edge and node reduction applied as a reduced graph,
which is parameterized by the edge threshold τ and the medium
radius cutoff rmed. We will show the data compression from using
the reduced graph on two example environments in the next
section. Additionally selecting an rmed approximately the size of
hallways in urban environments produces a graph topology that
is more conducive to semantic labeling as discussed in Section V.

III. EXAMPLES: URBAN AND CAVE ENVIRONMENTS

In this section, we give two examples of the reduced Sphere-
Graph of two large three-dimensional enclosed environments.
The first environment is a large urban building with dozens of
rooms spanning a 200-by-300 m area. The second environment
is a cave system with twisting branching tunnels that cover
about 0.03 km3. These environments are based on the gazebo
models created for the Subterranean Challenge [14], [15]. The
leftmost panels of Fig. 3 show the extracted point clouds of
the two environments. A Sphere-Graph representation of each
environment was made using a minimum sphere radius of 1 m.
The graph was reduced according to the parameters τ = 1.25
and rmed = 2m. Table I gives the reduction in the size of the
representation of the two spaces from the initial point cloud to
the Sphere-Graph and then the reduced graph. For the urban
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Fig. 3. Example of the reduced sphere-graph for two environments. The top panels show an urban environment and the bottom panels show a natural cave
environment. From left to right are the point cloud of the environment, the reduced Sphere-Graph, and the 2D histogram of the radius and degree of the nodes in
the reduced Sphere-Graph. The point clouds were based on the gazebo worlds [14], [15].

environment, the reduced graph is about 75 percent smaller than
the original Sphere-Graph. In the cave environment, the reduced
graph is about 50 percent smaller. Storing either graph is an order
of magnitude better than storing the original point cloud. The
middle two panels in Fig. 3 show the reduced graph for each
environment and a zoomed-in view of the highlighted section
of the graph. The size of the nodes is proportional to the sphere
radius and the color of the nodes denotes the degree. The right
two panels show a 2D histogram of the distribution of radius
and degree for all nodes in the reduced graph on a log scale.
In general, both graphs are dominated by nodes with smaller
radii. The structure of the histograms reflects the underlying
geometry of the two environments. The histogram for the urban
environment has two peaks at 2.5 m and 4.5 m node radii. This
reflects the 5 m height of the hallways and the 9 m height of the
larger rooms. In contrast, the naturalistic environment shows
an exponential decay in the size of the nodes which reflects
the varying size of the tunnels. Because the Sphere-Graph is
constructed to approximate the midline of the space the structure
of the graph can be used to infer general characteristics of the
environment without having to visualize the graph. Grid-based
methods of building the graph will not have the same properties
as each node is the same size and the vast majority of nodes will
have the same degree. We will discuss this more in Section IV

IV. COMPARISON TO OTHER 3D TOPOLOGICAL GRAPHS

There are a number of different ways to create a topological
graph from the boundary of an environment. In this section,
we will compare Sphere-Graph to two of the most commonly
used representations for robotic exploration and path planning:
grid-based and medial axis based.

A. Lattice-Based Topological Graphs

We define a lattice-based topological graph as one in which
a regular lattice (generally squares or triangles) is embedded in
the entire plane of a 2D environment or the volume of a 3D
environment. All nodes (and associated edges) in the closed
space of the environment are removed from the graph. A positive
of these graphs is that they are very easy to produce for both fully
known environment boundaries and boundaries updated through
robotic exploration. Additionally, if the lattice spacing is chosen
to be greater than the operating size of the robot the graph can
be used directly for navigation.

This representation is generally more useful in two-
dimensional spaces where tight spaces and open areas are of
similar scale. To ensure that the full enclosed space is included
in the topological graph the spacing between the nodes must be
smaller than the smallest expected hallway/tunnel width. If not
one risks that the discretization effects of the graph will miss
small passages and truly connected areas will become discon-
nected. In spaces with large-scale differences (such as caves or
warehouses), this leads to very large graph sizes as the large open
spaces are filled with tightly packed nodes from the fixed lattice
size. This problem is exacerbated in three-dimensional spaces.

It is difficult to extract general properties of the environment
and geometric semantic information from these topological
graphs because the vast majority of nodes have the same degree.
Only nodes directly adjacent to the boundary will have less than
the maximum lattice degree. Additionally, since all nodes are
equally spaced, they contain no information about the relative
size of the space they are in unless that information is separately
determined and recorded. It is not, in general, possible to do the
type of semantic geometric segmentation in Section V using
these graphs.
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B. Relationship to the Medial Axis Topological Graph

Sphere-Graph is a medial axis approximating algorithm. For-
mally the medial axis of a closed surface is the collection of all
points on the interior for which the set of closest points on the
boundary contains more than one point. In two dimensions the
medial axis of an enclosed space is a set of lines intersecting at
junctions that are at the local maxima of the distance function.
The medial axis can be easily converted to a graph by placing
nodes at all of the intersections of the medial axis lines.

Finding the analytic medial axis of a continuous 2D area is
generally infeasible. However, there are several good approx-
imation algorithms for discretized images. These approximate
“skeletonizations” are more commonly used for robotic navi-
gation. In three dimensions the medial axis of a closed area is
generally a complex surface of intersecting planes, for which
there is no obvious conversion into a graph structure [16].

Medial-axis topological graphs have advantages over lattice
topological graphs in that they are generally much smaller. Ad-
ditionally, they match the intuitive topology of the space. Nodes
with degree three are generally places where three branching
tunnels/hallways meet. The major downside of these methods
is that they do not provide an obstacle-free path for navigation,
since the conversion to a graph does not place nodes along curv-
ing passageways, and they are too computationally expensive to
perform in real-time on large spaces. Additionally, they are not
well defined in three dimensions.

C. Scaling and Computational Complexities

The computational complexity of generating the Sphere-
Graph is dominated by the repeated calls to the subroutines of
Algorithms 2 and 4. The dominating factor in Algorithm 2 is
the evaluation of the distance between points on the discretized
sphere and the closest point on the boundary. The exact scaling is
dependent on the computational representation of the boundary.
If the boundary is defined by a point cloud stored as a KD-tree
then the algorithm scales like the O(Nlog(p)) where p is the
number of points in the point cloud, and N is the number of
points on the discretized sphere. Algorithm 4 scales likeO(SN)
where S is the number of spheres and N is again the number
of discretized points on the sphere assuming a mean degree of
6. The entire algorithm scales like O(SNlog(p)) Significant
computational gains can be made by reducing the number of
points evaluated on each sphere.

The Sphere-Graph representation of a 3D space is much more
memory efficient than the full point cloud or a similar scale
lattice graph representation. Table I gives the size of the cubic
lattice graphs for the two demonstration environments at both a
one and two-meter resolution. The one-meter resolution lattice
graphs are more than two orders of magnitude larger than the
reduced graphs. The two-meter resolution lattice graphs are ten
times larger than the reduced graphs and are missing some of
the tighter connecting hallways and tunnels.

V. GEOMETRY BASED SEMANTIC AND TOPOLOGICAL

MAPPING

One goal of the Sphere-Graph representation of a space was
to combine the free space navigability and fast generation of
a lattice-based topological graph with the topological informa-
tion contained in a medial axis graph. The following section
describes how the unique properties of the Sphere-Graph can

Algorithm 3: Given a reduced Sphere-Graph G = {E,S}
each node s ∈ S is assigned a clique. See [17] for description
of k-clique-communities algorithm.

procedure cluster nodesG = {E,S} � Successively
contract all nodes of degree 2 from G
while degree(s) = 2 for any s ∈ S do

for s ∈ S do
if degree(s) = 2 then
u, v = neighbors(s)
(u, v) ∈ E �

Add edge between u and v
remove(s)

end if
end for

end while � Identify all cliques via
k-clique-communities [17]
cids = k-clique-communities(G, 3)
for s ∈ S do

s.clique = cids(s)
end for

end procedure

be used to create a high-level semantic understanding of the
environment based only on the geometry. This is an application
of Sphere-Graph separate from direct obstacle-free navigation.

Because the Sphere-Graph tends towards placing large
spheres along the medial axis of a space the reduced graph
creates chains of degree two nodes down hallways and tunnels,
subject to an appropriately chosen rmed. Fig. 3 shows two ex-
amples of the reduced graph with degree two nodes in orange.
Higher degree nodes are in room or large cave-like locations. We
can use this distinction to automatically detect ‘room-like’ and
‘hallway-like’ areas just from the topological graph without any
camera imagery or neural network training. Unlike image-based
semantic segmentation, we are using the inherent qualities of the
geometry to identify rooms and hallways that can be applied to
any space including natural environments.

Individual rooms can be identified by contracting all hallway
nodes in the graph and clustering the remaining nodes based
on their triangle connectivity following Algorithm 3. The left
panels of Fig. 4 shows the result of this clustering applied to the
two reduced graphs from Section III. Each room in the urban
environment is correctly identified and more open ‘room-like’
portions of the cave system are also identified. This highlights
the benefit of using a geometry-based segmentation of rooms as
open spaces where hallways connect. The algorithm is highly
extensible and does not require any foreknowledge of what a
‘room’ in the environment looks like, nor its specific size or
shape, or level of clutter.

Once rooms are identified we can create a compact represen-
tation of the space by merging together all nodes with the same
room ID. The result of this is shown in the center two panels of
4. This representation is especially human-interpretable since
directions can be given in the form of “go down the hallway
to the large room then take the right hallway and pass through
two small rooms to arrive at your destination”. This allows for
human-machine teams to coordinate and move through large
environments using the same underlying map. Additionally, it is
an enabler for high-level path planning and coordination since
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Fig. 4. Semantic and topological labeling for the reduced graphs from Fig. 3. The top panels are the urban environment and the bottom panels are the natural
cave environment. Nodes in the left panel are colored according to their cluster label from Algorithm 3. The middle panel shows the result of merging all nodes
from the same cluster together. The right panels show the topological reduction of the graphs. The node colors are consistent throughout.

rooms represent decision points where high-level plans about
what hallway to traverse next need to be made.

We can further compact the graph by contracting room nodes
that lie along a single hallway. These nodes are common in
cave environments where a tunnel widens into a larger interior
space and then narrows back into a tunnel. These spaces may
have complex vertical and horizontal areas to explore, but they
do not require large-scale choices other than to continue or
turn back, unlike rooms that are at the center of two or more
junctions. The right two panels show the result of contract-
ing all of the degree 2 rooms from the merged clusters in
the middle panel. This topological reduction shows only the
terminating rooms and junctions of the space. Multiple edges
between the same two nodes represent multiple exits that lead
to the same destination. This topological reduction graph shows
the fundamental branching structure of the environment. This
representation can be important for identifying nodes and edges
that are critical to maintaining the connectivity of the space.
These locations are especially important in military and disaster
scenarios where controlling or maintaining movement through
the space is critical to larger mission planning.

VI. CONCLUSION

How large and complex 3D environments are represented
has a huge effect on how easy it is to implement high-level AI
tasks such as real-time exploration or coordinated multi-agent
coverage. Additionally, constraints on onboard memory and
limited communication bandwidth are common obstacles to the
coordinated exploration of large spaces. In this paper, we have
presented a new method for a compact representation of 3D

spaces which we call Sphere-Graph. The topological graph is a
non-stochastic size adaptive representation of the free space on
the interior of an 2 or 3-dimensional closed environment. Each
node in the graph is a 2 or 3-dimensional sphere with the largest
radius that contains only free space. Therefore the graph can be
used for direct low-level path planning for UAVs in 3D or for
UGVs in 2D.

The adaptive radius of the nodes allows the graph to fully
represent spaces with both large open areas and tight constrained
spaces with an order of magnitude fewer nodes than a traditional
fixed lattice topological graph. This is especially important when
the graph must be stored on resource-constrained robots or
shared across low bandwidth channels. Additionally, because
each node is constructed to maximally fill the local space the
nodes in the graph are largely on the medial axis of the space.
This is especially useful in 3D environments where the exact
medial axis is computationally prohibitive to compute.

We can take advantage of the medial-axis approximating
qualities to significantly reduce the graph while maintaining
the most important elements for high-level planning and hu-
man interoperability, namely the locations of ‘room-like’ and
‘hallway-like’ places in the environment. We can also further
compact the graph to the fundamental topological shape of the
environment so that each significant branching point is main-
tained. This representation is important for understanding vital
paths and alternate routes which are important for disaster relief
and military strategies.

APPENDIX

This appendix contains a subroutine for Algorithm 1
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Algorithm 4: Given a sphere s = {�vs, rs, ds, �ns, Ns} and
the center �v and radius r of another sphere, this algorithm
marks the discretized points inNs as invalid if they are in the
geometric intersection of the two spheres. It then returns a
flag denoting if the spheres intersect and the updated closest
valid point to the boundary.

procedure mark invalid ptss, �v, r
if |s�v − �v| < sr + r then
� If the spheres overlap

for {�n′, d′, f ′} ∈ Ns do
� for each point in Ns � If the point is in the
intersection of the spheres

if f ′and|�n′ − �v| < r then
f ′ = 0 �

Mark the point as invalid
end if

end for � Update the closest point to the
boundary

ds, �ns = max(d′) for {�n′, d′, f ′} ∈ Ns if f ′ = 1
return 1, ds, �ns

else
return 0, ds, �ns

end if
end procedure
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