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Abstract: Despite significant strides in achieving vehicle autonomy, robust perception under low-
light conditions still remains a persistent challenge. In this study, we investigate the potential
of multispectral imaging, thereby leveraging deep learning models to enhance object detection
performance in the context of nighttime driving. Features encoded from the red, green, and blue
(RGB) visual spectrum and thermal infrared images are combined to implement a multispectral object
detection model. This has proven to be more effective compared to using visual channels only, as
thermal images provide complementary information when discriminating objects in low-illumination
conditions. Additionally, there is a lack of studies on effectively fusing these two modalities for
optimal object detection performance. In this work, we present a framework based on the Faster
R-CNN architecture with a feature pyramid network. Moreover, we design various fusion approaches
using concatenation and addition operators at varying stages of the network to analyze their impact
on object detection performance. Our experimental results on the KAIST and FLIR datasets show that
our framework outperforms the baseline experiments of the unimodal input source and the existing
multispectral object detectors.

Keywords: multispectral fusion; RGB-T fusion; low-light object detection

1. Introduction

While great strides have been made in computer vision in recent years with the advent
of deep learning, object detection in inclement weather and low-illumination conditions
remains a challenging perception task for autonomous driving [1–3]. Although overall
traffic-related fatalities have declined in the US over the last few decades, pedestrian
fatalities have steadily increased. In 2019, 3 out of 4 pedestrian fatalities occurred after
dark [4]. Most of the current object detection algorithms are targeted to the benchmarks for
color images with good illumination, whereas where they tend to decline in performance is
under low illumination and inclement weather conditions.

All objects emit thermal energy, also known as a heat signature. Thermal cameras
detect heat signatures to compose an image. Consequently, thermal cameras are inherently
immune to spectral illumination variability. While RGB cameras provide high texture
details with spatial resolution, infrared cameras distinguish active targets from their back-
ground based on the radiation signals. The fusion of RGB and IR images have shown
improvement in pedestrian detection [5,6]. In addition, thermal cameras have recently
become popular for autonomous driving and surveillance applications due to a decline in
sensor prices. Thus, robust detection and classification of objects in the multimodal domain
is an important problem to be addressed for deployment in the real-world environment.

Image fusion is an image enhancement technique that combines images from different
modalities to generate an informative image. The image fusion process can be classified into
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three different processes: pixel-, feature-, and decision-level fusion. Pixel-level fusion com-
bines the original information in the source images [7]. Choi et al. [8] performed pixel-level
image fusion using a joint bilinear filter to fuse RGB and IR images. In feature-level image
fusion, features such as edges and textures are identified for fusion [9]. Decision-level fu-
sion combines results from multiple algorithms to yield a final decision. Torresan et al. [10]
detected pedestrians in thermal and visible images independently, and the information
was fused at the decision level through a final merging and validation process.

Object detection has witnessed significant breakthroughs in recent years due to the
introduction of frameworks such as Faster R-CNN [11] and YOLO [12]. These models rely
on large-scale datasets such as MS-COCO and ImageNet for training. The combination of
large datasets and frameworks have demonstrated significant performance improvement in
the RGB domain; however, similar success in the thermal domain has been restricted due to
lack of availability of large-scale thermal datasets. Intuitively, we can observe from Figure 1
that the fusion of infrared and RGB images would provide complementary information in
challenging weather conditions, especially since thermal imaging is more robust against
illumination variability, as well as weather conditions involving rain, fog, or snow.

Figure 1. (Left column): The visual images from the KAIST and FLIR datasets provide distinctive
visual features; however, in low lighting, human silhouettes are more apparent in the infrared domain
(Right column).

Inspired by the recent success of deep learning (DL)-based object detectors, we exploit
existing DL-based models to extend similar success for multimodal object detection. In this
paper, we present a fusion framework based on Faster R-CNN and feature pyramid net-
works (FPNs) [13]. Our proposed framework fuses visual and infrared feature maps using
a concatenation operation. Our ablation experiments on the concatenation and addition
operator are motivated by the intention to understand the performance impact of fusion
operators that would be applicable to similar multimodal fusion applications. We also im-
plemented a squeeze and excitation layer [14], which has shown performance improvement
by adaptively adjusting the weighting of the feature maps. We perform a comprehensive
set of experiments on the KAIST and FLIR datasets and evaluate them using popular object
detection metrics, including mean average precision (mAP) and the log-average miss rate.

The remainder of the paper is organized as follows: Section 2 provides a brief overview
of related multimodal image fusion approaches. Section 3 describes our model architecture
and parameters. Section 4 discusses the dataset, experimental setup, and discussion. Lastly,
this paper concludes in Section 5.

2. Related Work

Driven by the success of convolutional neural networks (CNNs) in the last few years,
multimodal image fusion has gained significant traction in the research community. Object
detection in the thermal domain has been an active area of research for military and surveil-
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lance applications even before deep learning gained popularity. One of the early works on
person detection using visual and infrared imagery was presented by Krotosky et al. [15].
The framework computed a probabilistic score for evaluating pedestrian presence using the
histogram of oriented gradients (HOG) and a support vector machine (SVM). The detector
utilized color and infrared features individually, and outputs were combined for a unified
detection framework. Davis et al. [16] employed a two-stage template-based algorithm
for person detection. A fast-screening procedure with a generalized template identified
a potential area of interest, and AdaBoosted ensemble classifiers were used to test the
hypothesized person locations. Teutsch et al. [17] proposed a two-stage person detection
model using hotspots classification. The implementation of maximally stable external
regions (MSERs) identified the hotspots. These hotspots were verified using the discrete
cosine transform (DCT) and a modified random naïve Bayes (RNB) classifier.

The introduction of the KAIST multispectral dataset by Hwang et al. [6] revived CNN-
based multispectral pedestrian detection. The proposed pedestrian detection is an extension
of aggregated channel features (ACFs). The ACFs detector operates in a sliding window,
and it generates channel features from subsampled and filtered channels. The extension of
ACFs incorporates a contrast-enhanced version of the thermal images and uses the HOG to
generate combined feature maps. The classification of the person class is conducted using
boosted decision trees (BDTs). An early application of CNN-based multispectral person
detection was presented by Wagner et al. [18]. They investigated both early- and late-fusion
using CNN-based methods, with late-fusion methods demonstrating superior performance
compared to the ACF+T+THOG-based solutions of that time. Choi et al. [19] generated
region proposals separately on visual and infrared images first and applied support vector
regression (SVR) on top of concatenated convolutional features to obtain classification.

Li et al. [20] proposed illumination-aware Faster R-CNN (IAF R-CNN) that integrates
color and thermal subnetworks through a weighting mechanism to boost the final detection
performance under varying illumination conditions. Xu et al. [21] employed crossmodality
learning through a nonlinear mapping to model the relation between visual and infrared
images. On the second stage, the feature representations are transferred to a secondary
deep network, which uses visual images as an input for detections. The other notable study
includes Devaguptapu et al. [22], who proposed a pseudo-multimodal object detector that
uses a well-known image-to-image translation framework to generate pseudo-RGB images
from thermal images. The multimodal Faster R-CNN architecture used a concatenation
operator to fuse pseudo-RGB and thermal images.

Additionally, Yadav et al. [23] developed a two-stream VGG-16 encoder to extract
visual and thermal features, thereby merging the resultant feature maps at a mid level.
In the broader context of multispectral fusion methodologies, which typically encompass
early, late, or learnable fusion, an insightful study on the performance implications of
varying fusion positions was conducted by Liu et al. [24]. The investigation involved early,
mid, and late fusion on the Faster R-CNN network with a VGG-16 backbone. Feature
maps were fused using the concatenation operator, and a network in network (NIN) was
implemented through a 1 × 1 convolution layer. The findings revealed that mid-level fusion
consistently achieved superior performance compared to early or late fusion approaches.
While recent years have witnessed the introduction of various CNN-based architectures,
such as feature pyramid, thereby addressing the challenge of object handling at different
scales, and squeeze and excitation networks, thereby demonstrating noteworthy accuracy
gains through channelwise attention, the optimal fusion positions for ensuring similar
accuracy enhancements remain less clear. Given the limited exploration of these optimal
fusion positions, our study delves into investigating the impact of varying fusion positions,
operators, and their overall influence on the fusion process.

3. Proposed Method

There have been several multispectral object detectors introduced in the last few years,
some of which have been discussed in Section 2. In this section, we introduce our deep
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learning-based multispectral object detector in detail. Our model is based on the Faster R-
CNN framework with the addition of FPNs. While low-cost object detectors such as YOLO
or SSD networks have demonstrated comparable accuracy against region-based detectors
such as Faster R-CNN, they exhibit difficulty in detecting smaller objects. Furthermore,
FPN has demonstrated enhanced accuracy regarding objects at different scales. For instance,
incorporating FPN into RPN led to an 8-point improvement in average recall compared
to the RPN baseline, and there was a notable 12.9-point boost in performance in detecting
small objects in the MS-COCO dataset. The FPN builds high-level semantic feature maps
at all scales by combining feature maps from different levels of the feature extractor.

The Faster R-CNN model consists of two main modules: the region proposal network
(RPN) and the Faster R-CNN network for object detection and classification. RPN is a
fully convolutional network that proposes background and foreground objects and their
corresponding objectness score. Since the RPN provides region proposals of difference sizes,
Faster R-CNN uses a region of interest (ROI) pooling layer, which normalizes different pro-
posals to a fixed size before being processed through the classification and regression layers.
The overall proposed methodology for multispectral object detection is summarized in
Figure 2 and also complimented by the Algorithm 1 below.
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Figure 2. Architecture of the proposed multispetral fusion network. The shared ResNet-50 backbone
extracts feature maps from visual and infrared images. The feature maps are fused using a concatena-
tion operator prior to being processed in the feature pyramid network, and prediction is obtained
from classification and regression layers.

Algorithm 1: Proposed Methodology

Input: Visual and Thermal Image Training Data {(Ti, Ri, y1i, y2i)}m
i=1

WTIR: Thermal Weights (First Layer Init: MS-COCO weights)
WRGB: RGB Weights (First Layer Init: MS-COCO weights)
WTop: Multi-Spectral Top Network
L(·): Loss function

Output: Trained Multispectral model F(·)
for num_epochs do

for {(Ti, Ri)} = 1, ..., m do
Extract feature maps by passing (Ti, Ri);
Concatenate the feature maps at scales: {1/4, 1/8, 1/16, 1/32};
Perform FPN operation on the fused feature maps;
Update Weights:
WTIR, WRGB, WTop, WFPN
by minimizing the L function

end
end
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The key idea of our methodology is to use a shared ResNet backbone between the
thermal and visual channels and to fuse the channel features using a concatenation operator
prior to the pyramid networks. We modify the Faster R-CNN network to incorporate
both modalities and integrate the feature pyramid network within the feature extraction
backbone. As depicted in Figure 2, a common ResNet-50 backbone extracts multiscale
feature maps. The shared ResNet-50 encoder outputs multiple scales of feature maps {1/4,
1/8, 1/16, and 1/32} with respect to the original input images. As illustrated in Figure 3,
the concatenation operator is utilized to combine feature maps from both modalities.

Thermal

Visual

Fused Feature Maps

Concatenation

Figure 3. Sensor modality fusion using concatenation operator.

The fused feature maps from the concatenation operation in the scales of 1/4 to
1/32 are consumed in a top-down fashion and output 256 channels while maintaining
the original input scale. Finally, the feature maps from different levels are added and
passed on to the prediction heads. The configuration parameters for the RPN, ROI pooling,
classification, and localization layers remain consistent with the default implementation [11].
The classification and regression loss function within the RPN is defined as follows:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)

where i is anchor index in minibatch, and the classification log loss is computed for pre-
dicted probability, pi, of an anchor being an object over p∗i ground truth. The regression
loss is only computed for positive anchors, which uses a smooth L1 norm function. The ti
represents coordinates of the predicted bounding box, and t∗i is the ground truth bounding
box associated with a positive vector. The λ parameter is used such that both therms are
roughly equally balanced.

We now discuss the classification loss function, which uses the crossentropy loss.
The crossentropy loss measures the performance of a classification model whose output has
a probability value between 0 and 1. Crossentropy loss increases as the predicted probability
diverges from the actual reference value. As presented in Equation (2), crossentropy loss is
measured over k classes for all pixels in the image, where ŷi is the prediction probability,
and yi is the ground truth.

Loss = −
k

∑
i=1

yi × log(ŷi) (2)

4. Experiments, Results, and Discussions
4.1. Experimental Setup

Our experiments were conducted on the KAIST and FLIR datasets. The KAIST multi-
spectral dataset, released in 2015, provides over 95.3 k pairs of visual and infrared images.
The dataset consists of over 50.2 k training images and 45.1 k testing images with 41.5 k
and 44.7 k pedestrian labels, respectively. The well-aligned image sets are captured at
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640 × 480 resolution using a FLIR A35 camera with a day and night split. We sampled
every 2nd frame from the training set, as outlined by König et al. [25]. The testing set
samples every 20th frame, which contains 2252 images with approximately 797 night scene
images. In addition, we evaluated the results by sampling every single frame from the
testing set.

The experiments were also evaluated on the FLIR dataset released by FLIR systems.
The dataset comprises 60% daylight and 40% night scene images captured at 640 × 512
resolution using a FLIR Tau2 camera. Although the dataset provides synchronized visual
and infrared images, the alignment between the paired images differs. The dataset includes
over 8.8 k training and 1.2 k testing images. For the experiments, we evaluated the results
on person, car, and bicycle classes with total annotations of 28 k, 46 k, and 4.4 k, respectively.
Due to the unavailability of separate day and night split test sets in the FLIR dataset, our
experiments were evaluated on the provided validation set.

The experiments were conducted using the MMDetection toolkit based on the PyTorch
framework. We trained our model on full-resolution images for both datasets and used
batch normalization with a batch size of 16 images. We used stochastic gradient descent
(SGD) as an optimizer with a learning rate of 0.001, momentum of 0.9, and weight decay of
10−4. The ResNet encoders in our model were initialized with weights from the MS-COCO
dataset and trained on the networks for 16 epochs in all experiments. The experiments
were trained using Google Colaboratory with a Tesla P100 GPU (16 GB RAM).

The performance outcomes of our model and experiments were evaluated using
the widely popular object detection metrics: mean average precision (mAP) and log-
average miss rate (MR). We used an intersection over union (IoU) threshold of 0.5. Hence,
a detected bounding box with a threshold over 50% will be considered as a true positive if
it successfully matches the ground truth, whereas an unmatched detected bounding box
and unmatched ground truth detection are considered false positives and false negatives,
respectively. We utilized the log-average miss rate metric to compare different detectors.
The log-average miss rate is computed by averaging the miss rate (false negatives) at a
nine false-positive-per-image (FPPI) rate evenly spaced in the log-space in the range of
10−2 to 100.

4.2. Results
4.2.1. Baseline

Table 1 below demonstrates the training results on the KAIST dataset with evaluation
on every single frame, as well as every 20th frame. The experiments were trained on
both imagery independently using the Faster R-CNN and with integration of the FPN
as an addition. The hyperparameters for all experiments are as defined in Section 4.1.
In addition, we used the results from MMTOD [22] for our baseline comparison. The best-
performing model from MMTOD was initialized with MS-COCO weights for both datasets.
We observed that thermal imagery trained on the Faster R-CNN with FPN yielded the
highest mAP score.

4.2.2. Proposed Method

As outlined in the earlier section, our proposed method uses RGB and thermal imagery
as inputs into our model. The shared backbone between both imagery fuses the feature
maps using a concatenation operation prior to being processed in the feature pyramid
network. As seen in Table 1, we observe that our method outperformed the baseline RGB-T
networks, as well as the baseline network of a single input source. Similarly, we observe
that our proposed method outperformed the baseline RGB-T detector on the KAIST and
FLIR datasets.
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Table 1. Comparison of the baseline models with our method on KAIST and FLIR datasets. The KAIST
dataset was trained on every 2nd frame using the improved annotations.

Input Model mAP@0.5

KAIST FLIR

Eval-01 Eval-20 -
Ba

se
lin

e

RGB
YOLO 40.3 42.7 63.6
Faster R-CNN 53.3 53.2 57.5
Faster R-CNN w/FPN 53.2 53.1 71.9

Thermal
YOLO 42.3 41.6 67.4
Faster R-CNN 44.8 44.1 67.2
Faster R-CNN w/FPN 48.2 48.0 79.3

RGB-T Faster R-CNN [22] - 53.5 61.4

Pr
op

os
ed

RGB-T
Faster R-CNN w/FPN
Fusion: Concat pre-FPN

57.8 57.9 78.9

4.2.3. Ablation Studies

Due to a lack of studies involving varying fusion positions with concatenation and
addition operators, we devised a thorough set of experiments to analyze the performance
impact with respect to varying fusion approaches to study the effectiveness of the merging
operators. The experiments fused the feature maps from both modalities using concatena-
tion, addition, and a 1 × 1 convolution filter. Additionally, we implemented a squeeze and
excitation layer, which has been demonstrated to be an effective approach to adaptively
adjust the weighting of the feature maps. The fusion positions, ‘Pre’ and ‘Post’ in our
experiments indicate application of the merging operator prior to being processed through
the feature pyramid networks. For instance, the fusion method of concatenation with a
1 × 1 filter, a fusion position of Post-FPN, and an SE position at post would indicate that
both modalities are merged after FPN operation, and a subsequent SE layer is implemented.
From Table 2, we observe that fusion at post-FPN with a concatenation operator and a
1 × 1 convolution filter achieved the highest mAP score among all experiments while
retaining the less learnable parameters compared to other concatenation methods. In the
FLIR dataset, we observe a marginal performance impact with respect to the mAP score.

Table 2. Ablation experiment—concatenation operator.

Fusion Method Fusion Position SE Position mAP@0.5 Params (M)

KAIST FLIR

Concat Post-FPN - 58.4 79.1 55.7

Concat-1 × 1

Pre-FPN - 58.6 79.5 52.2
Post-FPN - 60.4 78.4 41.7
Pre-FPN Pre 58.0 79.4 53.6
Pre-FPN Post 58.3 79.2 52.9
Post-FPN Pre 58.7 79.2 41.8
Post-FPN Post 57.2 79.4 41.8

We used an addition operator, which is an alternative merging operator for fusing
feature maps. Similar to concatenation experiments, the addition experiments involved
feature maps fusion at the pre- and post-FPN process. The squeeze and excitation layer
was also implemented to further analyze the performance impact on object detection in the
multimodal domain. The addition experiments in Table 3 demonstrated comparable mAP
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scores to the concatenation operators while requiring less learnable parameters than the
concatenation operator.

Table 3. Ablation experiment—addition operator.

Fusion Method Fusion Position SE Position mAP@0.5 Params (M)

KAIST FLIR

Addition

Pre-FPN - 59.0 79.1 41.1
Post-FPN - 58.2 79.2 41.1
Pre-FPN Pre 59.0 79.5 42.5
Pre-FPN Post 56.6 79.5 41.8

4.3. Discussion
4.3.1. Qualitative Results Comparison

In Figure 4, we demonstrate sample night scene images from the KAIST dataset. In the
top row images, we observe a notable discrepancy in the detection performance between
the RGB and infrared domains. Specifically, detections were missed in the RGB domain,
whereas the person instance was correctly identified in the infrared domain; however,
a false positive was also detected. Fused features from the visual and infrared domain
demonstrate detection with higher confidence compared to infrared. Additionally, we
visualized the class activation map using Eigen-CAM [26] in the multimodal domain, which
confirms the localized objects with respect to weights.

RGB IR Fused Eigen-CAM

(a) Missed Detections (b) FP, 96%, 96% (c) 99%, 95% (d) CAM

(e) FP, 98%, 75% (f) 97%, Missed Detection (g) 98%, 81% (h) CAM

Figure 4. Qualitative comparison of results: Enhanced detection performance is evident in the
multispectral domain, where instances of both missed detections and false positives can be observed
in the visual and infrared spectra.

As seen in the bottom row of images, the RGB domain captured two detections
accurately, but it also registered a false positive. In contrast, the infrared domain successfully
discarded the false positive but missed a true detection. This trade-off between domains
becomes evident, thereby showcasing the improved accuracy in the multispectral domain
as a result of complementary information. Appendix A provides supplementary qualitative
comparisons, thus encapsulating imagery samples with day and night scenarios.

4.3.2. Detection Benchmark under Image Corruption

Object detection in real-world scenarios requires robust performance under diverse
weather conditions. To evaluate the robustness of our proposed model, we investigated



J. Imaging 2024, 10, 12 9 of 13

its performance under varying weather conditions using image corruption methods de-
veloped by Hendrycks and Dietterich [27]. Their work demonstrated that convolutional
neural networks (CNNs) often fail to generalize beyond the training data distribution.
Michalis et al. [28] demonstrated that robustness benchmarking drops by 30–60% of the
original performance when subjected to varying noises and corruptions.

To assess the robustness of our model under different weather conditions, we em-
ployed three types of image corruptions: fog, frost, and snow. We evaluated the model’s
performance with respect to the RGB, IR, and RGB-T (proposed) models. We applied
the most reasonable severity level (1), simulating real-world conditions, and measured
the average precision at 50% IoU. We trained each model on the respective corruption
type and evaluated its performance under both day and night conditions as shown in
the Table 4. As expected, we observed a significant impact on the average precision (AP)
under varying weather conditions. However, we noticed that our RGB-T model retained,
on average, higher average precision compared to the unimodal input sources. We attribute
the RGB-T model’s performance gain to the infrared imagery’s ability to ignore textures
and focus on object shapes. To further improve the model’s AP under varying distortions,
we recommend employing data augmentation using stylized imagery, as described by
Michalis et al.

Table 4. Weather corruption benchmark at IoU of 0.5 (AP at 50).

Model
Day Night

Clean Snow Frost Fog Clean Snow Frost Fog

RGB 56.9 17.0 15.9 18.9 41.0 11.2 11.8 14.7
IR 43.3 15.0 14.7 15.7 56.8 19.8 19.0 18.7
RGB-T (ours) 58.9 17.6 18.4 19.0 60.4 20.5 19.5 20.2

4.3.3. Is Multispectral Fusion Really Complementary?

We analyzed the complementary potential of object detection from visual and infrared
fusion through various experiments conducted on both imagery types. First, visual and
infrared images were trained independently using the Faster R-CNN network with the
addition of a feature pyramid network as a baseline. To study the effectiveness of the
multispectral fusion, we compared the baseline results against our multispectral neural
network that uses visual and infrared images as input. The training parameters were kept
constant between all our experiments. The visual and infrared images were trained on the
KAIST dataset using the provided images sets for day and night scene images.

Table 5. Day–night mAP and log-average miss rate comparison.

Input Day Night

mAP@0.5 MR mAP@0.5 MR

RGB 56.9 32.3 41.0 49.2
IR 43.3 46.8 56.8 46.8
RGB-T (ours) 58.9 29.0 60.4 28.7

For testing, we sampled every single frame from its respective day and night scene
image sets. As shown in the Table 5 during daytime, we observe that thevisual images
outperformed infrared images, as would be expected due to the high spatial resolution
in the visual images. In contrast, we observe improved detection in thermal images at
night due to thermal images providing better visual features. However, we observe our
multispectral network to have outperformed with respect to both day and night scene
images based on the mAP and MR metric. The miss rate of 28.7% was significantly lower
compared to its visual and infrared counterparts.
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4.3.4. State-of-the-Art RGB-T Detectors Comparison

We compared the MR with the other published reports under reasonable configura-
tions [6], which provide a representative subset of the larger proposed dataset. The subset
contains pedestrian annotations larger than 55 pixels. As shown in Figure 5, our results
are compared with [29], as well as with the other architectures discussed in Section 2.
The authors provided either codes or detections, on which we evaluated and reported
their performance based on the improved annotations for the KAIST dataset. It can be
observed that our model outperforms the current state-of-the-art RGB-T detectors and
has achieved the lowest MR of 16.49%. In addition, our proposed method of a shared
backbone between visual and infrared images is less computationally intensive compared
with previous approaches.

0 20 40 60

Ours
Devaguptapu et al., 2019

Guan et al., 2019
Yadav et al., 2020
Konig et al., 2017

Li et al., 2019
Liu et al., 2016

Wagner et al., 2016
Xu et al., 2017

Hwang et al., 2015

16.5

17.6

26.4

29.0

29.8

30.0

36.2

43.8

49.6

54.5

Log-Average Miss Rate %

Figure 5. State-of-the-art RGB-T Detectors [6,18,20–25,29].

5. Conclusions

In this study, we presented a multispectral object detection framework designed to im-
prove detection capabilities in the multimodal domain. Our architectural approach, based
on the Faster R-CNN algorithm and feature pyramid networks, seamlessly incorporates
color and thermal channels into a unified network. We assessed the performance of our
network using the KAIST and FLIR datasets. Through the experiments with the low-cost
object detector, YOLO, we demonstrated that feature pyramid networks vastly improve
accuracy. Additionally, we delved into an exploration of various fusion approaches to
analyze the impact of fusion operators and fusion positions. Despite a minimal perfor-
mance impact observed from ablation experiments, a comprehensive analysis of varied
fusion positions and operators is prudent to ensure optimal object detection performance
in the multimodal domain involving visual and infrared imagery. Our extensive empirical
analysis demonstrates that our framework improves performance compared to the baseline
and the current state-of-the-art RGB-T detectors.
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Appendix A

RGB IR Fused

(a) Missed Detection, 86% (b) Missed Detections (c) 92%, 96%

(d) 100% (e) FP, Missed Detection (f) 98%

(g) Missed Detections (h) Missed Detection, 98% (i) 59%, 100%

(j) Missed Detection (k) 66% (l) 96%

Figure A1. Additional qualitative comparison of results: Missed and false positive detections are
represented by orange and red bounding boxes, respectively, while blue bounding boxes indicate
accurate detections in accordance with the ground truth. Improved detection accuracy can be
observed in the multimodal domain compared to missed detections in the visual domain.
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