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Abstract: Genome-wide association studies (GWAS) have successfully revealed many disease-
associated genetic variants. For a case-control study, the adequate power of an association test
can be achieved with a large sample size, although genotyping large samples is expensive. A cost-
effective strategy to boost power is to integrate external control samples with publicly available
genotyped data. However, the naive integration of external controls may inflate the type I error
rates if ignoring the systematic differences (batch effect) between studies, such as the differences in
sequencing platforms, genotype-calling procedures, population stratification, and so forth. To account
for the batch effect, we propose an approach by integrating External Controls into the Association
Test by Regression Calibration (iECAT-RC) in case-control association studies. Extensive simulation
studies show that iECAT-RC not only can control type I error rates but also can boost statistical power
in all models. We also apply iECAT-RC to the UK Biobank data for M72 Fibroblastic disorders by
considering genotype calling as the batch effect. Four SNPs associated with fibroblastic disorders
have been detected by iECAT-RC and the other two comparison methods, iECAT-Score and Internal.
However, our method has a higher probability of identifying these significant SNPs in the scenario of
an unbalanced case-control association study.

Keywords: genome-wide association test; case-control study; batch effect; data integration

1. Introduction

Genome-wide association studies (GWASs) play a major role in associating specific
genetic variants with continuous or dichotomous phenotypes [1–3]. Sometimes, researchers
may have limited access to individuals’ genetic information regarding specific phenotypes,
and large-scale genetic studies can be expensive and resource-intensive [4]. Thus, with
a small sample size in a GWAS, an association test could have low power and may also
increase the possibility of false-positive findings, especially for infrequent variants (i.e.,
minor allele frequency (MAF) < 5%), where MAF refers to the frequency at which the less
common allele occurs in a given population [5,6].

The rapid development of sequencing technologies has promoted substantial ad-
vancement in GWASs, particularly in obtaining comprehensive genetic information from
limited samples [7,8]. This advancement provides an opportunity to enhance the power
of single-variant association tests in case-control studies, with several approaches having
been proposed. Firstly, the utilization of time-to-event data in case-control studies provides
valuable insights into timing and dynamics of events. However, this approach may lead to
a loss of information compared to cohort studies due to potential censoring, where some
individuals do not experience the event of interest by the end of the study or analysis.
Secondly, the integration of sequenced samples from internal and external sources provides
a great opportunity for identifying novel genetic associations and increasing the statisti-
cal power of single-variant association tests [9]. Specifically, internal sources encompass
data generated or collected within the study, which typically include genotype data from
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genotyping arrays or sequencing platforms, and external sources refer to data obtained
from outside the immediate study, such as the utilization of diverse sequencing platforms,
variations in genotype-calling procedures, the presence of population stratification, and
so forth. Nevertheless, the integration of sequenced samples from internal and external
studies is challenging [10]. In a single study, by incorporating sequenced samples from
other studies as an external control sample, the power of single-variant tests can be signifi-
cantly increased without incurring additional sequencing costs. However, the systematic
differences (batch effect) arise from various sources, such as different genotyping arrays or
sequencing platforms. Integrating sequenced samples from internal and external studies
without accounting for these batch effects could inflate type I error rates and increase the
possibility of false-positive findings in association studies [11].

Recently, several likelihood-based methods have been proposed to tackle the sys-
tematic differences between internal genotyped data and external genotyped data [12].
Liu and Leal proposed the SEQCHIP method to correct bias when integrating genotype
data in rare-variant association studies [13]. Derkach et al. proposed another method
that substitutes the genotype calls with the expected values given by observed sequence
data to account for differential read depths between studies [14]. Chen and Lin proposed
regression calibration (RC) methods aimed at addressing the differential sequencing er-
rors between cases and controls [15]. Despite these powerful methods, the calculation
of genotype probabilities and the management of sequence read data are challenging in
terms of both complexity and cost, particularly in large-scale genetic studies. Therefore,
the Proxy External Controls Association Test (ProxECAT) only utilizes allele frequencies
of internal cases and external controls to estimate the enrichment of rare variants within
a gene [16]. However, the absence of internal controls potentially limits the power of the
association test. In contrast, the Integrating External Controls into Association Test (iECAT)
uses allele counts from internal cases, internal controls, and external controls to conduct
the rare-variant association test [11]. Subsequently, a Bayesian approach is employed to
assess the presence of batch effects by comparing the odds ratio estimates between internal
controls and combined controls of internal and external studies. External controls that
are not subject to batch effects are then integrated with internal samples to increase the
sample size. It has been demonstrated that this method can control type I error rates, as
well as improve the power of the association test. However, this method cannot adjust
for covariates such as age, gender, and so on [11]. Based on the aforementioned method,
Li and Lee proposed a novel score-based test that constructs a shrinkage score statistic
using internal samples and external control samples, allowing for covariate adjustment for
region-based tests [17]. However, the power increase of this method in association testing
by integrating external controls is limited for extremely unbalanced case-control studies.

In this study, we present a novel approach that integrates External Controls into
Association Tests by Regression Calibration (iECAT-RC) to incorporate external control
samples in case-control studies. The objective of this research is to boost the statistical power
of the single-variant association test by integrating external controls with the adjustment
of batch effects. Our approach adjusts the genotypes of an external control sample to
approximate the same distribution as that of the genotypes in the internal control sample
through regression calibration. Furthermore, we apply the saddlepoint approximation [18]
and efficient resampling [19] methods to control type I error rates with imbalanced case-
control and low minor allele count (MAC) scenarios, respectively.

2. Materials and Methods

A dichotomous phenotype with case and control states was considered. A case is
represented by an individual exhibiting a specific characteristic, which was coded as 1,
whereas a control is an individual who does not exhibit this characteristic, which was coded
as 0. It was assumed that the internal study had the sample size nI with nI

0 controls and nI
1

cases and nI
0 + nI

1 = nI ; the external study had nE
0 controls. For the ith subject, let yi = 0/1

be the dichotomous phenotype. G1, G2, . . . , GnI
0
, GnI

0+1, GnI
0+2, . . . , GnI , and g1, g2, . . . , gnE

0
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are denoted as the genotypes of the internal control sample, the internal case sample, and
the external control sample at a genetic variant, respectively, indicating the number of
copies of the minor allele carried by the subject at that genetic variant, which can take
values of 0, 1, or 2. XI

i is the first p principal components of the internal genotypes, and XE
i

is the first p principal component of the external genotypes for the ith subject. p = 10 was
used in our simulation studies and real data analysis [20].

Motivated by the novel iECAT-Score method [21], we propose a new method by inte-
grating external controls into association tests to boost the statistical power. Our proposed
method involves three steps: (1) adjusting the genotypes of external controls using regres-
sion calibration, (2) Conducting a single-variant association test, and (3) calibrating the
single-variant test using the saddlepoint approximation (SPA) [18] and efficient resampling
(ER) methods [19]—in particular, addressing scenarios of imbalanced case-control and low
MAC, respectively. By following these three steps, the iECAT-RC method effectively mini-
mizes the impact of batch effects and improves the power of the single-variant association
test.

Step 1. Adjusting the Genotypes of External Controls by Regression Calibration

To adjust the genotype of external control samples for the batch effect, we propose
using the following procedure:

(1) Without loss of generality, nE
0 ≥ nI

0 is assumed. A total of nI
0 individuals with

genotypes gk1, . . . , gknI
0

is chosen from external control samples.

(2) A linear regression model Gi = β
(k)
0 + β

(k)
1 gki + α

(k)
I XI

i + α
(k)
E XE

ki is assumed for

i = 1, . . . , nI
0, where β̂

(k)
=

(
β̂
(k)
0 , β̂

(k)
1 , α̂(k)

I , α̂(k)
E

)T
is the least-square estimate of

β(k) =
(

β
(k)
0 , β

(k)
1 ,α(k)

I ,α(k)
E

)T
.

(3) (1) and (2) are repeated K times. β̂(1), . . . , β̂(K) are obtained and the average value

β̂ =
(

β̂0, β̂1, α̂I , α̂E
)T

=
k
∑

k=1
β̂
(k)/K is calculated. Let GnI+i = β̂0 + β̂1gi + α̂IXI

i +

α̂EXE
i for i = 1, . . . , nI

0. When GnI+i < a0, let GnI+i be 0, where a0 is determined such
that the frequency of 0 in the internal control genotypes is equal to the frequency
of 0 in GnI+i for i = 1, . . . , nI

0. When a0 ≤ GnI+i < a1, let GnI+i be 1, where a1 is
determined such that the frequency of 1 in the internal control genotypes is equal to
the frequency of 1 in GnI+i for i = 1, . . . , nI

0. When GnI+i > a1, let GnI+i be 2.

The above procedure is repeated till GnI+i is obtained for i = 1, . . . , nE
0 . Then, the

association test is performed based on the internal case-control data and external control
data with genotypes G1, G2, . . . , GnI

0
, GnI

0+1, GnI
0+2, GnI , GnI+1, . . . , GnI+nE

0
.

Step 2. Single-Variant Association Test

The adjusted genotypes of the internal and external studies are integrated. Let
G = (G1, G2, . . . , Gn)

T be the genotype vector at an interested variant for n subjects,
where n = nI + nE. It is assumed that there is a total of q covariates; then, the pheno-
type Yi is linked to the covariate Zi and genotype Gi using the logistic regression model
logit[P(Yi = 1|Zi, Gi)] = ZT

i α+ Giβ, where the phenotype Yi follows a Bernoulli distribu-
tion. Let α be a q × 1 coefficient vector for q covariates and include the intercept. Let β be
the genotype effect at the variant. Then, the association between the phenotype and the
genotype at a variant is evaluated, equivalent to testing H0 : β = 0.

Let µ = {µi} = {P(Yi = 1|Zi)} and µ̂i be the maximum-likelihood estimate of µi

under H0. In the score test, the score is given by S =
~
G

T
(Y − µ̂), Where Y = (Y1, . . . , Yn)

T ,
~
G =

{
G̃i

}
= G − Z

(
ZTVZ

)−1ZTVG, and V = diag{µ̂i(1 − µ̂i)} [2]. Assuming there is no

genetic effect under the null hypothesis, E(S) = 0 and Var(S) =
n
∑

i=1
G̃2

i µ̂i(1 − µ̂i). Then,
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the score test statistic TScore = S2/Var(S) asymptotically follows the chi-square distribution
with 1 degree of freedom, and the p-value can be obtained as p = P

(
χ2

1 > S2/Var(S)
)
.

Step 3. Calibrating Single-Variant Test Using the SPA and ER Methods

The single-variant score test statistic approximately follows the normal distribution
under the null hypothesis. For balanced case-control studies with common variants,
variance estimates derived from this asymptotic test behave well. However, when the
case-control ratio is not balanced or the MAC is low, leading to extremely low allele
frequencies, the underlying distribution of the test statistic may be highly skewed. Thus,
the conventional asymptotic score test underperforms in such scenarios and may produce
conservative or anticonservative results [22,23].

To account for the scenarios of unbalanced case-control ratio, the SPA method is
applied to obtain the p-value [18]. When the MAC is low (MAC < 10), the ER method is
used to obtain the p-values [19].

(1). SPA Method

SPA is an improvement over normal approximation, which only uses the mean
and variance to approximate the underlying distribution. SPA uses the entire cumulant-

generating function (CGF). Given the score test statistic S =
n
∑

i=1
Ĝi(Yi − µ̂i), the estimation

of the CGF of S is K(t) = log
(
EH0(e

ts)
)
=

n
∑

i=1
log(1 − µ̂i + µ̂ieĜit)− t

n
∑

i=1
Ĝiµ̂i. According to

the SPA method, the distribution of S can be estimated by

Pr(S < s) ≈ F̃(s) = Φ
{

ω +
1
ω

log
( ν

ω

)}
,

where ω = sgn
(
t̂
)√

2
(
t̂s − K

(
t̂
))

, ν = t̂
√

K′′
(
t̂
)
, K′(t), and K′′ (t) are the estimations of the

first- and second-order derivatives of K; t̂ is the solution to the equation K′(t̂
)
= s; and

Φ is the distribution of a standard normal distribution [18]. The p-value can be obtained
using the R package SPA test.

(2). ER Method

The ER method is used for rare-variant association tests with binary traits. Given
phenotype Y, genotype G, and covariate Z, the p-value of the ER method is defined as

Pr
(
Q ≥ Q̂

∣∣Y, G, Z
)
=

m

∑
d=0

Pr
(
Q ≥ Q̂

∣∣D = d, Y, G, Z
)
Pr(D = d|Y, G, Z)

where Q̂ is the test score statistic from the original phenotype, m is the number of individu-
als with minor alleles, and D is the number of cases among m individuals carrying a minor
allele [19]. The p-value can be obtained using the R package SKAT.

3. Simulations

In order to evaluate the performance of the proposed iECAT-RC method in terms of the
type I error rates and power, we carried out simulation studies under a series of scenarios.
We generated the binary phenotypes with cases and controls from a logistic regression
model logit[P(Y = 1|Z, G)] = α0 + 0.5Z1 + 0.5Z2 + βG + ε, where Z1 is a continuous
covariate generated from the standard normal distribution, Z2 is a binary covariate taking
values of 0 and 1 with a probability of 0.5, α0 is chosen such that the disease prevalence is
0.05, G is the genotype at a variant generated from a binomial distribution BIN(2, MAF),
β is the effect size of the variant, and ε follows a standard normal distribution. MAF
was sampled from the empirical Mini-Exome genotype data provided by GAW17, which
includes 24, 487 variants in 3205 genes, as introduced in Sha et al. [2].
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To simulate the batch effect between internal and external control studies, we first
defined the differential variant size (DVS) as the proportion of variants with different
MAFs between the internal and external control samples. For these variants, we randomly
generated the MAFs of the external controls based on two scenarios to mimic the degree of
the batch effect: (1) Uni f orm(0.1q, 4q) and (2) 2q, where q is the MAF of the corresponding
variants in the internal sample. Subsequently, we considered different numbers of cases and
controls in the internal sample and the number of controls in the external controls. We set
the following three ratios between the internal cases, internal controls, and external controls(
nI

1 : nI
0 : nE

0
)
: (1) 5000 : 5000 : 10, 000, (2) 6667 : 3333 : 10, 000, and (3) 500 : 5000 : 10, 000,

respectively. Thus, we considered a total of six models. Model 1: the ratio
(
nI

1 : nI
0 : nE

0
)

is 5000 : 5000 : 10, 000 and the MAF of the external sample is from 2q; Model 2: the ratio
is 6667 : 3333 : 10, 000 and the MAF of the external sample is from 2q; Model 3: the ratio
is 500 : 5000 : 10, 000 and the MAF of the external sample is from 2q; Model 4: the ratio
is 5000 : 5000 : 10, 000 and the MAF of the external sample is from Uni f orm(0.1q, 4q);
Model 5: the ratio is 6667 : 3333 : 10, 000 and the MAF of the external sample is from
Uni f orm(0.1q, 4q); and Model 6: the ratio is 500 : 5000 : 10, 000 and the MAF of the external
sample is from Uni f orm(0.1q, 4q).

We compared our proposed method, iECAT-RC, with three other approaches for the
single-variant association test: iECAT-N, which integrates internal and external control
samples naïvely; Internal, which uses only the internal sample; and iECAT-Score, as pro-
posed by Li and Lee [21]. If the case-control ratio of the combined sample was unbalanced
or the MAC was low (<10 was used in the simulation studies), iECAT-RC, iECAT-N, and
Internal used SPA or ER to obtain the corresponding p-values, respectively.

To evaluate type I error rates, phenotypes were generated with β = 0. For each
simulation, we generated 5 × 105 data sets and used different significance levels 0.05, 0.01,
10−3, and 10−4 for single-variant tests. To save computation time, we generated 5 × 103

genotypes and then resampled the disease phenotypes of internal samples 100 times for
each set while keeping the other data fixed in the type I error rate evaluation.

To evaluate the power, the effect size β in Model 3 and Model 6 was set as log(2),
log(2.4), log(2.8), and log(3.2). The effect size β for other models was set as log(1.6), log(1.8),
log(2.0), and log(2.2). We generated 5× 103 data sets for each model to evaluate the empirical
power at the significance level of 5× 10−8.

4. Result
4.1. Type I Error Rates

To evaluate the type I error rates, we simulated 5 × 105 data sets under the null
hypothesis of no association. Table 1 and Table S1 provide a summary of the type I error
rates of the four methods—iECAT-RC, iECAT-N, Internal, and iECAT-Score—at different
significance levels under DVS = 0.03 and 0.5, respectively. From these two tables, we
can see that iECAT-RC, Internal, and iECAT-Score controlled type I error rates very well.
However, the type I error rates of iECAT-N were significantly inflated when the internal
samples and external control samples were naively integrated without adjusting the batch
effect. For instance, as shown in Table 1, the empirical type I error rates of iECAT-N
exceeded the nominal significance level α = 10−4 by approximately 1000-fold when the
internal and external samples were combined naively. Furthermore, we examine scenarios
when the case, control, and external control ratio remained the same but the batch-effect
levels differed (Model 1 and Model 4). The performance of the four methods under Model 4
was consistent with those in Model 1. Under both models, the results show well-controlled
type I error rates across all methods except iECAT-N. Additionally, we considered scenarios
with varying case, control, and external control ratios but the same batch-effect level
(Models 1–3). In these cases, iECAT-RC effectively controlled the type I error rates, even
under extremely unbalanced case-control samples.
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Table 1. Empirical type I error rates of iECAT-RC compared with the other three methods—iECAT-N,
Internal, and iECAT-Score—when DVS is 0.03 at different significance levels of 0.05, 0.01, 10−3,
and 10−4.

Model Significance Level iECAT-RC iECAT-N Internal iECAT-Score

Model 1

0.05 0.0382 0.3956 0.0512 0.0482

0.01 0.0057 0.3352 0.0102 0.0096

0.001 3.00 × 10−4 0.2771 0.001 0.001

1 × 10−4 1.00 × 10−4 0.2429 1.00 × 10−4 0

Model 2

0.05 0.0397 0.4163 0.0348 0.0394

0.01 0.0078 0.3685 0.0087 0.0089

0.001 9.00 × 10−4 0.3263 4.00 × 10−4 0.0013

1 × 10−4 1.00 × 10−4 0.2919 0 2.00 × 10−4

Model 3

0.05 0.0457 0.113 0.0136 0.0357

0.01 0.0111 0.0628 0.004 0.0081

0.001 6.00 × 10−4 0.0345 5.00 × 10−4 3.00 × 10−4

1 × 10−4 0 0.0223 0 0

Model 4

0.05 0.0372 0.4269 0.0511 0.0475

0.01 0.0065 0.3513 0.0105 0.0101

0.001 4.00 × 10−4 0.2804 9.00 × 10−4 0.001

1 × 10−4 0 0.2359 3.00 × 10−4 1.00 × 10−4

Model 5

0.05 0.0494 0.457 0.0335 0.0446

0.01 0.0107 0.3876 0.0079 0.0096

0.001 0.0017 0.3244 9.00 × 10−4 0.001

1 × 10−4 4.00 × 10−4 0.2806 0 1.00 × 10−4

Model 6

0.05 0.0467 0.1013 0.0133 0.0342

0.01 0.011 0.0569 0.0042 0.007

0.001 0.0012 0.0291 9.00 × 10−4 7.00 × 10−4

1 × 10−4 1.00 × 10−4 0.0169 0 0

Note: The bold-faced values indicate the type I error rates beyond the upbound of the corresponding 95%
confidence interval.

4.2. Power

To evaluate the performance of our proposed method, we considered different batch-
effect levels, different values of DVS, and different values of nI

1 : nI
0 : nE

0 . We compared
the power of the three methods of iECAT-RC, Internal, and iECAT-Score at an empirical
significance level of 5 × 10−8. iECAT-N was ignored in the power comparison since this
method inflates type I error rates. Figure 1 shows the power comparison of these three
tests (iECAT-RC, Internal, and iECAT-Score) for different values of nI

1 : nI
0 : nE

0 when
the DVS was 0.03. As shown in the figure, in the case of both balanced (Model 1 and
Model 4) and slightly unbalanced (Model 2 and Model 5) case-control ratios in the internal
samples, iECAT-RC was more powerful than the other two tests; Internal was the least
powerful method due to the smaller sample size compared with the other two methods.
For the extremely unbalanced internal case-control ratio (Model 3 and Model 6), these three
methods had a similar power performance. This is reasonable, because there was slight
inflation in the p-value for the extremely unbalanced case-control ratio after calibrating the
test score via SPA [18].
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Figure 1. Power comparison of iECAT-RC, Internal, and iECAT-Score at the significance level of
5 × 10−8 and DVS = 0.03. iECAT-N is not considered in power comparison since it is unable to
control type I error rates across all scenarios. The horizontal axis represents the odds ratio, and the
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The power comparison of the three tests for DVS = 0.5 is shown in Figure S1. The
power patterns of the three methods were very similar between the two different DVS
settings for Models 1, 2, 4, and 5. iECAT-RC was more powerful than the other two methods,
iECAT was the second powerful method, and Internal was the least powerful method. For
Models 3 and 6, similar to the pattern for DVS = 0.03, iECAT-RC and Internal had similar
power, but iECAT-Score had lower power than iECAT-RC and Internal.

4.3. Application to the UK Biobank Data

The UK Biobank dataset, which contains approximately 500, 000 individuals with
784, 256 variants from across the United Kingdom, provides a prospective cohort for
studies aiming to discover more genetic associations and the genetic bases of complex traits
with deep genetic and phenotypic data [24–26]. In the UK Biobank dataset, genotypes
are assayed using two genotype-calling procedures, which are the Applied Biosystems
UK BiLEVE Axiom Array (UKBL) and the UK Biobank Axiom Array (UKBB) [27,28].
However, the common practice of calling underlying genotypes and then treating the
called values is known to be prone to false-positive findings, especially when genotyping
errors are systematically different between cases and controls [29]. Therefore, we applied
our proposed method to the real data from the UK Biobank based on two genotype-
calling procedures and considered genotype calling as the batch effect. The genotype
quality control was performed by PLINK 1.9 https://www.cog-genomics.org/plink/1.9/
(accessed on 2 February 2020) with a missing rate of 5%, a Hardy–Weinberg equilibrium
exact test threshold of 10−6, and a MAF greater than 5% [30]. Then, 288, 647 variants
were obtained after quality control. We considered the M72 fibroblastic disorders as the
phenotype and chose individuals from the UKBL as internal data with 229 cases and the
UKBB with controls as the external data. The overlapping variants in these two samples

https://www.cog-genomics.org/plink/1.9/
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were used in real analysis. The covariate age and sex and the first 10 principal components
were adjusted in the model. The descriptive statistics of the subjects from the internal and
external studies are shown in Table 2.

Table 2. Descriptive statistics of subjects from the UK Biobank for real analysis.

Study
Samples Size

Cases Controls Totals

UKBL (internal) 229 22,472 22,701

UKBB (external) 297,068 297,068

Total 229 318,540 319,769

We applied iECAT-RC, Internal, and iECAT-Score to analyze M72 fibroblastic disorders
for two genotype-calling procedures in the UK Biobank. Four SNPs were detected to be
associated with fibroblastic disorders by all three methods at the significance level of
5 × 10−8 (Table 3 and Figure 2). iECAT-RC detected these three SNPs with smaller p-
values. Among the four SNPs, SNP rs62228062 was located in gene WNT7B. A recent
transcriptome study identified WNT7B as being amongst the most enriched transcripts in
anterior capsule tissue in patients undergoing arthroscopic capsulotomy surgery for frozen
shoulder (a tissue disorder), suggesting WNT7B as a potential causal gene at the locus [31].
SNP rs2290221 on chromosome 7 was identified as being associated with fibroblastic
disorders and showed the strongest association signal, with a p-value of 1.26 × 10−8, by
iECAT-RC. This SNP is in the intronic of genes secreting frizzle-related protein 4 (SFRP4)
and ependymal-related protein 1 (zebrafish) (EPDR1). It was detected as being associated
with Dupuytren’s disease, which has a large overlap with frozen shoulder-associated
loci [31,32].

Table 3. Significant SNPs identified by iECAT-RC, iECAT-Score, and Internal at a significance level of
5 × 10−8.

Chromosome SNP Base Position Genes iECAT-RC iECAT-Score Internal

7 rs2290221 37987632 SFRP4, EPDR1 1.26 × 10−8 2.91 × 10−8 1.86 × 10−8

22 rs9330811 46362396 WNT7B 1.65 × 10−11 3.37 × 10−11 3.00 × 10−11

22 rs62228062 46381234 WNT7B 6.04 × 10−18 8.82 × 10−18 6.04 × 10−18

22 rs28628653 46396925 LOC730668 1.54 × 10−10 1.40 × 10−10 1.54 × 10−10

The Q-Q plot was used to assess the number and magnitude of observed associations
between SNPs and the disease under study compared to the association statistics expected
under the null hypothesis of no association. The −log10 p-values calculated from each
method were ranked in order from smallest to largest on the y-axis and plotted against
the distribution that would be expected under the null hypothesis of no association on the
x-axis. We tested for association between the disease status of M72 fibroblastic disorders
and an SNP, adjusting for age, sex, and the first 10 principal components. The QQ plots
from the tests integrating external control samples using the iECAT-RC method, Internal
method, and iECAT-Score method are shown in Figure 3. We observed a similarity in
patterns among the three QQ plots, all of which closely aligned with the 45 degree line.
This alignment indicates that all three methods effectively controlled type I error rates in
this analysis.
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The case-control ratio of the combined samples had a significant impact on the per-
formance of these three methods (iECAT-RC, Internal, and iECAT-Score), particularly in
extremely unbalanced case-control studies, as observed in the simulation studies. Our
method demonstrated increased statistical power when the case-control ratio was small.
To assess the model’s performance in real data analysis, we randomly selected a subset
from the real dataset while maintaining a value of nI

1 : nI
0 : nE

0 is 1 : 1 : 2. This allowed
us to compare the probabilities of detecting potentially significant SNPs using different
methods. Specifically, we conducted 10, 000 random samples, with each sample comprising
229 internal cases, 229 internal controls, and 458 external controls. Then, we implemented
different methods, and the proportion of detected significant SNPs among the 10, 000 sam-
ples is presented in Table S2. The proposed method, iECAT-RC, demonstrated a higher
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probability of detecting significant SNPs. For instance, the relative frequency of detecting
SNP rs62228062 was 95.3%, surpassing that of the other two methods.

5. Discussion

In case-control studies, it is cost-effective to boost statistical power by increasing the
sample size of the case-control study. However, integrating external controls without
considering systematic differences (batch effect) between studies, such as the differences
in sequencing platforms, genotype-calling procedures, population stratification, and so
forth, may lead to inflated type I error rates. In this paper, we propose an approach to
integrating external control samples and allow for covariate adjustment. The proposed
method, iECAT-RC, effectively addresses potential batch effects by calibrating bias using a
regression model.

Simulation studies revealed that iECAT-RC can control for type I error rates very well
and boost power in the presence of batch effects. Specifically, we considered different
simulation scenarios, including varying the batch-effect level, DVS, and case-control ratios.
By comparing iECAT-RC with three referenced methods—Internal, iECAT-Score, and
iECAT-N—we demonstrated that all other methods could maintain type I error rates except
iECAT-N, which naively combined internal and external samples without adjusting for
the batch effects. Additionally, the simulation studies showed that iECAT-RC had a higher
power compared with the other methods under different batch-effect mechanisms.

In the real data analysis, we applied iECAT-RC, Internal, and iECAT-Score to genetic
data from approximately 500, 000 individuals with 784, 256 SNPs across the United King-
dom. These individuals were used to identify the association between SNPs and M72
fibroblastic disorders while considering the genotype calling as the batch effect. Although
all three methods—iECAT-RC, Internal, and iECAT-Score—identified four SNPs that are
significantly associated with the disease, our proposed method had a higher probability
of detecting these disease-associated SNPs compared to the other two methods when the
case-control ratio was 1 : 3.

In conclusion, the proposed iECAT-RC method can integrate external control samples
and, at the same time, control type I error rate and boost statistical power. Through the
linear regression calibration, we effectively reduced the batch effects arising from different
platforms. Additionally, we employed the SPA [18] and ER [19] methods to accurately
calibrate p-values in scenarios of unbalanced case-control ratios and low MAFs. Our
method provides a robust and effective improvement in score tests, ultimately contributing
to a better understanding of the genetic architecture of complex diseases. However, iECAT-
RC has limited power improvement when internal samples have an extremely unbalanced
case-control ratio. Furthermore, it is necessary for external samples to originate from the
same ancestry to eliminate population stratification.

iECAT-RC is suitable for case-control studies focusing on any dichotomous pheno-
types, particularly those influenced by rare variants. Given that rare variants occur at low
frequencies within populations, they may not be identified through conventional GWASs.
iECAT-RC addresses this limitation by integrating external sequenced data, thereby en-
hancing the sample size and enabling the detection of associated genetic variants.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes15010067/s1, Table S1: Empirical type I error rates
of iECAT-RC, compared with other three methods iECAT-N, Internal, and iECAT-Score at different
significance levels, 0.05, 0.01, 10−3, and 10−4 with DVS = 0.5; Table S2: The relative frequency of
significant SNPs identified by each method using 10,000 repeated samples; Figure S1. The power
comparison of iECAT-RC, Internal, and iECAT-Score when DVS = 0.5 at the significance level of
5 × 10−8. The horizontal axis represents the odds ratio, and the vertical axis represents power.
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