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In an era of increasing natural disturbances, successful tree regeneration has grown more 

difficult to achieve. Salvage logging, a common management response to disturbance, may further 

impede regeneration success, although published literature currently remains inconclusive. In 2013, a 

rare tornado in northcentral Maine, USA, and subsequent salvage operation created three clear 

‘treatments’ for evaluation of post-disturbance regeneration: blowdown, blowdown followed by salvage 

logging and an undisturbed control. In the summers of 2022 and 2023, (nine and ten) years post-

tornado, we revisited this site to examine regeneration outcomes.  

During the summer of 2022, we evaluated stand structure and regeneration success of the 

sapling layer. Our objectives focused on understanding (1) how salvage logging alters regeneration 

abundance and species composition of woody species and (2) whether the greater abundance of coarse 

woody material (CWM) remaining in the blowdown restricts moose browse through a natural ‘exclosure 

effect’. We inventoried tree regeneration within these treatments to evaluate differences in sapling 

abundance, species composition, size structure, and browsing intensity. In addition, we inventoried 

CWM, including the height above forest floor. Results revealed significant differences in sapling 

composition and browsing intensity among treatments with the salvage treatment containing the 

highest proportion of browsed saplings. Binomial generalized linear models revealed that browsing 

probability was a function of mean CWM height and an interaction between sapling density and 



 

proportion of sapling hardwoods. Thus, browsing damage was less likely in plots with greater CWM 

heights and more likely in plots with greater sapling density and more hardwood saplings.  

During the summer of 2023, we revisited these stands to understand treatment effects on 

understory plant communities and microclimates. Our objectives explore (1) understory community 

differences among undisturbed, blowdown and salvage conditions, (2) relationships between conifer 

sapling abundance and early successional, recalcitrant species, and (3) relationships between 

microclimate factors and understory communities. We inventoried understory vegetation, took 

hemispherical photographs to characterize canopy openness and installed sensors to track temperature 

and soil moisture throughout the growing season. Results indicate distinct understory community 

differences among each of the treatments, with the salvage treatment supporting a higher richness and 

abundance of early successional, shade intolerant taxa, while the blowdown and control treatments 

were characterized by later successional, shade tolerant taxa. Abundance of conifer regeneration was 

notably lower in plots with high abundance of Rubus idaeus or Pteridium aquilinum. Ordination results 

suggest that canopy openness and surface temperature fluctuations were the primary factors associated 

with these compositional differences. 

This study furthers our understanding of ecosystem recovery following the successive 

disturbances of blowdown and salvage logging. Results suggest that salvage logging created important 

differences in CWM abundance and height distribution, when compared to un-salvaged areas, and that 

these differences in turn altered sapling size structure and browsing intensity. Further, distinct 

differences in species ordination and microclimate results suggest salvage logging may create conditions 

more favorable to shade-intolerant, recalcitrant understory vegetation. Together, these findings 

highlight the potential long-term effects of successive disturbances and provide forest managers insight 

on possible post-disturbance conditions.  
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CHAPTER 1 

THE NATURAL ‘EXCLOSURE EFFECT’ AND TREE REGENERATION FOLLOWING POST-WINDSTORM 

SALVAGE LOGGING  

 Understanding the influence of post-disturbance forest management practices on tree 

regeneration is critical for assessing ecosystem recovery and guiding future responses. In particular, the 

influx of elevated coarse woody material (CWM) following wind disturbance, if left in situ, may impede 

herbivore access, thereby protecting saplings from browsing damage through a natural ‘exclosure 

effect.’  In 2013, a tornado in northcentral Maine, USA and subsequent salvage logging operations 

created three clear ‘treatments’ for evaluation of the exclosure effect: blowdown, blowdown plus 

salvage logging, and an undamaged control. Nine years post-tornado, we inventoried tree regeneration 

within these treatments to evaluate differences in sapling abundance, species composition, size 

structure, and browsing intensity. In addition, we inventoried CWM, including the height above forest 

floor. Results revealed significant differences in sapling composition and browsing intensity among 

treatments. The salvage treatment had the highest proportion of browsed saplings (56 ± 28%; mean ± 

standard error), followed by the control (9 ± 10%) and blowdown (5 ± 8%). Blowdown had by far the 

greatest mean (50 ± 9 cm) and average maximum (169 ± 43 cm) heights for CWM. Binomial generalized 

linear models revealed that browsing probability was a function of mean CWM height and an interaction 

between sapling density and proportion of sapling hardwoods. Thus, browsing damage was less likely in 

plots with greater CWM heights and more likely in plots with greater sapling density and more 

hardwood saplings. This study furthers our understanding of ecosystem recovery following the 

successive disturbances of blowdown and salvage logging. Results suggest that salvage logging created 

important differences in CWM abundance and height distribution, when compared to un-salvaged 

areas, and that these differences in turn altered sapling size structure and browsing intensity. These 

findings highlight the potential long-term effects of successive disturbances, as the differences evident 
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in these early stages may persist for decades or longer. Importantly, we provide evidence of the 

exclosure effect, suggesting that CWM retained in the un-salvaged area protected saplings from moose 

browsing. Considering these results, we recommend that managers leave CWM in place in areas where 

browsing is a primary threat to regeneration.  

1.1 Introduction 
 

Studies suggest that climate change is increasing the frequency and severity of forest 

disturbances such as windstorms, insect outbreaks, and fire (Dale et al., 2001; Turner 2010; Johnstone et 

al., 2016; Seidl et al., 2017). Given that disturbances strongly influence forest structure, processes, and 

species composition, changes in natural disturbance regimes can have profound and lasting impacts 

(Turner 2010; Seidl et al., 2017). Specifically, changes in disturbance frequency and intensity can shift 

forest composition and limit tree regeneration success for some species (Johnstone et al., 2016). Thus, 

forest management in a future with more intense and frequent disturbances presents a novel challenge 

for practitioners and policy makers. 

Salvage logging, the practice of removing commercially valuable wood following a natural 

disturbance, is a common management response to catastrophic disturbance (Lindenmayer et al., 2008). 

Though primarily conducted to reduce timber revenue losses, salvage logging has also been used to aid 

in site preparation (Greene et al., 2006), to abate future disturbance risk (bark beetle outbreaks, fire 

severity) (Dodds et al., 2019; Fraver et al., 2011; Johnson et al., 2013), and to promote coexistence of 

important hardwood tree species (Royo et al., 2016). In contrast, salvage logging has been shown to 

impede tree regeneration (D’Amato et al., 2011; Santoro & D’Amato, 2019), reduce plant community 

diversity (Leverkus et al., 2014, Kleinman et al., 2017), eliminate the aerial seedbanks of serotinous 

species (Greene et al., 2006), and slow post-disturbance recovery (Taeroe et al., 2019; Li et al., 2023). 

These negative aspects of salvage logging are often centered around the loss of coarse woody material 

(CWM), given that standing and downed wood left after disturbance enhances forest structure, 
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stimulates nutrient cycling, and provides substrate for regeneration, among other benefits (Lindenmayer 

et al., 2004).  

 One understudied  benefit of CWM is its function as a physical barrier to ungulate browsing (a 

natural ‘exclosure effect’), thereby protecting seedlings and saplings (de Chantal & Granström, 2007; 

Hagge et al., 2019). Moose (Alces species) are considered overpopulated in many parts of northern 

North America and northern Europe and play a significant role in altering forest composition (Bergeron 

et al., 2011; Liang & Seagle, 2002). Selective browsing by moose may create conditions in which only the 

less-palatable (and often less desired timber species) survive to maturity (Relva et al., 2009; Smallidge et 

al., 2021). Exclusion fencing is one common way to prevent browsing, yet cost and labor demands make 

it difficult to implement (Smallidge et al., 2021). Practitioners have found success in the construction of 

slash walls (piles of discarded non-commercial woody material) following harvest (Grisez, 1960; 

Smallidge et al., 2021). Similarly, piles of fallen conifers (i.e., ‘jackstraws’) killed by fire can provide 

browsing refugia for aspen and willow regeneration (Ripple & Larsen, 2001). Large influxes of CWM from 

windstorms might serve a similar purpose; however, this potential exclosure effect remains poorly 

understood (but see Morimoto et al. 2021, Konôpka et al., 2021 and Hagge et al., 2019).    

Several studies have demonstrated that the effects of salvage logging can persist as long as 50 to 

70+ years post-harvest (Mabry and Korsgren 1998, Sass et al. 2018, Morimoto et al. 2019); however, 

such long-term studies are quite uncommon. More common are studies conducted several years post-

salvage, although authors acknowledge the limitations of using short-term studies to project long-term 

stand outcomes (Palik & Kastendick, 2009; Royo et al., 2016). Further, salvage logging studies that follow 

regeneration for only a few years post-salvage often use seedling (not sapling) composition to examine 

regeneration success (Donato et al., 2006; Santoro & D’Amato, 2019; Slyder et al., 2020). Vickers et al. 

(2017) demonstrate that models relying on short-term seedling regeneration data (less than three years) 

have high uncertainty. Regeneration success is particularly precarious and unpredictable in areas with 
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dense herbivore populations (Boerner & Brinkman, 1996; Hidding et al., 2012). Taken together these 

considerations point to the need for longer-term studies of post-salvage regeneration, particularly as it 

relates to herbivore pressure.  

A series of events beginning in 2013 provides an ideal setting in which to address these 

knowledge gaps. In July of 2013, a tornado struck the northeastern portion of Baxter State Park, Maine, 

USA, causing significant canopy loss to an approximate 200-ha swath of mixed-species conifer forest 

(Fraver et al., 2017). A portion of this area was salvaged that winter (2013-2014) while other areas were 

left untouched. This series of events generated three clear “treatments” in close proximity: tornado 

blowdown, blowdown followed by salvage logging, and undisturbed control that could be compared 

with respect to tree regeneration and browsing intensity.  

The overarching goal of this study is to document how salvage logging following severe wind 

disturbance shapes forest regeneration outcomes. More specifically, our objectives explore (1) how 

salvage logging alters regeneration abundance and species composition of woody species and (2) 

whether the greater abundance of coarse woody material (CWM) remaining in the blowdown restricts 

moose browse through the exclosure effect. This study contributes to a growing body of literature 

aimed at understanding appropriate management responses to forest disturbance, particularly in light 

of other stressors such as elevated herbivory, and can inform future management decisions. 

1.2 Methods 
 

1.2.1 Field Sampling  
 

Our study was conducted within the Baxter State Park Scientific Forest Management Area (SFMA) of 

northcentral Maine, USA (Figure 1.1). Established in 1955, this 12,000 ha tract is maintained to 

demonstrate sustainable forest management practices (Whitcomb, 2008). The mean annual 

temperature of the SFMA is 4.4 °C with an average of 1084 mm of annual precipitation distributed 

evenly throughout the year (PRISM Climate Group, 2022). Topography in the SFMA ranges from 244 to 
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390 m a.s.l., and soils are derived from glacial till. The tornado of July, 2013, with windspeeds exceeding 

40 m s-1, caused extensive canopy loss in a 200-ha swath of forest in the SFMA (Fraver et al., 2017). By 

comparing structural characteristics of the control stands to those of the blowdown immediately post-

disturbance (see Fraver et al. 2017), we estimate that the tornado reduced basal area by 87% and tree 

density by 85%. Salvage harvesting in portions of the wind-damaged area began in the winter of 2013-

2014 using a fixed-head cut-to-length processer and forwarder, with slash left on site (Fraver et al., 

2017).  

Three treatments (blowdown, blowdown plus salvage, and undamaged control; Figure 1.1) were 

initially identified and inventoried in the summer of 2014 (Fraver et al., 2017). Prior to the tornado, 

these stands were dominated by red spruce (Picea rubens Sarg.) with lesser components of balsam fir 

(Abies balsamea (L.) Mill), northern white-cedar (Thuja occidentalis L.), eastern white pine (Pinus strobus 

L.), red maple (Acer rubrum L.) and paper birch (Betula papyrifera Marshall) (Fraver et al., 2017). Control 

stands were chosen for their similarity in composition and proximity to blowdown and salvage sites. 

Although many of these stands had experienced prior management (light partial harvests ca. 20 years 

before the blowdown), pre-blowdown differences in structure and composition among stands were 

deemed negligible based on pre-blowdown inventories and post-blowdown woody material and stump 

surveys (Fraver et al., 2017).  
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Figure 1.1. Treatment and plot locations within the Scientific Forest Management Area (SFMA), Baxter 

State Park, Maine, USA. Orange and blue polygons show the extent of tornado damaged patches, dots 

indicate plot locations. Sampled units color coded by treatment: control, blowdown, and salvage 

(blowdown followed by salvage). The western border of map is the western border of the SFMA. 

Contour lines in meters. 

Nine years post-tornado, in the summer of 2022, these stands were revisited to assess 

regeneration and downed coarse woody material (CWM) structure within 45 plots (fifteen plots per 

treatment). Plot locations were designated randomly in ArcGIS with occasional on-the-ground 
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adjustments made based on the location of recent harvests not seen in aerial imagery. Four circular 

sapling subplots (25 m2, i.e., 2.8 m radius) were established in each cardinal direction 5.5 m from plot 

center. Within each subplot, all saplings (defined as diameter at breast height [DBH] ≤10 cm and taller 

than 1 m) were identified to species and tallied by four DBH classes: ≤2.5 cm, 2.6 - 5 cm, 5.1 - 7.5 cm and 

7.6 - 10 cm. Each sapling was also assessed for moose browse (evidenced by torn branch tips; Pierson 

and deCalesta, 2015) and tallied as browsed or not browsed. Four 25-m-long CWM line-intersect 

transects (Van Wagner, 1968) were established within each of the 45 plots, radiating out from plot 

center in the four cardinal directions (total length 100 m per plot). For each CWM piece ≥ 10 cm 

diameter at the point of transect intersection, species was identified (when not precluded by decay), 

diameter, and height to the top of each piece were measured at the point of intersection, and decay 

class was assigned according to the five-class system (Sollins, 1982).  Finally, we estimated canopy 

openness using 2017 LiDAR discrete-return point cloud data sourced from the US Geological Survey (US 

Geological Survey, 2017). These data were normalized in RStudio (R Core Team, 2021) and used to 

create a 5-m canopy-height model from which canopy closure was calculated for each plot (later 

converted to canopy openness). 

 
1.2.2 Data Analysis 

 
1.2.2.1 Forest Structure 

 
CWM volume for each plot was calculated as,    

𝑉 = (𝜋 ∑
𝑑2

8𝐿
 ) × 10,000 

where V is the area-based volume (m3 ha-1), d is the diameter (m) of each CWM piece at the point of 

intersection, and L is the total transect length (m) per plot (from Van Wagner, 1968). Volume reduction 

factors were applied for advanced decay class 4 and 5 logs, to account for their collapse through decay 

(Fraver et al. 2013). CWM height (to the top of each piece) was summarized using the plot-level mean, 
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as it better captured height variability compared to other measures of central tendency. Potential 

treatment differences in CWM volume and height metrics were evaluated using separate analyses of 

variance (ANOVA) in R (R Core Team, 2021). Differences ultimately revealed by the ANOVAs were 

further tested by Tukey's HSD post-hoc test. In addition, Kolmogorov-Smirnov goodness-of-fit tests (K-S 

test) were conducted to assess differences in CWM height distributions among treatments (plots 

pooled), including Bonferroni adjustments for multiple comparisons.  

  
1.2.2.2 Sapling Communities  
 

Sapling composition was assessed through analysis of sapling species, size, and abundance. 

Species composition per hectare was summarized by treatment means, and differences in saplings per 

hectare and proportion of hardwoods (logit transformed) among treatments were evaluated using 

ANOVA followed by Tukey’s HSD test. Kolmogorov-Smirnov goodness-of-fit tests were conducted to 

assess differences in sapling diameter distributions (plots pooled) among treatments, including 

Bonferroni adjustments for multiple comparisons.  

  
1.2.2.3 Browse Response  
 

To evaluate the exclosure effect, we created a series of binomial generalized linear models to 

predict the probability of a sapling being browsed. Sapling density and sapling hardwood proportion 

were identified as baseline predictor variables based on prior findings suggesting that moose are drawn 

to areas with more hardwood regeneration (McLaren et al., 2000; Pastor et al., 1998). Random forest 

modeling using the R package VSURF (Genuer et al., 2015) was used to assess the influence of site 

characteristics such as distance to the nearest road, elevation, slope, aspect, and canopy openness 

against probability of browsing. These variables were not identified as significant predictors of browsing 

and were thus excluded from further analysis (See Appendix Table A1). Additional potential predictor 

variables were tested for collinearity, and those found to be collinear were excluded from the same 
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model. For example, all CWM variables (e.g., mean height, median height, maximum height, volume) 

were collinear; however, we selected CWM mean as the variable most likely responsible for an 

exclosure effect, that is, impeding access by moose. Models of the three variables of interest – mean 

CWM height, sapling density, and hardwood proportion – were compared in all possible model 

combinations (including interactions) based on the Akaike Information Criterion (AIC), using the R 

package AICcmodavg (Mazerolle 2020). The top five models were ranked according to the lowest AIC 

score.  

Finally, differences in the probability of browsing among treatments were examined. The logit-

transformed proportion of browsed saplings was calculated for each plot, and differences among 

treatments were tested using ANOVA followed by Tukey’s HSD test.  

  
1.3 Results 

 
1.3.1 Forest Structure 
 

Mean CWM volume did not differ significantly between salvage and control (Tukey’s HSD p = 

0.96), while blowdown differed from both salvage and control (p < 0.001; Table 1.1). The height 

distribution of CWM pieces differed somewhat between salvage and control (K-S test after Bonferroni 

adjustment to p = 0.017), while blowdown differed markedly from both salvage and control (adjusted p 

< 0.001; Table 1.1; Figure 1.2). Here the trends in CWM structure among treatments are clear: control 

and salvage had relatively low volume and low mean height, while blowdown had relatively high volume 

and high mean height (Figure 1.3a). We note that mean CWM height and volume are positively 

correlated (rho = 0.73). 
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Figure 1.2. Vertical height distribution (to the top of each piece) of coarse woody material (CWM). Plot 

data pooled by treatment: control, blowdown, and salvage (i.e., blowdown followed by salvage). 
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Figure 1.3. a. Mean height (to the top of each piece) and total volume of coarse woody material (CWM) 

for each plot. Point size scaled relative to the proportion of browsed saplings within each plot. 

Spearman’s Rank correlation coefficient (rho) for the relationship between mean CWM height and mean 

volume = 0.73. b. Proportion of browsed saplings by treatment. Different lower-case letters indicate 

significant treatment differences at α < 0.05. Photo insert: moose-browsed Acer rubrum. Note: salvage = 

blowdown followed by salvage.  

1.3.2  Sapling Communities  
 

Nine years following disturbance, sapling recruitment was evident in both salvage and 

blowdown treatments. As expected, the disturbed blowdown and salvage treatments had mean sapling 
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abundances 2.5 and 2.2 times (respectively) that of the undisturbed control (Tukey HSD p < 0.001; Table 

1.1). Compositionally, Abies balsamea was more common in the blowdown treatment, while Acer 

rubrum was more common in the salvage treatment; however, both disturbed treatments contained 

similar proportions of hardwood saplings (Table 1.1). Sapling size class distributions differed among 

three treatments (K-S test p < 0.001; Figure 1.4). 

Table 1.1. Structural metrics for coarse woody material (CWM) and saplings by treatment, including 

standard deviations. Different lower-case letters indicate significant treatment differences at α < 0.05. 

Species-level composition and browsing intensity (means and standard deviations) included for the six 

most abundant sapling species. (Note: salvage = blowdown followed by salvage). Species listed in order 

of overall decreasing abundance.  

Variable  Control Blowdown Salvage 

Structural Metrics    

  Mean CWM Height (cm) 18 ± 5a 50 ± 9b 17 ± 5a 

  Median CWM Height (cm) 11 ± 6a 44 ± 10b 12 ± 6a 

  Max. CWM Height (cm) 70 ± 31a 169 ± 43b 50 ± 14a 

  CWM Volume (m3 ha-1) 59 ± 25a 268 ± 88b 53 ± 32a 

  Hardwood Proportion (%) 20 ± 17a 41 ± 24b 55 ± 30b 

  Sapling Density (stems ha-1) 4,347 ± 2,047a 11,013 ± 4,203b 9,373 ± 4,562b 

Sapling Abundance (stems ha-1)    

  Abies balsamea 2,653 ± 1,585 4,880 ± 2,579 2,087 ± 1,766 

  Acer rubrum 567 ± 682 1,653 ±1,286 3,387 ± 2,537 

  Picea rubens 733 ± 859 1,240 ± 1,412 1,593 ± 1,812 

  Prunus pensylvanica 0 1,340 ± 2,369 933 ± 2,413 
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Table 1.1 continued     

  Betula alleghaniensis 80 ± 152 687 ± 1,308 140 ± 338 

  Pinus strobus 33 ± 90 133 ± 232 347 ± 380 

Percent Browsed Saplings (%)    

  Abies balsamea 2 ± 5 0  28 ± 35 

  Acer rubrum 50 ± 40 19 ± 29 90 ± 20 

  Picea rubens 1 ± 5 0  1 ± 4 

  Prunus pensylvanica N/A 10 ± 23 95 ± 11 

  Betula alleghaniensis 8 ± 17 4 ± 11 93 ± 6 

  Pinus strobus 0  0  9 ± 30 

 

 
 
Figure 1.4. Diameter class distribution (at breast height) of all measured saplings, plot data pooled by 

treatment: control, blowdown, and salvage (i.e., blowdown followed by salvage). Class 1: ≤2.5 cm, class 

2: 2.6 - 5 cm, class 3: 5.1 - 7.5 cm, class 4: 7.6 - 10 cm. 
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1.3.3 Browse Response 
 
Probability of browsing was a function of mean CWM height and the interaction between 

sapling density and proportion of sapling hardwoods, based on the best approximating binomial 

generalized linear model in the candidate set (Table 1.2). This model carried nearly 100% of the 

cumulative model weight and had a relatively high ratio of residual deviance to null deviance (or 

McFadden’s pseudo R2). The probability of browsing was higher in plots with more hardwoods, greater 

sapling density, and lower CWM heights (Figure 1.5). The influence of hardwood proportion in predicting 

browsing was greater at lower sapling densities as indicated by the greater divergence of the probability 

curves at first quartile sapling density (Figure 1.5). 

Further, treatments differed significantly with respect to the proportion of saplings browsed. 

The salvage treatment had the highest proportion (56 ± 28%), followed by the control (9 ± 10) and 

blowdown (5 ± 8%; Tukey HSD, all pairwise p < 0.001; Figure 1.3b). Blowdown and salvage notably had 

similar sapling densities and proportions of hardwood species (Table 1.1), two of the variables identified 

as significant predictors of browsing. Differences in browsing percent also varied by species within each 

treatment, with hardwood species and Abies balsamea browsed more commonly in the salvage 

treatment (Table 1.1).  
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Table 1.2 Top five models for predicting sapling browsing probability. Models ranked according to AICc 

scores using the variables CWMHT (mean coarse woody material height above forest floor), Sapl. Dens. 

(sapling density) and HW Prop. (hardwood proportion, logit transformed). k = number of model 

parameters; AICc = corrected Akaike information criterion; ΔAICc = change in Akaike information 

criterion relative to the top model; AICc wt. = corrected Akaike information criterion weights; R2 = 

McFadden’s pseudo R2 for a binomial distribution.  

Model Predictors k AICc ΔAICc AICc wt. R2 

 CWMHT + Sapl. Dens.  HW Prop. 5 2686.4 0.0 1 0.36 

 CWMHT + Sapl. Dens. + HW Prop. 4 2799.6 113.2 0 0.33 

 CWMHT + HW Prop. 3 2804.4 118.0 0 0.33 

 CWMHT + Sapl. Dens. 3 3299.1 612.7 0 0.21 

 Sapl. Dens.  HW Prop. 3 3445.4 759.0 0 0.17 
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Figure 1.5. GLM model predictions of sapling probability of browsing across varying coarse woody 

material (CWM) heights, hardwood proportions, and sapling densities. Six scenarios are presented to 

illustrate the effects of the hardwood proportion  sapling density interaction: probability of browsing 

when all the saplings are hardwoods, probability of browsing when 50% of the saplings are hardwoods, 

and probability of browsing when none of the saplings are hardwoods for both the first (Q1, panel a) 

and third (Q3, panel b) quartile of sapling density (number per plot). Shading indicates 95% confidence 

intervals.  

1.4 Discussion 
 

Our results demonstrate that post-disturbance salvage logging created important differences in 

CWM abundance and height distribution when compared to un-salvaged areas, and that these 

differences in turn likely contributed to changes in sapling composition and browsing intensity. As such, 

our study addresses important knowledge gaps surrounding regeneration success post disturbance, as 
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well as the role of CWM in restricting herbivory in wind disturbed areas. Although biological legacies of 

disturbance, such as CWM, are widely recognized as key components of ecosystem resilience (Johnstone 

et al. 2016), this work is among the first to demonstrate the importance of these structural legacies in 

minimizing impacts of herbivory on the post-disturbance sapling community. 

1.4.1 Forest Structure 
 
Structural differences between salvage and blowdown areas remained consistent with those 

reported by Fraver et al. (2017) eight years earlier at this same site. For example, we observed CWM 

volume and mean CWM height in the blowdown to be considerably greater than those in the salvaged 

treatment. Few studies have reported CWM heights or height distributions following severe 

disturbance. Those that have also included repeated measurements, which clearly show height 

reductions over time due to decay and settling. Morimoto et al. (2021) found that mean CWM height 

decreased significantly from 0.98 m to 0.38 m after 10 years, and Barker Plotkin et al. (2013) report a 

dramatic height reduction after 20 years (their Figure 2.4). Although our study sampled different 

blowdown plots than those of Fraver et al. (2017), we note that the mean CWM height had apparently 

decreased from 0.61 m to 0.50 m over the nine years between inventories. Although the elevated CWM 

following blowdown diminishes over time, it may provide an exclosure effect for a critical period (years 

or decades) during which saplings escape browsing via girth and height growth (Zonneyville et al., 2022). 

This elevated CWM, as well as greater CWM volumes, clearly distinguishes blowdown from salvage and 

control treatments.   

1.4.2 Sapling Communities  
 
Our results indicate that regeneration differences among treatments are both structural and 

compositional in nature. We note, however, that greater abundance of saplings of more advanced size 

classes in the blowdown may have been the result of reduced browsing (hence, faster growth) or larger 
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seedlings or saplings that existed prior to the blowdown. Compositionally, hardwood saplings were 

more abundant in the more open light conditions of the blowdown and salvaged treatments when 

compared to control treatments. At the species level, Acer rubrum was more common in salvaged areas, 

while Abies balsamea was more common in blowdown areas. This finding is notable considering the life-

history traits of these species. Acer rubrum can behave as both an early- and late-successional species 

with an affinity for disturbed sites (Abrams, 1998), while Abies balsamea, a shade-tolerant conifer, was 

one of the two dominant canopy species prior to the tornado (the other being Picea rubens). The 

greater abundance of Abies balsamea regeneration relative to that of Picea rubens, even in Picea rubens 

dominated stands, is well reported given that its regeneration is more robust and responds more 

aggressively to large canopy openings than does Picea rubens (Seymour 1992; Dumais and Prévost 

2014). Similar compositional and structural differences between blowdown and salvage treatments are 

well documented in previous salvage logging studies (Royo et al., 2016; Taeroe et al., 2019; Li et al., 

2023). However, we acknowledge a potential bias in our study (as well as in most previous browsing 

studies): seedlings that had been completely consumed would not have been tallied, as no part would 

have been visible (Mosbacher and Williams 2009). The magnitude of this bias remains unknown.     

1.4.3 Browse Response  
 
Perhaps the most notable finding from our study was a documentation of an exclosure effect. 

Although previous studies have documented the use of logging slash to physically restrict ungulate 

browse (Grisez, 1960; Hagge et al., 2019; Smallidge et al., 2021), ours appears to be the first to model 

the importance of retaining post-blowdown CWM in situ to protect saplings from browsing.  

The vertical distribution of CWM in the un-salvaged treatment, represented in our model as 

mean CWM height, appears to restrict access by moose. For example, consider a plot with average 

sapling density, 100% hardwood saplings, and a mean CWM height of 65 cm. Despite the observed 
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preference for hardwoods, model predictions suggest saplings in a plot with such elevated CWM would 

have only a 7% probability of being browsed. The observed effect of mean CWM height on probability of 

browsing is not as strong as that of hardwood proportion. For example, a plot with average sapling 

density of 100% hardwoods would require a mean CWM height of 38 cm to restrict the probability of 

browsing to 50%. The assumption that the higher vertical distribution of CWM in the un-salvaged 

treatment restricted access by moose is supported by studies demonstrating that snow depth limits 

moose movements: Melin et al. (2023) found that movement rates decreased markedly in snow depths 

> 40 cm, and Kelsall (1969) found that movements were ‘severely restricted’ at depths > 70 cm. Only the 

blowdown treatment had significant numbers of CWM pieces positioned above these critical heights. 

Studies on moose feeding preference indicate that nutrient-poor taxa like Picea species are less 

preferred than nutrient-rich deciduous taxa (Pastor et al., 1998) or favored winter browse species like 

Abies balsamea (Hidding et al., 2012). For example, consider a plot with an average sapling density of 

108 saplings, a mean CWM height of 0 cm, and a sapling composition of 100% hardwoods. Under such 

conditions, model predictions suggest that a given sapling would have a 97% probability of being 

browsed. Alternatively, a sapling in a plot with the same sapling density, no hardwoods, and a mean 

CWM height of 0 cm would have a 43% probability of being browsed. These scenarios highlight that the 

presence of hardwoods vastly increases the likelihood of browsing.  

Nevertheless, the sapling density  proportion of hardwood interaction was the best predictor 

of moose browse overall. The proportion of hardwoods becomes less important under high sapling 

densities. This interaction is most pronounced when sapling density is low. When hardwood proportion 

and sapling densities are both low, browsing is also low. In contrast, sapling type (hardwood or 

softwood) matters less when sapling density is high. This finding suggests that moose preferentially 

browse hardwoods (as above), but when hardwoods are unavailable, they browse softwoods heavily in 
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areas with high sapling density. This finding is supported by McLaren et al. (2000) who found more 

instances of moose browse on Abies balsamea in un-thinned stands containing a greater density of 

hardwood saplings.  

Treatment effects are not named explicitly in our model, yet we did observe significant 

differences in browsing response among the treatments. Our results align with those from previous 

studies demonstrating that sapling species composition becomes less important in the presence of 

physical barriers (Konôpka et al., 2021; Milne-Rostkowska et al., 2020). For example, although the 

blowdown had sapling density and composition (including palatable species) comparable to those in the 

salvage treatment, the likelihood of browsing was substantially lower in the blowdown. 

1.5 Conclusions  
 

As we anticipate a future with more frequent and intense climate-related disturbances, 

situations for which salvage logging is considered will increase in tandem (Lindenmayer et al., 2008). 

Numerous studies have shown that salvage influences the trajectory of forest regeneration (D’Amato et 

al., 2011; Kleinman et al., 2017; Santoro & D’Amato, 2019), with desirable outcomes in some situations 

(Royo et al., 2016; Zonneyville et al., 2022), and undesirable outcomes in others (Taeroe et al., 2019). 

Results from our study system indicate that salvage logging simplified CWM structure and altered 

regeneration structure and composition relative to blowdown conditions. These alterations, evident 

early in stand development, may influence forest structure and composition for decades, as seen in 

previous studies (Mabry and Korsgren, 1998; Sass, et al. 2018; Li et al., 2023). Further, results suggest 

that retaining post-blowdown CWM in situ created an exclosure effect, thereby protecting saplings from 

browsing. Such protection has the additional benefit (not addressed in our study) of reducing browse-

induced stem deformities, such as forks and brooms (Bergeron, et al. 2011), which persist as the 

damaged trees mature, thus reducing their commercial value. Importantly, rates of tree community 
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recovery, as quantified by sapling composition and diameter distributions, were greater in un-salvaged 

areas, highlighting important interactions between CWM legacies and resilience to disturbance. In areas 

where ungulate browse presents a significant threat to regeneration, managers should consider leaving 

deadwood in place to act as a natural exclosure. However, the potential benefits of leaving CWM in 

place to protect tree regeneration, as well as provide additional ecological services, must be weighed 

against the use of salvage logging to mitigate subsequent catastrophic disturbance such as fire. Given 

the wide range of disturbance types and post-disturbance conditions possible, we encourage further 

exploration of regeneration outcomes following salvage operations. 
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CHAPTER 2 

UNDERSTORY VEGETATION RESPONSE TO POST-TORNADO SALVAGE LOGGING 

In an era of increasing natural disturbances, successful tree regeneration has grown more 

difficult to achieve. Disturbance notably alters forest microclimates, creating open canopy conditions 

that might promote growth of undesirable understory communities adept at outcompeting tree 

seedlings. Salvage logging, a common management response to disturbance, may further impede 

regeneration success. In 2013, a rare tornado in northcentral Maine, USA, and subsequent salvage 

operation created three clear ‘treatments’ for evaluation of post-disturbance understory regeneration: 

blowdown, blowdown followed by salvage logging and an undisturbed control. Ten years post tornado, 

we inventoried understory vegetation within each of these treatments. We used hemispherical 

photographs to characterize canopy openness and installed sensors to track temperature and soil 

moisture throughout a growing season. Results indicate distinct understory community differences 

among each of the treatments, with the salvage treatment supporting a higher richness and abundance 

of early successional, shade intolerant taxa, while the blowdown and control treatments were 

characterized by later successional, shade tolerant taxa. Abundance of conifer regeneration was notably 

lower in plots with high abundance of Rubus idaeus or Pteridium aquilinum. Ordination results suggest 

that canopy openness and surface temperature fluctuations were the primary factors associated with 

these compositional differences. This study furthers our understanding of the interactions among 

disturbance, microclimate, and understory communities, highlighting the need for increased 

consideration of long-term effects following salvage logging. 

2.1. Introduction  

Tree regeneration success has recently grown more difficult to achieve as forests face 

compounding pressures from climate change, invasive species, forest pathogens, forest fragmentation 

and herbivory (Miller et al., 2023, Dey et al., 2019). In addition, natural disturbances such as 
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windstorms, insect outbreaks, and fire hinder the ability of forest practitioners to control regeneration 

outcomes. As we anticipate an increase in the frequency and severity of natural disturbances (Dale et 

al., 2001; Johnstone et al., 2016; Seidl et al., 2017), post-disturbance management gains additional 

relevance.  

Salvage logging, a common management response following natural disturbances, remains 

controversial, as published literature is inconclusive regarding its effect on tree regeneration 

(Lindenmayer et al., 2008). Studies suggest salvage logging can enhance site preparation and the 

establishment of shade intolerant hardwoods (Nelson et al., 2008; Royo et al., 2016; Slyder et al., 2020). 

Other studies suggest it can create conditions more favorable to ungulate herbivory (Hagge et al., 2019; 

Konôpka et al., 2021; Morimoto et al., 2021), can impair microsite conditions for seedling survival 

(Marañón-Jiménez et al., 2013) and can increase competition with understory vegetation (Jonášová & 

Prach, 2008; Palm et al., 2022). The disagreement among these studies highlights existing knowledge 

gaps surrounding this issue, in part because the influence of salvage logging appears to be system 

dependent.  

Although several studies have investigated the influence of salvage harvesting on microclimate 

conditions (Marcolin et al., 2019; Thorn et al., 2014), this topic remains relatively understudied given the 

importance of microclimate on tree regeneration (Campanello et al. 2007). The role of forest canopies in 

buffering environmental extremes, and hence maintaining understory microclimates and plant 

communities, has recently gained much attention (De Frenne et al., 2021; Sanczuk et al., 2023). Coarse 

woody material (CWM) contributes to this buffering effect by providing shade and reducing the warming 

of soil surfaces, decreasing evaporation and maintaining soil moisture (Devine & Harrington, 2007; 

Goldin & Hutchinson, 2015; Marañón-Jiménez et al., 2013). For example, in the years immediately 

following a post-fire salvage operation, Marcolin et al. (2019) found that salvage logged sites had higher 
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soil temperature and lower soil moisture compared to un-salvaged sites, creating less favorable 

environments for seed germination.  

Alterations to microclimate may also make conditions more favorable for the growth of 

recalcitrant understory vegetation (Royo & Carson, 2006). For example, germination of Rubus species is 

triggered by daily temperature fluctuations (Donoso & Nyland, 2006; Marcuzzi & Demartinez, 1993; 

Suzuki, 1997). Similarly, Pteridium aquilinum (L.) Kuhn (bracken fern) emergence is closely related to 

daily temperature fluctuations and increased light (Cody & Crompton, 1975; Engelman & Nyland, 2006). 

These native, shade intolerant species (Hart & Chen, 2006) frequently become established post-harvest 

in our study region and are thought to inhibit tree regeneration (Donoso & Nyland, 2006; Engelman & 

Nyland, 2006; Royo & Carson, 2006), although the extent to which this occurs has not been well 

documented. Understanding the links between salvage logging, microclimate conditions and 

regeneration may provide a broader understanding of mechanisms influencing post-salvage tree 

regeneration.  

A series of events beginning in 2013 provides an ideal setting to address connections between 

salvage logging, microclimate conditions and understory vegetation. In July of 2013, a tornado struck the 

northeastern portion of Baxter State Park, Maine, USA, causing significant canopy loss to an 

approximate 200-ha swath of mixed-species conifer forest (Fraver et al., 2017). A portion of this area 

was salvaged that winter (2013-2014) while other areas were left untouched. This series of events 

generated three clear “treatments”: tornado blowdown, blowdown followed by salvage logging, and 

undisturbed control. In this study, we compare these three treatments with respect to understory 

vegetation and microclimate conditions.  

 The goal of this study is to understand how salvage logging following severe wind disturbance 

alters understory plant communities and microclimates. Our objectives explore (1) understory 
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community differences among undisturbed, blowdown and salvage conditions, (2) relationships 

between conifer sapling abundance and early successional, recalcitrant species, and (3) relationships 

between microclimate factors and understory communities. The observational nature of this study 

prevents us from determining mechanistic links between vegetation and microclimate, however our 

results provide a valuable addition to our understanding of post-salvage conditions.  

2.2 Methods 

2.2.1 Field Sampling  

Our study was conducted within the Baxter State Park Scientific Forest Management Area (SFMA) of 

northcentral Maine, USA (Figure 2.1). Established in 1955, this 12,000 ha tract is maintained to 

demonstrate sustainable forest management practices (Whitcomb, 2008). The mean annual 

temperature of the SFMA is 4.4 °C with an average of 1084 mm of annual precipitation distributed 

evenly throughout the year (PRISM Climate Group, 2022). Topography in the SFMA ranges from 244 to 

390 m a.s.l., and soils are derived from glacial till. The tornado of July, 2013, with windspeeds exceeding 

40 m/s, caused extensive canopy loss in a 200-ha swath of forest in the SFMA (Fraver et al., 2017). By 

comparing structural characteristics of the control stands to those of the blowdown immediately post-

disturbance (see Fraver et al. 2017), we estimate that the tornado reduced basal area by 87% and tree 

density by 85%. Salvage harvesting in portions of the wind-damaged area began in the winter of 2013-

2014 using a fixed-head cut-to-length processer and forwarder, with slash left on site (Fraver et al., 

2017).  

 Three treatments (blowdown, blowdown plus salvage, and undamaged control; Figure 2.1) were 

initially identified and inventoried in the summer of 2014 (Fraver et al., 2017). Prior to the tornado, 

these stands were dominated by red spruce (Picea rubens Sarg.) and lesser components of balsam fir 

(Abies balsamea (L.) Mill), northern-white cedar (Thuja occidentalis L.), eastern white pine (Pinus strobus 

L.), red maple (Acer rubrum L.) and paper birch (Betula papyrifera Marshall) (Fraver et al., 2017). Control 
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stands were chosen for their similarity in composition and proximity to blowdown and salvage sites. 

Although many of these stands had experienced prior management (light partial harvests ca. 20 years 

before the blowdown), pre-blowdown differences in structure and composition among stands was 

deemed negligible based on pre-blowdown inventories and post-blowdown woody debris and stump 

surveys (Fraver et al., 2017).  

 

Figure 2.1: Treatment and plot locations within the Scientific Forest Management Area (SFMA), Baxter 

State Park, Maine, USA. Orange and blue polygons show the extent of tornado damaged patches, dots 

indicate plot locations, stars indicate plots containing TMS-4 sensors. Sampled units color coded by 

treatment: control, blowdown, and salvage (blowdown followed by salvage). The western border of map 

is the western border of the SFMA. Contour lines in meters. 
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 Approximately nine years post-tornado (summer 2022), these stands were revisited to assess 

sapling composition, deadwood structure, browse intensity, and microclimate response across the 

treatments (Chapter 1). Fifteen plots per treatment were designated randomly in ArcGIS with occasional 

on-the-ground adjustments made based on the location of recent harvests not seen in aerial imagery 

(Chapter 1). On May 21st, 2022, TMS-4 soil moisture and temperature sensors (Wild et al. 2019) were 

installed within three randomly selected plots per treatment. In July and August of 2023, 30 of the 

original 45 plots (10 per treatment) were revisited to inventory understory plant communities. That is, 

each of the sensor plots and seven additional randomly selected plots were inventoried per treatment.  

Within each of the 30 understory vegetation plots, eight 1  1 m vegetation frames were placed 2.5 

and 5 m from plot center in each cardinal direction. Percent cover of all herbaceous plants, ferns, 

graminoids, tree regeneration (stem diameter at breast height < 10 cm) were estimated for all taxa 

rooted within each frame and covering > 1% of the area. Percent cover of exposed rock and deadwood 

unsuitable for plant colonization (undecayed and/or elevated logs) was recorded in the field; during data 

processing the cover of plants in these frames was adjusted account for this unsuitable area. To avoid 

observer bias, the same observer estimated percent cover for each quadrat.  

Three TMS-4 sensors were installed within each of the nine sensor plots, one at plot center, and two 

offset 5.5 m east and west of the center. Each TMS-4 sensor monitored soil moisture and provided 

continuous temperature data from 6 cm below the soil surface, and 2 cm and 15 cm above the soil 

surface. Sensors were programed to record data every 15 minutes and were left to collect data through 

the growing season (collected October 22nd, 2022). The TMS-4 sensors have a resolution of 0.063°C and 

an accuracy of ± 0.5 °C. 

 Canopy openness was also measured during the summer of 2023. Hemispherical photographs 

were taken at each of the 30 plot centers (1 m above forest floor), using a Nikon Coolpix 995 camera 
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with a hemispherical lens adapter. Photographs were processed using Gap Light Analyzer software 

(Frazer et al., 1999) to produce a canopy openness value (i.e., percent of open sky). 

2.2.1 Data Analysis 

 To examine gradients in understory community composition across treatments, plot-level 

importance values (mean of relative percent cover and relative frequency, eight subplots pooled) were 

calculated for each species. Trends in understory species composition were analyzed by Non-metric 

Multidimensional Scaling (NMDS) ordination, based on Sørensen (Bray-Curtis) dissimilarity, using the 

vegan package in R (Oksanen et al., 2022). The Multi-Response Permutational Procedure (MRPP) in 

vegan was used to test for differences among treatment groups based on understory community 

composition. Pairwise treatment comparisons in MRPP were calculated with Sørensen’s dissimilarity, 

including a Bonferroni adjustment, using the R package RVAideMemoire (Hervé, 2022). Indicator species 

analysis was performed on species importance values to determine which species influenced patterns in 

the ordination and MRPP results. This test was conducted in the R package indicspecies (Cáceres & 

Legendre, 2009) using a point biserial correlation coefficient tested at α = 0.05.  

To assess the potentially negative relationship between recalcitrant understory species (Rubus 

idaeus L. and Pteridium aquilinum) and conifer regeneration (Abies balsamea, Picea rubens, Pinus 

strobus, Thuja occidentalis, pooled), we used linear regression based on importance values. Conifer 

species were lumped for this analysis to obtain adequate sample size for analysis, in addition to being 

the dominant overstory species in the undisturbed control and representing the most valuable 

commercial species in the SFMA. Rubus idaeus and Pteridium aquilinum were chosen as predictor 

species for this analysis because of their association with disturbance conditions and abundance across 

the study area.  
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To understand environmental factors driving the ordination, a secondary ordination was 

conducted on plots containing sensors. One blowdown sensor plot was removed from all analysis as an 

outlier in both understory composition and microclimate characteristics. The influence of nine variables 

on the gradients in community composition depicted in the ordination were examined in vegan: soil 

surface temperature, surface temperature fluctuation, soil moisture (all from TMS-4 sensors), canopy 

openness, saplings abundance, coarse woody material (CWM) volume, slope, aspect, and elevation. We 

were particularly interested in temperature fluctuation because several disturbance-dependent species 

in this region, such as Rubus spp. and Prunus pensylvanica, use such fluctuations as a cue for 

germination post-disturbance (Suzuki, 1997; Laidlaw 1987). Variables collected at the subplot level were 

averaged by subplot and analyzed at the plot level. Additional microclimate variables from the TMS-4 

sensors (soil temperature, air temperature and associated fluctuations) were not included in analyses, 

as these variables were highly correlated with surface temperature data. Potential treatment 

differences among microclimate variables were evaluated using separate analyses of variance (ANOVA) 

in R (R Core Team, 2021). 

2.3 Results  

We found 68 vascular plant taxa representing 29 families (See Appendix Table B1 ). Distinct 

patterns in understory taxa emerged by treatment. The salvage treatment had the greatest number of 

taxa (N=51), followed by blowdown (N=45), followed in turn by control (N=39) (Figure 2.2a). These 

results are also reflected by mean richness by treatment, as well as in the species-area curves, which 

show this consistent richness pattern (salvage>blowdown>control) across all scales evaluated (Figure 

2.2b). A large proportion of taxa (N=26, or 38% of total) were shared among treatments (Figure 2.2a), 

and the salvage treatment had the largest number of unique taxa (N=15), several of which were 

significant indicator species (Table 1). Two non-native species (Hieracium caespitosum Dumort. and 
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Veronica officinalis L.) were encountered in low abundance in the salvage treatment. Veronica officinalis 

is notably an indicator of the salvage treatment (see below). 

 

Figure 2.2: a. Species-area curves for each treatment (note: salvage = blowdown followed by salvage). 

Insert: Venn Diagram displaying the number of unique and shared taxa within each treatment. b. Taxa 

richness by treatment.  

NMDS ordination based on species importance values indicated distinct species groupings 

according to treatment (Figure 2.3). Pairwise treatment comparisons in MRPP showed compositional 

differences between each treatment (p < 0.001, all comparisons). Indicator species analysis suggested 

that these patterns were driven by multiple species (Table 1.1). Canada mayflower (Maianthemum 

canadense Desf.) and starflower (Lysimachia borealis (Raf.) U.Manns & Anderb.) were indicators of 

control conditions, while wood ferns (Dryopteris) and northern white-cedar (Thuja occidentalis) 

seedlings were indicators of blowdown conditions. Nine taxa were indicators of salvage conditions, with 
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paper birch (Betula papyrifera), sedge species (Carex) and raspberry (Rubus idaeus) showing the 

strongest correlation (all p < 0.001). Control and blowdown treatments shared two indicator species in 

common, balsam fir (Abies balsamea; p = 0.001), and bluebead lily (Clintonia borealis Aiton (Raf.); p = 

0.030 The salvage treatment did not share indicator species with other treatments. Overall, the 

ordination revealed greater plot-to-plot variation in composition (i.e., greater spread of plots in 

ordination space) within both disturbed treatments (Figure 2.3). 

 

Figure 2.3: NMDS ordination results based on understory taxa importance values, outlined by treatment: 

control, blowdown, and salvage (blowdown followed by salvage). Location of indicator species (p < 

0.001 and Pteridium aquilinum) plotted along both axes. Vectors indicate associations between 

significant environmental variable predictors and ordination axes.   
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Table 2.1: Indicator taxa for each treatment with associated p-values sorted by treatment and increasing 

p-values. Ellenberg Index for shade tolerance rankings sourced from Humbert et.al (2007), where lower 

numbers indicate greater tolerance. Note: salvage = blowdown followed by salvage.  

Taxa Treatment Association  p-value Ellenberg Index 

Maianthemum canadense Control 0.001 4 

Lysimachia borealis Control 0.004 3 

Dryopteris spp.  Blowdown 0.002 3 

Thuja occidentalis Blowdown 0.016 3 

Abies balsamea Control + Blowdown 0.001 3 

Clintonia borealis Control + Blowdown 0.030 4 

Betula papyrifera Salvage 0.001 7 

Carex spp. Salvage 0.001 3-9 

Rubus idaeus  Salvage 0.001 7 

Pteridium aquilinum Salvage 0.011 6 

Veronica officinalis Salvage 0.021 -- 

Diervilla lonicera Salvage 0.030 6 

Prunus pensylvanica Salvage 0.033 9 

Vaccinium spp. Salvage 0.045 7 

Fragaria virginiana Salvage 0.048 9 

 

Linear regressions revealed significant negative relationships between conifer seedlings and 

both Rubus idaeus and Pteridium aquilinum abundance, based on importance values (Figure 2.4), with 

the Rubus idaeus model displaying a slightly better fit (R2 0.25 vs 0.22, Figure 2.4). We note that both 
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Rubus idaeus and Pteridium aquilinum were only present in ca. 50% of the plots, which reduces 

predictive ability (conifers were present in all plots). Both Rubus idaeus and Pteridium aquilinum were 

also associated with greater canopy openness and the salvage treatment. Rubus idaeus was present in 

90% of salvaged plots, while Pteridium aquilinum was present in 60% of salvaged plots.  

 

Figure 2.4: Conifer importance plotted against Rubus idaeus and Pteridium aquilinum importance, 

including linear regression line with shaded 95% confidence interval fit to the data. Adjusted R2 and p-

value displayed for both regressions. Plots color-coded by treatment: control, blowdown, and salvage 

(blowdown + salvage) and scaled according to canopy openness from hemispherical photos.  
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Two environmental variables were identified as significant predictors of the ordination results: 

surface temperature fluctuation and canopy openness (Table 2.2). Both variables were positively 

correlated with each other and the salvage treatment (Figure 2.5c, R2 = 0.66), with canopy openness 

appearing to have a slightly stronger effect on ordination results. ANOVA analysis followed by Tukey 

HSD results suggested that canopy openness conditions differed significantly among treatments, with 

salvage displaying the greatest openness, and controls the least (Figure 2.5b, p = 0.002 (control vs. 

blowdown), p < 0.001 (salvage vs control and blowdown). Daily temperature fluctuations also differed 

significantly among treatments, following the same pattern (Figure 2.5a, p < 0.001).  

Table 2.2: Environmental predictor variables assessed for the ordination, sorted from lowest to highest 

p-value. Association with the two ordination axes, R2 and p-value displayed. Significant predictors (p 

<0.05) indicated with asterisk.   

Environmental Predictor NMDS 1 NMDS 2  R2 p-value 

Canopy openness  -0.976 0.216 0.87 0.024* 

Surface temperature fluctuations -0.909 -0.417 0.73 0.044* 

Mean surface temperature  -0.939 -0.343 0.54 0.123 

Soil moisture  -0.354 0.935 0.55 0.138 

Sapling density  -0.983 0.186 0.54 0.148 

CMW volume  0.212 - 0.977 0.34 0.387 

Aspect 0.292 0.956 0.28 0.414 

Slope -0.085 -0.996 0.15 0.686 

Elevation -0.808 0.589 0.02 0.950 
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Figure 2.5: a. Daily temperature fluctuation (plots averaged by treatment) throughout the 2022 growing 

season, color-coded and summarized by treatment. b. Canopy openness by treatment. Different lower-

case letters (panel a and b) indicate significant treatment differences at α < 0.05. c. Daily temperature 

fluctuation plotted against canopy openness, including linear regression line with shaded 95% 

confidence interval fit to the data. Adjusted R2 and p-value displayed for the linear regression. 
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2.4 Discussion  

Our results identify significant deviations in community composition among control, blowdown 

and salvage conditions and point to possible mechanisms for these differences. While differences in 

understory vegetation following salvage have been demonstrated in prior studies, ours is among the 

first to connect compositional patterns with microclimate and post salvage conditions. We also 

demonstrate that the abundance of conifer regeneration was related to increased Rubus idaeus and 

Pteridium aqulinum abundance, suggesting that these disturbance-adapted species inhibited conifer 

establishment.   

 Observed compositional differences among treatments generally align with the findings of 

previous studies. Several studies observed reductions in species richness following salvage due to 

landscape homogenization (Rumbaitis del Rio, 2006; Kleinman et al., 2017; Michalová et al., 2017). This 

was not the case on our site, as species richness in the salvage treatment was higher than that of the 

blowdown and control, due to a greater abundance of shade-intolerant taxa, similar to findings reported 

by Lang et al. (2009) and Slyder et al. (2019). Indicator taxa for the salvage treatment were notably all 

shade intolerant, while indicator taxa for control and blowdown were all shade tolerant (Humbert et.al, 

2007; Table 2.1). This relationship between salvage logging and greater abundance of shade intolerant 

species is well established (D’Amato et al., 20011; Elliott et al., 2002; Georgiev, 2022; Palik & Kastendick, 

2009). Furthermore, few studies have identified increases in non-native taxa following salvage logging 

relative to blowdown conditions (e.g., Rumbaitis del Rio, 2006). Our finding of two non-native taxa in the 

salvage treatment is notable, yet the low abundance of these species precludes robust analysis.  

 One critical finding from this study is the relationship between tree seedling abundance and the 

abundance of recalcitrant understory species. Specifically, we found plots with lower conifer seedling 

abundance (assessed by importance values) were related to greater Rubus idaeus and Pteridium 
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aquilinum importance. In their review of Rubus species in northern hardwood forests (USA), Donoso and 

Nyland (2006) found that Rubus reduced the regeneration abundance of northern hardwood stands by 

40% or more. Nevertheless, they also found that hardwood species tended to escape Rubus competition 

5-7 years post-disturbance, forming closed canopy conditions in 10-15 years (Donoso & Nyland, 2006). 

Our findings for conifer species do not support the escape from competition reported by these authors, 

as the reduced conifer importance in our plots containing Rubus idaeus suggests that conifer 

regeneration is still inhibited by Rubus nine years post-disturbance. An earlier study in northern Maine 

found Abies balsamea seedlings overtopped by Rubus idaeus exhibited growth reductions when 

compared to open-grown controls (Fox 1986). Similarly, Ruel (1992) found that the competitive effects 

of Rubus can persist for 25 years.  

Pteridium aquilinum is known to inhibit tree regeneration and seedling growth, with evidence 

from studies worldwide (e.g., Dolling 1996; Humphrey & Swaine 1997; Hartig & Beck 2003). It primarily 

reproduces vegetatively, allowing it to quickly colonize disturbed areas (Cody & Crompton, 1975). 

Working within our region, George and Bazzaz (1999) found that Pteridium aquilinum litter can create an 

impenetrable barrier preventing germinating seeds reaching the soil beneath and restricting emergence 

for seeds germinating below the litter layer. These authors also report that the presence of Pteridium 

aquilinum reduced light levels necessary for the emergence of tree seedlings. Additionally, Pteridium 

aquilinum contains allelopathic chemicals that reduce growth of Populus spp. and Prunus serotina 

seedlings (Dolling, 1996; Engelman & Nyland, 2006; Horsley, 1977). Monitoring of salvaged sites into the 

future is necessary to determine the extent to which Rubus idaeus and Pteridium aquilinum might 

impede or delay growth of preferred tree species. 

 The primary environmental drivers of the understory community response outlined above were 

identified as canopy openness and surface temperature fluctuation. Both factors are well-known to 
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influence seed germination; however, the influence could be detrimental or beneficial depending on the 

species. For example, germination failure has been observed in Picea abies (a close relative of Picea 

rubens) seeds when exposed to high temperature fluctuations (Leinonen et al., 1993), while germination 

of Rubus species and Pteridium aquilinum benefits from temperature fluctuations and high light (Cody & 

Crompton, 1975; Engelman & Nyland, 2006; Suzuki, 1997). Importantly, these factors were associated 

with treatments, as salvage conditions displayed the highest average surface temperature fluctuations 

and greatest canopy openness (Figure 2.5), a finding also reported by (Marcolin et al., 2019). The 

reduced canopy openness in blowdown (relative to salvage) is partially due to shading by deadwood 

(Palik & Kastendick, 2009) and largely due to remaining undisturbed advance regeneration. Interestingly, 

soil moisture, a factor often correlated with CWM abundance (Devine & Harrington, 2007; Goldin & 

Brookhouse, 2015; Harrington et al., 2013) was not identified as a significant driver of plant community 

composition.   

2.5 Conclusions 

As with other salvage logging studies, management recommendations must be context- and 

priority-oriented. The greater taxonomic richness found in salvaged areas, along with the greater 

abundance of shade intolerant species, indicates that salvage logging may be a useful tool for promoting 

species diversity (Georgiev, 2022) or regenerating shade intolerant hardwoods (Royo et al., 2016). 

Conversely, our results demonstrate that the microclimate changes caused by salvage logging may lead 

to colonization by recalcitrant species and, hence tree regeneration delays. These potential 

consequences of salvage must be weighed against the benefits associated with greater canopy 

openness. Several studies recommend a middle-ground, leaving patches of blowdown within salvaged 

areas (as done by SFMA managers) to promote landscape heterogeneity and species diversity (Kleinman 
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et al., 2017, Georgiev, 2022). Our findings support this recommendation, although we caution that 

management decisions are site- and objective-specific.  

These results are an important first step in understanding the mechanistic links between 

understory communities, environmental conditions, and salvage harvesting. As we anticipate a future 

with more frequent and severe disturbances (Dale et al., 2001; Johnstone et al., 2016; Seidl et al., 2017), 

exploring the consequences of post-disturbance management becomes more critical. Our results clearly 

indicate distinct community assemblages among control, blowdown, and salvage conditions. Further, we 

show that reduced abundance of conifer seedlings and saplings are related to Rubus idaeus and 

Pteridium aquilinum. Our discussion of the microclimate factors that might drive this compositional 

response requires further examination. Direct observation of germination and microclimate response 

immediately post-salvage would provide a deeper understanding of this phenomenon. Further, longer 

term monitoring of post-salvage conditions is necessary to understand how these conditions might 

impede or delay establishment of late-successional communities.   
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APPENDIX 

Table A.1. Full table of models tested for predicting sapling browsing probability. Models ranked 

according to AICc scores using the variables CWMHT (mean coarse woody material height above forest 

floor), Sapl. Dens. (sapling density), HW Prop. (hardwood proportion, logit transformed), aspect, 

distance to nearest road, elevation, and slope. k = number of model parameters; AICc = corrected Akaike 

information criterion; ΔAICc = change in Akaike information criterion relative to the top model; AICc wt. 

= corrected Akaike information criterion weights; R2 = McFadden’s pseudo R2 for a binomial distribution. 

Top five models shown in Table 1.2. 

Model Predictors k AICc ΔAICc AICc wt. R2 

CWMHT + Sapl. Dens.  HW Prop. 5 2686.4 0 1 0.36 

CWMHT + Sapl. Dens. + HW Prop. 4 2799.6 113.2 0 0.33 

CWMHT + HW Prop. 3 2804.4 118.0 0 0.33 

CWMHT + Sapl. Dens. 3 3299.1 612.7 0 0.21 

Sapl. Dens.  HW Prop. 3 3445.4 759.0 0 0.17 

Sapl. Dens.  + HW Prop. 4 3446.86 760.5 0 0.17 

HW Prop. 2 3450.8 764.5 0 0.17 

CWMHT 2 3497.6 811.2 0 0.16 

Aspect 2 3837.9 1151.6 0 0.07 

Canopy Openness 2 4045.9 1359.5 0 0.03 

Distance to Road 2 4130.7 1444.4 0 0 

Sapl. Dens. 2 4134.5 1448.1 0 0 

Elevation 2 4147.8 1461.5 0 0 

Slope 2 4158.6 1472.2 0 0 
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Table B.1. Importance values for all understory taxa found during the study.  

         

 Control Blowdown Salvage   Control Blowdown Salvage 

ARALIACEAE     
 DRYOPTERIDACEAE    

     Aralia hispida 0 0 0.006       Dryopteris spp. 0.021 0.209 0.072 

     Aralia nudicaulis  0.223 0.076 0.108  ERICACEAE    

ASTERACEAE    
      Chimaphila umbellata  0 0 0.006 

     Anaphalis margaritacea 0 0.013 0.013       Gaultheria hispidula 0 0.020 0.007 

     Eurybia macrophylla 0.013 0 0.021       Galutheria procubens  0.026 0.029 0.013 

     Hieracium caespitosum 0 0 0.021       Kalmia angustifolia  0 0 0.008 

     Petasites frigidus 0.007 0.007 0       Orthilia secunda 0.026 0.020 0.006 

     Solidago spp. 0.007 0.014 0.040       Vaccinium corymbosum 0.007 0 0 

     Symphyotrichum novae- angliae 0 0 0.006       Vaccinium spp.  0.080 0.034 0.175 

BETULACEAE    
 FAGACEAE    

     Alnus incana 0 0 0.007      Fagus grandifolia 0 0.007 0 

     Betula alleghaniensis 0.030 0.034 0.008  GROSSULARIACEAE    

     Betula cordifolia 0 0.043 0       Ribes spp. 0 0.007 0 

     Betula papyrifera 0 0.040 0.215  LILIACEAE    

     Corylus cornuta 0.008 0.008 0       Clintonia borealis  0.122 0.101 0.020 

CAMPANULACEAE     
      Medeola virginiana 0.007 0 0 

     Lobelia inflata 0 0 0.006       Streptopus lanceolatus 0 0 0.013 

CAPRIFOLIACEAE    
 MELANTHIACEAE    

     Diervilla lonicera 0 0.027 0.114       Trifolium aureum 0 0 0.006 

     Linnaea borealis 0.155 0.213 0.149       Trillium erectum 0.026 0.006 0.013 

     Lonicera canadensis 0 0.027 0.013  MYRSINACEAE    

CORNACEAE    
      Lysimachia borealis 0.112 0.006 0.013 

     Chamaepericlymenum  
     canadense 0.263 0.100 0.211 

 
OLEACEAE    

CUPRESSACEAE    
      Fraxinus americana 0 0 0.006 

     Thuja occidentalis 0.008 0.049 0  ONOCLEACEAE    

CYPERACEAE    
      Onoclea sensibilis 0 0 0.023 

     Carex spp.  0.020 0.019 0.164      
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Table B.1 continued 

         

 Control Blowdown Salvage   Control Blowdown Salvage 

ORCHIDACEAE    
 

SALICACEAE    
 

     Cypripedium acaule 0.006 0 0       Populus grandidentata 0 0 0.007 

     Goodyera tesselata 0.007 0 0       Populus tremuloides 0 0.009 0 

OSMUNDACEAE     
      Salix spp.  0 0.006 0 

     Osmunda claytonia 0.016 0.007 0.007       Acer pensylvanicum  0.023 0 0 

 OXALIDACEAE          Acer rubrum 0.312 0.193 0.307 

     Oxalis montana 0.039 0 0       Acer saccharum 0.030 0.013 0.021 

PLANTAGINACEAE          Acer spicatum 0.021 0.007 0 

     Veronica officinalis 0 0 0.034  THELYPTERIDACEAE    

PINACEAE     

      Parathelypteris  
     noveboracensis 0.007 0.006 0.007 

     Abies balsamea  0.246 0.325 0.084       Phegopteris connectilis 0 0.028 0.020 

     Pinus strobus 0.013 0.013 0.043  VIOLACEAE    

     Picea rubens 0.280 0.146 0.146       Viola renifolia 0 0.009 0 

RANUNCULACEAE    
 WOODSIACEAE    

     Coptis trifolia 0.078 0.020 0.013       Gymnocarpium dryopteris 0 0 0.013 

ROSACEAE    
     

     Amelanchier spp. 0.014 0 0.013      

     Aronia floribunda 0 0 0.006      

     Fragaria virginiana  0 0.013 0.060      

     Prunus pensylvanica 0 0.048 0.106      

     Rubus pubescens 0.019 0.065 0.075      

     Rubus dalibarda 0.039 0.007 0      

     Rubus idaeus 0.015 0.055 0.305      

     Sorbus americana 0.020 0.024 0.013      

RUSCACEAE    
     

     Maianthemum canadense 0.319 0.092 0.097      
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