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ABSTRACT OF THESIS 

 

 

LANGUAGE MODELS FOR RARE DISEASE INFORMATION EXTRACTION: 

EMPIRICAL INSIGHTS AND MODEL COMPARISONS 

 

End-to-end relation extraction (E2ERE) is a crucial task in natural language 

processing (NLP) that involves identifying and classifying semantic relationships between 

entities in text. This thesis compares three paradigms for end-to-end relation extraction 

(E2ERE) in biomedicine, focusing on rare diseases with discontinuous and nested entities. 

We evaluate Named Entity Recognition (NER) to Relation Extraction (RE) pipelines, 

sequence to sequence models, and generative pre-trained transformer (GPT) models using 

the RareDis information extraction dataset. Our findings indicate that pipeline models are 

the most effective, followed closely by sequence-to-sequence models. GPT models, despite 

having eight times as many parameters, perform worse than sequence-to-sequence models 

and significantly lag pipeline models. Our results also hold for a second E2ERE dataset for 

chemical-protein interactions. Our study is the first to conduct E2ERE for the RareDis 

dataset, and all dataset and code used in our experiments are publicly available at 

https://github.com/shashank140195/Raredis. 

 

KEYWORDS: Natural Language Processing, End-to-end Relation Extraction, Large 

Language Models, GPT, Rare Diseases, Sequence-to-sequence model  
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CHAPTER 1.  INTRODUCTION 

 

The last few years have seen a significant increase in biology and medical studies 

and due to this, there is now a huge amount of health-related data available on the internet 

for people to use and study. As biomedical data is rapidly growing, the challenge is to come 

up with methods that help us make sense of this information. Turning this information from 

unstructured text into a structured form by hand is a time-consuming and hard task. As a 

solution, one way of extracting information is through data mining, which is the process of 

finding new patterns and relationships in large sets of data that we didn't know about 

before. Another way to get information from biomedical data is by using Artificial 

Intelligence (AI). AI is a term that encompasses the use of computers to mimic intelligent 

behavior with minimal human intervention which, in the subsequent years, became the 

foundation of Natural language processing (NLP). NLP emerged in the 1950s which deals 

with the interaction between computers and humans through natural language. It involves 

the development of algorithms and models that enable people to interact with computers 

using their everyday language. This makes it easier for people to interact with technology 

resulting in an overwhelming amount of textual data generated every day. NLP enables the 

automated processing and understanding of this vast amount of unstructured text, allowing 

for the extraction of valuable insights and information.  

NLP has two main subcategories or tasks: Natural language Understanding 

(NLU) and Natural language generation (NLG) (Reiter and Dale 2000). The NLU 

module transforms the natural language into a structured format (formal representation) to 

derive meaning from the input. An NLG module may/may not utilize this structured format 
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to produce the response for the desired task (Tseng, et al. 2020). NLU and NLG are two 

independent tasks that can work individually or can be combined. Tasks such as text 

classification and sentiment analysis are subcategories of NLU in comparison to recent 

sequence-to-sequence tasks such as machine translation and text summarization which fall 

under NLG (Nadkarni 2011) (Dreisbach 2019) (Baby 2017) (Liddy 2001). 

When utilized in the biomedical field, NLP is revolutionizing the healthcare. The 

use of NLP in medicine spans various areas encompassing research, direct patient care, 

diagnostics, clinical coding, and patient-facing interfaces. For example, NLP has shown 

success in diagnostic settings, where it has been used to classify radiology reports to 

determine the appropriate clinical response, thereby reducing the need for human input 

(Kolanu 2020) (Swartz 2017). NLP can be combined with computer vision tasks as 

demonstrated by (Gupta, Jiang and Imran 2023) in their work of creating medical reports 

from chest-Xray images.  Hence, we can leverage NLP for various medical problems 

and in this thesis, the focus is on applying NLP techniques for rare diseases.  

The National Institutes of Health (NIH) estimates that around 7,000 rare diseases 

impact between 25 and 30 million Americans, which translates to approximately 1 out of 

every 10 Americans. ((NORD 2019) Around 95% of the known rare diseases currently lack 

any treatment options ((NORD 2019). Due to the scarcity of these diseases, it can be a 

challenge to diagnose and treat—nearly 95% of rare diseases have no known cure, and the 

number of drugs available for treating these conditions are limited to 100 (Klimova, et al. 

2017). The average diagnostic delay is around seven years (Global Genes n.d.). Many rare 

diseases are genetic in nature and are caused by mutations in a single gene. However, 

because there are thousands of rare diseases, each with unique symptoms and genetic 
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causes, developing effective treatments can be a significant challenge. Developing a 

structured compendium of information about rare diseases has the potential to help 

expedite search, discovery, and hypothesis generation for these conditions.  

Manually building and updating a knowledge base from existing publications on 

rare diseases is difficult for biomedical researchers. Simple indexing and keyword 

searching are not enough for complex searches. Therefore, automatic methods that can 

understand human languages and find important information are becoming crucial for 

managing biomedical information. This task involves identifying terms like diseases, 

drugs, genes etc., and extracting information about what is said or predicted about these 

terms, including relationships and inferences among biomedical substances and other 

hidden information. 

BioNLP, or biomedical natural language processing, stands as a specialized 

subfield of NLP that has taken on the task of extracting information from the rapidly 

expanding corpus of biomedical text. The impetus behind BioNLP is clear: a typical 

hospital generates 50 petabytes of data every year and with medical data doubling every 

73 days, according to World Economic forum 2024 traditional manual methods for data 

analysis are no longer viable (Forum 2024). This huge amount of data includes clinical 

notes, lab tests, medical images, sensor readings, genomics, and operational and financial 

information. However, 97% of all the data produced by hospitals globally each year is not 

used (Forum 2024). Researchers in BioNLP are developing and applying sophisticated 

algorithms to parse and understand the language of life sciences. These tools are becoming 

essential in extracting meaningful patterns from datasets that are too vast for human 

analysis. The practical applications of BioNLP are extensive. It enhances drug discovery 
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processes by identifying potential drug targets and adverse drug reactions. In precision 

medicine, BioNLP supports the tailoring of treatments based on a patient’s genetic profile 

by extracting relevant information from their genomic data. Additionally, in the context of 

public health, it enables the monitoring and analysis of disease outbreaks by sifting through 

vast amounts of epidemiological data. 

Despite these advances, BioNLP still faces considerable challenges. The 

specialized language of biomedicine, with its ever-growing lexicon, nuances, and context-

dependent meanings, presents an ongoing challenge for NLP systems. As it continues to 

evolve, the focus is also shifting toward improving the interpretability and trustworthiness 

of NLP models. This is particularly critical in medicine, where decisions based on 

algorithmic recommendations can have profound implications on patient care and 

outcomes. Moreover, the ethical use of patient data for NLP training necessitates rigorous 

privacy safeguards and transparent data governance policies. 

In sum, BioNLP has become an essential catalyst in the processing and utilization 

of biomedical information, driving innovations in healthcare and advancing our 

understanding of complex biological systems. It stands not only as a testament to the power 

of artificial intelligence but also as a beacon for its future potential in transforming the 

landscape of biomedicine. 

As mentioned earlier, there are many tasks in the field of biomedical NLP that are 

being extensively being worked on. In this thesis, we focus on a task called relation 

extraction (RE) for rare diseases. CHAPTER 2 presents an exposition on RE literature 

including efforts well known in BioNLP community. CHAPTER 3 introduces the rare 

disease RE dataset we use in this thesis. CHAPTER 4 covers all the methods we developed 
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and used for rare disease RE. In CHAPTER 5, we discuss training objectives and RE 

evaluation metrics. After elaborating on training configurations in CHAPTER 6, we 

present and discuss our main results in CHAPTER 7 including a preliminary error analysis. 

We hint at potential future directions in CHAPTER 8 to further improve upon our main 

results from this thesis.   
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CHAPTER 2. END-TO-END RELATION EXTRACTION 

 

In the digital age, the exponential growth of textual data in the form of news articles, 

publications, blogs, and reports has underscored the necessity of developing techniques 

for automatic information extraction. Information extraction techniques are pivotal for 

enhancing access to and management of the knowledge hidden within extensive text 

corpora. The information that users seek to extract from documents typically falls into two 

categories: named entities and relations. 

A named entity (NE) is usually a word or phrase that denotes a specific real-world 

existence, such as a person, organization, location, or a disease. Named Entity 

Recognition (NER) is the task dedicated to identifying all span/mentions of a particular 

entity type in each set of documents. This process serves as a foundational step in various 

natural language processing (NLP) applications, including information retrieval, question 

answering, and knowledge base construction. 

On the other hand, a relation typically signifies a well-defined connection/link 

between two or more entities. A relation is typically expressed as a triple that has a subject 

entity and an object entity connected via a predicate (or relation type) as in the example 

(subject: atorvastatin, predicate: treats, object: hyperlipidemia). The task of RE involves 

identifying mentions of such relations of interest within each sentence of the given 

documents. This task is vital for constructing semantic networks and for populating 

relational databases from unstructured text sources. 
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2.1 End-to-end Relation Extraction 

 

Many RE efforts in the past assume that the entity spans are already provided as 

part of the input and hence addressed an easier problem of relation classification (RC) 

(Zeng, et al. 2014) (Zhou, et al. 2016) (Kavuluru, Rios and Tran 2017). However, a more 

realistic setting is the ability to extract both entity spans and associated relations from the 

raw text where entities are not provided. The integration of NER and RE tasks leads to the 

concept of End-to-End Relation Extraction (E2ERE). E2ERE aims to simultaneously 

identify named entities and their relations within a text, thereby streamlining the 

information extraction process. With the recent deluge of deep neural networks (or deep 

learning methods), the NLP community has been focusing more on E2ERE efforts (Miwa 

and Bansal 2016) (Zhang, Zhang and Fu 2017) (Pawar, Bhattacharyya and Palshikar 2017) 

(Tran and Kavuluru 2018). Efforts have also been expanded from single sentence E2ERE 

to a more complex setting of extractions at the document level, involving cross-sentence 

relations, where entities expressed in different sentences are to be linked (Peng, et al. 2017) 

(Yao, et al. 2019). 

2.2 Biomedical Relation Extraction 

 

Cohen and Hunter (K. a. Cohen 2008) highlight the exponential growth of 

biomedical literature, particularly in PubMed/MEDLINE publications. Manually 

converting this vast amount of information into a structured format is also extremely 

difficult due to the sheer volume of publications. Automatic RE can be a valuable tool in 
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addressing this issue. It has the potential to reduce the time researchers spend reviewing 

literature. Additionally, it can cover a significantly larger number of scientific articles than 

what is typically reviewed, making the process more efficient.  

Disease and treatment mechanisms are often driven at the biological level by 

protein-protein and chemical-protein interactions while clinical relations such as drug-

disease treatment relations and disease-symptom causative relations are helpful in 

providing care. Most new relational information is first discussed in textual narratives 

(e.g., scientific literature, clinical notes, or social media posts), and extracting and storing 

it as triples enable effective search systems (Dietze and Schroeder 2009), high-level 

reasoning, hypothesis generation, and knowledge discovery applications (Henry and 

McInnes 2017). According to Craven and Kumlien (Craven and Kumlien 1999) and Xu 

and Wang (Wang 2014), biomedical literature and clinical narratives contain a wealth of 

interactions between entities mentioned in the text. These interactions can be valuable for 

various applications, including bio-molecular information extraction, pharmacogenomics, 

and identifying drug-drug interactions (DDIs), as noted by Luo et al. (Luo, Uzuner and 

Szolovits 2017). This rapid expansion presents a promising research opportunity for 

applying information and data mining techniques. As such, NER and RE have become 

standard tasks in biomedical natural language processing (BioNLP) (Kilicoglu, et al. 

2020).  

In the biomedical domain, RE is challenging because there is a shortage of labeled 

data, and the costs of annotation are high, requiring the expertise of domain specialists 

(Amin, et al. 2022). Additional intricacies arise when named entities are discontinuous or 

when their spans overlap (Li, et al. 2021). For example, consider the string “accumulation 
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of fats (lipids) called GM 2 gangliosides,” where entity span “accumulation of GM 2 

gangliosides” is discontinuous with a gap involving outside words. In the example phrase 

“central pain syndrome” both the full three-word string and the middle word “pain” can 

constitute two different entities, where the latter entity is fully nested in the longer 3-word 

entity. 

2.3 A History of methods for Relation extraction 

 

RE has been around since the 1980s and has developed over time. The Message 

Understanding Conference (MUC) was held seven times from 1987 to 1998, specifically 

in the years 1991 (MUC3) (MUC3 '91: Proceedings of the 3rd conference on Message 

understanding 1991), 1992 (MUC4) (MUC4 '92: Proceedings of the 4th conference on 

Message understanding 1992), 1993 (MUC5) (MUC5 '93: Proceedings of the 5th 

conference on Message understanding 1993), 1995 (MUC6) (MUC6 '95: Proceedings of 

the 6th conference on Message understanding 1995), and 1998 (MUC7) (Seventh Message 

Understanding Conference (MUC-7): Proceedings of a Conference Held in Fairfax, 

Virginia, April 29 - May 1, 1998 1998). These conferences played a big role in advancing 

Relation Extraction technology. The task of Named Entity Recognition was introduced in 

the sixth Message Understanding Conference (MUC-6) in 1995. 

In recent years, many methods have been suggested to extract relationships from 

biomedical text. These methods range from simple rule-based pattern approaches to more 

complex ones that use deep neural networks. These approaches vary in several ways, such 

as how they use NLP techniques to analyze the input text and the methods they use to learn 



10 

 

extraction rules. The techniques used in these systems can be divided into various groups: 

co-occurrence, pattern or rule-based, machine learning (ML)-based, Neural Network 

based and last Large Language models-based   approaches. In the following sections, 

we will discuss the most common characteristics of these methods. 

The evolution of relation extraction  is rooted in rule-based systems, wherein early 

efforts were guided by manually crafted rules derived from linguistic and domain-specific 

insights (Riloff and others 1993) (Appelt, et al. 1993) (Brin 1998) (Muslea and others 

1999) (Ciravegna 2001) (Shaalan and Raza 2008) (Agichtein and Gravano 2000) (Jayram, 

et al. 2006) (Shen, et al. 2007)). These methods are also known as hand-built pattern 

methods. In these methods, a set of extraction patterns is defined for a predetermined set 

of relations. These extraction patterns are then matched with the text. If a pattern matches, 

then a relation corresponding to that pattern is identified in the text. These systems aimed 

to identify and classify semantic relations within the literature. One major drawback of 

these methods is that when moving to a new domain, you need to redefine a new set of 

target relations and either create new extraction patterns or provide new hand-labeled 

training examples. This reliance on human involvement is a significant disadvantage of 

these approaches.  

As researchers experimented with different techniques to extract meaningful 

information from text, parallel to the rule-based,  they came up with co-occurrence method, 

which is the easiest way to find a relationship between two things that appear in the same 

sentence, abstract, or document. This method assumes that if two things are often 

mentioned together, they probably have some connection. However, since two things can 

be mentioned together without any real connection, most systems use a scoring method 
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based on how often they appear together to ignore those connections that just happen by 

chance. The rarer the connection is, the more the system thinks the two things are related. 

Co-occurrence methods usually find a lot of connections but might not be very accurate 

since biomedical texts often have complex sentences with many things mentioned, but 

only a few of those things are connected. In co-occurrence-based methods, the strength of 

the relationship between two entities is typically measured by some statistical metric, such 

as pointwise mutual information (PMI) or the Jaccard index. These metrics quantify how 

much more frequently the entities appear together than would be expected by chance. As 

the field developed, the strictness of pure rule-based systems was replaced by more flexible 

approaches, paving the way for the use of more advanced techniques. Even though rule-

based and co-occurrence methods have been mostly overshadowed by the advanced 

computational methods, the early systems were essential. They provided important steps 

toward the sophisticated, AI/ML driven relation extraction systems we use today. 

The next significant step in the evolution of RE methods was the incorporation of 

machine learning techniques. This shift represented a move away from the rigid, rule-

based systems towards more flexible and scalable approaches. Machine learning allowed 

for the automatic identification of patterns in annotated corpora, making it possible to 

generalize from specific examples and thus, handle the growing volume and complexity 

of biomedical literature. One of the early applications of ML in biomedical RE was 

demonstrated by Cohen and Hersh in 2005, who explored the use of various machine 

learning algorithms, including Support Vector Machines (SVMs) and Decision Trees, for 

text mining tasks in biomedicine. Their work underscored the potential of ML to automate 

the extraction process and improve the efficiency and accuracy of information retrieval 
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(A. a. Cohen 2005). The K-means clustering approach proposed by Chen et al. (2005) 

utilizes a feature selection mechanism based on frequency and entropy. This mechanism 

helps in identifying important context words for different types of relations. Despite the 

advances brought about by ML, challenges remained, particularly in the form of data 

scarcity. The reliance on annotated datasets for supervised learning posed a bottleneck, as 

the manual annotation of biomedical texts was time-consuming and expensive. This led 

researchers to explore unsupervised and semi-supervised learning approaches, which 

could leverage unannotated data to overcome the limitations of purely supervised methods. 

NLP methods for RE further expanded by leveraging syntactic phenomena of 

biomedical texts. This progress met the demand for more advanced methods to deal with 

the linguistic complexity of biomedical texts. It enabled the extraction of more detailed 

and contextually relevant information by exploiting the grammatical structure (syntactic 

parse) of sentences, facilitating the identification of relationships between entities. One 

notable example of NLP integration is the work of Krallinger et al. (2008), who highlighted 

the importance of combining text mining and information extraction techniques for linking 

genes to literature. Their approach leveraged NLP to improve the extraction of gene-

disease associations, demonstrating the potential of NLP to enhance the accuracy and 

depth of biomedical RE (Krallinger, Valencia and Hirschman 2008). The use of NLP also 

allowed for the development of more sophisticated feature extraction methods, which were 

crucial for machine learning models. By encoding linguistic and semantic information as 

features, these models could better capture the context and meaning of relationships in the 

text. Furthermore, the integration of NLP facilitated the move towards more advanced 

machine learning and deep learning models. Techniques such as word embeddings, which 
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represent words in a continuous vector space, enabled the capturing of semantic 

similarities between terms, further improving the performance of RE systems. Overall, the 

addition of NLP techniques was a key step in the development of biomedical RE. It 

improved the field's ability to extract meaningful information from complex biomedical 

texts and set the stage for the creation of more advanced computational methods. 

The arrival of deep learning marked a new era in biomedical RE. It used advanced 

neural network architectures to understand complex patterns and relationships in the data. 

This change led to more precise and detailed extraction of relationships from biomedical 

texts, setting the stage for more advanced and automated analysis in the field. Deep neural 

network architectures, such as Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Gated Recurrent 

Units (GRUs), have been instrumental in advancing biomedical RE. These architectures 

are capable of handling complex data patterns and dependencies, making them highly 

effective for extracting meaningful relationships from biomedical texts.  

Convolutional Neural Networks (CNNs), traditionally used in image processing, 

also found application in RE. CNNs were particularly adept at identifying local patterns 

and were used to extract features from sentences. (Zeng, et al. 2014) illustrated the 

potential of CNNs in relation classification, highlighting their ability to capture semantic 

and syntactic features from text without the need for explicit feature engineering. In this 

approach, the RE task is viewed as a multi-class classification problem. The model is 

designed to assign a specific relation class to a sentence that contains a pair of mentioned 

entities. CNNs are great at picking up patterns that are close together, but they're not so 

good at understanding patterns that are far apart or in a sequence over time. To address 
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this limitation, Recurrent Neural Networks were among the first deep learning models to 

be applied to RE. Their ability to process sequential data made them particularly well-

suited for handling textual information. RNNs could capture dependencies between words 

in a sentence, allowing for a better understanding of the context in which biomedical 

entities and their relations appeared. However, standard RNNs were plagued by issues 

such as the vanishing gradient problem, which made it challenging to capture long-range 

dependencies in text. This limitation was addressed by the introduction of Long Short-

Term Memory (LSTM) networks, a variant of RNNs. LSTMs incorporated memory cells 

that allowed them to maintain information over long sequences, making them more 

effective in modeling the complex sentence structures often found in biomedical literature. 

The work of (Zhou, et al. 2016) demonstrated the efficacy of bidirectional LSTM networks 

in biomedical RE, showcasing their ability to capture both past and future context in text. 

The deep learning phase moved away from the traditional methods that were based on 

specific features. Instead, it focused on automatically learning patterns directly from the 

data. This shift allowed for the development of more robust and scalable RE systems, 

capable of handling the growing complexity and volume of biomedical literature. The 

advancements in deep learning, particularly the use of LSTM, RNN, and CNN 

architectures, set the stage for further innovations in the field, leading to more accurate 

and efficient extraction of biomedical relations. 

With the publication of the 'Attention is All You Need' paper  (Vaswani, et al. 2017) 

which introduced the transformer architecture, a significant milestone was marked in the 

evolution of RE. These models, with their ability to capture long-range dependencies and 

contextual nuances, set new benchmarks in the field. BERT (Bidirectional Encoder 
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Representations from Transformers), introduced by (Devlin, et al. 2019), was a 

transformative model that leveraged the transformer architecture to pre-train deep 

bidirectional representations from unlabeled text. This pre-training, followed by fine-

tuning on specific tasks, allowed BERT to achieve state-of-the-art performance across 

various NLP tasks, including RE. The success of BERT paved the way for its biomedical 

variant, BioBERT, developed by (Lee, et al. 2020). BioBERT was pre-trained on a large 

corpus of biomedical texts, which enabled it to capture domain-specific language and 

semantics. This specialization made BioBERT highly effective in biomedical RE, 

outperforming previous models and setting new standards in the field. Following the 

success of BERT and BioBERT, other transformer-based models emerged, each 

contributing to the advancement of biomedical RE. For example, XLNet (Yang, et al. 

2019), an extension of BERT, introduced permutation-based training to capture 

bidirectional context more effectively. In the biomedical domain, models like BlueBERT 

(Peng, Yan and Lu 2019), a variant of BERT pre-trained on both biomedical and general-

domain corpora, further enhanced performance in RE tasks by leveraging a broader range 

of linguistic knowledge. For example, models like ClinicalBERT (Huang, Altosaar and 

Ranganath 2019) and BioELECTRA (Kanakarajan, Kundumani and Sankarasubbu 2021) 

have been tailored for clinical and biomedical texts, respectively. These models are trained 

on specific subsets of biomedical literature, such as clinical notes or research articles, to 

capture the unique language used in different subdomains of biomedicine. The 

development of large language models (LLMs) like GPT-3 (Brown, et al. 2020) and its 

biomedical adaptations further pushed the boundaries of what was possible in biomedical 

RE. These models, with their immense scale and generative capabilities, brought new 
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levels of understanding and contextual awareness to the task of extracting relations from 

biomedical texts. The era of transformer-based models and LLMs in biomedical RE 

represents a significant leap forward in the field's ability to process and interpret complex 

biomedical literature. These models have not only improved the accuracy and efficiency 

of RE but also opened new possibilities for exploring intricate relationships in biomedical 

data. 

Building on the advancements brought by biomedical Large Language Models 

(LLMs) such as PMC-Llama (Wu, et al. 2023), BioGPT (Luo, et al. 2022) and BioMedLM 

(Bolton, et al. 2024), the field of natural language processing witnessed a groundbreaking 

development with the introduction of ChatGPT (GPT 3.5). This model, a variant of the 

Generative Pre-trained Transformer (GPT) architecture by Open AI, has gathered 

significant attention for its flexibility and capability to perform a wide array of tasks, 

including biomedical relation extraction. It has become a benchmark for comparing the 

performance of various models in tasks including biomedical relation extraction. Its ability 

to comprehend and generate contextually relevant responses has set a high standard in the 

field.  

2.4 The E2ERE Task 

 

Given a document, the output of E2ERE is typically a set of asserted triples 

(𝑚1, 𝑟, 𝑚2) in it where 𝑚1is the subject entity span, 𝑚2 is the object entity span, and 𝑟 is 

a predicate or relation type from a predetermined fixed set of relations R. Typically, there 

is no requirement to identify entity spans that do not participate in a relation. However, in 
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addition to the entity spans, the associated entity type is also expected to be predicted. 

Additionally, predetermined rules may be available with regards to the types for entities 

allowed to take the role of a subject or an object for each predicate in R. When such rules 

are not available, they can be inferred from training data. The key point is that the input 

provided to E2ERE is raw text without any pre-spotted entities.  
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CHAPTER 3. DATASET 

 

3.1 RareDis dataset 

 

As discussed in Chapter 1, building a compendium of rare disease information 

necessitates developing NLP models for RE that can scour through biomedical literature. 

To this end, Maritinez-deMiguel et al. (Martı́nez-deMiguel, et al. 2022) created an 

annotated corpus for rare disease-related information extraction. This resource is based 

on the database of articles about rare diseases maintained by the National Organization 

for Rare Disorders (https://rarediseases.org/rare-diseases/). The dataset contains six 

entity types and six relation types, and the annotation process is described in detail by the 

authors (Martı́nez-deMiguel, et al. 2022). 

3.2 Entity and Relation types 

 

The six entity types in RareDis are: disease, rare disease, symptom, sign, 

anaphor, and rare skin disease with frequencies shown in the Table 3.1. There are six 

relation types (with counts shown in the Table 3.2): produces (relation between any 

disease entity and a sign/symptom produced by that entity),  

increase_risk_of (relation between a disease entity and another disease entity where the 

subject disease increases the likelihood of suffering from the object disease), is_a (relation 

https://rarediseases.org/rare-diseases/).
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between a given disease and its classification as a more general disease), is_acron (relation 

between an acronym and its full or expanded form), is_synon (relation between two 

different names designating the same disease) and anaphora (relation of an anaphor entity 

with its antecedent entity). Here an anaphor entity refers to pronouns or pronominal 

constructs (e.g., ‘it” or “this disease”) that point to a named entity that is already mentioned 

in the preceding context (the “antecedent” of the anaphora relation). An example is shown 

in Figure 3.1.  

 

 

Figure 3.1 Examples of is_a and anaphora relations in the RareDis dataset. 

 

 

The dataset contains discontinuous and overlapping/nested entities as discussed 

with examples in Section 1; Table 3.3 throws light on the relative frequency of these 

situations where “flat” corresponds to continuous entities. While in both tables in this 

section we show training, development, and test set counts, the original dataset consisted 

of only training and development datasets where the authors claim to withhold the test set 

for a future shared task, which has not happened yet. We split up their training dataset into 

training and development for our experiments and their development split became our test 

split. 



20 

 

 

Table 3.1 Statistics of entity types in the RareDis corpus 

TYPE TRAINING DEV TEST 

SIGN 2945 798 528 

RARE DISEASE 2533 624 480 

DISEASE 1369 278 230 

ANAPHOR 913 195 151 

SKIN RARE DISEASE 393 58 45 

SYMPTOM 275 44 24 

 

Table 3.2 Statistics of relation types in the RareDis corpus. 

TYPE TRAINING DEV TEST 

PRODUCES 3256 850 556 

ANAPHORA 918 195 151 

IS_A 544 149 88 

INCREASE_RISK_OF 161 8 22 

IS_ACRON 142 44 34 

IS_SYNON 66 14 16 

 

Table 3.3 Counts of entity types in the corpus. 

ENTITY TYPE TRAINING DEV TEST 

FLAT 7103 1666 1212 

DISCONTINUOUS 528 136 103 

OVERLAPPED 720 166 112 

NESTED 77 29 31 
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3.3 Modifications to the original dataset  

 

While exploring the dataset, we observed some annotation issues that we confirmed 

with the creators of the RareDis dataset through email communication. Next, we describe 

what they are and how we fixed them at a high level in this section. We created a custom 

train, validate, test split of the full dataset after fixing the following errors and made it 

available as a Google Drive link on our GitHub page for this work. 

 

3.3.1 Relation argument error 

 

Figure 3.2 shows an example of how the annotations are provided for each instance. 

For this example, we see the entities (T1, . . . , T9) listed first along with types, character-

based offsets, and lexical spans. Next, relations between entities are listed (R1, . . . , R5) 

along with the relation type and the arguments (subject and object). Although there are 

only nine entities, we see for anaphora relation R5, the second argument is T90 with a 

trailing 0 after 9. This happened several times — arguments in relations referring to entity 

IDs that are not present in the preceding entity list. This almost always happened with a 

trailing extra zero. We safely removed that zero and it fixed all these errors, which 

accounted for 9% of the total number of relations. In the example in Figure 2, the anaphora 

relation R5 was referring to the bigram “This disorder”. 
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Figure 3.2 An example of the argument error due to an extra trailing zero in entity IDs. 

 

3.3.2 Span mismatch Error 

 

There were a few occasions (less than 1% of the full dataset) where the character 

offsets for entities captured an extra character than needed or missed the last character of 

a word. We used simple rules to remove the extra character or add the missing character. 

For example, in the sentence “Balantidiasis is a rare infectious disease caused by the 

single-celled (protozoan) parasite Balantidium coli,” the bold phrase was annotated as 

[T24, DISEASE,1272 1289, infectious diseas] with a missing trailing character ‘e’. 
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3.3.3 Offset order error. 

 

For some discontinuous entities where more than one span is part of the full entity, 

the order used for the spans was not left to right and we simply reordered them as such. 
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CHAPTER 4. E2ERE METHODS 

 

4.1 Pipeline: The PURE Approach 

 

PURE by Zhong and Chen (Zhong and Chen 2021) is a span-based model that has 

two different models for NER and RE parts of the E2ERE system. It improved upon prior 

joint modeling approaches even though it separately trains NER and RE models. The main 

argument by Zhong and Chen, the authors of PURE, is that NER and RE need different 

representations of tokens because they need different types of signals to make the 

predictions; and combining the signals can hurt the performance of both. 

One weakness of PURE is that it does not handle discontinuous entities in its NER 

component while it easily handles flat and nested entities. So, we needed to adapt the 

PURE approach to the RareDis setting. Since PURE is pipeline-based, we could simply 

use a different NER model for identifying discontinuous entities and retain the PURE 

model to spot flat and nested entities. Hence, we use a specialized model that was 

exclusively developed for handling discontinuous entities called SODNER (Li, et al. 

2021), which is also a span-based NER model that models discontinuous NER task as a 

classification problem to predict whether entity fragments with gaps ought to be linked to 

form a new entity. To do this, SODNER uses dependency parses of the input document to 

guide a graph convolutional neural (GCN) network (Guo, Zhang and Lu 2019) (Zhang, Qi 

and Manning 2018) that obtains enhanced contextual embeddings to link disparate 
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fragments and form discontinuous entities. Figure 4.1 shows the schematic of the pipeline 

we use. It starts on the left with the SODNER model identifying discontinuous entities. 

 

Figure 4.1 Pipeline approach using SODNER and PURE models for end-to-end relation 

extraction. 

 

Even if SODNER successfully identifies discontinuous entities, PURE’s relation 

extraction model cannot handle them. The PURE relation model puts exactly one start and 

one end entity marker token around each candidate subject (or object) entity span. This 

modified input is passed through the contextual language model (such as PubMedBERT 

(Gu, et al. 2021)) and the marker token embeddings are used to predict the relation type. 

This is reflected by the purple [S:Disease] and [\S:Disease] tokens on the right side of 

Figure 4.1. But SODNER outputs multiple fragments for discontinuous entities. Rather 

than change the PURE relation model architecture, we use the discontinuous entity 

fragments and straightforward rules to convert the input sentence to a modified one where 

the discontinuous entities are rendered in a continuous format. For instance, consider the 
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input, “weakness in the muscles of the arms and legs,” which contains two entities: one 

flat entity, “weakness in the muscles of the arms and legs” and one discontinuous entity, 

“weakness in the muscles of the arms and legs.” Both entities have the gold entity type 

Sign. Our modified new input will read as: “weakness in the muscles of the arms and 

weakness in the muscles of the legs”. This transformed sentence is now input through the 

PURE NER model and then through the PURE relation model (For more details, see 

appendix). 

Neither the PURE NER model nor SODNER can handle cases where the same span 

has more than one entity type (e.g., a span being both a disease and a sign). This is a special 

case of overlapped entities where the overlap is exact, leading to the same span having two 

types. Since most relations involving such spans only use one of the entity types, this has 

not caused major issues in RE evaluation. 

4.2 Sequence-to-Sequence: The Seq2Rel 

 

The Seq2Rel model (Giorgi, Bader and Wang 2022) model uses an encoder-

decoder framework to process the input document and output relations akin to machine 

translation where the source language sentence is ingested into the encoder and the target 

language sentence is output by the decoder one token at a time. Here the target sequence 

is essentially a list of relations. Unlike the machine translation setting where the target is 

a natural language sequence where an order is inherent, relations do not have any order 

among them. Hence, during training an order is imposed on the relations in a document. 

Special tokens are also used to represent entity types. For example, the relation R2 in 
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Figure 3.2 indicates: (Rare disease “Vitamin D Deficiency Rickets”, produces, sign “bone 

disease”), where the entity types are in bold. This will be linearized in Seq2Rel as: Vitamin 

D Deficiency Rickets @RareDisease@ bone disease @Sign@ @PRODUCES@, where 

@ENTITY-TYPE@ and @RELATION-TYPE@ are special tokens indicating entity 

and relation types, respectively. The @ENTITY-TYPE@ tokens are preceded by the 

actual entity spans in the input. If an input does not contain any relations, a special 

@NOREL@ is coded as the output. The order imposed during training is simply the order 

in which the entities occur in the document. This is reflected in Figure 3.2 where relations 

involving entities that occur earlier in the document are annotated before relations that 

involve entities that occur later. This left-to-right order is followed until all relations are 

output followed by a special end of sequence token @END@ signaling that all relations 

have been output. Besides this linearization schema, a “copy mechanism” (Zeng, et al. 

2018) is applied to the decoder, restricting it to generate tokens only from the observed 

input sequence, unlike the full vocabulary of the target language in machine translation. 

This mechanism enables the decoder to output spans of the input text that correspond to 

entities, as well as special tokens representing relation labels that connect these entities. 

The Seq2Rel model  uses a PubMedBERT model as the encoder and a long short-term 

memory (LSTM) network as the decoder. The schematic workflow of seq2rel is shown in 

Figure 4.2. 
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Figure 4.2 Seq2rel input/output flow for Raredis Corpus 

 

4.3 Pretrained Language Models – T5 

 

. T5, developed by Google Research (Raffel, et al. 2020), challenges the 

conventional task-specific architectures by converting every NLP problem into a text-to-

text input-output format. A key aspect of T5 is its baseline pre-training objective. For this, 

a large free text dataset known as the "Colossal Clean Crawled Corpus" also called C4 

(TensorFlow n.d.) was created and random spans of text are masked with the model tasked 

to predict these spans. Unlike masked language modeling in BERT models, each masked 

spans are replaced with only one sentinel token given a unique ID. This approach helps 

the model learn a broad understanding of language and context. This baseline model is 

further trained on a suite a suite of NLP tasks (e.g., sentiment analysis, word sense 
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disambiguation, and sentence similarity) in the text-to-text format. Another significant 

feature of T5 is its scalability, with versions ranging from small (60 million) to extremely 

large (11 billion), allowing it to be tailored to specific computational constraints and 

performance requirements. 

Flan-T5 (Chung, et al. 2022) is an extension of T5 that is instruction fine-tuned on 

1800 tasks. During this phase, the model is finetuned on a diverse range of tasks but with 

instructions provided in natural language. This training method enables Flan-T5 to 

understand and execute tasks based on straightforward instructions, making it more 

flexible and applicable to a wide range of real-world scenarios without requiring extensive 

task-specific data. It is fine-tuned both with and without exemplars (i.e., zero-shot and 

few-shot) and with and without chain-of-thought (Wei, et al. 2022), enabling 

generalization across a range of evaluation scenarios. Please note that unlike Seq2Rel 

architecture, the outputs for T5 model’s variants are expected to following natural sentence 

structures, which are discussed in the next section as they are common to both T5 and GPT 

models. 

4.4 Domain-Specific Pretrained Models – BioMedLM & BioGPT 

 

Generative pre-trained transformers (GPTs) have captured the fascination of the 

public and researchers alike, especially since the introduction of ChatGPT in December 

2022. However, the in-context learning and few-shot capabilities have already surfaced in 

June 2020, when Open AI released GPT-3. Building on the decoder component of the 

transformer architecture with the main objective of autoregressive left to right next token 
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prediction task, they have excelled at text generation tasks (e.g., summarization). 

However, there is a growing interest in assessing their capabilities for language 

understanding tasks including relation extraction. BioGPT and BioMedLM have been pre-

trained from scratch on biomedical abstracts from PubMed and full text articles from 

PubMed Central (from the corresponding subset from Pile (Gao, et al. 2020)) based on the 

GPT-2 model (Radford, et al. 2019). In this effort, we focus on BioMedLM, a 2.7B 

parameter model, comprised of 32 layers, a hidden size of 2560, and 20 attention heads. 

BioMedLM is an order of magnitude larger than BioGPT and nearly twice as large as 

BioGPTlarge. It has been shown to be superior to BioGPT models (including in our 

experiments for this paper where BioGPT underperforms by 10-15% in F-score) and to 

our knowledge is the largest public GPT-style model for biomedicine. Hence, we only 

show BioMedLM results in this manuscript for the sake of clarify and simplicity.  

Unlike Seq2Rel whose sequence generation capabilities are highly constrained to 

terms observed in the input, BioMedLM, T5 and BioGPT are purely generative, and 

supervised finetuning involves using appropriate prompts and output templates. 

Technically, we could simply use the linearization schemas introduced for Seq2Rel. 

However, these generative models generate natural language statements and not unnatural-

looking templates. So, our initial experiments using a Seq2Rel style output schemas have 

failed. So, we considered two types of schemas here: 

 

• rel-is template: This output template is the same as that used by the original 

BioGPT paper for E2ERE: “The relation between subject-span and object-span 

is relationType.noun,” where relationType.noun is the noun form of the 
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predicate. With this template, as an example, the output for the gold relation 

(Wilm’s tumor, is_a, kidney cancer) is: “The relationship between Wilm’s tumor 

and kidney cancer is hyponym”. We can see here that we converted “is a” predicate 

to a noun representation “hyponym” in the template and a similar strategy was 

followed for all predicates. 

 

• natural-lang: We came up with different natural language templates tailored to 

each relation type in RareDis. They are fully specified in Table 4.1, each with a 

representative example. 

 

 

Table 4.1 Natural language templates used to encode RareDis relations as BioMedLM 

outputs. 
RELATION TYPE NATURAL LANGUAGE OUTPUT TEMPLATE 

(AN EXAMPLE FOR THE TEMPLATE) 

PRODUCES ent1Span is a ent1Type that produces ent2Span, as a ent2Type 

(Asherman’s syndrome is a rare disease that produces abdominal pain, as a 

symptom) 

ANAPHORA The term ent2Span is an anaphor that refers back to the entity of the ent1Type 

ent1Span. 

(The term “it” is an anaphor that refers back to the entity of the disease encephalitis) 

IS_SYNON The ent1Type ent1Span and the ent2Type ent2Span are synonyms. 

(The disease diastrophic dysplasia and the rare disease disastrophic dwarfism are 

synonyms) 

IS_ACRON The acronym ent1Span stands for ent2Span, a ent2Type. 

(The acronym LQTS stands for long QT syndrome, a rare disease) 

INCREASES_RISK_OF The presence of the ent1Type ent1Span increases the risk of developing the ent2Type 

of ent2Span. 

(The presence of the disease neutropenia increases the risk of developing the disease 

infections) 

IS_A The ent1Type ent1Span is a type of ent2Span, a ent2Type. 

(The rare skin disease Bowen disease is a type of skin disorder, a disease) 
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CHAPTER 5. TRAINING OBJECTIVES AND EVALUATION METRICS 

 

5.1 Evaluation Metrics 

 

In this work, we evaluate models using famous F1 score. 

• True Positives (TP): True positives are instances in which a model correctly 

predicts the positive class. In other words, they are the cases where the model 

identifies an instance as positive, and it is indeed positive. 

 

• False Positives (FP): False positives are instances in which a model incorrectly 

predicts the positive class. In other words, they are the cases where the model 

identifies an instance as positive, but it is negative. 

 

• False Negative (FN): False negatives are instances in which a model incorrectly 

predicts the negative class. In other words, they are the cases where the model fails 

to identify an instance as positive, even though it is positive. 

 

With the concepts of true positives (TP), false positives (FP), and false negatives 

(FN) established, we can now introduce two important metrics for calculating F1 score for 

evaluating the performance of our models: precision and recall. 
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• Precision: It measures the accuracy of the positive predictions made by the model. 

It is the ratio of true positives to the total number of instances predicted as positive 

(the sum of true positives and false positives). Precision can be expressed 

mathematically as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: Recall, also known as sensitivity, measures the model's ability to correctly 

identify all actual positive instances. It is the ratio of true positives to the total 

number of actual positive instances (the sum of true positives and false negatives). 

Recall can be expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The F1 score is a specific case of the more general Fβ score, where β is a parameter 

that determines the relative importance of precision and recall. The F1 score is the 

harmonic mean of precision and recall when β is set to 1, giving equal weight to both 

metrics. The formula for the Fβ score is: 

𝐹𝛽 = (1 + 𝛽2)  ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

When β = 1, this formula simplifies to the F1 score: 

𝐹1 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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5.2 Training Objective 

 

5.2.1 Cross Entropy  

For the pipeline model, the training objective is the well-known cross entropy 

function for both NER and RE components. Here we use multi-class cross entropy loss 

function as our goal is to predict the right class among several classes. The general formula 

for cross entropy loss function is as below: 

 

𝐿(𝑦̂, 𝑦) = − ∑ 𝑦𝑐 log(𝑦̂𝑐)
𝐶

𝑐=1
 

 

Here 𝒚𝒄  is the true label for class c, and  𝒚̂𝒄 is the predicted probability for class 

c. The logarithmic function penalizes the model more when it is confident and wrong, 

assigning a high probability to the incorrect class. 

 

5.2.2 Auto Regressive Language model loss 

 

The term "auto" implies self, and "regressive" indicates using past data. Therefore, 

an autoregressive model progresses by using its previous predictions as part of the input 

for the next prediction. For example, given an incomplete sentence with words 

x1, x2 … xn−1 an autoregressive model aims to predict the next word xn.The model looks 

at the sequence x1, x2 … xn−1 and predicts the probability of each possible word in the 
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vocabulary that could come next. If the true next word is xn the model ideally should assign 

a high probability to xn. 

The loss function for this prediction, the autoregressive loss, specifically penalizes 

the model if it assigns a low probability to the true next word. Mathematically, for each 

step t in our sequence, we calculate the negative log probability of the true word xt , given 

the words that came before it: 

 

𝐿 = − ∑ log 𝑃(
𝑇

𝑡=1
xt | x1, x2 … xt−1) 

 

In this formula, 𝑃(xt | x1, x2 … xt−1) represents the probability the model assigns 

to the actual word xt  at position t, conditioned on the true preceding sequence of words. 

By summing up these negative log probabilities (Cross entropy per target) across the 

sequence and minimizing this sum during training, we are effectively guiding the model 

to give the highest probability to the actual next word in the sequence. The more details in 

Chapter 9.7 of Jurafsky and Martin (Jurafsky and Martin 2023).  

Also, for evaluation, we note that RareDis annotations are at the span level and 

hence the same exact relation connecting the same entities can occur multiple times if it is 

discussed several times in the document. However, generative models do not keep track 

of the number of times a relation occurs as they are generative and do not operate on spans; 

but the pipeline models output all connections as they operate at the span level. To ensure 

fair evaluation, if the same relation occurs multiple times within an instance, it is collapsed 

into a single occurrence. This is natural and harmless because there is no loss of 

information if duplicate relations are ignored. Since Seq2Rel, BioMedLM and T5 produce 
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sequences, we use regular expressions on top of the output templates and schemas to 

produce the triples we need. For a relation to be counted as correctly predicted, the subject 

and object entity types, their spans, and the relation type all need to exactly match the 

ground truth relation. 
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CHAPTER 6. TRAINING  

 

6.1 Experiment Settings and hyperparameters. 

 

Experiments for the pipeline approach were performed on University of Kentucky’s 

in-house LCC cluster of 32GB GPU. All experiments for Seq2Rel were performed on 

Google Colab Pro+ using an Nvidia A100-sxm4-40gb GPU with access to high RAM. In 

Seq2Rel, we use AllenNLP, an open-source NLP library developed by the Allen Institute 

for Artificial Intelligence (AI2). Fairseq, a sequence modeling toolkit, is used for training 

custom models for text generation tasks for BioGPT on Google Colab Pro. We used 

Lambda Labs to fine-tune BioMedLM and T5 on a single H100 80GB GPU. Next, we 

describe model configurations and hyperparameters. Our settings for learning rate, number 

of epochs, and other hyperparameters are determined based on experiments on the 

validation dataset. 

• Pipeline (SODNER+PURE): We used a batch size of 8, a learning rate of 1e-3, 

and 100 epochs to train the SODNER model for discontinuous entities with a 

PubMedBERTbase encoder. For the PURE NER model, we used PubMedBERTbase 

and trained for 100 epochs, with a learning rate of 1e-4 and a batch size of 8. We 

also experimented with PubMedBERTlarge with the same settings. For the PURE 

relation model, we used both PubMedBERTbase and PubMedBERTlarge as encoders 
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with a learning rate of 1e-5 and trained for 25 epochs with the training batch size 

of 8. 

• Seq2Rel: Training was conducted for 150 epochs, with a learning rate of 2e-5 for 

the encoder (PubMedBERTbase or PubMedBERTlarge) and 1.21e-4 for the 

decoder (LSTM) with a batch size of 2 and a beam size of 3 (for the decoder). 

 

Since we require an exact match for a prediction to be correct, we appended explicit 

natural language instructions to the input for the generative models, directing models to 

generate tokens from the input text: “From the given abstract, find all the entities and 

relations among them. Do not generate any token outside the abstract.” 

 

• BioMedLM: Despite supervised fine-tuning, it is not uncommon for GPT models 

to output strings that were not part of the input. We observed that nearly 3%-7% of 

entities output by BioMedLM did not exactly match ground truth spans. We used a 

batch size of 1 with gradient_accumulation_steps of 16, a learning rate of 1e-5, and 

30 epochs for BioMedLM. 

 

• T5: Using the same output templates used for BioMedLM, we trained T5 3B, Flan-

T5-Large (770M), and Flan- T5-XL (3B). For T5-3B, we used a batch size of 1 

with gradient_accumulation_steps set to 16, lr = 3e-4, 100 epochs, and generation 

beam size of 4. For Flan-T5, we used a batch size of 2 with 

gradient_accumulation_steps set to 16, and the rest of the hyperparameters same as 

T5-3B. For Flan-T5-XL, we used a batch size of 1 with 
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gradient_accumulation_steps set to 16, lr = 3e-4, 100 epochs, and generation beam 

size of 4 with DeepSpeed for CPU offloading of the parameters. 

6.2 Post-Processing 

 

We needed some post-processing tricks to handle the idiosyncrasies of the three 

different models. As we discussed earlier in Section 4.1, for the pipeline models, since 

discontinuous entities are not handled natively by the PURE relation model, we had to 

transform the inputs to render the discontinuous entities in a flat fashion before passing 

them on to the PURE model (More details can be found in appendix). For the Seq2Rel 

model, due to the WordPiece tokenization in BERT models, the output sometimes contains 

extra spaces around hyphens and brackets. To align such output strings with the input text, 

as a post-processing step, we removed these additional spaces, specifically around 

hyphens, curved brackets, and forward slashes. For the rel-is template, T5 and its variant 

were predicting synonym relation with the string “synonyms”; so, as a part of the post-

processing, we replaced with “synonym.”  
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CHAPTER 7. RESULTS AND ERROR ANALYSIS 

 

The main results of the comparison using different models are presented in Table 

7.1. For BioMedLM and T5 models, the ‘copyInstruct’ column in the table indicates the 

additional input prompt discussed earlier in this section where models are directed to only 

generate tokens observed in the input. We observe that the SODNER+PURE pipeline 

(with PubMedBERTbase encoder) produces the best F1-score of 52.2, which is 5 points 

more than the best-performing Seq2Rel model with the PubMedBERTlarge encoder 

(47.15 F1), 5.2 points better than the best-performing model from T5 family (Flan-T5-

large), and 13 points more than best performing BioMedLM model (38.9 F1). The 

pipeline’s performance does not increase when using the PubMedBERTlarge model. For 

Seq2Rel, using PubMedBERTlarge outperforms a model with PubMedBERTbase (44.53 

F1) by 2.5 points, with an increase in both precision and recall. Potentially, the increased 

model capacity of PubMedBERTlarge enables it to capture more complex and subtle 

relationships between medical terms and concepts. However, it is not clear why similar 

gains were not observed with PubMedBERTlarge in the pipeline. 
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Table 7.1 Performances of different models under different settings on the RareDis 

dataset. 

METHOD CONFIGURATION COPY- 

INSTRUCT 

 SCORE  

P R F1 

SODNER+PURE PubMedBERTbase NA 55.99  48.89 52.20 

 PubMedBERTlarge NA 56.20  48.52 52.08 

SEQ2REL PubMedBERTbase NA 47.60  40.90 44.53 

 PubMedBERTlarge NA 51.46  43.51 47.15 

FLAN-T5-LARGE rel-is yes 46.52  46.58 46.55 

 rel-is no 48.63  45.54 47.04 

 natural-lang yes 43.83  42.82 43.32 

 natural-lang no 40.07  40.17 40.12 

T5-3B rel-is yes 41.13  39.36 40.22 

 rel-is no 45.72  41.50 43.51 

 natural-lang yes 44.25  40.71 42.40 

 natural-lang no 37.80  41.21 39.43 

FLAN-T5-XL rel-is yes 45.00  40.82 42.82 

 rel-is no 44.16  38.10 40.91 

 natural-lang yes 44.68  42.87 43.76 

 natural-lang no 42.05  40.87 41.45 

BIOMEDLM rel-is yes 40.19  29.68 34.14 

 rel-is no 42.14  36.1 38.89 

 natural-lang yes 38.64  32.81 35.49 

 natural-lang no 44.22  33.76 38.29 
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The best performance for BioMedLM is an F1 score of 38.89 using the rel-is 

template for prompting the model when copy instructions were not provided. When copy 

instructions are not provided, rel-is does slightly better (<1% F1) and when copy 

instructions are not provided, natural-lang does better job (1.35 of points gain) So looks 

like there is no advantage to using copy instructions. (However, when using the smaller 

BioGPT models, the natural language prompting seemed to perform slightly better than 

the rel-is template.) Note that, BioMedLM’s best performance is still ≈ 6 points lower than 

then Seq2Rel’s best score and 11 points lower than the pipeline score. Note that 

BioMedLM is over eight times larger than our best-performing pipeline model 

(considering it has three encoders based on the encoder PubMedBERTbase, which has 

110M parameters). However, its low performance compared to the pipeline is not 

surprising because GPT models are autoregressive and do not benefit from language 

understanding arising from the bidirectional masked language modeling objective used in 

BERT models. Although the original BioMedLM [27] effort did not perform RE, it reports 

SOTA scores on biomedical Q&A tasks. The smaller BioGPT models were shown to do 

better than BERT models for E2ERE too. Hence, we repurposed them for this RE task and 

as the largest publicly available GPT-based model, BioMedLM outperformed BioGPT 

models [26] by 10–15% in F1 score and we do not see these as worthy of reporting in this 

manuscript. 

The best-performing model from the T5 family is Flan-T5-large with an F1 score 

of 47 using the rel-is template for prompting the model when copy instructions were not 

provided, which is the same configuration that worked best for BioMedLM. It is surprising 
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to see that even though Flan-T5-Large (780M) is much smaller than T5-3B and Flan-T5-

XL (3B), it outperforms the other two in every setting, except Flan-T5-XL with the natural-

lang template. On comparing the same size T5 models (T5-3B and Flan-T5-XL), Flan-T5-

XL performs better in most settings. We believe much larger models (GPT-3, GPT-3.5, 

GPT-4) ought to be used to fully leverage the power of generative LMs. Furthermore, 

some recent results also show that using GPT-style models to generate additional training 

examples to augment the training data may be a more effective way of using them, rather 

than fine-tuning them for RE tasks. 

We also wanted to examine scores per relation type in our models to see if there are 

any predicates for which we are underperforming more than expected. From Table 7.2, we 

notice that recall is less than 5% for increases_risk_of relation type. This is quite awful but 

not surprising given the prevalence of such relations is very small in the dataset (from 

Table 1). But what is very unusual is the F1 of the ‘produces’ relation being less than 50, 

when it constitutes over 60% of all relations in the dataset (from Table 3.2). Upon deeper 

investigation, we found that generally longer object entities lead to NER errors. We 

checked this more concretely by examining the errors (for ‘produces’) and found out that 

we missed 43% of the object spans for the best-performing pipeline method. Thus, a large 

portion of performance loss is simply due to the model not being able to predict the object 

entity span correctly; especially for long object entities, even missing a single token can 

lead to RE errors. 
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Table 7.2 F1 Scores for each relation type of best-performing models in the group. 

RELATION SODNER 

+ 

PURE 

SEQ2REL BIOMEDLM FLAN-

T5-

LARGE 

ANAPHORA 70.11 61.08 57.38 63.24 

IS_A 58.75 55.00 48.40 58.38 

IS_ACRON 63.33 45.65 51.61 53.33 

PRODUCES 47.51 44.00 34.87 43.24 

IS_SYNON 30.00 22.23 0.00 0.00 

INCREASES_RISK_OF 8.33 10.52 0.00 0.00 

 

Thus, the overall performance pattern observed for the RareDis dataset is  

Pipeline > Seq2Rel > Flan-T5-Large > Flan-T5-XL > T5-3B > BioMedLM. We wanted 

to verify this with at least one other dataset. Considering our prior experiences with the 

chemical-protein interaction extraction task (Ai and Kavuluru 2023), we repeated our 

E2ERE experiments using the BioCreative Shared Task VI dataset and the results showed 

the same performance pattern with pipeline leading to a 69 F1 score, followed by Seq2Rel 

with 49, and BioMedLM with 37 points. 

 

While finetuning BioMedLM and T5 models with the same output scheme as the 

Seq2Rel approach did not work in our experiments, this could be due to our dataset being 

small. This may not be an issue for ample training data. Adding a BiLSTM on top of an 

encoder-only model is a common trick being pursued these days, which is the case for the 

SODNER model in this project. However, using a bigger encoder-only model might help 
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us do away with the BiLSTM and help improve the efficiency of the overall architecture. 

Additional experiments are needed to verify this hypothesis. The next-token loss for the 

BioMedLM model may potentially be dominated by the constant non-varying words in the 

output templates selected. This can be potentially avoided by formulating a different loss 

that exclusively deals with the subject and object entity spans output by the model. 

Furthermore, directly operating on the hidden representation of the output tokens, before 

decoding them into words through the language modeling head of the decoder-only 

architecture, could lead to more interesting and direct ways to extract entity pairs 

participating in a relation. These aspects need further investigation.  

 

Next, we focus on the detailed error analysis. Before we proceed, we note that many RE 

errors appear to arise from NER errors. This can lead to a snowball effect of errors in the 

RE phase. Consider a single entity participating in n gold relations. If it is predicted 

incorrectly as a partial match, it may potentially lead to 2n relation errors because it can 

give rise to n false positives (FPs) (because the relation is predicted with the wrong span) 

and n false negatives (FNs) (because the gold relation with the right span is missed). Thus, 

even a small proportion of NER errors can lead to a high loss in RE performance. In this 

section, we discuss a few error categories that we observed commonly across models. 

 

• Partial matches: When multi-word entities are involved, the relation error is often 

due to the model predicting a partial match (a substring or superstring of a gold 

span) and this was frequent in our effort. Consider the snippet “Kienbock disease 

changes may produce pain...The range of motion may become restricted”. Here 

Kienbock disease is the subject of a produce’s relation with the gold object span: 
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“the range of motion may become restricted”. However, the Seq2Rel model 

predicted “range of motion restricted” as the object span, leading to both an FP and 

FN. But common sense tells us that the model prediction is also correct (and 

potentially even better) because it removed the unnecessary “may become” 

substring. In a different example, when the relation involved the gold span 

“neurological disorder,” the model predicted a superstring “progressive 

neurological disorder” from the full context: “Subacute sclerosing panencephalitis 

(SSPE) is a progressive neurological disorder.” 

• Entity type mismatch: Because our evaluation is strict, predicting the entity spans 

and relation type correctly, but missing a single entity type can invalidate the whole 

relation leading to both an FP and an FN. The models are often confused between 

closely related entity types. Rare disease and skin rare disease were often confused 

along with the pair sign and symptom. 

 

• Issues with discontinuous entities: Discontinuous entities are particularly tricky 

and have led to several errors, even if the prediction is not incorrect, because the 

model was unable to split an entity conjunction into constituent entities. Consider 

the snippet: “affected infants may exhibit abnormally long, thin fingers and toes 

and/or deformed (dysplastic) or absent nails at birth.” Instead of generating 

relations with the two gold entities “abnormally long, thin fingers” and “abnormally 

long, thin toes”, the model simply created one relation with “long, thin fingers and 

toes.” 

 



47 

 

• BioMedLM generations not in the input: In several cases we noticed spans that 

were not in the input but were nevertheless closely linked with the gold entity 

span’s meaning. For example, for the gold span “muscle twitching”, BioMedLM 

predicted “muscle weakness”. It also tried to form meaningful noun phrases that 

capture the meaning of longer gold spans. For instance, for the gold span “ability 

to speak impaired”, it predicted “difficulty in speaking”. For the gold span, 

“progressive weakness of the muscles of the legs” it outputs “paralysis of the legs”. 

All these lead to both FPs and FNs, unfortunately. 

• Errors due to potential annotation issues: In document-level RE settings, it is not 

uncommon for annotators to miss certain relations. But when these are predicted 

by a model, they would be considered FPs. Consider the context: “The symptoms 

of infectious arthritis depend upon which agent has caused the infection, but 

symptoms often include fever, chills, general weakness, and headaches.” Our 

model predicted that “infectious arthritis” produces “fever”. However, the gold 

predictions for this did not have this and instead had the relation “the infection” 

(anaphor) produces “fever”. While the gold relation is correct, we believe what our 

model extracted is more meaningful. However, since we missed the anaphor-

involved relation, it led to an FN and an FP. 
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

 

In this work, we explored four state of the art representative models for E2ERE 

from three competing paradigms: pipelines (SODNER + PURE), sequence-to-sequence 

models (Seq2Rel, T5), and generative LMs (BioMedLM). Our evaluations used a complex 

dataset (RareDis) involving discontinuous, nested, and overlapping entities. Even with the 

advances in Seq2Seq models and generative transformers, a custom-built pipeline still 

seems to be the best option based on our experiments in this work. The performance gap 

between Seq2Rel and the pipeline is not as high as that between BioMedLM and pipeline. 

As such there could be other datasets where Seq2Rel matches the pipeline methods 

especially for simpler NER scenarios without discontinuous entities. We still would not 

want readers to conclude that more advanced models are not suitable for this task and not 

to take away from the few-shot abilities of GPT models. Also, the generative aspects of 

GPT models may not be suitable for the type of strict evaluation imposed here where an 

exact match with gold spans is required. In the future, this may be mitigated by using 

vector similarity or edit-distance metrics to map such phrases to the closest matches of the 

input. Using inference-only proprietary large models such as GPT-4 (Bubeck, et al. 2023) 

to generate paraphrases for training instances to create larger augmented training datasets 

could also be helpful. However, in the end, a small ≈ 200M parameter pipeline model that 

can run on consumer desktops may be preferable for several use-cases even in the current 

era of excitement over generative transformers. 
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The observations pointed in the previous section lead to several future directions 

for our team: 

• Using larger generative LMs such as GPT-3 (with 10s or 100s of billion parameters) 

or  similarly sized open source GPT-like models like Llama (H. a.-A. Touvron 

2023), Llama2 (Touvron, et al. 2023), OPT (Zhang, et al. 2022), Gemini (Team, et 

al. 2023), Falcon (Almazrouei, et al. 2023), PaLM (Chowdhery, et al. 2023),  for 

E2ERE. 

• Comparing performances of the models from this effort on multiple datasets, 

especially on   those in BioNLP benchmarks such as BLURB and BigBio. 

• Mitigating issues with GPT models generating entity spans not in the input by using 

vector similarity/edit-distance metrics to map such phrases to closest matches of 

the input. 

• Comparing different language models with fine-tuned, zero shot, and few-shot 

experiments. 

• Using inference-only proprietary large models such as GPT-4 to generate 

paraphrases for training instances to create larger augmented training datasets. 
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APPENDIX 

 

Here we discuss the approaches for the conversion of Discontinuous entities to 

continuous entities. 

8.1 Statistics of Discontinuous Entity 

 

We remove discontinuous entities with more than 2 fragments. We define 

overlapping discontinuous entities and non-overlapping discontinuous entities in the 

document as below: 

• Non-overlapping discontinuous entities: Discontinuous entities where no other 

entity is overlapping with either of the two fragments of discontinuous entities and 

no other entity is present in between the two fragments. 

• Overlapping discontinuous entities: Discontinuous entities where at least one of 

the other entities in the document is overlapping with at least one of two fragments 

or is present in between the two fragments. 

 

There are a total of 173 non-overlapping and 310 overlapping discontinuous entities (2 

fragments) for the training dataset. The frequency is shown in Table 8.1.
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Table 8.1 Statistics of Discontinuous Entity types with different fragments length 

DISC. FRAGMENTS TRAINING DEV 

2 FRAGMENTS 483 116 

3 FRAGMENTS 40 16 

4 FRAGMENTS 4 3 

5 FRAGMENTS 1 0 

SUM 528 135 

 

8.2 Patterns of overlapping discontinuous entities 

 

• Pattern 1: The second fragment of the discontinuous entity is overlapping with 

another continuous entity. 

 

• Pattern 2: The second fragment of the discontinuous entity is overlapping with the 

second fragment of another discontinuous entity and the first fragment does not 

overlap. 

 

• Pattern 3: The first fragment of the discontinuous entity is overlapping with 

another continuous entity. 

 

• Pattern 4: The first fragment of the discontinuous entity is overlapping with the 

first fragment of another discontinuous entity and the second fragment does not 

overlap. 

 

• Pattern 5: The first fragment of the discontinuous entity is overlapping with the 

first fragment of another discontinuous entity and the second fragment of the 
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discontinuous entity is overlapping with the second fragment of another 

discontinuous entity.  

 

 

Also, we have 

𝑓𝑟𝑎𝑔1−𝑐𝑢𝑟[1] >  𝑓𝑟𝑎𝑔1−𝑎𝑛𝑜𝑡ℎ𝑒𝑟[1]    

 

𝑓𝑟𝑎𝑔1−𝑐𝑢𝑟[0] >  𝑓𝑟𝑎𝑔1−𝑎𝑛𝑜𝑡ℎ𝑒𝑟[0]    

 

where, 

frag1_cur[1] is the index of the right end of the first fragment of the current 

discontinuous entity, frag2_cur[0] is the index of the left end of the second fragment of the 

current discontinuous entity, frag1_another[1] is the index of the right end of the first 

fragment of another discontinuous entity: frag1_another[1] and frag2_another[0] is the 

index of the left end of the second fragment of another discontinuous entity. 

• Patten 6: All other patterns.  

 

8.3 Rules for converting discontinuous entities into continuous entities. 

 

• Rule 0: Remove all tokens between two fragments of the discontinuous entity. 

• Rule 1: Copy the second fragment and put it right after the first fragment. 

• Rule 2: Copy the first fragment and put it just before the second fragment. 

 

Apply Rule 0 for non-overlapping discontinuous entities. Apply Rule 1 for 

overlapping discontinuous entities with patterns 1, 2, and 5. Apply Rule 2 for overlapping 

discontinuous entities with patterns 3, 4, and 6. 
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8.4 Examples of Application of rules 

 

• Apply Rule 0 for non-overlapping discontinuous entities. See Figure 8.1. 

Before Rule: “ accumulation of fats (lipids) called GM 2 gangliosides in the neurons and 

other tissues ...”  

After Rule: “...accumulation of GM 2 gangliosides in the neurons and other tissues ...'” 

 

 

 

Figure 8.1 Example to convert discontinuous to continuous applying rule 0. 
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• Apply Rule 1 for overlapping discontinuous entities with Pattern 1.  See Figure 8.2. 

Before rule: “...crackles or rales in the infected lung ...”  current entity 

   “...crackles or rales in the infected lung ...”  another entity 

After rule: “...crackles in the infected lung or rales in the infected lung ...” 

 

 

 

Figure 8.2  Example to convert discontinuous to continuous applying rule 1. 

 



55 

 

 

• Apply Rule 2 for overlapping discontinuous entities with Pattern 3: See Figure 8.3. 

Before rule: “...weakness in the muscles of the arms and legs ...”  current entity 

        “...weakness in the muscles of the arms and legs ...”  another entity 

 

After rule: “...weakness in the muscles of the arms and weakness in the muscles of the 

legs ...'' 

 

 

Figure 8.3  Example to convert discontinuous to continuous applying rule 2. 
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8.5 Mentions with double entity types. 

 

There are some mentions with two labels. For example, the same mention can be 

labeled as both Sign and Disease entity types. In the training dataset, there are 355 

mentions which have two labels.  

 

Let's say some mention has two labels: entity type 1, and entity type 2. Entity type 

1 contributes to N1 relations and entity type 2 contributes to N2 relations. There are 4 

scenarios for (N1, N2) as below: 

 

• (0, 0). This means none of the labels is contributing to any of the relations. There 

are 9 such mentions. We randomly remove an entity type for each mention. 

 

• (0, 1) or (1, 0). This means only 1 label is contributing to the relation. There are 

309 mentions. We remove the entity type which does not contribute to any relation.  

 

• (1, 1). Both labels are contributing to one relation. There are 21 mentions. We 

randomly remove an entity type and corresponding relation for each mention.  

 

• (1, N) or (N, 1) where N is larger than 1. There are 16 mentions. We remove the 

entity type which contributes to only one relation and the corresponding relation.  

 

In the development dataset, there are 83 mentions which have double entity types.  

 

• (0, 0). There are 2 mentions. 

• (0, 1) or (1, 0).  There are 72 mentions.  
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• (1, 1). There are 7 mentions.  

• (1, N) or (N, 1) where N is larger than 1.  There are 2 mentions.  
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