
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2024 

Flexible Attenuation Fields: Tomographic Reconstruction From Flexible Attenuation Fields: Tomographic Reconstruction From 

Heterogeneous Datasets Heterogeneous Datasets 

Clifford S. Parker 
University of Kentucky, c.seth.parker@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0002-3887-1237 
Digital Object Identifier: https://doi.org/10.13023/etd.2024.71 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Parker, Clifford S., "Flexible Attenuation Fields: Tomographic Reconstruction From Heterogeneous 
Datasets" (2024). Theses and Dissertations--Computer Science. 143. 
https://uknowledge.uky.edu/cs_etds/143 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0002-3887-1237
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Clifford S. Parker, Student 

Dr. W. Brent Seales, Major Professor 

Dr. Simone Silvestri, Director of Graduate Studies 



FLEXIBLE ATTENUATION FIELDS: TOMOGRAPHIC RECONSTRUCTION
FROM HETEROGENEOUS DATASETS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
C. Seth Parker

Lexington, Kentucky
Director: Dr. W. Brent Seales, Professor of Computer Science

Lexington, Kentucky
2024

Copyright © C. Seth Parker 2024
https://orcid.org/0000-0002-3887-1237

https://orcid.org/0000-0002-3887-1237


ABSTRACT OF DISSERTATION

FLEXIBLE ATTENUATION FIELDS: TOMOGRAPHIC RECONSTRUCTION
FROM HETEROGENEOUS DATASETS

Traditional reconstruction methods for X-ray computed tomography (CT) are highly
constrained in the variety of input datasets they admit. Many of the imaging set-
tings – the incident energy, field-of-view, effective resolution – remain fixed across
projection images, and the only real variance is in the detector’s position and ori-
entation with respect to the scene. In contrast, methods for 3D reconstruction of
natural scenes are extremely flexible to the geometric and photometric properties
of the input datasets, readily accepting and benefiting from images captured under
varying lighting conditions, with different cameras, and at disparate points in time
and space. Extending CT to support similar degrees of flexibility would significantly
enhance what can be learned from tomographic datasets. We propose that tradition-
ally complicated or time-consuming tomographic tasks, such as multi-resolution and
multi-energy analysis, can be more readily achieved with a reconstruction framework
which explicitly accepts datasets with varied imaging settings. This work presents
a CT reconstruction framework specifically designed for datasets with heterogeneous
capture properties which we call Flexible Attenuation Fields (FlexAF). Built on dif-
ferentiable ray tracing and continuous neural volumes, FlexAF accepts X-ray images
captured from any position and orientation in the world coordinate frame, includ-
ing images which differ in size, resolution, field-of-view, and photometric settings.
This method produces reconstructions for regular CT scans which are comparable
to those produced by filtered backprojection, demonstrating that additional flexibil-
ity does not fundamentally hinder the ability to reconstruct high-quality volumes.
Our experiments test the expanded capabilities of FlexAF for addressing challenging
reconstruction tasks, including automatic camera calibration and reconstruction of
multi-resolution and multi-energy volumes.
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CHAPTER 1. INTRODUCTION

In late December 1895, Wilhelm Röntgen brought his wife, Anna Bertha, to his

modest laboratory in Würzburg, Germany, for what surely must have seemed an

unusual experiment. For many weeks, Röntgen had worked tirelessly in his lab to

measure and explore the properties of an exciting new discovery, a new type of “light”

emitted by a Crookes tube which could not be seen but the presence of which could be

detected in the fluorescent glow it induced on barium platinocyanide paper and the

shadows it left on photographic paper. In truth, Röntgen could not even be sure that

his discovery should be called light, for the new phenomenon could easily penetrate

paper, wood, and metal and could not be reflected or refracted by any known means.

A true experimentalist who was unwilling to make claims without strong evidence,

Röntgen had decided to call his discovery “X-rays,” choosing the “X” to stand for the

many unknowns that surrounded his work.

Leading Anna Bertha to a small wooden table, Wilhelm placed a Crookes tube

underneath the table’s surface, then placed her hand flat against its top [14]. Taking

up a photographic glass plate wrapped in black paper from a nearby shelf, he placed it

on top of Anna’s hand and initiated an electrical current to the Crookes tube. For half

an hour or more, Anna’s hand rested on the table as the photographic plate captured

the silent, invisible flight of the mysterious X-rays passing through her fingers. Little

did Anna know that these uncomfortable moments, so strange and unassuming in

their simplicity, would generate one of the most impactful experimental results of

the late 19th century, one that would echo through scientific and medical study for

generations.

Today, X-ray imaging is a standard practice in airports, hospitals, factories, and

laboratories all over the world. The ubiquity of traditional 2D radiography in the

healthcare system is almost incalculable, as X-ray images are regularly used to diag-
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nose health issues such as tooth decay, bone fractures, and pneumonia. The world-

wide use of medical X-ray computed tomography (CT) scans, the radiograph’s three-

dimensional (3D) counterpart, has grown steadily over the last decade [61], and in

2021, an estimated 84 million medical CT scans were performed in the United States

alone.1 Likewise, industrial CT is regularly deployed in the automotive, aerospace,

and electronics industries for non-destructive testing (NDT) and inspection [16]. It

is safe to say that there is very little of our modern life which has not been touched

by X-rays.

Of course, radiography’s first patient was not to know the part she had just played

in history. Upon seeing the ghostly image of her skeletal hand (Figure 1.1), complete

with a ring upon the fourth finger, Anna exclaimed, “I have seen my death,” [54] and

refused to enter her husband’s laboratory again. It is hard to blame Frau Röntgen

for her reaction. Even today, it can seem equal parts magic and miracle that we

should be able to make bare the interiors of objects which normally remain hidden,

or further, that those hidden spaces are revealed as incredibly detailed, 3D volumes

at the push of a button. CT regularly enables us to pinpoint disease in the human

body, inspect complex machinery for defects, and recover 2,000-year-old text from

ancient scrolls, all without the risk of invasive damage to the subject being scanned.

It is science, yes, but it is also magic.

For those who work regularly with modern CT systems, it is hard not to envy the

freedom which Wilhelm Röntgen enjoyed during his early experiments. Röntgen’s

spartan imaging setups — a tube, a table, a photographic plate, and his wife’s willing-

ness — stand in stark contrast to the complexity of today’s tomographic equipment.

Commercial CT scanners are exactingly engineered to produce stunning images, but

they remain large, bulky, and expensive devices that require stable environmental

conditions and regular calibration to maintain their pristine image quality. While

1254.6 CT scans per 1,000 population [61] with a total United States population of 331 million [8].

2



Figure 1.1: Hand mit Ringen (Hand with Rings) by Wilhelm Röntgen
(1895). This print possibly depicts the hand of Anna Bertha Röntgen
and is considered the first medical X-ray radiograph [82]. This work is
licensed under the Creative Commons Attribution NonCommercial 4.0
International License (CC BY-NC 4.0).
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Röntgen admittedly only worked in two dimensions and was unaware of the harmful

ionizing effects of his discovery, the modern radiologist could be forgiven for looking

at his methods and wishing for a CT scanner light enough to be carried to a patient’s

room or packed into a hand case and taken to a local clinic. And so the question

must be asked: what’s stopping us?

Part of the answer to this question can be found in the algorithms which enable CT

in the first place. Today’s frameworks for tomographic reconstruction provide strong

guarantees for what can be recovered with tomography, but at the cost of strong

constraints on the datasets which are supported. Many of the imaging settings — the

incident energy, field-of-view, effective resolution — must remain fixed across projec-

tion images, and the only real variance is in the detector’s position and orientation

with respect to a known center of rotation. Unexpected subject movement during a

scan, fluctuations in exposure, or too much mechanical misalignment can result in

reconstruction artifacts in the best cases or unreconstructable scans in the worst.

As a consequence, the entire ecosystem of computed tomography has oriented it-

self around the quest for the “golden dataset,” that perfectly captured scan without

deviation, blemish, or error. The scanners grow larger to realize more stability, the

engineering becomes more exacting to guarantee more precision, and the scanning

protocols become more critical to the success of the reconstruction. When the cap-

tured resolution is not sufficient, when the field-of-view needs to be widened, when the

energy settings do not provide adequate contrast, or when the sample moves halfway

through a scan, the solution is often to capture a completely new scan. Further,

scans of the same object which are captured with different settings are reconstructed

as independent entities, even though much of the structural information about the

sample (i.e. the chemical composition) is shared across scans.

This restrictive approach to tomography seems curious when one considers that

such constraints are not shared by similar methods for photographic 3D scene recon-
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struction. Photogrammetry and neural radiance fields readily accept images captured

under varying lighting conditions, with different cameras, and at disparate points in

time and space, yet require practically no knowledge of the images’ extrinsic param-

eters and only minimal information about the cameras’ intrinsics. By their example,

these methods beg the question of why similar degrees of flexibility cannot be ex-

tended into the realm of tomography.

When Röntgen first published his results, the world exclaimed it a success of pho-

tography. “The New Marvel in Photography,” declared McClure’s Magazine in the

title to a work we will often quote in these pages [14]. “That a new photography has

suddenly arisen which can photograph the bones, and before long, the organs of the

human body...is news which cannot fail to startle everybody.” But now, more than

a century later, we seem to have lost — or at least we downplay — the idea that

X-ray imaging is akin to photography and that the X-ray source and detector form

a camera. Perhaps this kinship should now be reevaluated in the light of promising

new 3D reconstruction techniques being developed for the photographic realm.

The rise over the last decade of a new generation of general purpose machine

learning and artificial intelligence methods has been meteoric and profound. It is

only slight hyperbole to say that we have entered a new era of computation, one that

allows us to review our oldest problems through a new lens.2

This dissertation argues that many of the accepted limitations regarding CT dataset

homogeneity can now be lifted through the adaptation of neural methods originally

developed for photographic scene reconstruction. We present Flexible Attenuation

Fields (FlexAF), a data-centric CT reconstruction framework specifically designed to

accommodate datasets with heterogeneous capture properties. Built on differentiable

ray tracing and continuous neural volumes, FlexAF accepts X-ray images captured

from any position and orientation in the world coordinate frame, including images

2Pun intended.
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which differ in size, resolution, field-of-view, and photometric settings. By recasting

CT reconstruction in terms of independent X-ray cameras within a common world co-

ordinate frame, we can begin to widen the scope of computed tomography beyond the

idealized datasets we pursue today. Indeed, intentional heterogeneity may be the key

to unlocking traditionally complicated or time-consuming tomographic tasks, such as

multi-resolution and multi-energy analysis. We demonstrate that this added flexibil-

ity does not fundamentally hinder our ability to reconstruct high-quality volumes,

with our method producing reconstructions for regular CT scans which are compara-

ble to or exceeding those produced by filtered backprojection. Further, we build upon

this capability to experiment with creative new solutions to traditionally challenging

reconstruction tasks, including automatic extrinsic calibration and reconstruction of

multi-resolution or multi-energy volumes.

We begin in Chapter 2 with a review of the foundational literature on which our

work is built, discussing the flexible camera models of photogrammetry and neural

radiance radiance fields, existing methods for CT reconstruction, and related methods

for neural CT reconstruction. In Chapter 3, we discuss the principles and features

of the FlexAF framework with an emphasis on those features which bring added

flexibility to CT reconstruction. This is followed in Chapter 4 by a description of the

core datasets used for this study, including a composite dataset designed specifically

for testing reconstruction of heterogeneous inputs. Chapter 5 presents our results from

applying FlexAF to the tasks of standard CT reconstruction, automatic geometric

calibration, multi-resolution reconstruction, and multi-energy reconstruction. We

conclude in Chapter 6 with a discussion of the challenges and limitations of our

approach and a vision for tomography in the age of machine learning and neural

networks.
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CHAPTER 2. BACKGROUND

“I have been for a long time interested in the problem
of the cathode rays from a vacuum tube as studied by
Hertz and Lenard. I had followed theirs and other
researches with great interest, and determined, as
soon as I had the time, to make some researches of
my own.”

– Dr. Wilhelm Röntgen, The New Marvel in
Photography, McClure’s Magazine, 1896

A primary design goal for the FlexAF framework is to enable tomographic recon-

struction from X-ray projection images with heterogeneous capture properties. Our

inspiration derives from the observation that support for heterogeneous datasets ex-

pands the usefulness of photographic 3D scene reconstruction methods rather than

hindering their application. Methods such as photogrammetry and neural radiance

fields (NeRFs) are frequently applied across a wide range of multiscale and multi-

spectral reconstruction tasks which might be difficult or impossible to approach with

only homogeneous input datasets. In both cases, it is worth discussing how this het-

erogeneous support is enabled, what flexibility it provides, and how these methods

compare to CT reconstruction algorithms.

2.1 Photogrammetry

Photogrammetry is a computational process for accurately reconstructing the struc-

ture and appearance of a 3D scene from photographs taken at different viewpoints.

In photogrammetry, image formation is modeled by a general projective camera [29]

represented by a homogeneous 3 × 4 matrix P which maps world coordinates X to

image coordinates x:

x = PX (2.1)

The functional meaning of matrix P can be better understood by its decomposition
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into the camera’s extrinsic parameters, [R|t], and intrinsic parameters, K:

x = K[R|t]X (2.2)

R is a 3× 3 rotational matrix and t is a translational 3-vector which together define

a world-to-camera perspective transform. K is a 3 × 3 upper triangular matrix and

has the form:

K =


αu s cu

αv cv

1

 (2.3)

where c is the optical center, or principal point, of the camera in detector coordinates,

α is the per-axis focal length in terms of pixel sizes, and s is a skew factor which

is normally 0. The intuitive explanation for this decomposition is that the extrinsic

parameters map world coordinates onto the normalized image plane, and the intrinsic

parameters scale, shift, and (rarely) skew the points on that plane according to the

construction of the specific camera (i.e. the internal optical properties of the lens

or detector). Fully expanded, a homogeneous 3D world coordinate is projected to a

homogeneous 2D image coordinate with the equation:


u

v

w

 =


αu s cu

αv cv

1




tx

R3×3 ty

tz





X

Y

Z

W


(2.4)

Though this projective mapping reduces the dimensionality of the scene for each

individual image, the underlying principle of photogrammetry is that the discarded

dimension can be recovered from image features which appear in multiple views. Be-

cause the image content is formed by a strong structural relationship between camera
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Figure 2.1: Epipolar geometry and triangulation in photogrammetry. In
epipolar geometry, the baseline connecting the camera centers CC ′ forms a
set of epipolar planes which project to epipolar lines in each image. Given
8 or more corresponding features, we can compute this geometry directly
and recover the relative extrinsics of the cameras. Once the cameras are
calibrated, we triangulate 3D feature coordinates by backprojecting rays
from the camera centers through the projected features in the images.
The epipolar constraints guarantee that these rays must intersect at the
features’ original 3D coordinates.

and scene, features which correspond across images inversely provide information

about that structuring geometry. Specifically, when the camera intrinsics are known,

corresponding features define an epipolar constraint by which the relative positions of

the cameras can be determined up to a similarity transform [30]. With the extrinsics

known, the further triangulation of world coordinates for scene features is relatively

trivial. Rays are backprojected from the features in the image planes into the world

coordinate frame, and the intersections of these rays determine the recovered 3D

positions (Figure 2.1).

In practice, this process is not straightforward for real-world datasets which are

subject to measurement error in the form of noise and lens distortion. Rather than

directly factorizing solutions to the camera geometry using idealized projective rela-

tionships, structure-from-motion (SfM) algorithms address these issues by estimating
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(a) (b) (c)

Figure 2.2: The stages of photogrammetric reconstruction. Demonstration of
photogrammetry on a rolled Herculaneum scroll. (a) Photographs of the
scroll are taken from arbitrary positions and orientations and with poten-
tially varying photometric settings. Scale indicators are added to the field
of view for the recovery of absolute scale. (b) MVG recovers the scene
structure: the extrinsics of the cameras and the triangulated features of
the scroll. (c) MVS transforms the feature points into a high-quality, tex-
tured model which reproduces the scroll’s natural appearance.

a set of optimized camera parameters which best explain the image set. The gen-

eral SfM approach is to detect and match corresponding features across views using

an image feature detector like SIFT [53], estimate the camera parameters using the

pair-wise projective relationships, and then optimize these parameters by minimizing

the reprojection error of the observed features across images [62]. This last step,

known as bundle adjustment, is a nonlinear least-squares optimization problem, and

is usually solved using the Levenberg-Marquardt algorithm [49, 55]. Notably, bun-

dle adjustment optimizes both the camera extrinsics and intrinsics, thus only a close

approximation of the intrinsics is required to initialize SfM.

The process described thus far has largely been concerned with the determination

of scene structure (i.e. the positions of cameras and features in the world coordinate

frame) from multiple views, otherwise known as multiple view geometry (MVG).

However, MVG only forms one part of the photogrammetry equation (Figure 2.2), and

the construction of a textured scene model is typically performed using methods from
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the field of multi-view stereo (MVS). Broadly, MVS methods exploit the photometric

consistency between multiple views in order to build a feature-rich model of the scene’s

appearance properties, such as the lighting, surface geometry, and surface materials.

This process involves the calculation of accurate depth maps for each image, from

which a dense point cloud for the scene is extracted, meshed, and refined to construct

an accurate surface mesh. Finally, material properties such as color and texture are

projected onto the surface from the calibrated image set to generate the completed

scene model. An in-depth description of the various MVS techniques can be found in

[22].

2.2 Radiance fields

The past few years have seen the rapid development of radiance field methods for

learned scene reconstruction using differentiable ray tracing and rendering. These

methods derive their name from the nature of the scene representation itself, a con-

tinuous radiance function, or field, which can be evaluated at arbitrary points in the

world coordinate frame. Recent work in this area has begun to move away from a fully

continuous scene model for reasons of efficiency, but we will continue to use the term

“radiance fields” as a convenience to describe the broad category of differentiably-

learned scene models.

Conceptually, radiance fields can be seen as a replacement for much of the MVS

portion of photogrammetry. Usually, the images and cameras used for training radi-

ance fields have already been calibrated using SfM, thus the radiance field is tasked

with modeling the scene’s appearance properties given a well-defined scene structure.

Rather than constructing a textured surface mesh, radiance fields produce an implicit

scene model which is often stored in the weights of a neural network.

2.2.1 Neural radiance fields

The neural radiance field (NeRF) method presented by Mildenhall et al. was the

first radiance field method to gain widespread attention [57]. Designed for 3D view
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synthesis of photographic scenes, NeRF set a new bar for modeling complex, view-

dependent scene characteristics such as a occlusion, reflections, and specular high-

lights. Additionally, the NeRF model required far fewer training images than contem-

porary view synthesis methods and was significantly smaller than other synthesizing

networks.

One of the most interesting aspects of the NeRF method is the way in which it

intuitively combines principles from machine learning and volume rendering (Figure

2.3). The scene is modeled as a continuous vector-valued volume represented by a

multi-layer perceptron (MLP). The input vectors to the volume are a 3D world coor-

dinate and view direction, and the outputs are a view-dependent RGB color vector

and density scalar. During training, a differentiable volume renderer synthesizes im-

ages of the neural volume from the viewpoint of each of the training images by casting

rays through the volume and requesting color samples from the MLP. These samples

are integrated along each ray into a single color value, using the learned density as an

alpha compositing value to control the weighted contribution of each color sample.

This process is fully differentiable, thus the MLP is updated through backpropa-

gation using the residual error between the expected value and the rendered color.

Networks which learn a function parameterized by its coordinates are often referred

to as coordinate-based networks or implicit neural representations.

A significant problem in volumetric rendering is the question of how to avoid the

computational expense that comes from sampling largely empty regions of the vol-

ume. This problem of sampling attention is particularly challenging for radiance fields,

where the volume changes during training, and the sampling strategy may need to

be adjusted across training iterations. NeRF addresses this issue by introducing a

hierarchical sampling approach where two volumetric models are learned simultane-

ously, one “coarse” and one “fine.” The coarse network is provided ray samples using

a method called stratified sampling, where the ray is divided into equal-sized bins,
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Figure 2.3: The neural radiance field (NeRF) training and evaluation pro-
cess. (a) For each pixel in the set of training images, point samples are
taken along rays drawn from the image plane through the volume. These
point samples, along with the view direction, are passed to the MLP,
which returns a volumetric density and view-dependent color value. To-
gether these represent the color and opacity for the given coordinate. (b)
The color and density samples along each ray are integrated to form a
final, rendered color value for each input pixel. (c) The output color is
compared to that of the input, and the MLP is updated based on the
resulting loss.

and a random sample is drawn uniformly from each bin. The output densities from

the coarse network are normalized to construct a piecewise-constant PDF along the

ray. This PDF is used to sample a new set of points that are assumably closer to the

content-bearing regions of the scene. These new points and the original coarse points

are evaluated by the fine network and used to determine the final ray color used for

rendering. To ensure that the coarse and fine networks do not diverge, the outputs

for both networks are used to determine the loss value for the given ray.

A notable property of NeRF is its ability to quickly learn high-frequency features

in the scene. While it is well-established that MLPs with nonlinear activation func-

tions are universal function approximators [13, 34], recent work has shown that such

networks exhibit a strong spectral bias which manifests during training as frequency-

specific learning rates [77]. To provide faster convergence rates for the high-frequency

details that occur in natural scenes, NeRF applies a form of positional encoding to

the input vectors prior to passing them to the MLP which maps spatial vectors into
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a high-dimensional, frequency-like space:

γ(v) = [sin(20πv), cos(20πv), ..., sin(2L−1πv), cos(2L−1πv)] (2.5)

In this equation, L is a hyperparameter which controls the dimensionality and band-

width of the encoding and is set to L = 10 when encoding the sample coordinates

and L = 4 when encoding the view direction.

2.2.2 Random Fourier features

Seeking to better understand the high-frequency learning properties of NeRF, Tan-

cik et al. evaluated MLPs for low-dimensional coordinate regression tasks with anal-

ysis methods for kernel regression using a neural tangent kernel (NTK) [92]. They

show that under NTK theory, the standard MLP has a sharp kernel falloff for parts

of the learned function that correspond to high-frequency features. By first passing

input coordinates through a Fourier feature mapping [46, 78] of the form

γ(v) = [a1 cos(2πb
T
1 v), a1 sin(2πb

T
1 v), ..., am cos(2πbT

mv), am sin(2πbT
mv)]

T (2.6)

this kernel falloff can be flattened, and learning high-frequency features becomes

tractable for an MLP.

The authors observe that NeRF’s positional encoder is a special case of Fourier

feature mapping, though one with a bias towards axis-aligned features. They propose

an alternative Gaussian encoding which their experiments show performs better than

positional encoding across a wide range of regression tasks:

γ(v) = [cos(2πBv), sin(2πBv)]T (2.7)

where each entry in B ∈ Rm×d is drawn from the normal distribution N (0, σ2), d

is the number of input dimensions, and m and σ are task-specific hyperparameters.
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Intuitively, this mapping describes a sparse set of random Fourier features, with the

feature sparsity controlled by m and the maximum bandwidth controlled by σ. For

convenience, we refer to σ as the scale of the Gaussian encoder and m as the number

of features. Unlike positional encoding, where increasing the bandwidth increases the

size (and memory footprint) of the encoded feature, the authors show that keeping

a fixed number of features and adjusting the scale is sufficient to control learning

performance across a range of implicit modeling tasks.

Zheng et al. presented an alternative performance analysis for the broad category

of positional encodings, including the Gaussian encoding [108]. Rather than looking

at positional encodings with respect to their Fourier properties, the authors instead

propose to view positional encodings as being systematically sampled from shifted

continuous basis functions, a superset of encodings which includes Fourier feature

mappings. Under this framework, they find that the dominant factors governing the

performance of a specific positional encoding is the approximate matrix rank of the

embedded coordinates and the distance preservation between coordinates after em-

bedding. These two properties form a trade-off; a higher matrix rank correlates with

better memorization of the training data, whereas distance preservation correlates

with better generalization to unseen coordinates. They further show that increasing

the scale of the Gaussian encoding decreases the distance preservation of the encod-

ing and, given a sufficient number of features, linearly increases the embedded matrix

rank up to a saturation point.

For our purposes, we take the following insights from these two works. First,

increasing the scale of the Gaussian encoding will increasingly allow an MLP to learn

high-frequency content. For maximum performance, the number of features should

be increased commensurately to ensure a sufficient sampling density in feature space.

Second, this consequently has the effect of decreasing the model’s ability to generalize

between coordinates. As we will see, these insights will have important ramifications
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for the FlexAF framework.

2.2.3 Approximating ray integrals

In all radiance field methods, the goal of the differentiable ray tracer is to convert

the knowledge encoded in the model into projection images which accurately recon-

struct the scene being observed. Ray tracing in general is formulated in terms of light

transport theory, where the light rays that hit the image sensor are an integrated mea-

sure of their original brightness and color as well as the optical properties of the ray

paths [75]. A particular challenge for radiance field ray tracers is that they must mea-

sure the ray integrals inside a continuous scene with an unknown set of objects. While

traditional ray tracing methods operate in a continuous coordinate frame, the scene is

largely composed of discrete scene objects (e.g. parameterized surfaces, triangulated

meshes, discrete volumes), thus ray integration is at least structurally constrained to

deploying efficient ray-object intersection algorithms.

As we have seen, the original NeRF method approximates the ray integral by taking

color and density samples at discrete coordinates along each ray and using alpha

compositing to integrate those values into a final color value. Hierarchical sampling,

combined with the stochastic stratified sampling of the coarse network, is enough to

ensure that samples are drawn from those portions of the scene which most contribute

to the ray’s integral. An issue with this approach is that the image is approximated

by infinitely small rays of sparse samples passing through the center of each pixel,

while a natural image is instead formed from a continuous pencil of light striking the

full surface area of each pixel. This leads to rendered images which are in some places

blurry (due to the sample sparsity during training) or aliased (due to the infinitely

small light pencil).

To address these issues, Mip-NeRF [2] approximates the conical frustum of each

pixel with a set of multivariate Gaussians. The ray is first divided into n subintervals

with n + 1 endpoints [t0, ..., tn+1], with each interval representing a conical section

16



Figure 2.4: The Mip-NeRF ray sampling method. (a) Rather than drawing
point samples from along the ray path, Mip-NeRF approximates conical
sections of the pixel’s frustum. (b) The conical section for ray position t
is modeled a 3D Gaussian distribution with mean µt, variance along the
length of the ray σ2

r , and variance perpendicular to the ray σ2
t .

of the full frustum (Figure 2.4). These sections are then approximated by multi-

variate Gaussians with mean µ and covariance Σ, which replace the point samples

from NeRF. Since the conical sections are circular and symmetric around the ray

direction, these values can be computed from the mean distance along the ray, the

variance along the length of the ray, and the variance perpendicular to the ray. To ad-

dress positional encoding for multivariate Gaussians, the authors introduce integrated

positional encoding as the expected sine and cosine for the Gaussian given as:

µγ = Pµ, Σγ = PΣPT (2.8)

γ(µ,Σ) =

sin(µ)γ ◦ exp(−(1/2) diag(Σγ)),

cos(µ)γ ◦ exp(−(1/2) diag(Σγ))

 (2.9)

where P is the 2n basis function from NeRF rewritten as a 3D Fourier features

matrix and ◦ denotes element-wise multiplication. The encoded Gaussians, along

with the encoded view direction, are passed to the MLP, and the resulting densities

and color are integrated into final ray samples using the method described in NeRF.
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Hierarchical sampling is still employed to encourage sampling near scene content, but

now only a single MLP is used since the Gaussians implicitly sample content across

multiple scales. Mip-NeRF shows slightly faster runtimes and moderate-to-significant

improvements to error rates for the datasets tested.

2.2.4 Learned flexibility

We make note of two radiance field methods which were influential in our thinking

around flexible CT reconstruction: Bundle Adjusting Radiance Fields and NeRF in

the Dark.

The Bundle Adjusting Radiance Fields method, disconcertingly acronymized as

BARF, extends NeRF with automatic camera extrinsic calibration even in the face

of significant miscalibration [50]. Alongside scene reconstruction, the BARF method

jointly learns a 6 degree-of-freedom transformation p of the camera poses. The au-

thors note that positional encoding interacts poorly with the task of smoothly learning

a camera pose, as the gradients of the high-frequency components in early training

produce erratic weight updates for the pose parameters. Their simple solution is to

weight the components of the encoded coordinates in order to control the contribution

of the various frequency bands during training:

γk(v;α) = wk(α) ∗ [sin(2kπv), cos(2kπv)] (2.10)

where α ∈ [0, L] is set proportionally to the training progress and wk smoothly

interpolates between [0, 1] as α increases:

wk(α) =


0 if α < k

1− cos((α− k)π)

2
if 0 ≤ α− k < 1

1 if α− k ≥ 1

(2.11)

In effect, BARF increasingly enables high-frequency components of the encoding as
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training progresses, which allows the poses to learn from a smooth signal in early

training and a detailed signal in late training.

NeRF in the Dark tackles the problem of learning scenes from high dynamic range

(HDR) images [58]. Digital images can store an extremely large range of intensity

values,1 however display technologies have historically not been capable of reproduc-

ing such ranges of intensities in a way that matches the capabilities of human visual

perception. As a result, images are often tone mapped into an 8-bit value range

that approximates the perceptual contrast experienced by a human eye observing the

same scene. Incorporating HDR information into a radiance field is one step towards

enabling realistic, dynamic relighting of the encoded scene.

To enable HDR support, NeRF in the Dark applies exposure correction to the

outputs of the differentiable ray tracer by multiplying the integrated color values, ŷ,

by the camera shutter speed, t, and a per-color-channel corrective scalar, αct . The

corrective scalars are unique for each shutter speed and are learned jointly alongside

the network. The final output for each rendered ray is given as:

ŷi = min(ŷci · ti · αcti , 1) (2.12)

where c is the color channel and the inner ŷi is the integrated output from the MLP.

NeRF in the Dark also uses a relative mean-squared error (MSE) loss, which is a

linear approximation to the L2 loss with a tonemap ψ applied to both the input and

predicted images:

L̃ψ(ŷ, y) =
∑
i

(
ŷi − yi

sg(ŷi) + ε

)2

(2.13)

where sg(·) is a stop-gradient function which treats its argument as a constant during

backpropagation.
1While digital image sensors can capture 10 or 12-bits of dynamic range, it is not uncommon to

encounter images with 16-bits of dynamic range. Such images are usually derived computation-
ally or by combining photographs taken with multiple exposure parameters in a process called
“bracketing”.
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2.2.5 Real-time rendering

A significant limitation to neural radiance field methods is the computational ex-

pense of sampling and updating the neural network. NeRF and Mip-NeRF alike

require many hours to train and many seconds to render a single image frame, mak-

ing real-time interaction with the scene impossible. A significant amount of work has

gone towards optimizing neural radiance methods for interactive rendering. These

efforts often draw their inspiration from existing methods in computer graphics, em-

ploying variations on such techniques as Z-buffering [17, 51], scene baking and caching

[24, 32], spatial partitioning [79, 93, 102], variable rate shading [80, 81], or some com-

bination of the above [59]. Particularly interesting are the methods which avoid neural

networks entirely [45, 99, 103].

Though our work is not directly influenced by these methods, we highlight them to

demonstrate the vibrant, multi-faceted body of research which is developing around

radiance fields. At the time of this writing, the original NeRF paper has garnered over

5,000 citations on Google Scholar since it was first presented in 2020 [27]. Research

into radiance fields is advancing at an extraordinary pace and along multiple lines

of inquiry, and the methods and techniques we have discussed will only grow more

accurate, efficient, and interactive with time.

2.3 X-ray imaging and CT reconstruction

X-rays interact with matter in three primary ways: the photoelectric effect, Comp-

ton scattering, and Rayleigh scattering [36]. Of these, the photoelectric effect is the

most important for X-ray imaging. If the X-ray photon’s energy is higher than that of

a shell electron’s binding energy, the photon is absorbed by the atom, and the electron

is ejected from the shell as a free electron, where the probability of this occurrence is

proportional to the atom’s atomic number:

Pphotoelectric ∝ Z3 (2.14)
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Figure 2.5: X-ray mass attenuation coefficient as a function of incident en-
ergy. (a) A 2D plot of the X-ray mass attenuation coefficients for Tung-
sten (Z=74). This plot demonstrates the complexity of the attenuation
spectrum with respect to incident X-ray energy. As the incident energy
increases, attenuation decreases as a mostly continuous function which
is interrupted by discontinuous ridges at each element’s absorption edges.
(b) A 3D plot for Z ∈ [1, 92]. When considered across a range of elements,
the attenuation function forms a coherent topology with repect to energy
and atomic weight. Data from NIST SRD 126 [40].

The net result of these interactions is that the X-ray beam intensity is attenuated

as it passes through matter. The measure of an element’s likelihood to attenuate

X-rays is known as the attenuation coefficient of the element, µ, and is measured as

a function of the incident X-ray energy (Figure 2.5).

Following the Beer-Lambert law [4, 5, 36, 48], the intensity of a monochromatic X-

ray beam that has passed through a uniformly attenuating material is determined by

an exponential relationship between the original beam intensity and the attenuation

coefficient of the traversed material:

I = I0e
−µL (2.15)

where L is the thickness of the material. For composite materials, this formula can be

rewritten in terms of the definite integral of attenuation coefficients along the length
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of the beam’s path:

I = I0e
−

∫ L
0 µ(x) dx (2.16)

where x ∈ Rn. To get a more convenient formula for CT reconstruction, we can divide

both sides by I0 to express attenuation in terms of the ratio of inputs and outputs

and apply the negative logarithm to get:

p = − ln

(
I

I0

)
=

∫
L

µ(x) dx (2.17)

This final step is sometimes referred to as the linearization of the projection im-

age, and in this form p represents the normalized (i.e. flatfielded), linearized X-ray

projection image.

The mathematical foundations for computed tomography find their origin in the

Radon integral transform [76]. Given a continuous function defined on a plane f(x) =

f(x, y), the Radon transformed function Rf maps the original function to the space

of line integrals of the plane:

Rf(L) =

∫
L

f(x) dx (2.18)

We can see that (2.18) is equivalent to (2.17) for x ∈ R2, and that the 1D pro-

jection measurement p ∈ R1 is a Radon-transformed observation of the attenuation

coefficients µ(x). Thus, the central challenge in tomographic reconstruction is to de-

velop a method for inverting the Radon transform in order to recover the attenuation

coefficients.

Broadly, solutions to the Radon inversion problem fall into two categories: backpro-

jection and forward projection. These names reference the general flow of information

during the reconstruction process. In backprojection methods, each pixel in the recon-

struction is backprojected to the set of projection measurements which pass through
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that pixel, and the reconstructed attenuation coefficient is computed analytically. In

forward projection methods, a computational Radon model is used to generate sim-

ulated projection measurements from the reconstruction, and the error between the

simulated and captured projections is used to iteratively optimize the reconstructed

pixels.

2.3.1 Backprojection

Backprojection reconstruction methods have been the most popular reconstruction

methods for much of the history of computed tomography because they can be com-

puted efficiently. These methods are built upon the central slice theorem, also known

as the projection-slice theorem, which closely links the Radon and Fourier transforms

[6, 37]. This theorem can be summarized as follows. Consider the function f(x, y)

and a corresponding rotated coordinate system f ′θ(t, s) at angle θ. A 1D projection

of f ′θ is parameterized by the function p(t, θ), where t is simply a position along the

rotated basis t. The central slice theorem states that the 1D Fourier transform of

p(t, θ), taken with respect to t, is equal to a slice in the 2D Fourier transform of f

taken at the same angle:

P (ω, θ) = F (ω cos θ, ω sin θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i2πω(x cos θ+y sin θ) dx dy (2.19)

With this knowledge, a direct approach for reconstruction is conceptually straight-

forward. First, calculate the 1D Fourier transform of each projection (2.20). Next,

fill a 2D Fourier image with the results from each of these transformations. Take care

to place the data into the frequency domain at the angle at which the projection was

captured in order to satisfy the central slice theorem (2.21). Finally, calculate the in-

verse 2D Fourier transform of the constructed Fourier space to recover the attenuation
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Figure 2.6: The central slice theorem and its use for CT reconstruction.
(a) The central slice theorem states that the 1D Fourier transform of
projection p(t, θ) is equivalent to a line passing through the center of the
2D Fourier transform of f(x, y) at angle θ. (b) By filling in the values of
F (u, v) with a sufficient number of Fourier-transformed projections and
taking the inverse Fourier transform, (c) the function f̂(x, y) is recovered.

coefficients of the space (2.22). This process is visualized in Figure 2.6.

P (ω, θ) = F [p(t, θ)] (2.20)

F (ω cos θ, ω sin θ) = P (ω, θ) (2.21)

f̂(x, y) = F−1[F ] (2.22)

Despite its simplicity, this approach suffers from practical issues. First, this method

fills a Fourier image defined on a discrete grid using samples placed at radial coordi-

nates. With a discrete set of projections, there will be empty regions of the Fourier

grid which must be interpolated from observed samples, a non-trivial task to perform

in Fourier space. Additionally, as the size of the reconstruction space grows, so too

must the size of the Fourier space increase. At some point, calculating the inverse

Fourier transform for increasingly larger images becomes computationally challenging.

Rather than constructing the Fourier image directly, the filtered backprojection algo-

rithm (FBP) uses the central slice theorem to define the reconstruction space as a func-

24



tion of projection intensities [37]. Starting with the observation that the Fourier trans-

form and the inverse Fourier transforms are reciprocal functions, f(x, y) = F−1[F [f ]],

and using the identity defined in (2.19), we can express the reconstruction space as

the double integral:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|ej2πω(x cos θ+y sin θ) dω (2.23)

In this formulation, the inner integral represents the inverse Fourier transform of

P (ω, θ), which recovers a projection that has been filtered by the 1D bandpass filter

|ω|. An intuitive explanation for this equation is that the reconstructed value at

f(x, y) is the sum of all filtered projection samples which pass through the point

(x, y). By controlling the design of the bandpass filter |ω|, one controls the frequency

characteristics of the output reconstruction. Often, this means trading edge sharpness

for reduced image noise. While the above formulation is only defined for parallel

projections, there are many extensions to filtered backprojection which allow for fan-

beam and cone-beam projectors [12, 19, 33, 107] and scan trajectories on a cylinder

or sphere [43, 44, 60, 94].

FBP is easy to implement and can be computed efficiently on standard computing

hardware using the fast Fourier transform (FFT), making it an extremely accessible

method for a variety of CT applications. Further, since each reconstructed pixel value

is simply the sum of contributions from independently computed filtered projections,

the entire process can be easily parallelized and accelerated with GPUs.

It is important to note, however, that backprojection is an analytical approach to

CT reconstruction which employs an idealized model of X-ray imaging. Equation

(2.17) and all subsequent calculations rely upon the assumptions that the space is

imaged with a monochromatic X-ray beam, that the X-rays striking a sensor pixel

are locally collimated, and that the scan geometry has been recorded exactly. In
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reality, these assumptions are frequently violated due to the simple practicalities

of implementing X-ray imaging systems: the X-ray tubes used in most commercially

available CT scanners produce polychromatic X-ray beams that break the linearity of

(2.17) and introduce beam hardening and cupping artifacts; tube focal spots are large

enough that a penumbra effect, which reduces image resolution, occurs at the sensor

plane; and mechanical error in the scanning hardware or movement of the scan subject

produce discrepancy between the actual and recorded scan geometry, introducing

blurring or doubling artifacts in the reconstructed slices. Directly modeling these

effects in the backprojection process is difficult, so solutions to these issues often

involve conditioning of the scanner or projection images as an additional step prior

to reconstruction [7, 9, 84].

2.3.2 Forward projection

Reconstruction from forward projection offers a flexible alternative to backpro-

jection methods. Rather than analytically deriving the reconstructed pixel values,

forward projection methods use a simulated X-ray projection system to optimize the

reconstructed pixels with respect to the observations captured in the projection im-

ages. As the optimization process must often be applied iteratively, these methods are

also known as iterative reconstruction methods. Historically, iterative reconstruction

techniques were more expensive to compute than FBP and did not always produce

reconstructions of higher quality. Today, computation times for iterative methods

have significantly improved, and the reconstruction quality has begun to exceed that

of FBP in many respects. As a result, iterative methods are becoming more widely

available alongside commercially available CT scanners.

A simple forward projection algorithm models the projection process by the equa-

tion:

p = Aµ+ ε (2.24)

In this formulation, the projections, p, are a function of the projection system matrix
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A, the discrete vector of attenuation coefficients µ, and an additive noise vector ε.

The system matrix models the transformation by which the attenuation coefficients

are summed into the pixels of the projection images. Minimally, it applies the Radon

transform to the coefficients, but it can also be constructed to account for other phys-

ical effects of X-ray interaction. Given this equation for projection, the reconstruction

task can be defined as finding the values for µ which maximally match p after trans-

formation by A. Without prior information, all values of µ are equally likely, and this

equation cannot be solved directly. Thus, iteration is employed to refine estimates of

µ until convergence is achieved according to some loss function.

The prototypical example of a forward reconstruction method is the algebraic re-

construction technique (ART). Known in mathematics as the Kaczmarz method [41],

but independently rediscovered and applied to image reconstruction by Gordon, Ben-

der, and Herman in 1970 [28], ART was the first iterative method developed for image

reconstruction and the method employed by Hounsfield to reconstruct data from the

first commercially viable CT scanner [35].

During each iteration of ART, rays are cast from a simulated X-ray source posi-

tion, through the pixels of the reconstruction space, towards each pixel on the X-ray

detector. To simulate the effect of the Radon transform, the values of the pixels

which intersect each ray are integrated into a single value which summarizes the ray’s

total attenuation. The i-th iteration for the estimated total attenuation along ray r

is given as:

ri =
L∑
j=0

µij (2.25)

where L is the number of pixels intersected by the ray and µij are the i-th density

estimates for those pixels. The residual error between this simulated attenuation and

that captured by the X-ray detector is then distributed evenly among the pixels which
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intersect the ray. This translates to the per-pixel update function:

µi+1
j = max[µij +

pr − ri

N
, 0] (2.26)

While this algorithm is straightforward, it is worth noting that ART is a fairly

simple model of X-ray projection. Each ray is considered independently and voxels

are updated immediately, effectively ignoring the correlations between adjacent rays

from the same projection image. Additionally, there is no compensation for system

noise, which is unavoidable in real world datasets.

Statistical iterative reconstruction (SIR) methods were developed to address some

of these issues through the incorporation of various types of prior information [20, 26,

85]. Usually, these methods form the reconstruction task in the Bayesian framework

as maximizing the a posteriori probability estimate for the attenuation coefficients,

µ̂:

µ̂ = argmax
µ

[log Pr(p|µ) + log Pr(µ)] (2.27)

In this formulation, the log-likelihood term, log Pr(p|µ), defines the mapping of

attenuation coefficients, µ, to the projections, p, while the prior term, log Pr(µ),

models the properties of the scanned object and the reconstructed image [38]. These

terms are converted into a mathematical reward function, and an optimization process

iteratively computes a stable solution of the reconstructed image µ̂.

At their most basic, SIR methods only include a simple model of the X-ray projec-

tion system and a regularization term which describes how the reconstructed image

should be formed. Functionally, the regularizer reduces noise in the output image

by enforcing local consistency between adjacent voxels. Model-based iterative re-

construction (MBIR) methods are a more advanced version of this idea that further

include a highly accurate system model and a statistical noise model alongside the

regularization prior [52, 94, 104]. MBIR methods have been shown to significantly
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improve reconstruction quality by modeling complex behaviors of the projection sys-

tem, such as the blurring effects induced by the focal spot of cone-beam sources and

the scintillators on flat-panel detectors [96, 97].

2.3.3 Attenuation field CT reconstruction

The application of neural networks, particularly deep neural networks, to CT re-

construction has been a well-studied topic for over a decade [1, 42, 95, 98, 100, 106].

We here restrict ourselves to a discussion of methods which employ coordinate-based

networks to implement and/or inform the CT reconstruction task. We further note

what differentiates these methods from FlexAF.

In the random Fourier features paper which introduced the Gaussian encoding

[92], Tancik et al. compared various positional encodings across a range of 2D and 3D

regression tasks. One of their experiments explores a 2D CT slice reconstruction task

where an MLP is trained to predict the density values of a slice image when supervised

on Radon-transformed projections of the slice. Designed to test the effectiveness of

positional encodings for inverse learning problems, this experiment idealizes many

challenges of real-world CT reconstruction and thus cannot be applied to practical

CT reconstruction. For example, it only considers in-plane, parallel projections using

a computational Radon transform of preexisting slice images. It is however notable as

the first work, to our knowledge, which considers the application of coordinate-based

networks for CT reconstruction.

Sun et al. applied a Fourier features network equipped with the Gaussian encoding

to the task of synthesizing the missing rotational samples in sparse sinograms [91].

Unlike FlexAF, this work does not reconstruct a full volumetric model. Rather, the

network is trained to reproduce sinograms parameterized by they coordinates (l, θ),

which correspond to each pixel’s sensor location and rotational angle respectively.

Once trained, the network can then be queried at arbitrary sinogram coordinates

in order to synthesize new sinogram samples. Synthesized sinogram samples are
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combined with the original sparse sinograms to produce a more rotationally dense

sinogram which is then reconstructed using an existing CT reconstruction algorithm.

Zang et al. propose a multi-stage reconstruction framework for ill-posed reconstruc-

tion problems, called IntraTom [105]. Like FlexAF, IntraTomo learns a volumetric

attenuation field through the application of a differentiable projection system which

is trained against X-ray projection images. The attenuation field and its synthesized

projections are then used to iteratively optimize a final volume model as part of a

model-based “geometry refinement” step. Unlike FlexAF, the learned attenuation

field in IntraTomo is not the final output of the method and is instead used as an

intermediate representation for projection synthesis.

Sitzmann et al. proposed SIREN, a coordinate-based network model based on an

MLP with sinusoidal activation functions and no positional encoding. SIREN is no-

table for its improved ability to accurately learn both a function and its derivatives.

Though the authors don’t apply SIREN to the radiance field task, they do demon-

strate its ability to accurately solve waveform inversion tasks. In 2021, Koo et al.

demonstrated a CT reconstruction method built on SIREN which employs a differ-

entiable ray tracer similar to that of NeRF [47]. Rather than employing hierarchical

sampling, they approximate the ray integrals in a single stage where the rays are

divided into N intervals and samples are drawn from the midpoints of each interval.

To correct for noise in their reconstructions, they augment the L2 loss function with

a regularization term to control the spatial smoothness of the reconstruction. The

method was tested on various phantoms and a real-world fan beam dataset, and the

authors report comparable reconstruction quality to that of other model-based ap-

proaches. Early experiments with FlexAF evaluated the SIREN model for our neural

volume, but we found that its stability was extremely sensitive to hyperparameter

initialization, and we could not get it to converge for our micro-CT test datasets.

In parallel to the development of FlexAF, Rückert et al. introduced Neural Adaptive
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Tomography (NeAT) [83], to date the most complete CT reconstruction framework

employing radiance field methods. Noting the long computing times required by

previous applications of implicit neural networks to CT reconstruction, they introduce

an efficient hierarchical rendering pipeline, built on an adaptive octree decomposition

of the volumetric space, that is capable of reconstructing full micro-CT volumes in

a few hours. Further, they use the end-to-end differentiability of their pipeline to

learn geometric and photometric system corrections which improve the signal-to-noise

(SNR) of their reconstructions. The authors show that NeAT outperforms many of the

leading existing reconstruction methods across a number of sparse and limited angle

tasks. FlexAF shares many of the design goals of NeAT, in particular the interest in

system calibration through automatic differentiation. However, our work is focused on

how differentiable ray tracing and neural volumes allow us to expand the capabilities

of CT reconstruction when combined with heterogeneous input datasets. Optimizing

our work for at-scale deployment will be an important step for the wider application

of FlexAF, and NeAT will be a valuable reference point during that development.

2.3.4 X-ray camera geometry

The structural relationships which map a point in 3D space onto the image plane

of an X-ray sensor are very similar to those of the projective camera model used for

photogrammetry, and in fact, the general projective model in (2.4) can be used to de-

scribe X-ray image acquisition for a cone beam X-ray source and flat panel detector.2

Figure 2.7 illustrates the geometric equivalence between the general projective camera

used in photogrammetry and the projection geometry of an X-ray sensor illuminated

by a cone beam X-ray source.

An important difference between these two models is the location of the sensor with

respect to the scene and the effect that placement has on the content of the projected

2While there are many other X-ray camera configurations besides those we discuss here, such as
systems which use fan beam sources or curved detectors, most of these alternatives can be reduced
to a cone or parallel beam geometry when considered at the pixel level.
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Figure 2.7: A comparison of the photographic camera model and the ge-
ometry of cone beam X-ray imaging. (a) The projective camera
model for photography, showing the image plane in front of the pinhole
for convenience. (b) The projective camera model for an X-ray sensor
illuminated by a cone beam source. We can see that the focal length (i.e.
pinhole-to-sensor distance) is analogous to the source-to-detector distance
in determining the scale of features on the image plane.

image. In photography, the light from the scene is collected through the camera’s

pinhole and projected such that scene features are “scaled down” to fit onto a smaller

image sensor, with a magnification factor f ≤ 1 determined by the camera’s intrinsic

focal length. For cone beam X-ray projection, the light begins at a point light source

and expands according to the inverse square law. At the image sensor plane, this

results in the scene content having been “scaled up” by a magnification factor f > 1

which is determined by the source-to-detector distance (SDD). Thus, the SDD can

be thought of as the X-ray system’s “focal length” and can be used to calculate the

α parameter in (2.3). In CT, the magnification of the scene on the sensor plane is

referred to as geometric magnification and is usually measured in terms of the ratio

of the SDD to the source-to-sample distance (SSD).

Parallel beam X-ray sources provide a highly collimated beam of X-rays that are

assumed to be perpendicular to all points on the image sensor plane (Fig. 2.8). Be-

cause of this perpendicularity, parallel beam geometries are more properly modeled

through orthographic, rather than perspective, projection. In orthographic projec-
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Figure 2.8: The geometry of parallel beam X-ray imaging. With a parallel
beam, the image sensor is illuminated by a highly collimated beam of X-
rays which are assumed to be perpendicular to the entire image plane, as if
they proceeded from a distant source plane. As such, there is no observable
magnification in the projections when altering the relative distances of the
source or the detector planes. For purposes of reconstruction, the source
plane placement is arbitrary as long as its distance from the center of
rotation is sufficient to encompass the entire scan volume.

tion, a zero-scale is applied along the direction of the projection plane’s normal. For

example, an orthographic projection of a 3D point onto an image plane at Z = 0 is

given by the equation: 

u
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(2.28)

Orthographic projection can be generalized for arbitrarily positioned and oriented

projection planes by right multiplying the orthographic projection matrix with a

4 × 4 homogeneous pose matrix composed of a rotation mapping the Z axis to the

target plane’s normal and a translation to a point on the plane.

While these geometric camera models imply the ability to freely position X-ray

cameras — both source and sensor — in the world coordinate frame, few CT recon-
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struction algorithms use such a configuration in practice. For backprojection meth-

ods, this is due to those algorithms’ relationship to the Fourier transform and the

analytical derivation of volumetric attenuation as a function of projected intensities.

By construction, FBP and its successors make a strong assumption about the struc-

ture of the X-ray cameras with respect to the scene, namely that the projections are

captured along a radial path relative to known axis of rotation, or isocenter. This

structure is so strongly determined that even small deviations in geometry, such as a

pixel-length shift along the detector’s horizontal axis, can produce a noticeable blur

of the reconstructed volume.

For forward projection methods, the primary difficulty lies with calculating the

reconstruction on a discrete grid. Though the simulated projection system can eas-

ily incorporate projective geometries, these methods must define an explicit update

function to decide how the error between the simulated and real projections is to

be distributed in the volume. Such a task is non-trivial in the case of freely po-

sitioned X-ray cameras, where significant variance in geometric magnification can

produce irregular sampling patterns with respect to the 3D pixels, or voxels, in the

grid. Additionally, the discrete grid is necessarily a bounded entity which becomes

increasingly difficult to manage as the spatial extent of the volume grows and/or the

scan resolution increases. Restricting camera geometries to views around a central

volume makes sense simply as a matter of practicality, efficiency, and convenience.

For both forms of reconstruction, the transmissive nature of X-rays adds an ambi-

guity to the scene’s projective geometry which is not present for photographic scenes.

There is a strong rotational symmetry around the axis of rotation in X-ray imaging,

and two X-ray projections captured with a rotational offset of 180◦ will appear to be

horizontally flipped versions of each other.3 In the absence of any prior for the cam-

3This is not strictly true for cone beam X-ray sources, where objects that are nearer to the source
will appear larger on the image sensor than objects which are further away. After a 180◦ rotation,
these objects will have swapped positions relative to source, thus the projections will not be
identical after a horizontal flip but only nearly so.
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era’s structure, it is thus difficult, if not impossible, to disambiguate the orientations

of two cameras based on their image contents alone. This makes camera calibration

and reconstruction from a completely unorganized set of projection images a difficult

proposition.

2.4 A look back with optimism

As we have seen, there is significant overlap in the projective camera models used

by photogrammetry, radiance fields, and X-ray tomography, but tomography does

not enjoy the same degrees of freedom as its photographic brethren. Before moving

on, we make two observations of photogrammetry and radiance fields that we believe

enables them to be more adaptable to heterogeneous inputs than tomography.

Our first observation is that photogrammetry introduces a separation of concerns

between the scene structure and the scene appearance. Roughly, this delineation

corresponds to a partition between MVG and MVS. The scene structure, computed

with MVG, describes the global geometric relationships between the cameras and

scene. The scene appearance, computed with MVS, describes the local geometric and

photometric properties which govern our perception of the scene.

A similar distinction between structure and appearance is found in the way in which

radiance fields implement the light transport model. In most radiance field methods,

the scene is sampled to produce both density (structure) and view-dependent color

(appearance). We see that here density also describes a global property of the scene,

namely the visibility of objects from a particular view point, while view-dependent

color describes a very local property of the surfaces.

We believe that this separation of concerns is a significant reason for the flexibility

that these methods enjoy with respect to heterogeneous inputs. Field of view, depth of

field, image resolution — these are structural properties which govern the geometry

between camera and scene. Image exposure, surface color, and scene illumination

are appearance properties which influence our perception of the scene but not its
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fundamental structures.

We do not find this same separation of concerns in computed tomography. As

we discussed in section 2.3.4, CT reconstruction algorithms have long been defined

by a canonical scene structure of projections captured radially about an isocenter.

While many modern CT pipelines compute camera calibration in order to improve

the reconstructed volume, there is still an assumption that the initial structure is

similar to the canonical form, and there is little attempt to define the attenuation

coefficients separately from this structural assumption.

Our second observation is that both photogrammetry and radiance fields construct

a continuous scene model.4 As a result, these methods can easily adapt to irregular

spatial patterns found in the input dataset. For example, sparse images of a large

scene can be combined with dense images of an object-of-interest to produce a point

cloud with spatially varying point density. Such irregular sampling densities are not

easily accomplished with CT because the discrete grid must have a fixed sample

rate for the entire scene. Either dense regions will be oversampled, sparse regions

will be undersampled, or some combination of both. The continuous volumetric

representations used by radiance fields would appear to solve this issue. Regions of

the scene can be learned with exactly the sample rate required to reconstruct that

region’s content, making it an ideal approach for datasets with multiscale features.

4Though photogrammetry often produces a discretized output model (e.g. a cloud of points, a
triangulated surface), the coordinate frame for these objects is defined continuously.
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CHAPTER 3. FRAMEWORK

“I did not think; I investigated.”
– Dr. Wilhelm Röntgen, The New Marvel in

Photography, McClure’s Magazine, 1896

The FlexAF reconstruction framework falls into the broad category of forward

projection algorithms. During training, our differentiable ray tracer queries our volu-

metric model (a neural network) to render simulated projection images of the current,

learned reconstruction. These simulated images are then compared against a set of

ground truth projection images. Since the entire process is end-to-end differentiable,

the resulting loss is used to update the volumetric reconstruction through gradient-

based optimization. Unlike most supervised machine learning tasks, where the goal

is train a model which generalizes to unseen inputs, our goal is to exactly learn the

3D function of volumetric attenuation coefficients µ(x) for x ∈ R3. As our volumetric

model is continuous, we refer to this function as the volume’s attenuation field. After

training, we view the reconstructed slices directly by querying the neural volume with

a set of coplanar 3D coordinates.

In this chapter, we describe the key design choices, features, and process of the

FlexAF framework in more detail. A visual overview of the FlexAF components is

available in Figure 3.1. We begin with an explanation of the X-ray camera model

we use during training and how this model maps onto our input datasets. Next,

we describe our differentiable ray tracer and our process for X-ray image formation,

highlighting its default operation and various optional features. We follow this with

a discussion of our two neural volume representations: a standard model for recon-

struction of a single attenuation coefficient and a multi-energy model which supports

heterogeneous incident energies. Finally, we conclude with a description of various

support mechanisms we employ to improve training times and control the learning

attention.
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Figure 3.1: The primary components of the FlexAF framework. From left to
right, these components generally map onto the reconstruction process.
First, we initialize the X-ray cameras for each projection image using
metadata provided by the scanner. Second, we ray trace the projection
images and draw point samples from the world coordinate frame. Next,
we pass the point samples to our neural volume and receive estimated
attenuation coefficients. Finally, we evaluate our neural renderings against
the captured projections to improve our reconstructions. Once learned,
the neural volume can be queried directly to render slices and volumes.

3.1 X-ray camera model

In FlexAF, each projection image defines an X-ray camera which exists in the world

coordinate frame and which captures the total attenuation for the space lying between

the X-ray source and detector. Our geometric model for X-ray cameras build from

the projection geometries described in 2.3.4. Each camera has a source position S,

detector center position D, and detector basis vectors (~u,~v, ~w), which correspond to

the horizontal, vertical, and normal axes, respectively. Because we want to construct

a volume which is measurable in real world units, we specify the positions of our X-

ray cameras in millimeter units. Since we are only modeling the first-order effects of

linear attenuation, the X-rays striking the detector surface point Dx can be modeled

as a ray ~r passing between the source and the surface point (Figure 3.2). For cone

beam geometries, this ray is given as a directed line segment:

~r = SDx (3.1)
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Figure 3.2: Cone and parallel beam X-ray camera models in FlexAF. (a) For
a cone beam X-ray camera, all X-rays proceed from a single X-ray source
point S. The projection ray which strikes point Dx on the detector is
given by the ray ~r = SDx. (b) For a parallel beam X-ray camera, the ray
which strikes Dx proceeds from a point Sx which lies on the source plane
S along the detector normal w.

.

For parallel geometries, where X-rays are considered perpendicular to the detector

surface, the ray proceeds from a point Sx which lies at a fixed distance along the

detector normal. We set this value to be the distance between the source and detector

centers:

Sx = Dx + ~w ∗ ‖SD‖ (3.2)

~r = SxDx (3.3)

For cases where the source position S is indeterminate or infinitely large (i.e. syn-

chrotron light sources), the choice for this fixed distance is somewhat arbitrary and

need only be large enough to cover the reconstruction space. A reasonable estimate

is to use twice the sample-to-detector distance.

While our ultimate goal is to accommodate X-ray camera trajectories with arbi-

trarily positioned X-ray sources and detectors, the fact remains that few existing CT

scanners cannot capture such trajectories. Since all the datasets in this study are de-
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(a) (b)

Figure 3.3: Initialization of X-ray cameras from a cylindrical CT scan. (a)
Using metadata provided by the CT scan, we compute the X-ray cam-
era positions for each projection image relative to the isocenter, which we
place at the origin of the world coordinate frame. The scan’s rotational
step size θ and the projection’s index determine its total rotational offset,
while the source-to-sample and source-to-detector distances determine the
source and detector placement respectively. (b) Once the detector is po-
sitioned in the world coordinate frame, we compute each pixel’s world
coordinate Di,j relative to the detector center D as defined in (3.4).

rived from cylindrical CT scans with X-ray images captured at fixed rotational steps

around an isocenter, we initialize the cameras for our projection images using this

known trajectory (Figure 3.3a). We set the isocenter to be the origin of the world

coordinate frame, and use the source-to-sample distance, source-to-detector distance,

and total rotational offset θ for each projection image to calculate the initial positions

and orientation vectors of S and D.

We follow the lead from radiance fields and train over individual pixels of the

projections rather than full images or 2D subregions. This is a crucial property of

the FlexAF framework as it enables us to easily support geometric heterogeneity in

interesting ways. We can, as needed, train over full projection images, subregions

of projection images, sparse samples from projection images, images captured from

both parallel and cone beam geometries, images with different (physical and effective)
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pixel sizes, etc.

Since we have defined the camera geometries in terms of individual rays striking the

detector surface, we can easily calculate the world coordinates and orientation vectors

for each pixel on the detectors (Figure 3.3b). Given the 2D pixel size in millimeters,

δ, and the number of pixels along each axis, H ×W , the pixel’s center position can

be calculated relative to the detector’s center position using the equation:

Di,j = D + (i− H
2 )δv~v + (j − W

2 )δu~u (3.4)

For flat panel detectors, the orientation vectors are identical to those of the detector.1

We note that this construction provides inherent support for multi-resolution data, as

the world coordinate offsets between adjacent pixels correspond to the physical pixel

sizes and the effects of geometric magnification are encoded into the source and pixel

positions in the world coordinate frame.

We construct a tensor T for each projection pixel p which is passed to our differ-

entiable ray tracer during training:

Tp = 〈n, (dx, dy, dz, 1), (sx, sy, sz, 1), rd, rs, v〉 (3.5)

where d is the homogeneous world coordinate of the pixel center, s is the homogeneous

world coordinate of the pixel’s X-ray source, rd and rs are the radii of the pixel’s

frustum at d and s, and v is the pixel’s intensity value. Since we are training over

randomized image pixels, we also track the global projection image index n so that

we can apply image-level transformations during training. Our complete training set

is a flattened list of pixel tensors from across all projection images.

1Though we only consider flat panel detectors in this work, it is a minor extension to determine the
position and orientation vectors for each pixel on a curved detector if the detector’s curvature is
known a priori. The key takeaway here is that the detector’s position and orientation uniquely
determines the position and orientation of each of its pixels.
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Figure 3.4: A visualization of the FlexAF ray tracing system. Every projec-
tion pixel px defines a ray rx which travels from an X-ray source Sx to
the detector. 3D points are drawn from the rays using stratified sampling
and passed to the volume model to produce estimated attenuation coeffi-
cients. The coefficients are summed along each ray into single estimated
projection value which is compared against the observed value at px.

3.2 Ray sampling

For each pixel px in our training set, there is a corresponding ray given by the

directed line segment ~rx = sxdx. Our goal is to approximate the line integral of

attenuation for this ray such that the final integrated value equals the observed pixel

value in the projection image (Figure 3.4). We do this by drawing a discrete number

of 3D point samples from along the ray which we then pass to our volume model for

evaluation and integration. Similar to NeRF, we use a stratified sampling approach

to generate point samples. The ray is divided into N equal-sized intervals, and we

draw a new point sample uniformly at random from each interval. These samples are

then combined with the ray end points to produce N+1 sample points for evaluation.

N is a hyperparameter which is selected according to the volume size and desired

resolution, and is practically constrained by the computational limits of the host

system. When N is small, the ray can be evaluated very quickly but will provide

a poor approximation for the continuous integral of the Radon transform. As N
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Figure 3.5: Plot of various interval schedules across training epochs. With
a constant interval schedule (blue), the number of intervals do not vary
across training epochs. In contrast, our log-linear schedule gradually in-
creases the number of intervals in order to stabilize early learning and
modestly improve total run times. When the schedule multiplier m = 1.5
(red), the number of intervals increase slowly. When the schedule multi-
plier m = 8 (purple), intervals increase quickly.

increases, the rays will more closely approximate the continuous integral, but at the

expense of dramatically increased computation times.

During our development, we noted that immediately training with a dense number

of sample intervals can occasionally result in poor learning. In the worst case, the

gradients become unstable early in training and the model fails to converge. In

the best case, the reconstruction converges rapidly in isolated regions of the volume

to produce a locally sharp but globally sparse reconstruction which is then gradually

“filled in” with more content as training progresses. Though this latter behavior is not

necessarily problematic, it is sometimes preferable to initially learn a globally smooth

reconstruction which becomes sharper as training progresses. This is particularly

true when performing automatic extrinsic calibration, where supervising over high-

frequency content early in training can lead to poor optimization of the extrinsic

parameters.
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To help stabilize early learning and provide more control over the learning behavior,

we introduce an optional interval schedule which monotonically increases the number

of sampling intervals from a lower bound to an upper bound according to a log-linear

curve:

N(e) = min(bL+m ∗ (e+ 1) ∗ ln(e+ 1)c, U) (3.6)

where e is the current training epoch, m is a hyperparameter which scales the rate

of increase, and L and U are the lower and upper bounds on the number of sampling

intervals respectively. In practice, we set L = 2 and select m and U according to the

specific dataset. Figure 3.5 shows a plot of this schedule for common values of m and

U = 256. We find no significant difference in reconstruction quality at convergence

between using a constant number of intervals and the interval schedule. Though

using a constant number of intervals does occasionally produce faster convergence

than when using the interval schedule, the improvements are rarely dramatic, and we

prefer the stability and predictability of using the interval schedule.

3.2.1 Pencil approximation

We have thus far modeled X-ray projection as individual rays following a linear

path from the source to the center of detector pixels. While this is a useful geometric

simplification, it misses the fact that the pixel has a physical surface area and is

capturing a pencil of X-rays across its entire surface. For our continuous volumetric

model, this can in principle lead to a scenario where we learn the attenuation for the

precise coordinates along the ray and nowhere else, with the result being a volume

model with noticeable “gaps” between the paths of rays.

This single ray problem is well-studied in computer graphics applications, where

the result is a rendered image with noticeable aliasing artifacts. A typical solution is

to employ a multi-sampling method where multiple rays are cast for each pixel such

that the rays intersect the pixel at random locations over the pixel’s surface. Each

ray is then traced independently, and the rendered color values are averaged together
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Figure 3.6: Per-pixel pencil sampling strategies for parallel and cone beam
geometries. (a) In standard stratified sampling, the pixel frustum is
divided into equal sized bins and samples are drawn from within each bin
uniformly at random along the direction of the ray. (b) To approximate
the full pencil beam, we additionally offset the sample perpendicular to the
ray direction according to a normal distribution with standard deviation
determined by the scaled pixel size. This deviation changes between each
bin for cone beam geometries but does not change across bins for parallel
beam geometries.

to produce the final pixel value. While very effective at reducing aliasing artifacts,

this is a computationally expensive process due to the need to fully sample each pixel

multiple times for every rendered frame.

We adapt this multi-sampling process in FlexAF by exploiting the inherent stochas-

ticity of our training method. Because we are already sampling each pixel multiple

times across training epochs, we can approximate multi-sampling by jittering the

pixel’s center position dx prior to ray sampling. This lets us avoid the large compu-

tational expense of multiple ray traces per pixel per iteration while still training over

samples from the full volume of the X-ray pencil.

We also implement an alternative to this approach where we adjust the sample

points provided by stratified sampling such that they more fully cover the volume of
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the pencil rather than simply lying directly along the ray. This can be easily accom-

plished by locally jittering each point in the plane orthogonal to the ray direction. To

keep samples within the bounds of the pencil, we draw the jitter offset value from a

normal distribution with σ equal to the scaled pixel width times 2√
12
, which produces

an in-plane variance equivalent to that of the pixel’s footprint [2].

3.2.2 Learned camera extrinsics

X-ray camera misalignment, where the actual positions and orientations of the cam-

eras (source and sensor combined) do not match the values recorded by the scanner,

is a common problem for real-world CT acquisition. Misalignment can occur for a

number of reasons, the most common of which is simply hardware limits on mechan-

ical repeatability. It is a difficult proposition to precisely position the hardware for

pixel perfect acquisition at every rotational step, particularly when the effective pixel

sizes are at the micrometer and nanometer scale. As shown in Figure 3.7, camera

misalignment can cause a range of reconstruction artifacts from minor to serious.

We implement an optional automatic misalignment correction system for the cam-

era extrinsics which is learned jointly alongside the reconstruction process. For each

projection image, we store two 4 × 4 tensors representing a homogeneous transform

of the source and detector positions respectively and which are initialized to an iden-

tity transform. During training, we use each pixel’s projection image index to load

and apply the corresponding transforms to the ray endpoints, s and d, prior to ray

sampling. The transform matrices are set as learnable parameters and are updated

during backpropagation alongside the volume parameters.2 The transforms can be

configured with either their own optimizer or they can share an optimizer with the

volume network. In all of our experiments, we opt to use a standalone optimizer for

the transforms as the shared optimizer typically leads to unstable transform learning.

For convenience and framework testing, we also implement manual post-alignment

2Since the final row of a homogeneous 3D transform should not be updated, we apply a stop
gradient to this row.
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(a) No post-alignment correction (b) Manual post-alignment correction

Figure 3.7: Misalignment artifacts in the papyrus scroll dataset. Comparison
of FBP slices without and with post-alignment correction. (a) Without
correction, Point-like features become large crescent artifacts and the inte-
rior structure does not align. (b) With manual post-alignment correction
of -30 pixels, the point-like features are resolved and the structure of the
scroll is clearly defined and traceable. Learning the camera extrinsics re-
moves the need to manually determine post-alignment corrections such as
this.

correction. This is a commonly used technique where each detector’s position is

shifted pixel-unit distances along its basis vectors (~u, ~v).

3.3 Volume model

Our reconstructed volume is modeled in the weights of a coordinate-based neural

network which accepts a 3D point x in the world coordinate frame and returns the

learned attenuation coefficient µ(x). Our standard architecture, shown in Figure 3.8,

is based off of that employed by many radiance field methods but adapted for CT

reconstruction in a to-scale world coordinate frame.

3.3.1 Positional encoding

For our coordinate encoding γ(x), we use the Gaussian encoding discussed in 2.2.2.

This encoding is easy to implement, quick to evaluate, and tunable to each scan’s
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Figure 3.8: The standard FlexAF neural volume architecture. A single-energy
FlexAF neural volume configured with a 5-layer MLP of width 256 and a
Gaussian encoder with 256 features.

frequency content by varying the scale σ. As previously noted by Tancik et al., setting

the scale to an arbitrarily large value decreases reconstruction quality [92]. Thus, we

treat the scale as a hyperparameter which is manually tuned for each dataset.

In radiance field applications, the Fourier feature encoders are provided normalized

coordinates in the range [−1, 1] for positional encoding and [0, 1] for Gaussian encod-

ing. This is of little consequence for the view synthesis task as the absolute scale

of the scene is largely unimportant for perspective rendering. We, however, wish to

reconstruct in a world coordinate frame with physical units, where objects can be

measured metrically and where we can reason about the size of the reconstructable

volume.

Unfortunately, the straightforward solution of passing the raw world coordinates

directly to the encoder does not work as well as one might hope. To understand

why this might be, let us first consider that the raw world coordinate x is simply the

normalized world coordinate multiplied by a per-axis scalar vector g which transforms

the normalized coordinate to a specific unit of reference (e.g. millimeters): x = gx̂.

If we substitute this into Eq. (2.7), we can see that the scale component of our raw

world coordinates multiplies against B, thus amplifying the Gaussian scale by some
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volume-specific factor:

γ(x) = [cos(2πBx), sin(2πBx)]T = [cos(2πBgx̂), sin(2πBgx̂)]T (3.7)

While this is an operable solution in principle, it can be quite difficult to predict

appropriate Gaussian scale values under such a scheme as it is inversely proportional

to the volume’s size. An intuitive understanding of the Gaussian scale from radiance

fields is that it controls the reconstruction’s frequency content with some approx-

imately monotonic notion of resolution. That is, a larger Gaussian scale provides

“more resolution.” It can be quite confusing, then, to observe that a volume with

a 2mm diameter would have a smaller Gaussian scale than a volume with a 1mm

diameter.

Our solution to this problem is to apply coordinate normalization dynamically dur-

ing training and evaluation rather than when the data is loaded. Prior to training, we

construct a coordinate scaling function from the scan’s minimum axis-aligned bound-

ing box of all source and pixel positions in the world coordinate frame. This scaling

function is stored as a framework parameter and is called immediately before coor-

dinates are passed to the Gaussian encoder. This has the desired effect of providing

an interpretable world coordinate frame for the user while still maintaining the in-

tuitive properties of the Gaussian scale hyperparameter. We note that normalizing

the coordinates on a per-volume basis only removes the inverse relationship between

the volume size and the Gaussian scale and does not fix this value with respect to

a particular spatial resolution. The scale must still be individually selected for each

scan as before but with the advantage that the value now grows intuitively with the

volume. For example, a volume with a 2mm diameter would need twice the Gaussian

scale of a volume with a 1mm diameter to maintain a similar quality.

In line with the findings by Zheng et al. discussed earlier, we occasionally find
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it necessary to increase the number of encoder features m alongside the Gaussian

scale in order to improve reconstruction quality. Intuitively, as the scale increases

for a fixed number of frequency features, so too does the sample sparsity increase

in feature space. At some point, the feature space sparsity exceeds that required to

learn the volumetric attenuation function, and the quality of the reconstruction is

diminished. It is worth noting, however, that the number of features controls the size

of the receptive field for the first layer in the neural network and thus also increases the

network’s memory footprint. So while the scale hyperparameter can grow indefinitely,

there is a practical limit to the range of frequencies which can be represented by the

Gaussian encoding.

Learned camera extrinsics revisited

To control transform learning, we modify the frequency weighting method from

BARF [50] for use with the Gaussian encoding. As discussed in 2.2.4, BARF applies

a per-frequency weight wk(α) to each frequency component of the encoded coordi-

nate which progressively enables high-frequency learning as training progresses. This

scheme is easy to implement for NeRF’s positional encoding as the frequency features

are set to monotonically increasing values of 2k and are identical for each spatial

axis. In contrast, the Gaussian encoder uses frequency features B ∈ Rm×3 which

are drawn from a normal distribution, contain positive and negative values, and are

independently selected along each spatial axis. We make a number of changes to the

frequency weighting method to account for these feature differences.

Our first step is to redefine α ∈ [0, 1] so that it represents the percent of the to-

tal frequency range which has been fully enabled. When α = 0, only the lowest

frequency components are passed to the volume network, and when α = 1, all fre-

quency components will be passed. As before, we want to construct a weight function

which smoothly enables the high-frequency components as α increases but only af-

ter a specific α threshold has been met. Though the Gaussian features can be both
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positive and negative, only the absolute magnitude determines whether the feature

corresponds to a low or high frequency. To easily filter our features according to their

magnitude, we construct the normalized Gaussian feature matrix B̂ = [B̂x, B̂y, B̂z]

where B̂j ∈ [0, 1]m is the normalized absolute value for axis j given by:

B̂j =
|Bj| −min |Bj|

max |Bj| −min |Bj|
(3.8)

Intuitively, the values in B̂ represent the normalized positions of the original features

within the per-axis range of absolute feature magnitudes. By thresholding the values

of this matrix, we isolate features by frequency.

All that is left is to construct a modified weight function similar to (2.11) which is

conditioned on B̂ rather than k. We use 0.5B̂ as the lower threshold for each feature’s

activation and linearly increase the weight for the range α ∈ [0.5B̂, B̂]:

wB̂(α) =



0 if α < 0.5B̂

1− cos(α−0.5B̂
B̂−0.5B̂

π)

2
if 0.5B̂ ≤ α < B̂

1 if α ≥ B̂

(3.9)

Since the result of wB̂(α) is a per-feature weight matrix of shape m×3, we take the

average along the spatial dimensions to produce an m-length weight vector function

w̄B̂(α). Finally, we apply the weight vector to the m-length coordinate components

produced by the Gaussian encoding:

γ(v;α) = [w̄B̂(α) ∗ [cos(2πBv), sin(2πBv)]]
T (3.10)

During training, we linearly increase α after every mini-batch over a user-defined E

number of epochs.
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3.3.2 Standard network

Our standard neural volume network is an n-layer MLP with a fixed width w across

all hidden layers. The input layer accepts m-length Gaussian encoded coordinate

vectors γ(x), and the output layer produces the estimated attenuation coefficient

µ(x). It is important to note that negative output values from our network are

illogical as they imply that the sample amplifies the X-rays rather than attenuating

them. Thus, we want to make sure that we restrict the outputs of our final layer to

positive values. In the appendices for Mip-NeRF [2], the authors introduce a shifted

softplus activation log(1 + exp(x − 1)) to the density output of the MLP, replacing

the ReLU activation used by NeRF. They note that this activation function improved

training stability and led to slightly faster convergence rate during early training. We

adopt the same approach and note a similar effect in our work. For all other layers,

we apply ReLU activations.

3.3.3 Multi-energy network

Thus far, we have only considered CT projection images which were captured with

the same incident X-ray energy. To design a multi-energy network, we start with the

observation that scans across multiple incident energies share the same underlying

structure. That is, the volume’s chemical composition does not change across scans,

but the appearance of that composition in the X-ray projection images varies greatly

across imaging parameters. To support heterogeneous X-ray energies in the same re-

construction, we want a network that models both this common volumetric structure

and the scan-specific intensity functions which map that structure into the space of

observed attenuation coefficients.

For inspiration, we look at how the X-ray attenuation coefficients vary across the

chemical elements for a fixed incident X-ray energy. Figure 3.9 plots attenuation

coefficients against the elemental atomic number, Z, for selected monochromatic X-

ray energies across the 35 keV to 120 keV range. Except for a discontinuity from
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Figure 3.9: X-ray mass attenuation coefficients plotted against the atomic
number (Z) for various incident energies. For multi-energy training,
we’re interested in modeling the function which maps the atomic number
(Z) to attenuation coefficients µ for a given incident X-ray energy. By
slicing the 3D plot in Figure 2.5 along the energy axis, we gain insight into
our desired mapping function for monochromatic beams. As the incident
energy increases, the absorption edges shift to higher atomic numbers and
the total attenuation across elements flattens. These plots use data from
NIST SRD 126 [40].

an X-ray absorption edge that shifts across the elements as the energy increases, we

can see from this that the attenuation coefficients represent a relatively smooth and

well-behaved function.

Building from these observations, our multi-energy network is tasked with estimat-

ing the volumetric attenuation coefficients as a function of both world coordinates

and the incident X-ray energy: µ(x, k) (Figure 3.10). As before, the world coordi-

nates are passed through a Gaussian encoder and n-layer MLP to produce a single

output value, z. Since this value intuitively represents an uncalibrated estimate of

the local elemental composition, we assign it the label z as a reference to the atomic

number. The encoder and MLP are of almost identical construction to those in our

single energy network, with the one difference being the use of a sigmoid activation

on the final output layer which restricts z to the range [0, 1].

As a first order approximation, we model the energy-specific intensity function
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Figure 3.10: The multi-energy FlexAF neural volume architecture. Rather
than learning the attenuation coefficients for a 3D coordinate directly,
we model it as a function of common elemental structure z and the
learned polynomial mapping Pc. We employ a slight modification of our
standard architecture to generate z and a small Gaussian encoded-MLP
to learn the energy-specific polynomial coefficients c.

which maps elemental composition to µ as an m-degree polynomial with coefficients

that are learned for each incident energy in the training set. This is accomplished

by passing k through a second Gaussian encoder and 2-layer MLP to produce the

learned polynomial coefficients c. We then evaluate our polynomial with the elemental

composition z from our first MLP:

P (z) =
m∑
i=0

ciz
i (3.11)

Here we again apply the shifted softplus to the polynomial’s output to ensure positive-

valued attenuation coefficients from our model.

Practically, multi-energy training requires only one additional change to the FlexAF

framework. On data load, we append the scan’s incident X-ray energy to the pixel

tensor (3.5). It is thus passed into the ray tracer where it is appended to the ray

samples prior to evaluation by the multi-energy volume model.

54



3.4 Training and evaluation

FlexAF follows a standard regression training loop. First, our datasets are loaded

and converted into a flattened list of pixel tensors. From this list, a mini-batch of n

pixels is drawn uniformly at random from the flattened list and passed to the differ-

entiable ray tracer for evaluation. The ray tracer samples 3D coordinates along each

ray and queries the neural volume for the given coordinates’ attenuation coefficients.

The returned coefficients are integrated along the rays to produce a projection es-

timate ŷi for each ray in the mini-batch. We use the mean squared error between

the estimated projection value and the pixel value from the projection image yi to

calculate the mini-batch loss for gradient backpropagation:

Lmse(ŷ, y) =
1

n

n∑
i=1

(yi − ŷi)
2. (3.12)

After the learnable parameters of the neural volume and ray tracer have been updated,

a new mini-batch is drawn without replacement from the flattened list of pixels. A

training epoch occurs after all samples in the pixel list have been evaluated by the

network. At this point, the list is refilled, randomized, and training proceeds as

before.

3.4.1 Slice rendering

The most common view format for volumetric data is the slice image which is

generated by plotting the volume’s attenuation coefficients on an intersecting plane.

Though the intersection plane may be in any orientation and position with respect

to the volume’s coordinate frame, often the plane is orthogonal to the Z axis of the

world coordinate frame, and the full volume is exported as a stack of slice images

which vary in Z. While our training method renders projection images via our differ-

entiable ray tracer, we have specifically designed our volumetric models to support

direct evaluation without the ray tracing framework. To render a slice image, we

55



sample a plane in the world coordinate frame to construct a regular, discrete grid

of 3D coordinates. We pass these directly to our volumetric network to receive the

attenuation coefficients for each coordinate. Our multi-energy model is unique in that

we can render slice images for both the energy-dependent attenuation coefficients and

the underlying z value which is shared across incident energies (Figure 5.16).

3.5 Attention mechanisms

Training a neural volumetric reconstruction with FlexAF is a computationally ex-

pensive task which only grows more demanding as the size and resolution of the

volume increases: there are more pixels to train over in each epoch; the rays must

be sampled at a finer rate; the scale and number of features of the Gaussian en-

coder must be increased proportionally; and the network size must grow to support a

larger capacity. As such, training times for even moderately sized volumes can require

multiple days of computation to reach convergence. It is therefore crucial that the

training process be as efficient as possible, and that training attention is focused on

the most important regions of the volume. In this section, we introduce two optional

support features in FlexAF that we use to help control learning attention and improve

reconstruction quality and runtimes.

3.5.1 Entropy pixels

The projection images in CT datasets often contain a significant amount of “empty

space” where the X-rays pass only through air before striking the detector. While

it’s important to accurately reconstruct all regions of the observed volume, even

empty ones, such regions require far less computation to reach convergence than do

the content-laden areas which capture the scan subject. To focus training attention

on the most important regions of the projection images, we propose a hierarchical

projection sampling approach based on image entropy known as entropy pixels.

Before training, we sweep a disk-shaped kernel of radius r across every projection

56



(a) (b) (c)

Figure 3.11: Entropy pixels example for the Multi* dataset MS.01.02. (a)
The projection image is detailed but often low contrast. It is difficult to
decide from projected attenuation alone which pixels need more atten-
tion. (b) After applying the image entropy filter, subtle details near the
edges of the samples are enhanced. The wooden dowel in the lower right,
which was hardly noticeable in the projection image, stands out clearly.
(c) An entropy quadtree with restricted depth for illustrative purposes.
At the beginning of each epoch, a single pixel sample is drawn from each
tree leaf. By controlling the entropy threshold and tree depth, we effec-
tively undersample low entropy regions and thus reduce the number of
training iterations required to reach an acceptable reconstruction.

image and calculate the per-pixel entropy from the kernel region as:

e = −
255∑
i=0

pi log2(pi) (3.13)

where pi is the probability of the given gray value i computed from the full image

histogram. The produces an entropy image which often highlights many of the subtle

image features which are difficult to see in the raw projection images (Figure 3.11b).

Next, we build a quadtree [21] for the entropy image which splits leaf nodes when

any pixel in the quadrant has entropy greater than the user-provided threshold E.

To allow control over the surface area of the deepest nodes, the tree is bounded

to a maximum depth D. When D = log2(max(W, H)), where W and H are the

image width and height respectively, the leaf nodes at depth D contain a single pixel.

Intuitively, we have divided the image into a new grid-based structure where each

leaf node in the quadtree represents a rectangular region, or entropy pixel, with a size
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defined by the maximum entropy inside the region (Figure 3.11c). By construction,

the smallest entropy pixels contain the “most important” regions of the image while

the largest entropy pixels contain the “least important” regions.

Once we have computed the entropy pixels for each projection, we proceed to

training. At the beginning of every epoch, we construct a new training set by drawing

a single, original pixel uniformly at random from the bounds of every entropy pixel.

This results in a reduced training set which is often significantly smaller than the full

set of pixels — sometimes as much as 60% smaller — but which still captures the

most detailed regions of the projection images.

3.5.2 Adjustable bounding volume

Often in CT reconstruction, the distance traveled by the X-rays between the source

and detector is much larger than the diameter of the reconstructed scan volume.

This is particularly true for micro-CT and nano-CT applications, where an extended

source-to-detector distance (SDD) provides greater geometric magnification on the

detector plane. As a point of reference, consider the datasets in our study. For the

largest sample, the Multi* phantom (discussed in 4.3), our widest field of view is

10.75 cm while the SDD is 50 cm. Without a mechanism for focusing ray samples

on the volumetric regions of interest near the world origin, we would waste valuable

computing resources sampling the 80% of the ray length which passes through empty

space.

Long ray lengths pose an additional difficulty for the Gaussian encoding used by our

volume model. In 3.3.1, we noted that the Gaussian scale factor must be adjusted

in order to accurately reconstruct high-frequency scene content, that is, increasing

the scale factor enables the model to represent ever smaller features of the volume.

However, as the bounds of the modeled volume grows, the relative size of our scene

features grows smaller with respect to the normalized coordinate system that we

provide the Gaussian encoding (Figure 3.12a). The effect of this is that, for a fixed
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(a) (b) (c)

Figure 3.12: Plot of the potential training bounding volumes with respect to
the area of the reconstruction. These plots visualize the size of var-
ious bounding volume configurations with respect to the reconstructable
area of the papyrus scroll. The AABB of the Gaussian encoder is shown
in green, the bounding cylinder is shown in red, and randomly selected
ray samples are shown in blue. Coordinates are in millimeters. (a) No
bounding volume is used, and we sample from the entire region between
the X-ray source and detector for all projections. (b) We sample within
the automatically-defined bounding cylinder and significantly reduce the
size of the Gaussian AABB. (c) We sample within a manually-defined
bounding cylinder inside the slice bounds and further reduce the size of
the Gaussian AABB.

Gaussian scale, the quality of the reconstruction diminishes as the size of the volume

grows. And as we have discussed, there is a practical limit to how large the Gaussian

scale can grow without also increasing the neural volume’s size and computational

requirements (see 2.2.2).

To address both of these issues, we implement a bounding volume system which

focuses ray samples to the reconstructable region of the volume. During data load, we

use the known scan geometries to calculate the reconstructable region of the volume

as an axis-aligned bounding box (AABB) in terms of world coordinates. From this

we construct a circular bounding cylinder which is centered on the world origin and

parallel to the world Z axis. By default, we set the diameter of this cylinder to be

slightly larger than the diagonal of the AABB, but the diameter may also be specified

manually (Figure 3.12b). During ray tracing, the rays are clipped against either the
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(a) (b) (c)

Figure 3.13: The effect of adjusting the bounding volume on reconstruction
quality. (a) Bounds set to contain all source and detector positions.
This is equivalent to a bounding cylinder with a diameter of 278.4mm.
(b) Bounds set to a 91.6mm bounding diameter, just larger than the
width of the projection images’ field of view. (c) Bounds set to a 59mm
bounding diameter, a bounding diameter fully contained in the projec-
tion images’ field of view.

bounding cylinder or the AABB prior to ray sampling. As a result, all training

samples are drawn from within the bounds of a much smaller reconstructable region.

Likewise, we may significantly reduce the range of the Gaussian encoder’s coordinate

normalization function. As no training samples will ever be drawn from outside the

bounding volume, we set the normalization bounds to be slightly larger than the

bounding volume.

All the experiments in our study clip against the cylindrical bounding volume

during ray sampling. Occasionally, we manually specify the diameter of the bounding

cylinder in order to situationally improve the quality of the FlexAF reconstruction

(Figure 3.12c). The effect from adjusting the size of the bounding volume can be

quite dramatic. To demonstrate this point, we reconstruct a single slice from the

papyrus scroll dataset using FlexAF, varying only the bounding volume diameter.

The results of this experiment are shown in Figure 3.13.

The reconstruction for the largest bounding volume (i.e. the bounding box which

contains all X-ray sources and detectors) captures only the most prominent signals:
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the general structure of the scroll and the mere presence of the polyethylene foam

(Figure 3.13a). As the size of the bounding volume decreases to a cylinder just larger

than the projection field of view (Figure 3.13b), the scroll structure is clarified and

one can begin to distinguish the cell structure of the foam. Finally, with a manually-

defined bounding volume which fits fully inside the projection field of view (Figure

3.13c), the foam structure comes more clearly into focus.
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CHAPTER 4. DATASETS

“It soon appeared from tests that the rays had
penetrative power to a degree hitherto unknown.
They penetrated paper, wood, and cloth with ease;
and the thickness of the substance made no
perceptible difference, within reasonable limits.”

– Dr. Wilhelm Röntgen, The New Marvel in
Photography, McClure’s Magazine, 1896

Our work is predicated on the idea that heterogeneity in X-ray projection images

is not a problem to be avoided but rather an opportunity for extracting more infor-

mation with CT than we previously thought possible. Of course to test this idea,

we need heterogeneous CT data. Our properties of inquiry here are straightforward:

strong geometric misalignment of the X-ray cameras, projections captured at different

effective resolutions, and projections captured with different incident energies and ex-

posure settings. Since commercially available CT scanners do not explicitly support

such heterogeneity, we test FlexAF on datasets which demonstrate these properties

either individually or in composite. In this chapter, we discuss the micro-CT datasets

used in this study and their properties. We begin with two datasets which are fairly

conventional by CT standards, but which allow us to validate the correctness of our

framework for reconstruction in general. We follow this with a description of a new

composite dataset collected specifically for this study which we call the Multi* (pro-

nounced multi-star) dataset.

4.1 The Shepp-Logan phantom

The Shepp-Logan phantom [89] is numerical phantom which is frequently used to

validate and test the properties of CT reconstruction algorithms in a controlled man-

ner. Originally constructed in 2D to emulate the shape and attenuation coefficients of

the human head, the Shepp-Logan phantom is defined as the sum of gray levels from

ten overlapping ellipses on the XY plane (Figure 4.1). We use a 3D variant which

defines additional ellipses along the Z axis as well [56].
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(a) (b) (c)

Figure 4.1: Projections and slices of the Shepp-Logan phantom. (a) A sim-
ulated, parallel projection used for training, rendered from the “end on”
view of the largest ellipse. (b) A single slice which exemplifies the struc-
tural complexity and dynamic range of the phantom. (c) A volume render
of the full phantom, taken slightly above and to the right. Color mapping
is enabled to enhance interior feature visibility.

Since the Shepp-Logan phantom is a virtual object, we can render both the volume

and projection images with selectable resolution. In our study, we generate the volume

on a 512 × 512 × 512 grid, then downscale it to 192 × 192 × 192 to reduce aliasing

artifacts from the generation process. We then simulate a cylindrical CT scan by

rotating and resampling the volume around the volumetric Z axis. Projection images

are formed by taking the line integral along the X axis of this new, rotated grid.

This process is parameterized by the desired angular range of total rotation and the

rotational step size between each projection image, enabling us to test FlexAF for

both limited angle and sparse CT reconstruction tasks.

Since the Shepp-Logan phantom lacks a real-world coordinate system, we manually

define a world coordinate frame in “millimeters” which we can use to initialize our

X-ray cameras for training. To have a volume of approximately the same scale as

our other micro-CT datasets, we first set the camera pixel size to 50 µm. Due to

our parallel projection geometry, this in turn defines the edge length of the volume

as 192 px ∗ 0.05mm/px = 9.6mm and our reconstructable area as a 9.6mm3 cube

centered on the world origin. To define our camera geometries, we set the X-ray
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source and detector center positions to be on opposite sides of the origin and fully

outside the volume for all rotational positions. This results in a source-to-detector

distance of approx. 16mm. Per-pixel center and source positions are generated using

the equations for parallel geometries discussed in 3.1.

4.2 The papyrus scroll dataset

Our second dataset is a micro-CT scan of a papyrus scroll which was constructed

as a test proxy for the virtual unwrapping software, Volume Cartographer [65, 87].

The scroll is formed of a single sheet of papyrus which has been rolled tightly and

then wrapped and tied with natural fiber twine. Though the papyrus has writing

on its surface, the ink has very low contrast against the papyrus and is not readily

visible to the naked eye in the CT slices. Before scanning, the scroll was wrapped in

open-cell polyethylene packing foam and affixed to the scanner’s sample stage with

paper tape. Though these materials do appear in the reconstructed scan, they were

specifically chosen for their relatively low attenuation. The scan was acquired with

a prototype SkyScan 1173 micro-CT scanner at a 26.337 µm pixel size and with an

incident X-ray energy of 30 kV. Projections were captured with a 0.2◦ step size over

a full 360◦ range for a total of 1800 projection images of size 2240× 2240.

The papyrus scroll is a multi-material sample, but many of these materials exhibit

very similar attenuation, and the reconstruction generally has a relatively narrow

dynamic range. Thu, our primary interest in this dataset lies in its varied and com-

plex structural properties (Figure 4.2). Unlike the other samples in our study, the

papyrus scroll scan shows many high-frequency features which are often separated by

irregularly-sized gaps of air. The interior of the scroll itself is composed of papyrus

wraps which are quite thin (120 µm to 200 µm) and have sharply-defined edges. In

contrast, the polyethylene foam presents as a semicircular region of “noise” which

surrounds the scroll for much of the volume. This “noise” is extremely irregular in

size and shape, varies in edge definition, and changes structurally every 1 to 2 slices.
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(a) (b) (c)

Figure 4.2: Images of the papyrus scroll dataset. (a) A photograph of the scroll
and twine wrapped in the polyethylene packing foam. (b) An X-ray pro-
jection image from the CT scan. The scroll appears to float due to the
low attenuation of foam. (c) A CT slice reconstructed with FBP, cropped
to the central region containing the scroll. Despite the low attenuation,
the structure of the foam is just visible, while the structure of the scroll
and twine are crisp and clean.

Additionally, the papyrus scroll scan naturally exhibits extreme misalignment due

to mechanical issues at the time of the scan (Figure 3.7). Generating an accurate

reconstruction with FBP requires a post-alignment shift of -30 pixels, an extraordi-

nary misalignment of almost 0.8mm for this 26 µm scan. These properties combine

to create a unique challenge for our automatic extrinsic calibration method. When

the X-ray cameras are misaligned, the effect of that misalignment is readily appar-

ent in the reconstruction (Figure 3.7). Even misalignment of a few pixels is enough

to produce the tell-tale crescent artifacts which signify calibration issues. We use

this dataset to test our framework’s ability to reconstruct a variety of high-frequency

features and to do so in the face of extreme misalignment.

4.3 The Multi* dataset

We test our framework for multi-resolution and multi-energy reconstruction using

a new dataset collection called the Multi* dataset (Figure 4.3). This collection was

designed specifically for our work and contains 14 micro-CT scans of the same sample,

scanned under varying conditions. The heterogeneity across the entire collection
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(a) (b) (c)

Figure 4.3: Images of the Multi* proxy and dataset. (a) A photograph of the
proxy mounted in the SkyScan 1273 with the Left and Front faces visi-
ble. (b) A projection image from the MS.01.01 scan showing the complex
inner structures of the proxy and the various embedded materials. (c) A
CT slice from MS.01.01 reconstructed with FBP. Despite the relatively
low resolution (140 µm, the cell structure of both the synthetic and real
sponges is quite visible. One can also just resolve the small pores in the
base wood block.)

lends the dataset its name. Together the scans capture multiple resolutions, incident

energies, X-ray filters, exposure settings, and capture positions. Additionally, the

sample (the Multi* proxy) is a multi-material, multiscale object which is designed

with extremely small features, extremely large features, features of low attenuation,

and features of high attenuation. Though each scan is a standalone CT dataset which

can be reconstructed on its own, we combine projections from across the collection

at training time to build heterogeneous “scans” on-the-fly.

4.3.1 The Multi* proxy

The core structure of the Multi* proxy is a solid block of pine with dimensions of

approx. 5.7 cm × 5.7 cm × 10.2 cm. Each of the six faces of this block is embedded

with one or more materials representing a wide range of densities and structures and

is labeled according to both its position on the block (F for front, B for back, L for

left, etc.) and the embedded materials (Nylon, Aluminum, etc.). We provide here the

layout of each face and a description of the embedded materials. For visual reference,
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a diagram of each face is provided in Figure 4.4 and CT slices showing the various

embedded materials are shown in Figure 4.5.

Front and back faces

The front face (F) features two 3.175mm Nylon bolts of 25.4mm length and with

a 9mm diameter bolt head. The bolts have been fully inserted into pre-drilled holes

and are glued into place with a commercially available quick-dry adhesive to the end

of the bolt shaft. The bolts are equally offset from the face’s center, one to the top

left and the other to the bottom right. During construction, the shaft of the right

bolt was effaced by a recess which was drilled into the right block face.

The back face (B) is embedded with two 3.175mm wooden dowels made of poplar.

The dowels are 25.4mm long, have been fully inserted into pre-drilled holes, and are

glued into place with the quick-dry adhesive. Like the Nylon bolts, the dowels are

equally offset from the face’s center in an identical diagonal configuration.

In the CT slices, the bolts appear with near constant attenuation, the exception

being small cavities of air on the interior of the shaft. The threads are easily dis-

tinguishable at our largest reconstructed pixel size of 140 µm. The wood grain of

the dowels runs perpendicular to that of the base block and is much less varied in

attenuation. The glue appears as a bright outer coating on the ends of both the bolts

and the dowels.

Left and right faces

The left face (L) has two small, circular recesses which are approx. 14.4mm in

diameter and 18.7mm deep. The first recess is perfectly centered in the block face

and is filled by a piece of natural sponge. The second recess lies directly above the first

by a vertical offset of approx. 3 cm and is entirely filled with silicone adhesive. The

right face (R) has a single, large circular recess with a 38mm diameter and a depth

of 19mm. This recess contains a piece of synthetic sponge made of polyester and an

unknown plastic. Both sponges are glued into place with a silicone adhesive. A small,

67



Figure 4.4: A diagram of the faces and embedded materials of the Multi*
proxy. Each face of the Multi* proxy is embedded with materials which
vary in feature size and chemical composition. This combination in a
single object provides a comprehensive basis for evaluating both multi-
resolution and multi-energy reconstruction tasks.
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(a) (b)

(c) (d)

Figure 4.5: Objects of interest inside the Multi* proxy CT reconstructions.
These four CT slices demonstrate the interior structures and relative at-
tenuation for the various embedded materials. The numbers correspond
to the following materials: (1) nylon bolt, (2) wooden (poplar) dowel, (3)
synthetic sponge, (4) natural sponge, (5) silicone-filled interior channel,
(6) silicone-filled exterior recess, (7) copper wire inserts, and (8) aluminum
square insert.

cone-like channel created by the drill bit connects the left and right sponge recesses.

This is filled with silicone adhesive to provide a high attenuation feature of interest

on the interior of the sample which is entirely obscured from external observation.

Top and bottom faces

The top face (T) and bottom face (Bo) are embedded with our highest attenuating

materials. The top face has two strands of solid core copper wire in the upper left

corner of the face and a rectangular piece of aluminum in the bottom center. The

strands are arranged in a diagonal pattern approx. 8.5mm apart and are approx.
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1.3mm in diameter (16 AWG) and 25.4mm long. They are glued into place with

quick-dry adhesive applied to both ends of the wire. The aluminum is a thin, semi-

square sheet which nominally measures 2.5 cm × 2.5 cm × 6.35mm. As this piece

was cut by hand from a longer strip of aluminum, a small “point” extends from one

edge of the piece, and thus the piece is slightly longer than 2.5 cm along this axis.

The aluminum was hammered into the top face with the point extending down into

the wood block. This resulted in deformation of the uppermost edge of the aluminum

and the creation of microscopic fractures in the block which are visible in the CT

reconstructions.

The bottom face contains three electrogalvanized steel nails on the edges of the

face and a single steel hanger bolt in the middle of the face. The nails are 2.22 cm

long and have a shaft diameter of 3mm. They are arranged in a triangular pattern:

one in the middle of the bottom edge, one in the middle of the left edge, and one in

the upper right corner. The hanger bolt lies in the center of the face and has an 8mm

outer diameter. The bolt shaft on the interior of the block is approx. 5 cm long. The

threaded shaft on the exterior of the block provide a means for mounting the block

to a stable mounting plate for scanning.

4.3.2 Acquisition settings

We collected 14 micro-CT scans of the Multi* proxy in a single session using a

Bruker SkyScan 1273. Collectively, these scans capture the proxy at two capture

positions, four resolutions, and six peak incident energies. All scans were captured

with the ultimate intent of constructing heterogeneous training sets for FlexAF by

drawing projections from across multiple scans. As such, each scan is rotationally full

and has a fixed rotational step size that, in most cases, is a multiple of 0.15◦. This

makes it easy to reason about how projections should be composed across incident

energies (e.g. for each angle, draw projections by alternating between each energy)

and scan resolutions (e.g. the higher resolution scan rotationally samples at exactly
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ID Voxel size (µm) Energy (kV) Exposure (ms) Filter W×H×N

MS.01.01 140 45 560 – 768×486×601
MS.01.02 70 45 560 – 1536×972×1201
MS.01.03 35 45 560 – 3072×1944×2401
MS.01.04 20 45 800 – 4992×1944×2401
MS.01.05 20 45 100* – 4992×1944×2401
MS.01.06 35 45 100* – 3072×1944×2881

M
ul

ti-
re

so
lu

tio
n

MS.01.07 35 45 50* – 3072×1944×2881

MS.02.01 70 35 1100 – 1536×972×1201
MS.02.02 70 50 465 – 1536×972×1201
MS.02.03 70 50 750 Al 0.5mm 1536×972×1201
MS.02.04 70 70 370 Al 0.5mm 1536×972×1201
MS.02.05 70 90 270 Al 1mm 1536×972×1201
MS.02.06 70 120 475 Cu 0.5mm 1536×972×1201M

ul
ti-

en
er

gy

MS.02.07 35 120 475 Cu 0.5mm 3072×1944×2401
*Dataset is intentionally underexposed.

Table 4.1: Scans and parameters in the Multi* dataset.

double the rate of the lower resolution scan). The SkyScan 1273 captures an inclusive

range of 0◦ to 360◦, thus each scan has one additional projection image than might

otherwise be expected.

For purposes of comparison, we reconstructed all scans with the vendor-provided

NRecon software. All scans come with a sidecar metadata file in an .ini-like format

which describes all capture parameters and the NRecon settings used for reconstruc-

tion. Table 4.1 summarizes the most important scanning parameters for our study.

The scans are organized by their respective capture positions into two groups of

seven and are labeled according to the pattern MS.{POS}.{NUM}, where POS is the

group identifier and NUM is an index within the group. The field of view of the first

capture position is centered on the vertical center of the Multi* proxy and chiefly

captures the high frequency, low attenuation sponges. The field of view of the sec-

ond capture position is centered 19.466mm above the first and captures the high

attenuation materials at the top of the proxy. As the proxy was never removed from

the scanner during the session, scans acquired from the same capture position are

inherently aligned, and the scans acquired at different capture positions are related
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by a rigid transform.1 Broadly, the capture settings used in each group correspond to

our experimental goals; the first group is configured for multi-resolution experiments

while the second is configured for multi-energy experiments.

Multi-resolution scans

The scans in the multi-resolution group begin with an effective pixel size of 140 µm

and increase in resolution to an effective pixel size of 20 µm. The SkyScan 1273 has a

fixed source-to-detector distance of 500mm. All scans in the 35 µm to 140 µm range

were captured with a source-to-sample distance of 234.151mm, and pixel binning was

applied at scan time to decrease the size of the captured image by a factor of 2 and 4.

The 20 µm scans were captured at a source-to-sample distance of 133.801mm. Due

to the limited field of view of a single projection at this sample distance, projections

were acquired and stitched with a 2x offset capture to ensure that the entire width

of the proxy remained visible.

Additionally, this group contains three underexposed scans captured at 20 µm and

35 µm pixel sizes. These scans are included for the eventual testing of the effect of un-

derexposure on FlexAF’s reconstruction quality. The two underexposed 35 µm scans

differ from the other scans at this pixel size in that they were captured with a rota-

tional step size of 0.125◦. It is worth noting that SkyScan capture software automat-

ically applies flatfield correction at capture time, thus the underexposed projections

do not look dark as one might expect but rather have a “washed out” appearance.

Multi-energy scans

Our multi-energy scans capture six peak incident energies in the range 35 kV to

120 kV. As the energy increases, we accordingly lower the exposure times and add

filters to the X-ray beam to mitigate beam hardening artifacts in the reconstructions.

All scans have a 70 µm pixel size except for the final scan (MS.02.07) which has a

35 µm pixel size.

1Assuming perfect mechanical calibration and alignment.
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4.4 Dataset formats

The real world datasets in this study are all captured on Bruker SkyScan systems

and are stored in the native SkyScan format. This format is a flat directory con-

taining the flatfield-corrected projection images in a 16-bit grayscale TIFF series. A

sidecar metadata file provides all scan settings in an easily parsable .ini-like format.

Optionally, the SkyScan dataset format also provides a “post-scan,” a sparse set of

projections captured at the end of the scan to assist in estimating misalignment ef-

fects from thermal drift or expansion of the X-ray source. We do not make use of

this data in this study, but note its potential importance for future modeling of X-ray

source properties.

Rather than conforming all input datasets to a common on-disk format, we provide

a general purpose data loader API which detects the scan’s format and calls a format-

specific backend loading function. To support a new scan format, developers add

two functions to the library: one which detects the format and a second which can

load the dataset into a FlexAF-specific in-memory structure. From the end user

perspective, users simply provide the path to the dataset and FlexAF takes care of the

rest. For the purposes of this study, projection loading is additionally parameterized

by the subrange and stride of projections to be loaded as well as whether manual

post-alignment correction should be applied, projections should be scaled by a user-

provided factor, etc.

4.4.1 Heterogeneous dataset construction

We build upon our existing dataset loading functionality to enable on-the-fly con-

struction of heterogeneous datasets from the Multi* collection at training time. We

define a simple JSON batch file format that lists the scans and their respective loading

parameters. Our dataset loader reads this batch file and returns an aggregate train-

ing set constructed from all listed scans. An example batch definition for drawing

rotational samples from two scans is shown in Listing 4.1.
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{
"datasets": [

{"data_dir": "data/MS.02.01", "start": 0, "skip": 2},
{"data_dir": "data/MS.02.02", "start": 1, "skip": 2}

]
}

Listing 4.1: Example definition for a batch file of two CT scans. This batch
file defines a heterogeneous scan which interleaves the projection images
from two Multi* scans. In this example, FlexAF would be trained on
dual incident energies of 35 kV (MS.02.01) and 50 kV (MS.02.02) which
alternate between every rotational step.
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CHAPTER 5. EXPERIMENTS

“‘Now, then,’ said [Röntgen], smiling, and with some
impatience, when the preliminary questions at which
he chafed were over, ‘you have come to see the
invisible rays.’”

– H.J.W. Dam, The New Marvel in Photography,
McClure’s Magazine, 1896

In this chapter, we test the capabilities of FlexAF across a wide range of CT

reconstruction tasks. With our emphasis on dataset flexibility, it is tempting to eval-

uate FlexAF as a niche algorithm that’s only applied in those circumstances where

existing algorithms won’t perform well. We are not interested in this sort of evalua-

tion. Rather, we seek a general purpose method that is adaptable to heterogeneous

datasets but which still performs well for traditional reconstruction tasks. Thus, we

begin by exploring the abilities and limits of FlexAF for standard reconstruction tasks

before moving on to the more challenging tasks of automatic extrinsic calibration, re-

construction from multi-resolution projections, and reconstruction from multi-energy

projections.

As in similar studies, we quantitatively evaluate our methods by comparing our

reconstructions against those produced by FBP. Using the process described in 3.4.1,

we render a slice (or slice stack) with approximately the same world bounding box

and sample rate as the FBP volume. We then compute the peak signal-to-noise

ratio (PSNR), structural similarity index measure (SSIM), and normalized mutual

information (NMI) comparison metrics between these two volumes. PSNR is reported

using the logarithmic decibel (dB) scale, where good values lie in the 30 dB to 60 dB

range and higher is better. SSIM is in the range [−1, 1], where -1 represents anti-

correlation and 1 represents perfect similarity between the compared images. When

evaluating multiple slices, we take the mean SSIM across all slices. NMI is a commonly

used metric for image alignment problems where the intensity ranges of the input
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Dataset PSNR SSIM NMI Epochs Time

Shepp-Logan (FBP) 23.578 0.945 1.541 – 4s
Shepp-Logan (Baseline) 30.076 0.974 1.523 200 67.1h
Shepp-Logan (i = 215) 30.092 0.973 1.520 200 67.63h
Shepp-Logan (E. Pix.) 29.972 0.973 1.519 200 37.29h
Shepp-Logan (σ = 24) 30.472 0.970 1.520 200 70.23h

Papyrus scroll (Baseline) 28.604 0.659 1.088 300 64.54h
Papyrus scroll (i = 405) 28.479 0.651 1.088 300 66.46h
Papyrus scroll (12 slices) 28.393 0.629 1.077 50 66.7h

MS.01.01 (Baseline) 37.785 0.916 1.422 1000 38.81h
MS.01.01 (i = 512) 37.838 0.914 1.421 1000 39.56h
MS.01.01 (100 slices) 27.080 0.769 1.284 34 7d10h

MS.01.02 (Baseline) 29.772 0.898 1.327 450 64.7h
MS.01.02 (i = 512) 29.628 0.946 1.365 450 68.01h

Table 5.1: Standard reconstruction result metrics. For each dataset, the best
reported metric is in bold.

images may differ. Metric values are in the range [1, 2], where 1 means the images

are perfectly uncorrelated and 2 means the images are perfectly correlated.

Briefly, we note a few implementation details regarding our evaluation. First, the

NRecon reconstruction software automatically applies a circular mask to its recon-

structed slices in order to focus attention on the provably accurate central image

region. To provide a fair comparison between our reconstructions and the reference

volumes, we likewise mask our slices when calculating our comparison metrics. Sec-

ond, we occasionally find that our continuous coordinate system is shifted by a few

pixels from that of the FBP volume. In these cases, we shift our sample coordinates

prior to sampling the neural volume in order to improve the volume alignment.

5.1 Standard reconstruction

For our standard reconstruction tasks, we evaluate FlexAF’s ability to reconstruct

regular CT scans when little to no flexibility is required. For each dataset, we define

a baseline FlexAF reconstruction which is trained on every pixel in the training set

and which uses the interval schedule described in 3.2. We explore the effect of many
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of FlexAF’s features (e.g. ray sampling patterns, entropy pixels, volume bounds) in

comparison to both the FBP and baseline FlexAF reconstructions. Where applicable,

we apply the same manual post-alignment correction values that were used to generate

the FBP reconstructions. Table 5.1 lists our quantitative results for all standard

reconstruction experiments.

5.1.1 Shepp-Logan

We reconstruct the entire volume of the Shepp-Logan phantom using 180 projection

images of size 192× 192. The projections are rendered at a 1◦ angular offset over the

rotational range [0◦, 180◦). Our baseline FlexAF method uses a 6-layer MLP of width

256 and a Gaussian encoder with σ = 8 and 384 features. The interval scheduler is

configured with a multiplier m = 8 and reaches a maximum of 215 ray intervals after

11 epochs. We experiment with three variations on the baseline FlexAF configuration:

(1) we use a constant 215 intervals rather than the interval schedule, (2) we enable

entropy pixels to speed up training, and (3) we increase the Gaussian encoding scale

by a factor of 4 to σ = 24. We compare all FlexAF reconstructions against both the

original phantom and the FBP reconstruction of the simulated projections.

Quantitatively, all FlexAF methods outperform FBP for both the PSNR and SSIM

metrics but slightly underperform on the NMI metric. Figure 5.1 visually compares

the original phantom against the FBP and baseline FlexAF reconstructions. The

differences which explain these metrics are quite subtle. FBP does a better job at

modeling the uniform intensities on the interiors of the ellipses, but the reconstruction

overall appears to be blurrier than the FlexAF reconstruction. This blurring results

in strong error on the edges of the ellipses, where the boundaries of intensities meet.

Though difficult to see in the raw slices, the FlexAF reconstructions all get brighter

as you move closer to the center of the phantom (Figure 5.2). This reconstruction ar-

tifact, known as cupping, is usually caused by a dense surface in the sample absorbing

all the low-energy X-rays from a polychromatic X-ray beam in a process called beam
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Original FBP Baseline

Figure 5.1: Evaluating Shepp-Logan reconstructions using FBP and
FlexAF. Top row: reconstructed slices. Bottom row: Absolute differ-
ence images between the reconstructions and the original phantom. All
difference images were windowed to [0, 0.15] before color mapping in or-
der to better visualize the error.

hardening. Though the Shepp-Logan phantom does have a dense outer surface, our

simulated X-ray projections do not incorporate any polychromatic effects. This im-

plies some subtle error in our training method which is in some way overemphasizing

this central region.

Our baseline FlexAF configuration slightly edges out the constant intervals con-

figuration, though the effect is admittedly quite small. Both configurations show

extremely similar metrics and reconstructed slices. The baseline configuration demon-

strates a slight performance advantage, finishing the 200 epochs approximately half

an hour before the constant intervals configuration.

For our entropy pixels configuration, we used a kernel radius of 4, entropy threshold

of 0.3, and a tree depth of 8, producing a 38.35% reduction in the number of training

samples per epoch and a 44.4% reduction in overall runtime. Quantitatively, this

configuration is comparable to the baseline and constant intervals reconstructions.
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Baseline i = 215 E. Pix. σ = 24

Figure 5.2: Comparing FlexAF reconstructions across various model config-
urations. Top row: reconstructed slices. Bottom row: Absolute differ-
ence images between the reconstructions and the original phantom. All
difference images were windowed to [0, 0.15] before color mapping in or-
der to better visualize the error.

However, visual inspection of the slices shows a lack of definition around some of

the smaller, low-contrast ellipses. This produces edge-effect errors for these features

which are very similar to those errors seen in the FBP reconstruction.

Likewise, the quantitative difference between the baseline and σ = 24 configurations

is very small, but the visual differences favor the baseline method. The increased

Gaussian scale improves the definition around the edges of the ellipses and produces

what appears to be the lowest edge error across all methods. However, it also amplifies

a noise pattern which is only subtly visible in the other FlexAF reconstructions. As

a result, the interiors of the ellipses appear mottled and do not demonstrate the

expected uniformity. This is in line with the findings discussed in 2.2.2 that increasing

the Gaussian scale can produce poor model generalization.
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FBP Baseline i = 405

Figure 5.3: Comparison of FlexAF reconstructions for the papyrus scroll
dataset. Top row: reconstructed slices. Bottom row: Absolute differ-
ence images between the reconstructions and the FBP reconstruction.
All difference images were windowed to [0, 0.3] before color mapping in
order to better visualize the error.

5.1.2 Papyrus scroll

The papyrus scroll dataset is significantly larger than the Shepp-Logan phantom

and contains 1361x the number of projection pixels. Training over the full dataset

would require many days in order to evaluate even a single training epoch and thus

is a practical impossibility. We make a number of reductions to the size in order to

evaluate FlexAF on this dataset. First, we train over a “short scan” of 1073 projection

images in the range [0◦, 214.6◦), which approximately represents 180◦ plus two times

the cone angle [68]. Second, we crop the projections to only the center-most rows and

limit our evaluation to the slices which lie within this region.

Our baseline FlexAF method is trained over the two central projection rows for 300

epochs, and we compute our evaluation metrics on the slice which lies between these

two rows at z = 0. It is configured with an 8-layer MLP of width 256 and a Gaussian

encoder with scale of σ = 105 and 384 features. We manually set the diameter of the
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bounding cylinder to 59.04mm, which is slightly larger than the width of the field

of view. The interval scheduler is configured with a multiplier m = 8 and reaches

a maximum of 405 ray intervals after 17 epochs. On data load, we apply a manual

post-alignment of -30 pixels to our X-ray cameras to match the post-alignment used

by FBP.

We experiment with two variations to the baseline configuration. The first disables

the interval schedule and uses a constant 405 ray intervals. Like the baseline method,

it is trained on two projection rows for 300 epochs and is evaluated on a single slice.

The second is configured to reconstruct multiple slices from 12 rows of projection

images. To account for the increased volume size, we adjust the width of the MLP

to 334 and set the interval scheduler to a maximum of 512 intervals. We also enable

entropy pixels to reduce the number of total training samples by 60.8%. Even still,

the time-per-epoch is approximately six times that of the single slice configurations,

thus we evaluate our metrics on the 12 slices after only 50 epochs.

All of our FlexAF configurations produce similar quantitative results, with the

baseline method outperforming the fixed interval configuration in PSNR, SSIM, and

training time. Despite comparison metrics which are overall quite low, the single slice

FlexAF reconstructions are very similar in appearance to the FBP reconstruction

(Figure 5.3). The wraps of the papyrus are generally well-defined and sharp, but

FlexAF struggles to resolve the low contrast, irregular noise pattern of the polyethy-

lene foam. As with the Shepp-Logan phantom, most of the error appears to be

located around the boundaries of objects and in the background noise patterns. This

is likely a significant contributor to our low comparison metrics as this dataset is

mostly defined in terms of edges and noise patterns.

The 12 slice configuration scores the lowest across all metrics for the FlexAF con-

figurations, though it’s difficult to evaluate whether this is due to the many fewer

training epochs or a fundamental capacity limit of the given configuration. We do
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(a) FBP (b) FlexAF

Figure 5.4: Volume renderings of 12 slices from the papyrus scroll compar-
ing FBP to FlexAF. (a) The filtered backprojection (FBP) reconstruc-
tion. (b) The FlexAF reconstruction. Though FlexAF has some difficulty
capturing the highest-resolution features of the polyethylene foam, the
papyrus scroll’s structure is extremely close to that produced by FBP.

not note any significant falloff in visual quality, and the 3D structure in these 12 slices

is of passable similarity to that of the FBP reconstruction (Figure 5.4).

5.1.3 Multi* proxy

As with the papyrus scroll, the size of the Multi* datasets makes evaluation at

the highest resolutions a practical impossibility. Thus, our Multi* evaluations are

performed on only two of the multi-resolution scans, MS.01.01 (140 µm) and MS.01.02

(70 µm). For both MS.01.01 and MS.01.02, we train over all but the final (repeated)

projection image.

MS.01.01

The baseline configuration for MS.01.01 uses a 7-layer MLP with layer width 256

and a Gaussian encoder with scale σ = 70 and 384 features. The interval scheduler is

configured with a multiplier m = 8 and reaches a maximum of 512 ray intervals after

20 epochs. A variant of this configuration disables the interval scheduler and uses a

constant 512 intervals throughout training. On data load, we apply a manual post-

alignment of -1.5 pixels to our X-ray cameras to match the post-alignment used by
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FBP Baseline i = 512 100 slices

Figure 5.5: Comparison of FlexAF reconstructions for the MS.01.01 dataset.
Top row: reconstructed slices. Bottom row: Absolute difference images
between the reconstructions and the FBP reconstruction. The first two
difference images were windowed to [0, 0.1] and the final image was win-
dowed to [0, 0.2] before color mapping in order to better visualize the
error. Enlarged versions of the FBP and baseline slices are available in
Figure A.1.

FBP. We train both of these configurations on the two center rows of the projection

images for 1000 epochs and evaluate the comparison metrics on a single slice at the

plane z = 0.

The FlexAF reconstructions of MS.01.01 are some of the most accurate we observe

in this study. Both configurations have a PSNR which is 7 dB higher than any other

FlexAF reconstruction, and the SSIM and NMI metrics are among the highest we

record for real-world datasets. As shown in Figure 5.5, this translates into rendered

slices which are nearly identical to those produced by FBP.

Across both of these configurations, we again observe that there is an intensity

gradient between the center and outer edges of the reconstruction in the difference

images. Though less pronounced than that seen in the Shepp-Logan experiments,
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(a) FBP (b) FlexAF

Figure 5.6: Volume renderings of 100 slices from MS.01.01 comparing FBP
to FlexAF. (a) The FBP reconstruction. (b) The FlexAF reconstruction.
While the global structure of the wood block appears accurate in this ren-
dering, closeups of the slices demonstrate that many of the high-frequency
details are missing from the reconstruction (Figure 5.5).

the center of the reconstruction appears to be brighter than the outer edge, resulting

in the largest error at the corners of the block. Unlike the Shepp-Logan results,

we note that the FlexAF attenuation coefficients in these areas appear to be more

consistent with those found in the rest of the wood block, thus we hypothesize that

this measurement error represents FlexAF correcting for hardening artifacts found in

the FBP reconstruction. Much of the remaining error is attributable to low intensity

background noise.

Given the successful reconstruction of a single slice using the baseline configuration,

we also test how our neural volume’s capacity is affected when growing the size of

the volume to 100 slices (1.4 cm). We increase the network capacity from the baseline

configuration by using an 8-layer MLP with layer width of 334 and enable entropy

pixels to reduce the size of the training set by 32.8%. We train on the center 100 rows

of the projection image for 34 epochs and evaluate the metrics across all 100 slices.

Though the metrics for this configuration are similar to or exceed those for the

papyrus scroll, the qualitative assessment of the reconstruction tells a different story.
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The model roughly captures the larger structures in the sample (i.e. the block, the

silicone, the sponges), but completely fails to resolve any of the finely detailed fea-

tures of the volume. Unlike a low resolution reconstruction where one expects edge

features to lack clarity, here the edge features are well-defined but jagged and inaccu-

rate. The effect is visually akin to what one sees when an image has been quantized

with too few bits. Given the high quality result of our baseline configuration, it is

likely that we have exceeded the MLP’s volumetric capacity. Though we have almost

doubled the number of model parameters from the baseline configuration, we have

also increased the size of our reconstructable volume by a factor of 100. The result

is poor memorization of the dataset’s high frequency features. Nevertheless, viewing

the reconstruction in 3D demonstrates that it is still globally consistent with the FBP

reconstruction (Figure 5.6).

MS.01.02

For the MS.01.02 baseline configuration, we make two changes to the configuration

used for MS.01.01 in order to account for the increased scan resolution. Rather than

doubling the scale (and feature sparsity) of our Gaussian encoding, we instead halve

the diameter of the bounding cylinder from 167.27mm to 83.63mm, which is just

larger than the diameter of the Multi* proxy. Second, we increase the Gaussian scale

to σ = 90 to account for high frequency features which were not observable in the

140 µm scan.

As before, we apply manual post-alignment of -3.5 pixels to our X-ray cameras to

match the post-alignment used by FBP. We vary this configuration by disabling the

interval scheduler and using a constant 512 intervals throughout training. We train

both of these configurations on the two center rows of the projection images for 450

epochs and evaluate the comparison metrics on a single slice at the plane z = 0. Since

the new bounding cylinder falls within the field of view of the projection images, we

also crop the projections to the central 1192 columns which fall within the cylinder’s

85



FBP Baseline i = 512

Figure 5.7: Comparison of FlexAF reconstructions for the MS.01.02 dataset.
Top row: reconstructed slices. Bottom row: Absolute difference images
between the reconstructions and the FBP reconstruction. All difference
images were windowed to [0, 0.3] before color mapping in order to better
visualize the error. Enlarged versions of the FBP and i = 512 slices are
available in Figure A.2.

bounds, further reducing the size of the training set by 825,600 samples.

Both configurations perform extremely well and again produce reconstructions

which are visually very similar to those of FBP. Interestingly, the fixed interval con-

figuration quantitatively outperforms the baseline configure and provides the single

highest SSIM score across all real-world datasets. Through visual inspection, we can

see that the fixed interval configuration does a better job at reconstructing the smooth

intensities of the wood grain and has less high-frequency noise than the baseline con-

figuration (Figure 5.7). Both configurations demonstrate the intensity gradient where

the center of the reconstruction is brighter than the edges, producing greater error at

the corners of the block.
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5.2 Automatic extrinsic calibration

We evaluate our automatic camera extrinsic calibration method on the papyrus

scroll dataset due to its extreme misalignment. Since our calibration method ulti-

mately needs to be effective across a range of resolutions, we validate the Gaussian

frequency filter on both the full resolution dataset and a 1:4 scaled version. To con-

struct the 1:4 scale dataset, we scale the dataset down rotationally and spatially.

Rotationally, we skip every 7 rotational angles to load a total of 600 projection im-

ages. Spatially, we scale each projection image by 0.25x and crop to the central 12

rows of pixels. The 12 rows of pixels are intended to provide a region of support to

the calibration task; with only one or two rows, there may not be enough structure in

the projections to estimate good calibrations. The final dataset size is 560×12×600.

We also enable entropy pixels to further reduce the samples per epoch by 40.55%.

Using the 1:4 dataset, we evaluate FlexAF’s ability to learn the camera extrin-

sics both with and without the Gaussian frequency filter. For both configurations,

we modify the baseline configuration from 5.1.2 by lowering the Gaussian scale to

σ = 26.25 to account for the lower resolution. We have observed that the FlexAF

model requires a few training epochs before the volume begins to converge on a

discernible reconstruction. To avoid updating the extrinsics using wholly incorrect

volume features, we wait some epochs before allowing the extrinsics to update. For

the filter-enabled configuration, we train the detector extrinsics between epochs 4 and

30, and we set our frequency filter to linearly activate all frequencies over the first

21 training epochs. For the sans-filter configuration, we train both the source and

detector extrinsics starting on the 4th epoch. Disabling the Gaussian filter tends to

make extrinsic learning much less stable. To avoid catastrophic failure, we lower the

learning rates for both the model and extrinsic optimizers in comparison to the filter-

enabled configuration. Since this configuration now learns at a much slower rate, we

do not set an epoch limit on extrinsic updates.
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Epoch 20 Epoch 180 Epoch 500

Figure 5.8: Testing the Gaussian frequency filter for automatic extrinsic cal-
ibration using a 1:4 scale papyrus scroll dataset. This figure depicts
the effect of the Gaussian frequency filter on automatic extrinsic calibra-
tion when applied to the 1:4 scale papyrus scroll dataset. Training epochs
increase from left to right. Top: FlexAF results with the frequency fil-
ter disabled. Bottom: FlexAF results with the frequency filter enabled.
Training without the filter requires almost 6x more training iterations to
reach a quality comparable to the filter-enabled configuration.

Figure 5.8 shows slices rendered from our two FlexAF configurations after 20, 180,

and 500 training epochs. Both reconstructions are of acceptable quality given the scale

and accurately capture the structure of the scroll and the blurred structure of the

foam. Notably, the configuration without the frequency filter does learn the correct

extrinsic calibrations and eventually converges to a reconstruction of similar quality

as that of the filter-enabled configuration. However, this configuration is only stable

because of its lower learning rates. In contrast, the model with the Gaussian frequency

filter converges over many fewer iterations and produces a reasonable reconstruction

after only 20 epochs.

We next test our automatic calibration method on the full resolution papyrus scroll

dataset using the “short scan” of only 1073 projections. As in the previous experiment,
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(a) (b) (c)

Figure 5.9: Automatic extrinsic calibration of the papyrus scroll dataset at
full resolution. (a) Trained for 20 epochs. (b) Trained for 60 epochs.
(c) Trained for 20 epochs with non-optimal hyperparameters.

we crop each projection to the 12 central rows of pixels to provide a region of support

for extrinsic calibration and employ entropy pixels to reduce the samples per epoch.

Empirically we observe that the model begins to converge on the full resolution dataset

after only two epochs, so we train both the detector and source extrinsics between

epochs 2 and 30, and we set our frequency filter to linearly activate all frequencies

over the first 21 training epochs.

As in the low resolution experiment, the model converges quickly on both the

extrinsics and the reconstruction, and the result is of reasonable quality after only

20 training epochs (Figure 5.9a). However, the extrinsic calibration is not perfect.

Many of the interior wraps of the scroll are distinct but blurred, and a few of the

smaller point-like features outside the scroll show the crescent-shape of misalignment.

This residual misalignment does not improve as training proceeds. After 60 epochs

(Figure 5.9b), extrinsic training has been disabled and the model has begun to alter

the volume to best explain the residual error. The interior wraps of the scroll are even

less well-defined than before, and the crescents have sharpened into distinct curves.

When we compare this result to our baseline with manual post-alignment applied

(Figure 5.3), it is easy to see that the calibration is almost but not quite correct.
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This result highlights one of the difficulties in jointly learning X-ray camera calibra-

tion alongside reconstruction. Ideally, the relative convergence of the volume and the

extrinsics should proceed in tandem, but our controls over this behavior — the learn-

ing rates, the time points at which we start and stop learning, the rate at which we

adjust our Gaussian filter — are indirect, inexact, and numerous. Given this result,

should the calibration’s learning rate be increased or decreased, or did calibration

learning start too soon or too late? It is difficult to answer any of these questions

from the hyperparameters alone, and seemingly small changes to the configuration

can lead to outsized effects on the reconstruction.

To illustrate this point, consider the reconstruction for the alternative configuration

shown in Figure 5.9c. This result was produced by a hyperparameter sweep that we

ran to tune our configuration for extrinsic calibration. The given configuration varies

only slightly from the one used in our experiment: calibration learning begins after the

first epoch, the Gaussian frequency filter reaches its maximum after 14 epochs, and the

calibration learning rate is increased by 2.18× 10−4. The reconstruction for this trial

shows obvious signs of misalignment, yet it is unclear which of these hyperparameter

adjustments (or perhaps all of them) led to such a dramatic difference in results.

Ultimately, we are heartened by the results of our extrinsic calibration experiment.

In a relatively short amount of training time, FlexAF has converged on reasonable

approximations of the extrinsics and the reconstruction, and our calibration method

works across both low and high resolutions. This result was not a foregone conclusion

when one considers the dramatic misalignment of the input dataset. We expect that

perfect calibration of the full resolution dataset is attainable with the current method

and is only a matter of finding the right combination of hyperparameters. The easy

success of the low resolution method suggests that a hierarchical training approach

may provide some means for improving this process.
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(a) (b) (c)

Figure 5.10: Automatic extrinsic calibration parallel projection images us-
ing the Shepp-Logan phantom. Reconstruction results for induced
misalignment in the Shepp-Logan camera positions. (a) Ground truth
phantom. (b) With calibration disabled. (c) With automatic calibra-
tion. The FlexAF calibration does correct for the induced misalignment
and generates a structurally coherent reconstruction, however the scene
is scaled and shifted relative to the world origin.

5.2.1 Calibration of parallel geometries

As discussed in 2.3.4, parallel beam X-ray cameras are modeled with orthographic

projection and thus lack many of the perspective effects we might encounter when

using a cone beam source. It is not immediately obvious whether our automatic cali-

bration method should be expected to work for parallel beam geometries. To answer

this question, we apply automatic calibration to a virtually misaligned version of the

Shepp-Logan phantom. Creating the misaligned phantom is simple. We generate

the phantom and projections as previously described, but we use the manual post-

alignment functionality to shift the X-ray cameras so that their initial positions are

horizontally offset from their correct locations.

For our experiment, we use the baseline Shepp-Logan configuration from 5.1.1, but

augment it with automatic calibration settings similar to those used on the papyrus

scroll phantom. To provide a comparison, we also reconstruct the misaligned Shepp-

Logan phantom without automatic calibration. For both trials, we apply manual

misalignment of -10 pixels to the Shepp-Logan X-ray cameras (0.5mm in our virtual

coordinate system). The resulting reconstructions are shown in Figure 5.10.
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Our method does learn a calibration which accurately recovers the structure of

the Shepp-Logan phantom. However, the calibrated reconstruction is shifted in the

world coordinate frame and slightly larger than the original phantom. This result

is promising in that it demonstrates the applicability of our calibration method to

parallel beam X-ray cameras, but it also highlights a weakness in our current im-

plementation. Our camera calibrations are modeled as 4× 4 homogeneous transform

matrices, and as such, they are capable of scaling the X-ray source and pixel positions

with respect to the world coordinate frame. This experiment shows that a better so-

lution would be to learn only a 3D translation and one rotation angle for each axis

(i.e. roll, pitch, and yaw).

5.3 Multi-resolution reconstruction

The continuous coordinate system of our neural volume implies the ability to learn

CT reconstructions with multiple levels of detail. Intuitively, volume regions that

have only been trained on low resolution or sparse X-ray projections should be of low

spatial resolution, while regions trained on high resolution or dense X-ray projections

should be of high spatial resolution, and regions of overlap should have a spatial

resolution somewhere in between. We experiment with FlexAF on a multi-resolution

region of interest (ROI) reconstruction task to validate its ability to model different

regions of a volume captured at various scales.

5.3.1 Combining regions of interest

Our experiment imagines a scenario where we would like to selectively improve upon

the quality of the natural sponge from our MS.01.01 baseline experiment. The natural

sponge is the lowest density material in the Multi* proxy and has an extremely fine

cellular structure. At the 140 µm resolution of the MS.01.01 scan, the largest features

of this structure are visible but lack any sort of clarity or sharpness (Figure A.1). At

70 µm, however, we can begin to differentiate the cellular structure and sharp interior

edges (Figure A.2). Our experimental goal is to reconstruct most of the Multi* proxy
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(a) (b)

Figure 5.11: Masking CT projection images to construct a reconstruction
region of interest. (a) A projection image from the Multi* dataset.
(b) The masked ROI for the natural sponge. This mask tracks the sponge
across all rotational projections.

at a 140 µm resolution while selectively reconstructing the natural sponge ROI at a

70 µm resolution.

We use three Multi* datasets for this study: MS.01.01 (140 µm), MS.01.02 (70 µm),

and a scaled version of MS.01.04 (20 µm). We include this latter scan because

MS.01.01 is essentially just a binned down version of MS.01.02 and follows the same

scan trajectory relative to the sample. In real world applications, it is highly likely

that an ROI scan would vary the source-to-sample distance in order to maximize

reconstruction quality. MS.01.04 does have a different source-to-sample distance and

thus has a distinct scanning trajectory from MS.01.01. On data load, we scale the

projections of MS.01.04 by 0.2857x and load every two projection images to achieve

an approximate scan resolution of 70 µm.

Since the Multi* dataset does not contain a true ROI scan, we construct one by

masking our high-resolution projections to only those regions containing the natural

sponge. The natural sponge lies outside the center-of-rotation, thus we precompute

a per-projection rectangular mask which tracks the motion of the sponge within the
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projection images (Figure 5.11). This off-center moving mask poses no difficulty for

FlexAF as we train on individual image pixels which store their individual extrinsic

information. On data load, we initialize the X-ray cameras relative to the entire

image, but only store the tensors for those pixels which lie within the bounds of

the mask. This is similar to the cropping technique we already employ to improve

reconstruction times.

5.3.2 ROI reconstruction

We test FlexAF by reconstructing with three different combinations of input datasets.

First, we reconstruct an ROI-only dataset using only the masked region of MS.01.02.

Second, we reconstruct a “same trajectory” dataset composed of the full width MS.01.01

projections and the masked MS.01.02 projections. Finally, we reconstruct an “alter-

nate trajectory” dataset composed of the full width MS.01.01 projections and the

masked MS.01.04 projections. The FlexAF configuration is identical across all recon-

structions and is a combination of the baseline configurations in 5.1.3. We use the

model and encoding parameters from the MS.01.01 baseline but apply the contracted

bounding cylinder from the MS.01.02 baseline. For all reconstructions, we train on

only the center most rows and evaluate on a single slice at the center of the volume.

The reconstructed results are shown in Figure 5.12.

The ROI reconstruction looks largely as one might hope and expect. The cylindrical

region surrounding the sponge has the same accuracy we saw in the MS.01.02 baseline

experiment (Figure 5.7), while the areas outside this cylinder are of significantly

degraded quality. This confirms our ability to independently reconstruct isolated

subregions without a loss of quality within the region of interest.

The two multi-resolution configurations produce very similar results and, as ex-

pected, present reconstructions that combine the qualities of the low and high reso-

lution datasets. The fine structures of the sponge which are so blurred in the 140 µm

reconstruction are now distinguishable, though not quite to the same clarity as that
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Resulting reconstructions from the multi-resolution ROI exper-
iments. (a) Full FlexAF reconstruction of MS.01.01 (140 µm). (b) ROI-
only reconstruction. (c) ROI-enhancement reconstruction using projec-
tions from MS.01.01 and MS.01.02. (d) ROI-enhancement reconstruction
using projections MS.01.01 and MS.01.04. (e–h) ROI crops of the same.
Enlarged versions of the full slices are available in Figure A.3.

observed in the 70 µm reconstruction. Likewise, many of the wood pores that fall

within the ROI cylinder are also much sharper than their low resolution counter-

parts. The similarity between the two multi-resolution reconstructions is striking,

and is a promising indicator for our desired ability to combine projections captured

along drastically different scan trajectories.

These reconstructions do, however, show some artifacts that result from train-

ing on the ROI region. First, both multi-resolution reconstructions are generally

much noisier than the baseline and ROI-only reconstructions. This noise is persistent

throughout the entire sample area, but is most noticeable in the low resolution re-

gions near the bottom of the slice view. A possible cause for the noise is that we are

sampling from datasets with different bandwidths but encoding all coordinates with

the same Gaussian features. We theorize that this produces aliasing in the volume’s

95



frequency domain which presents as noise in the reconstructions. We do not see the

same noise in our baseline experiments or the ROI-only reconstruction because those

results were trained on data of the same bandwidth.

The second artifact is a faint but distinct line that separates the ROI region from the

rest of the volume. This line is also visible in the ROI-only reconstruction, where the

distinction between the inner and outer regions is much more prominent. Including

the low resolution data appears to have reduced this artifact but has not eliminated

it. It is unclear from this experiment whether this is generally a problem for ROI

reconstruction or a beam hardening artifact caused by the bright silicone in the core

of the Multi* phantom.

5.4 Multi-energy reconstruction

We evaluate our multi-energy volume model using projections drawn from five of

our Multi* datasets: MS.02.01 (35 kV), MS.02.03 (50 kV, Al 0.5mm filter), MS.02.04

(70 kV, Al 0.5mm filter), MS.02.05 (90 kV, Al 1mm filter), and MS.02.06 (120 kV, Cu

0.5mm filter). For convenience and clarity, we will refer to these datasets by their

peak incident energies.

Our goal in this experiment is to generate a single reconstructed volume which

captures the spectral information of all five scans. Crucially, we also want to avoid

the theoretical X-ray dosage and capture times that would come from acquiring five

complete CT scans in a real-world environment. Thus, we limit ourselves to training

on a maximum of 1200 projection images, the same number of projections required

to reconstruct any one of the five Multi* scans.

We consider two methods to combine our datasets into a single multi-energy scan

(Figure 5.13). In the first, we interleave the incident energies from low to high after

every rotational step such that the projections follow the sequence: 35, 50, 70, 90,

120, 35, 50, 70, ... (Figure 5.13a). In this method, each individual scan is sparsely

sampled at 1/5 the rate of the full scan across the 360◦ range. Our second method
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(a) Interleaved energies (b) Energy wedges

Figure 5.13: Visualization of the dataset combinations for the multi-energy
experiments. (a) The incident energies are interleaved across projec-
tion images such that the energy changes between every rotational step.
(b) The total rotational range is divided into five equal-sized wedges, one
for each incident energy.

divides the 360◦ range into five equal-sized wedges which contain the projections from

only one energy (Figure 5.13b). In this method, each individual scan is a limited

angle dataset that covers only a 72◦ rotational range.

We evaluate both of these datasets with the baseline FlexAF configuration used

for MS.01.01. The one variation we make is to use the multi-energy volume model

described in 3.3.3. Though the full MS.02 scans contain many interesting spectral

features within their fields of view (sponges, metals, silicone, etc.), most of these

features are near the top and bottom of the volume. The cone beam geometries

are such that reconstruction of even a single slice from these regions would require

training over many rows of pixels from each projection to ensure sufficient sampling.

As in our other experiments, we train over the central two rows of pixels and render

on the slice plane at z = 0.
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(a) 35 kV (b) 50 kV (c) 70 kV

(d) 90 kV (e) 120 kV

Figure 5.14: Reconstructions for the five incident energies in the interleaved
multi-energy experiment. Slices rendered across the five training en-
ergies. Though the FlexAF framework was provided only sparse projec-
tion sets for each individual energy, the model has combined the shared
information across energies to reconstruct a spatially accurate volume.

5.4.1 Interleaved energies

The reconstruction results for the interleaved multi-energy dataset are shown in

Figure 5.14. Since our multi-energy volume is parameterized by both 3D coordinate

and incident energy, we generate slices for each of our five training energies. Some-

what disappointingly, this slice only shows the wood grain of the Multi* base block.

However, we can see that the spatial quality of the reconstruction compares favorably

to that of the 70 µm MS.01.02 results. This is most noticeable in the clarity of the

wood pores which are distributed in multiple places around the sample.

We do note a few places in which our multi-energy model fails to produce an

accurate reconstruction. In the top left corner of the 35 kV slice, there are three

“holes” in the reconstruction which should not be there. Looking at the same region

across all of our rendered slices, we can see that the nature of these holes changes with
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Figure 5.15: Comparing the reconstructed attenuation coefficients produced
by FBP and FlexAF for the interleaved multi-energy experi-
ments. Plots of the mean attenuation coefficients with respect to peak
incident energy for a centered 600×600 slice ROI. (a) Comparison of
the raw attenuation coefficients for the FBP and FlexAF reconstruc-
tions. (b) Comparison of the normalized attenuation coefficients for the
same. As evidenced by the change in attenuation across incident energy,
we have successfully separated attenuation from structural composition
as two independent components in our reconstruction. However, the
FlexAF attenuation coefficients appear to follow an inverse trend from
those produced by FBP, implying that our polynomial mapping model
requires further development.

the incident energy. In the other reconstructions, the holes are somewhat filled in but

outlined in black. As the energy increases, so too does the brightness of the filled

region inside the holes, yet the black outline remains. Likewise, the corners of the

proxy are not continuous and are interrupted with “holes” of a similar appearance.

Evaluating the spectral accuracy of our model is not straightforward. There is no

reason to believe that our reconstructed attenuation coefficients should fall into the

same range as those returned by FBP. What we can say is that the relative coefficients

across energy should follow the same trend: if the 50 kV slice is brighter than the 35 kV

slice in FBP, the same should be true for our multi-energy reconstructions.

To this end, we plot the mean attenuation across incident energy between the FBP
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and FlexAF reconstructions (Figure 5.15). To view the same values on a relative

rather than absolute scale, we also plot the mean attenuation after normalizing the

slices within the range of their own set. We specifically avoid including our reconstruc-

tion anomalies in this measure by calculating the mean attenuation from a 600× 600

subregion centered on the middle of the slice. These plots show that our method

does not accurately reconstruct the relative attenuation across energy. Instead, it

appears as though the dynamic range of our raw attenuation coefficients is extremely

narrow. When normalized, we also see that the relative intensities are almost exactly

the inverse of those from FBP.

The exact reason for this error is currently unclear. Most likely is that our multi-

energy volume and image formation method do not accurately model the effects of

incident energy on the projection images. Our volume assumes a monochromatic

incident energy, and we do not account for acquisition variables like exposure time.

Without including terms for these parameters, our neural volume can only do so much

to capture the complexity of the input datasets.

5.4.2 Alternative volume views

Our multi-energy volume provides us two ways to view our learned reconstruction.

As we have seen, we can render slices with respect to a given incident energy, but

we can also render slices using the learned z-value from which our energy-dependent

attenuation coefficients are derived. Figure 5.16 shows the z-value slice for the in-

terleaved multi-energy experiment. Though not shown, we have confirmed that the

z-values do not change when we provide the neural volume with different incident

energies. Notably, the z-values are inverted in comparison to the attenuation coeffi-

cients. This is one indication that we are not learning an uncalibrated atomic number,

but rather a convenient shared structural representation across incident energies.

We also investigate what, if anything, our neural volume has captured for the

incident energies which lie between those in our training set. There is generally
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Figure 5.16: z-value slice for the interleaved multi-energy experiment. De-
spite the variations in observed attenuation coefficients across incident
energy, the FlexAF multi-energy model captures the shared structure
across all slices.

hope that the volume will interpolate reasonable attenuation coefficients between our

trained energies. This is in keeping with the idea that the MLP learns a smooth

function between its learned coordinates.

We densely render slices across the 35 kV to 120 kV range at an interval of 1 kV

between each slice. Figure 5.17 shows the rendered 80 kV slice and plots the mean

attenuation coefficients across all sampled energies. The slice, which is shown nor-

malized to its own dynamic range, shares its structure with all the other slice images

rendered from this volume. We can see in the coefficient plot that the attenua-

tion function does smoothly transition between energies. However, the unsupervised

regions of the X-ray spectrum are dramatically brighter than those over which we su-

pervise. As such, these values do not appear to be meaningful interpolations between

our trained energies.

5.4.3 Energy wedges

The reconstruction results for the energy wedges dataset are shown in Figure 5.18.

These results are dramatically inferior to those from the interleaved dataset. While
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Figure 5.17: Using the interleaved multi-energy model to interpolate be-
tween incident X-ray energies. On the left, a slice rendered from
the interleaved multi-energy model at an energy halfway between two
of the training energies (80 kV). While the slice appears structurally
reasonable, the plot on the right shows that the returned attenuation
coefficients are dramatically out of range in comparison to those of the
training energies.

FlexAF has clearly reconstructed the broad structure of the Multi* proxy, it has

completely failed to learn the finely detailed features with any accuracy. Only the

35 kV slice looks reasonable, while all others suffer from significant errors. Looking

at the z-value slice, we can see that this problem is not isolated to the attenuation

coefficient outputs but is a feature of the volume’s learned structure. We do not know

why this result should be so much worse than the interleaved dataset, but it is evident

that there are significant differences between these two training methods that need

to be understood.

5.5 On performance

As a final note, we briefly address a primary limitation for our method: the long

training times required to converge to an accurate reconstruction. As we have noted,

most of the reconstructions in this study have been for single slices at the center of

the field of view, i.e. the slices which are the easiest to evaluate. Yet despite these

relatively small reconstructions, our method often requires many hours, if not days,
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(a) 35 kV (b) 50 kV (c) 70 kV

(d) 90 kV (e) 120 kV (f) z-value

Figure 5.18: Multi-energy reconstruction results using the energy wedges
training method. Slice images depicting the five training incident
energies and the z-value slice. Though FlexAF appears to have converged
on a reasonable reconstruction for the 35 kV slice, the slices for the other
energies and z-values appear significantly degraded by comparison.

of GPU-accelerated computing time before it converges. Is a method such as ours

even tractable in real-world applications?

The escapist answer to this question is to reference Moore’s Law and mumble

something about quantum computing, the blockchain, and all things being possible

as time approaches infinity. It is quite a different answer to say that this time may

have already arrived. Before we consider potential optimizations to our method —

and there are many potential optimizations — it is worth evaluating our current

performance with respect to the acceleration hardware used in this study.

We consider our baseline experiment for MS.01.02, one of the largest full resolution

datasets we attempt in this study. The evaluated size of our training set in this ex-

periment was 1192×2×1200, around 2.86 million pixels. Generously, this experiment

converged to its final result after 250 training epochs. Training to 250 epochs took
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GPU F32 Convergence TF32 Convergence

V100 (2017) 15.7 TFLOPS 2.5 years – –
A100 (2020) 19.5 TFLOPS 2.04 years 312 TFLOPS 46.5 days
H100 (2023) 67 TFLOPS 216.5 days 989 TFLOPS 14.67 days
B100 (2024) – – 14 PFLOPS 24.88 hours

Table 5.2: Estimated time required to train the full MS.01.02 dataset to
convergence using various Nvidia GPUs. This table uses the single
precision floating-point operations per second to estimate the time required
to train the full MS.01.02 dataset to convergence. All experiments in this
study were run on the Nvidia V100. Simply by switching to the recently
announced B100 GPUs, FlexAF would potentially be able to reconstruct
this entire dataset in a little more than 1 day of training time.

35.309 hours on an Nvidia Tesla V100 GPU, an amortized time-per-epoch of 8m30s.

The full size of the MS.01.02 dataset is 1536× 972× 1200,1 around 1.79 billion pixels

and a 626.25x increase in total dataset size. If we assume an identical model con-

figuration with a runtime performance that increases linearly with dataset size, the

estimated time-per-epoch for the full dataset would be 3.69 days, or 2.5 years to reach

convergence at 250 epochs.

The Tesla V100 GPU was first released in June 2017, and needless to say, the en-

suing 7 years have seen dramatic improvements to the runtime performance of GPU

technologies. All operations in our framework are performed with single-precision

floating point numbers, and thus we may roughly compare GPUs using their single-

precision floating-point operations per second (FLOPS). We perform a simple estima-

tion of training time to convergence for the full MS.01.02 dataset by comparing the

FLOPS for the most recent three generations of Nvidia GPUs (Table 5.2). Starting

with the A100 in 2020, Nvidia provides a tensor float type which significantly improves

performance by automatically calculating many low precision operations with half-

precision floats. Where available, we compare the FLOPS for both single-precision

floats (F32) and tensor floats (TF32).

1We again ignore the extra 1201st projection captured at the end of the full rotation.
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As our table shows, the performance of GPU technology is increasing at almost

exponential rates. At the time of this writing, the B100 has not yet been released,

but the marketing materials claim an almost 1000x increase in performance over the

V100 used in our study. We estimate a B100 reconstruction time for the full MS.01.02

dataset of 24.88 hours, 1.4x faster than the time we report for reconstructing a single

slice. When we consider that this potential performance boost does not account for

any optimizations we can make to the framework, we are extremely optimistic about

the imminent applicability of FlexAF.
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CHAPTER 6. DISCUSSION

“The discharge was in full force, and the rays were
flying through my head, and, for all I knew, through
the side of the box behind me. But they were invisible
and impalpable. They gave no sensation whatever.
Whatever the mysterious rays may be, they are not to
be seen, and are to be judged only by their works.”

– H.J.W. Dam, The New Marvel in Photography,
McClure’s Magazine, 1896

Before we conclude, we spend some time discussing the challenges and limitations

that our method still faces and the immense opportunities that come with our in-

creased capabilities.

6.1 The challenges of projective X-ray cameras

Our work is guided by the observation that X-ray imaging has a strong relationship

to traditional photography, and that the projective camera models we use to under-

stand the 3D structures of photographic spaces can be extended to tomographic

applications. The decision to recast X-ray images as projective cameras presents a

number of challenges which require further development and study.

First, today’s CT scanners do not directly record the position and orientation of

the X-ray camera relative to some common world coordinate frame. This informa-

tion is instead indirectly recorded in scan metadata as a pre-defined scan trajectory

of known rotational step size, detector pixel sizes, source-to-sample-to-detector dis-

tances, etc. We construct the X-ray cameras we need on-the-fly using the metadata

that has been made available, and we fill in any gaps with our understanding of how

the scan was acquired. In the near term, using our framework across non-SkyScan

datasets will require some effort parsing metadata formats, converting to our internal

representation, etc. Going forward, we hope to see scanners which additionally pro-

vide per-projection extrinsic matrices similar to those found in many photogrammetry

reconstruction frameworks.
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Second, a limitation of our study is that we have not tested our framework on

datasets with more interesting scan trajectories. Helical and spherical scanning paths

are commonly employed across a wide range of industries and would provide an in-

teresting challenge for our X-ray camera model and ray tracer. We see no fundamen-

tal reason why any well-posed scan trajectory should not work out-of-the-box with

FlexAF.

6.2 Freely-defined trajectories

Throughout this text, we occasionally refer to the concept of freely-defined scan

trajectories, by which we mean that reconstruction algorithms should accept X-ray

cameras which are defined in arbitrary positions and orientations in the world co-

ordinate frame. We do not mean that tomographic reconstruction is possible for

arbitrary sets of X-ray projections, but rather that the algorithm should make a best-

effort attempt at reconstruction using what information it has available. As with

photogrammetry, the highest quality scan will likely follow the idealized rotational

protocol. But also like photogrammetry, there are many use cases for tomography

cannot be approached with traditional scanning hardware and well-established scan

trajectories or which only require a best-effort reconstruction. These use cases have

motivated our efforts to define X-ray cameras in FlexAF in a common world coordi-

nate frame.

Chiefly, we desire a truly portable CT scanner much like the backpack model we

briefly described in our introduction. Such a scanner would prove immensely valuable

for medical CT applications in developing countries, particularly those places which

do not possess the physical infrastructure required to transport large and delicate

machinery. We are already beginning to see a shift towards low cost, low weight CT

scanners within the medical industry [90], and we foresee that more flexible recon-

struction algorithms will necessarily play a role in this development.

Likewise, there are many use cases within the sciences which would benefit from

107



a portable scanner. Recently, new virtual unwrapping technologies applied to CT

volumes have provided a noninvasive means for recovering ancient and historical texts

from inside badly damaged books, scrolls, manuscripts, and letters [3, 15, 67, 69, 87,

101]. As these materials are often extremely fragile and of a priceless nature, a chief

difficulty in this work is transporting the materials from the collection to a laboratory

environment so that a scan can take place. A more portable CT scanner provides an

alternative to this paradigm where the object can stay safely in place and the scanner

travels to the host institution.

6.3 Approximating ray integrals

The point-based ray sampling method we use in this study is simple and effective

but ultimately at odds with the reality of X-ray imaging. If we wish to truly model an

attenuation field across multiple volumetric scales, then we must be able to evaluate

that model volumetrically as well. We believe that at least some of the frequency

aliasing we experience in our multi-resolution experiments is due to all points being

treated equally by the encoder and model, regardless of the spatial resolution of the

original X-ray projection.

As discussed in 2.2.3, there are precedents for volumetric ray sampling for radiance

fields. For example, Mip-NeRF approximates the conical frustums for each pixel as

a discrete set of multivariate Gaussians. While we explored this approach during

the development of FlexAF, our resulting reconstructions did not reproduce high-

frequency features with the same accuracy as the point-based method. We believe

that this may have been an implementation-specific issue and not a fundamental

limitation of the Mip-NeRF method. This remains a promising avenue for future

study.

As a practical concern, any discrete sampling method will eventually become chal-

lenging as the size of the modeled space grows with respect to a fixed resolution.

For the sake of argument, we consider an 8 cm diameter sample which we wish to
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reconstruct at a 1 µm to 10 µm resolution.1 At these resolutions, the discrete grid for

this sample easily approaches 10k pixels along a single slice axis. It seems unlikely

that 512 ray intervals, the largest number of intervals we used in this study, would be

of sufficient sampling density as to reconstruct the required details for such a scan.

An alternative method which may address this issue is not to sample on a per-ray

basis at all. In our current sampling method, the areas near the center of rotation are

sampled much more frequently than the areas near the edge of the reconstructable

volume, a well-known byproduct of rotational geometries. As a result, many rays in

the same batch are being independently sampled at nearly identical spatial locations.

Removing this redundancy by evaluating rays with respect to a shared set of sam-

ples would significantly improve the volumetric coverage within each batch without

requiring an increase to the total number of samples.

We noted in our Shepp-Logan experiments that the reconstructions show an in-

tensity gradient which is brighter near the middle of the sample and darker at its

edges. As both of these samples are centered in the field-of-view and contain rela-

tively uniform internal structures, it is difficult to ascertain what exactly causes this

gradient without more study. A likely cause is that the oversampled area near the

center of the volume is likewise being overemphasized during our gradient updates.

We believe that this represents an elusive bug in our implementation rather than a

serious concern for the method at large.

6.4 Building a better model

Our volumetric model — the combination of the Gaussian encoding and the MLP

— is crucial to the spatial accuracy of FlexAF. As we have seen, the current model

operates well for modestly sized volumes and low-to-medium micro-CT resolutions,

but has difficulty scaling to large volumes or high resolutions.

Many of the challenges which concern resolution can be traced to the Gaussian

1Perhaps not so much a hypothetical as an actual challenge recently experienced by the author.

109



encoding we apply to our spatial coordinates. The encoding analyses by Tancik et

al. and Zheng et al. (see 2.2.2) and our own experiences tuning the Gaussian encoder

across multiple scales and resolutions strongly suggest a practical limit to the size and

resolution which Gaussian encoding can support. While we were not able to measure

a predictive relationship which consistently aided our hyperparameter selection, we

did note an approximately inverse linear relationship between the sampled dimension

sizes (i.e. the dimension’s size divided by the pixel size) and the Gaussian scale. For

example, the MS.01.02 (70 µm) configuration presented in 5.1.3 maintains reconstruc-

tion quality by halving the size of the learnable volume from that used for MS.01.01

(140 µm) while keeping the Gaussian scale approximately the same.

A complicating factor in analyzing the Gaussian encoding’s effect on resolution is

the tight relationship between the encoding and the MLP. As evidenced by our few

multi-slice experiments, we frequently encountered encoder settings which produced

high-quality, individual slices only to find that the quality deteriorated significantly

as the size of the volume grew along the Z axis. We believe that this deterioration is

purely a result of the MLP reaching its capacity limit and has very little to do with

the Gaussian encoding. Further, it is clear that the MLP’s capacity is not fixed but

is a function of the volume’s size, complexity, sparsity, and quality.

As we consider the next generation of neural volume models, it is obvious that we

need to address the resolution and capacity questions that linger in FlexAF. Here we

may look to the NeAT framework (see 2.3.3) for inspiration. It employs a dynamic

hierarchical model built on differentiable features which purportedly adapts to the size

and resolution of the reconstruction. Such a hierarchical structure would theoretically

scale to scenes of arbitrary size, an important property as we consider the possibility

of freely-defined scan trajectories.
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6.5 Runtime performance

As we discussed in 5.5, the reconstruction times we report in this study are long in

comparison to other CT reconstruction algorithms. Though improvements to com-

puting hardware will continue to reduce the time spent in reconstruction, there are

many opportunities for optimization which could dramatically improve the runtime

performance of FlexAF.

We have already identified hierarchical space decompositions as pivotal for improv-

ing the quality and capacity of our neural volumes, but such decompositions could

provide significant performance boosts as well. This benefit has already been shown

for radiance fields, where a common insight among is that the deep, monolithic MLP

is the dominant cost when sampling the neural volume. By using shallow MLPs, or

removing them entirely in favor of alternative learned representations, one can achieve

significant performance gains. This is perhaps best exemplified by Instant NGP [59],

a highly optimized radiance field method which trains in seconds or minutes.

We additionally anticipate the importance of hierarchical decompositions in projec-

tion space. The entropy pixels method which we introduce in this study consistently

reduces the number of training samples per epoch by 30-40% with only a slight (if not

negligible) reduction in reconstruction quality. While these size reductions may ap-

pear modest, some experiments in this study would not have been feasible otherwise.

Looking ahead, we see entropy pixels transitioning from a pre-calculated heuristic

to one which dynamically proposes the most important training samples given the

current state of the reconstruction. It seems obvious that the volume will not have

learned enough of the reconstruction to make use of the full projection set until late

in training, when we are most interested in refining high-frequency features in the

reconstruction. Beyond entropy pixels, we foresee that adaptive sampling methods

which intelligently allocate resources during training will be extremely important for

reducing total training times.
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6.6 Spectral tomography

The multi-energy volume we presented and tested in this work is largely a proof-

of-concept meant to demonstrate the way in which a flexible framework can exploit

dataset heterogeneity to great effect. Our existing polynomial model mapping struc-

ture and energy to attenuation is extremely simplistic and does not address practi-

cally any of the system variables which affect measured attenuation. However, we are

extremely encouraged by our success modeling the shared structure across incident

images, and we believe that this experiment proposes an exciting new approach for

spectral tomography.

Notably, our method requires no changes to the scanning hardware and does not

increase the total number of X-ray projections in the dataset. It is easy to imagine

how such a method could be universally deployed into existing CT environments as

a simple software upgrade. Future work should focus on developing a multi-energy

model which more closely approximates the complexities of spectral X-ray attenua-

tion, including terms for the energy distributions of the X-ray source, beam filters,

exposure times, and scintillator and detector sensitivities.

6.7 Low-dosage, high-resolution reconstruction

Our multi-resolution ROI experiments in this study were motivated by a desire to

decrease the scan times and X-ray dosage which are required to achieve to a high-

resolution CT scan. As the pixel size of a scan gets smaller, the exposure times and

number of rotational samples must increase to guarantee a high-quality reconstruc-

tion. Many existing reconstruction methods attempt to short circuit this exposure

increase by optimizing reconstruction for a reduced number of rotational samples, the

so-called sparse and limited angle reconstruction tasks.

We propose that similar improvements to X-ray dosage can be achieved by com-

bining low-resolution scans with intentionally underexposed high-resolution data in

a single FlexAF model. Our ROI experiments have already shown that FlexAF
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naturally supports data captured across multiple scales in a single volume, and our

multi-energy experiments demonstrate the ability to model shared structure across

varying photometric settings. An obvious next step is to combine these features into a

single model which also accounts for variance in exposure times. Such a modification

will likely already be required in order to improve our multi-energy model, thus we

see both mutli-resolution and multi-energy development continuing in tandem.

6.8 Unified volume models

As we discussed in our introduction, modern CT practices are characterized by the

tendency to recapture entire scans when some perceived imperfection in the input

dataset would produce reconstruction artifacts. Though the motivations of our work

go well beyond error correction for CT scans, much of what we propose can in some

ways alleviate those hard failure modes which lead to rescanning. By admitting

projections which vary geometrically and photometrically, we enable at least partial,

perhaps total, recovery from underexposed scans or unexpected sample movement.

However, full CT scans often do not represent the totality of X-ray images which

are captured during a scan session. Numerous X-ray projections and test scans which

are captured during scan setup are subsequently discarded because they “can’t be

used” for reconstruction. Often, these images are perfectly acceptable projections in

and of themselves but simply do not match the final scanning protocol. Armed with

a reconstruction method which can account for dataset heterogeneity, we now have

the means to use these images for more than just setup.

We imagine an online reconstruction process which begins with the very first pro-

jection image. At the heart of this process would be a unified attenuation field which

is trained on every projection image captured during setup and which would provide

instant feedback to the scan operator on the effects of their scan parameter selection.

Optionally, this attenuation field could be used as the initial state for reconstruct-

ing the final scan, perhaps providing improvements to reconstruction times and/or
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quality.

Further, we can extend this idea beyond a single scan session and into the space

of multiple scans captured over long periods of time. We propose that attenuation

fields could become “living models” which grow with time, and which integrate every

new X-ray image into a single, unified reconstruction. Such a model could have

important analytical advantages over discrete grids as it provides a simple method

for combining all facets of radiography into a single frame of reference. By way

of example, subtle changes to internal structure which are difficult to see directly

in individual radiographs could be amplified by calculating the error between the

radiograph and the existing unified volume.

6.9 Conclusion

In the preceding chapters, we have showed that neural reconstruction methods

allow us to leave behind many of the limitations which have long governed com-

puted tomography. Our data-centric reconstruction framework, FlexAF, adapts to

and thrives on combinations of X-ray projection images which would produce sig-

nificant errors in traditional reconstruction approaches. Our experiments produce

high-quality reconstructions which are derived from standard, multi-resolution, and

multi-energy projection image sets, sometimes in the face of extreme geometric mis-

alignment. This flexibility is enabled by an X-ray camera model, differentiable ray

tracer, and neural volume which implicitly model those complexities which would oth-

erwise be challenging to formulate explicitly. We are aware of no other reconstruction

method which unifies all of these concepts into a single framework, let alone a single

volumetric model.

When H.J.W. Dam, the reporter fromMcClure’s Magazine, askedWilhelm Röntgen

whether he thought it would be possible to image the soft tissues of the body, Röntgen

replied, “We shall see what we shall see. We have the start now; the developments will

follow in time.” The opportunities presented by our framework are immense, but in
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many ways, our work has only just begun. Whether through our methods described

here, or through others, we believe that we are on the verge of a new, more flexible

era for computed tomography. We have the start now, and it is difficult to predict

what ideas will take hold, but the developments will follow in time.
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“The most agreeable feature of the discovery is the
opportunity it gives for other hands to help; and the
work of these hands will add many new words to the
dictionaries, many new facts to science, and, in the
years long ahead of us, fill many more volumes than
there are paragraphs in this brief and imperfect
account.”

– H.J.W. Dam, The New Marvel in Photography,
McClure’s Magazine, 1896
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ENLARGED FIGURES

(a) FBP (b) FlexAF

Figure A.1: Comparison of FBP and FlexAF slices for the MS.01.01 recon-
structions. Enlarged version of the results depicted in Figure 5.5.

(a) FBP (b) FlexAF

Figure A.2: Comparison of FBP and FlexAF slices for the MS.01.02 recon-
structions. Enlarged version of the results depicted in Figure 5.7.
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(a) (b)

(c) (d)

Figure A.3: Comparison of the multi-resolution reconstructions. Enlarged
version of the results depicted in Figure 5.12. (a) Full FlexAF
reconstruction of MS.01.01 (140 µm). (b) ROI-only reconstruction.
(c) ROI-enhancement reconstruction using projections from MS.01.01
and MS.01.02. (d) ROI-enhancement reconstruction using projections
MS.01.01 and MS.01.04.
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