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ABSTRACT 

In patients where mechanical ventilation is required, the aim of mechanical ventilation is to ensure 

adequate gas-exchange while avoiding ventilator induced lung injury (VILI). Uncertainties exist 

regarding the causes and prevention of VILI. The effect of mechanical ventilation on the distribution of 

ventilation, perfusion and gas-exchange in the lungs is not fully understood; especially the effect of 

gravity is debated in the literature. Furthermore, it has not been determined how alveoli behave during 

mechanical ventilation and it has not been determined to which extend alveoli opens and close during 

breathing even for healthy lungs. The first step towards improving ventilator therapy strategies is 

therefore to understand how the healthy lungs respond to mechanical ventilation. The focus of this PhD 

project was to develop a mathematical physiological model of the respiratory system consisting of four 

sub models describing the pulmonary ventilation, perfusion, blood chemistry and gas-exchange during 

mechanical ventilation. The ventilation model simulates pressure-volume relationships in the lungs and 

the perfusion model describes the pulmonary perfusion during mechanical ventilation both models being 

stratified with respect to the effects of gravity. The blood model describes acid-base chemistry of the 

blood. The gas-exchange model simulates oxygen and carbon dioxide distributions in the respiratory 

system and simulates e.g. arterial oxygen and carbon dioxide levels during tidal breathing. The models 

are validated against experimentally obtained data and simulate well a wide range of physiological 

parameters during breathing. The model has indicated that alveoli in the healthy subjects do not collapse. 

Furthermore, simulation results show that gravity affects the gas exchange more than what is 

experimentally observed. This leaves room to speculate that other effects such as anatomical gradients, 

hypoxic vasoconstriction and bronchodilation may compensate for the effects of gravity on the regional 

ventilation and perfusion of the lungs. 
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PREFACE 

 

This thesis presents my work done during my PhD-study started in October 2009 and finished February 

2011. The work was done at the Center for Model-based Medical Decision Support, Department of 

Health Science and Technology, Aalborg University, Denmark. The title of the thesis is A Physiological 

Mathematical Model of the Respiratory System. The thesis has four chapters: introduction, model 

development and implementation, summary of papers, and discussion and conclusion. The introduction 

offers a general introduction to the main motivation and the subject of the thesis i.e. understanding of 

ventilation, perfusion and gas-exchange of the human lungs during mechanical ventilation. It gives a brief 

overview of the literature on the subject and outlines the methodological approach applied in the studies 

presented in this thesis. Furthermore the chapter introduces the concepts and state of the art within the 

field of mathematical modelling of the respiratory system. The model development and implementation 

describes the overall solution strategy and model structure. The summary of papers presents six papers 

that constitute the basis of this thesis. The discussion and conclusion section provides a discussion of the 

main findings of the work and its relation to previous work, suggests future work, and briefly concludes 

all work presented in the thesis.  
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Remember that all models are wrong; the practical question is how 

wrong do they have to be to not be useful.  

 

 

              George Edward Pelham Box 

              Empirical Model-Building and Response Surfaces (74), 1987   



8 

 

 

CHAPTER 1 – INTRODUCTION 

 

In this chapter the problems related to mechanical ventilation in the intensive care unit are presented. 

The chapter includes a description of the concepts of pulmonary ventilation/perfusion ratio, which is one 

of the major factors determining gas-exchange in critically ill patients. Pulmonary ventilation and 

perfusion are influenced by the mechanics of the lungs. A description of the most important mechanical 

properties of the respiratory system determining the ventilation (surfactant, tissue elasticity, chest wall 

elasticity, airway resistance, visco elastic properties of the lungs) and perfusion (pulmonary arterial 

pressure, viscosity of the blood, arteriolar resistance and capillary elasticity) are therefore introduced. 

This is followed by a description of factors that affect distribution of ventilation and perfusion (gravity, 

pulmonary vasoconstriction, anatomical and geometric gradients) in the lungs. The chapter also includes 

a description of the concept of physiological mathematical modelling, which is a key concept in this 

study.   

MECHANICAL VENTILATION  

Mechanical ventilation has saved countless lives for about 50 years and today, mechanical ventilation is 

the second most frequent therapeutic intervention after treatment of cardiac arrhythmias in the intensive 

care unit (ICU) [3]. In case of severe lung injuries such as patients with acute respiratory distress 

syndrome (ARDS) or acute lung injury (ALI), finding the appropriate settings on the ventilator is of great 

importance [4]. Evidence from randomized, controlled clinical trials, e.g. [5-8], has shown that specific 

ventilator management strategies can reduce mortality, length of ICU stay, and cost. Fig. 1 shows the 

dilemma faced by clinicians when finding appropriate ventilator settings. At one side sufficient gas-

exchange must be obtained by mechanical ventilation to secure the patients are properly oxygenated and 

CO2 eliminations is optimized. Usually this is done by an increase in the minute volume,        , by either 

increase the tidal volume, VT, or the breathing frequency, f, (            ) adding a positive end expiratory 

pressure, PEEP, increasing inspired oxygen fraction, FiO2, or turning the patient to prone position [9, 10]. 

However, as with any other therapy, mechanical ventilation may unfortunately expose patients to side 

effects. So at the other hand, excessive use of pressures, tidal volumes and high FiO2 may cause alveolar 

rupture, inflammation and oxygen toxicity also named ventilator induced lung injury, VILI.  

In addition to the mentioned ventilator settings (VT, f, PEEP and FiO2) conventional ventilators have 

several other settings and modes (e.g. ratio between inspiration and expiration time, I:E), that also affects 

gas-exchange of the patients. However, of the available settings, PEEP and tidal volume may be 

considered as the most complex to optimize. PEEP improves gas-exchange by preventing alveolar 

collapse, recruiting alveoli, redistributing fluid in the alveoli and avoiding shunt, but excessive PEEP can 

increase pressure to harmful levels where VILI occurs. In addition high PEEP levels might reduce the 

alveolar capillary perfusion by compression of pulmonary capillaries within interalveolar septa. The 

setting of tidal volume is currently based on a lung protective strategy with low volumes of about 6 to 8 

ml/kg [4]. Despite of guidelines based on lung protective strategy, the management strategy of ventilator 

support still remains under debate e.g. [4, 8, 11-13] and how to achieve the primary goal of improving 

oxygenation while ensuring that the lungs heal properly is still not fully understood [14-16].  
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Fig. 1 Shows the tradeoff between ensuring sufficient gas-exchange while avoiding ventilator induced lung injury (VILI) 

when mechanically ventilating critically ill patients. Blue boxes illustrate that doctors have to optimize different 

ventilator settings and body posture considering the balance between achieving sufficient gas-exchange and preventing 

VILI. VT: Tidal volume. f: Breathing frequency. PEEP: Positive end-expiratory pressure. FiO2: Inspired oxygen 

fraction. I:E: Ratio between inspiration and expiration time. 

One of the reasons that finding appropriate ventilator settings may be so difficult is illustrated in Fig. 2. 

Pulmonary gas-exchange is determined by the interaction between alveolar ventilation and pulmonary 

perfusion and is further complicated by the chemical properties of blood, which causes the exchange of 

O2 and CO2 to interact through the Bohr-Haldane effect [17-20]. Currently there is no complete 

understanding of how ventilation and perfusion are affected by different ventilator settings and since 

these effects often counteract, it is very difficult to predict the effect of various types of mechanical 

ventilations on gas-exchange.  

 

Fig. 2 Illustrates that gas-exchange in alveoli is a complex interaction between ventilation of air and perfusion of blood 

to the alveoli. 

The prediction of the effects of mechanical ventilation is further complicated by the fact that matching 

between pulmonary ventilation and perfusion, also known as the     -ratio unfortunately is not the same 
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throughout the lungs. Thus, as illustrated in Fig. 3, some alveoli might be more perfused than ventilated 

and some might be more ventilated than perfused, whereas others might be equally perfused and 

ventilated and have a     -ratio close to 1. Fig. 3 is a simulation results of a model that will be discussed 

in details later in this thesis [21-25]. 

  

Fig. 3 Simulated relationship between alveolar partial pressure of O2 and CO2 for a healthy subject in upright position. 

Indicated is also the ventilation/perfusion ratio. 

As shown in Fig. 3 matching between ventilation and perfusion determines partial pressures of O2 and 

CO2 in the alveoli and since discrepancy between      increases with disease it is one of the major factors 

determining gas-exchange in critical patients at the ICU [26]. 

The mechanical properties of the respiratory system determine how alveoli behave during breathing. It is 

therefore these properties that determine perfusion and ventilation of the individual alveoli. The following 

sections will illustrate the fundamental mechanical properties of the respiratory system that determines 

local alveolar ventilation, perfusion and gas-exchange.  

LUNG MECHANICS 

Mechanical changes in lung structure during respiration also known as lung mechanics have been widely 

discussed in the literature e.g. [27-34]. However, no established unifying theory currently exists. Much of 

the uncertainty has been due to the difficulties in documenting alveolar and capillary mechanics, given 

the small size and large movement during breathing. This section introduces the most important 

mechanical components of the respiratory system starting with those determining alveolar ventilation. 

This is followed by an introduction to mechanics determining pulmonary perfusion.  

STATIC LUNG MECHANICS DETERMINING ALVEOLAR VENTILATION 

Lung mechanics affecting alveolar ventilation are often described by pressure-volume (PV) relationships 

as the ones illustrated in Fig. 4. Fig. 4-A shows a simulated PV-curve of a pair of excised lungs ventilated 

with either saline or air. The simulations are performed with the model that will be discussed later in this 
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thesis [21-23]. The simulated PV-curves are similar to those found in the literature e.g. [28, 35-37]. By 

comparing static PV-curves from excised saline-filled and air-filled lungs, two fundamental components 

of the respiratory system can be identified, namely the effect of tissue elasticity and the effect of surface 

tension determined by surfactant. Surfactant molecules act on the air/water interface inside the alveolar 

epithelium and reduce the surface tension and hereby the work of breathing. Furthermore surfactant 

maintains fluid balance across the alveolar membrane and prevents alveolar collapse. In saline filled lungs 

the air-liquid interface is abolished and the effect of surfactant is therefore eliminated. Since surfactant is 

one of the main contributors to the hysteresis observed on the PV-curve, saline filled lungs have no 

hysteresis when inflated and deflated. 

   

Fig. 4 A: Illustrates simulated pressure-volume relationship of an isolated lung inflated with saline (red line) or air 

(blue line).  B: Simulated total pressure-volume curve (red line) including the effect of chest wall (blue line) and lung 

tissue elasticity (black line). RV: Residual volume. FRC: Functional residual capacity. TLC: Total lung capacity. 

The effect of chest wall (abdomen and rib cage) is eliminated when isolated lungs are ventilated as the 

lungs simulated in Fig. 4-A. Fig. 4-B shows a simulated PV-curve from lungs inside the chest wall filled 

with saline. The figure shows that the total static PV-curve of the respiratory system without surfactant 

(red curve) is a sum of the pressure generated by the chest wall and the pressure generated by lung tissue. 

The sigmoid shape of the total PV-curve therefore reflects the balance of forces within the lungs. At 

functional residual capacity (FRC) the negative pressure generated by the chest wall is counterbalanced 

by the positive pressure from the lung tissue. 

Global PV-curves can be obtained from both healthy and ill subjects [27, 38-42]. They are global in the 

way that they are obtained at the mouth and therefore is the sum of local conditions within the lungs. As 

is the case with     -ratio, alveolar pressures are not the same throughout the lungs due to gravitational 

forces [43-45]. In spite of this, global PV-curves can be considered as consisting of three segments 

separated by two inflection points [27, 46-48]. Fig. 5 shows a simulated global PV-curve of a healthy 

subject ventilated from residual volume, RV, to total lung capacity, TLC. The simulation was performed 

with the same model as used for the simulations shown in Fig. 3 and Fig. 4. The simulated global PV-

curve is similar to those obtained experimentally e.g. [22, 49]. On the inflation curve a segment with low 

compliance can be identified. The segment is separated from an intermediate segment with greater 

compliance by a lower inflection point (LIP). This steeper part of the curve is followed by an upper 

inflection point (UIP) beyond which the curve flattens again. As indicated on Fig. 5 it can be hard to find 

the exact position of the inflexion points and many of the techniques described in the literature rely on 

eye detection, which is subject to interobserver variability. Interpretation of the same PV-data by different 

clinicians has been observed to differ as much as 1.1 kPa [50]. 
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Fig. 5 Shows a simulated total pressure-volume curve from residual volume (RV) to total lung capacity (TLC) of a 

healthy subject. Indicated is the lung hysteresis, lung compliance, upper inflection point (UIP) and lower inflection 

point (LIP). 

A number of studies have tried to explain the meaning of the global PV-curve and the inflexion points the 

interpretation of the PV-curve, however, remains under debate e.g. [4, 38, 51-53]. Some authors (e.g. [27, 

38]) have regardless of the problems with global measurements interpreted the first segment with low 

compliance to represents filling of derecruited or collapsed alveoli. The second segment with high 

compliance is suggested to represent a continuous recruitment of alveoli and isotropic expansion of the 

already open alveoli. The last segment is claimed to represent a gradual cessation of recruitment where 

harmful pressure levels and VILI occurs. The concept of the global PV-curve representing recruitment 

(opening) and derecruitment (closing) of alveoli must, however, be interpreted with some caution. In 

addition to the global measurements, there are still conflicting data on how alveoli behave during 

breathing. Schiller et al. [54] showed three behaviors of alveoli during mechanical ventilation, those that 

do not change in size, those that change size throughout the entire inflation, and those that pop open at a 

certain pressure and rapidly change size. These observations support the theory of recruiting and 

derecruiting alveoli. On the other hand Hubmayr [55] criticized this theory and concluded that PV-curve 

from ARDS patients can be obtained without having alveoli open and close, but rather forcing air into 

open, but liquid filled alveoli. 

DYNAMIC LUNG MECHANICS DETERMINING ALVEOLAR VENTILATION 

Along with the static components, dynamic airway resistance and viscoelastic properties of the lungs are 

also known lung mechanics that affect the ventilation [56-59]. Fig. 6 shows a typical gas flow and airway 

pressure profile during constant flow inflation from a subject being mechanical ventilated [60]. The figure 

illustrates the airway resistance and viscoelastic properties of the respiratory system. After end inspiration 

there is a sudden initial pressure drop from PMax to P1, which is due to the dissipation of airway 

resistance. The initial pressure drop is followed by a slower, secondary pressure drop to a static plateau, 

which is believed to be caused by either stress adaptation of the lung tissue including surfactant or 

pendelluft due to ventilation inhomogeneity [61]. The effects of viscoelasticity and pendelluft are hard to 

distinguish, however, in the normal healthy lungs pendelluft has been proven to have a minimal 

contribution to stress relaxation [57]. Zhao et al. [42] recently presented a simple, rapid (20 seconds) 

method for measuring both the viscoelastic and resistive properties of the respiratory system from a single 

long inflation-deflation maneuver. The results confirm previous observations [31, 49, 62-64] that stress 

adaption due to viscoelasticity increase non-linearly with inflation volume and airway pressure. 
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Fig. 6. Shows measured flow of gas (A) and pressure measured at the mouth (B) during a constant flow inflation, with a 

period of zero flow (pause) followed by a passive expiration [22]. During the pause period the airway pressure rapidly 

drops from its maximum value, PMax, to P1, this is followed by a slower decrease to an apparent static plateau, PStatic. 

MECHANICS DETERMINING PULMONARY PERFUSION  

The pulmonary capillaries wrap each alveolus in a fine and dense mesh that covers about 70 % of the 

alveolar wall [65]. The network forms a continuous sheet of blood around the alveoli, which maximizes 

gas-exchange. The pulmonary perfusion through the capillaries and the rest of the pulmonary vessels is 

among others determined by circuit resistance and pressure differences between the arterial and venous 

end of the system. Pressure at the venous side is almost constant and changes only with the depth of the 

lungs due to the hydrostatic gradient, which increases down the lungs due to gravity. The important 

pressure is therefore the pressure at the arterial end. Arterial pressure is not constant, according to the 

pressure exerted by the heart; it rises during ventricular systole and falls during ventricular diastole. Due 

to low peripheral resistance, the pulsating transmission of pressure from the right ventricle to the 

arterioles and capillaries leads to a highly pulsating perfusion in the capillaries [66]. Mean pressure in the 

pulmonary circulation drops from about 2.2 kPa in the pulmonary artery to 1.2 kPa in the pulmonary vein. 

The arterioles and capillaries accounts for an equal pressure drop of approximately 0.5 kPa [61]. From 

Poiseuille’s law stated in Eq. 1 it can be identified that pulmonary resistance, R, is determined by 

viscosity of the blood, ηBlood, lengths, L, and radii, r, of the pulmonary vessels, assuming that pulmonary 

perfusion can be approximated by a fully developed laminar flow in a straight uniform tube. 

4

Blood

r

L8
R








       (1) 

The erythrocytes that transport most of the oxygen in the blood typically compose 45 % of the blood 

volume and greatly influence the viscosity of blood [67]. Erythrocytes are highly deformable biconcave 

disks measuring approximately 2 by 8 µm in unstressed state. They can squeeze through round capillaries 

down to a diameter less than 3 µm [68]. In the 1930’s Fahraeus and Lindqvist [69] measured blood 

viscosity of human blood in cylindrical glass tubes with different sizes and found that viscosity of blood 

changes with diameter of the tube. The change of viscosity can be explained by the arrangement of the 

erythrocytes. As illustrated in Fig. 7 erythrocytes in capillaries below 10 µm are arranged in a single-

profile flow with a sleeve of plasma in the zone between erythrocytes and wall where the sheer force is 

maximal. A decrease in vessel diameter below 5 µm increases the viscosity dramatically, because the 

tubes become too narrow for the erythrocytes to squeeze through. Flow in tubes with greater diameters 

becomes more multi-profile and the erythrocytes will travel in different streamlines with different 

velocities. As a consequence of this irregular movement the internal friction between erythrocytes and 

vessel wall increases, leading to a viscosity increase as the diameter increases. [68, 70, 71]  
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Fig. 7 Illustrates the viscosity as a function of vessel diameter for blood with a hematocrit of 45% simulated with a 

model by Pries et al. [71]. Illustrations of the blood flowing from left to right through tubes with different diameters.  

In addition to the mechanical properties directly linked to the blood, also radius, length and number of the 

blood vessels are also essential for the pulmonary resistance. Especially the radius that is raised to the 

power of four in (1) is important. A change in transmural pressure over the vessel wall, PTM, will change 

the radius according to the vessel elasticity. The elasticity of the especially the capillaries is therefore an 

important factor of the pulmonary circulation [72].  

In summary lung mechanics affecting ventilation is a composition of several components that all affect 

the PV-relationship in the lungs. The most important components determining pulmonary ventilation are: 

lung tissue elasticity, surface tension determined by the effects of surfactant, chest wall, gravity and 

anatomy of the lungs, dynamic airway resistance and viscoelastic properties of the lungs. The most 

important factors determining the pulmonary perfusion are: pressures differences between arterial and 

venous side, pressure exerted by the heart, pulmonary resistance determined by viscosity, length, number 

and elasticity of the blood vessels.  

Due to the complexity of the interaction of these components of the respiratory system that is further 

complicated by changes at different disease stages we do still not know how alveoli behave during 

mechanical ventilation even in the healthy lungs and how this affects the gas-exchange between air in the 

alveoli and blood in the capillaries. 

DISTRIBUTION OF VENTILATION AND PERFUSION IN THE LUNGS 

As described above it is currently hard to predict how different ventilator settings affect the respiratory 

system. A regional insight into lung mechanics and the distribution of ventilation and perfusion could 

therefore improve the current understanding and potential be helpful in the future management of 

respiratory failure therapy in the ICU. This section introduces the current knowledge, uncertainties and 

illustrates some of the key factors that may influence distribution of ventilation and perfusion in the 

lungs.  

As a consequence of the lungs being the largest and only organ in the body containing air filled alveoli it 

has large intravascular hydrostatic and extra-alveolar pressure gradients down the lungs. During breathing 

the lungs are expanding and compressing under its own weight, changing both densities and pressure 

gradients from top (non-dependent part) to bottom (dependent part). The effect of gravity in human lungs 
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was first studied by West and his colleagues in the 1960’s [44, 45, 73]. They showed with radioactive 

gases that both ventilation and perfusion were greater in the dependent part of the lungs. This increase in 

ventilation and perfusion from top to bottom of the lungs has also been demonstrated in more recent 

studies using other techniques e.g. positron emission  tomography, PET [74-76]. Fig. 8 shows simulated 

ventilation, perfusion and     -distribution down the lungs performed with the model that will be 

described in details later.     -ratio decreases from the top towards the bottom. Despite inhomogeneities 

of a factor of about 3-4 between the non-dependent and dependent     -ratio [74-77], ventilation and 

perfusion are generally agreed to be well matched in normal subjects [65, 78, 79].  

  

Fig. 8 Shows model simulated distribution of ventilation (  ) and perfusion (Q) and     -ratio from non-dependent to 

dependent part of the lungs similar to the one observed by West and his colleagues in the 1960’s [44, 45]. 

Due to the work by West and his colleagues in the 1960’s, gravity has long been thought of as the main 

determinant of the distribution of ventilation and perfusion in the lungs. Improved imaging methods (e.g. 

single photon emission computed tomography, SPECT [80, 81], PET [82], high resolution computed 

tomography, HRCT [83], microspheres [84, 85]) with high spatial resolution have, however, 

demonstrated that regional distribution of ventilation and perfusion are quite heterogeneous at the same 

vertical height (isoheight). Some authors (e.g. Glenny et al. [84]) have therefore stated that gravity is a 

minor determinant of the distribution of perfusion and ventilation. This controversial statement is 

supported by the fact that the vertical gradient does not apply irrespective of posture [77, 81] and that a 

vertical gradient is present at zero gravity [86]. Different speculative mechanisms determining the vertical 

distribution have been suggested. A passive anatomical gradient due to geometries of the pulmonary 

vascular and airway trees has been postulated [84, 87]. Active mechanisms are also claimed to 

redistribute air and blood within the lungs. For instance vasoconstriction [88-90] and bronchodilation [91] 

are observed in hypoxic and hypercapnic areas of the lungs. Hypoxic pulmonary vasoconstriction and 

hypercapnic pulmonary vasoconstriction are contractions of the smooth muscles in the wall of the small 

arterioles. The contraction actively redistributes blood from hypoxic and hypercapnic areas to better 

ventilated areas of the lungs. The exact mechanism of the response is not known in spite of numerous 

studies e.g. [88-90]. However, it is agreed upon that nitric oxide synthesis [92] plays an important role in 

this active redistribution of both blood and air in experiments with abnormal hypoxic and hypercapnic 

levels. However, it has not been determined to which extent active redistribution of blood and air is 

present in the healthy and sick lungs.  
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In conclusion it has not been determined to which extent passive or active mechanisms interact with 

gravity and how they influence the regional distribution of ventilation and perfusion. The discussion 

whether gravity or something else determines the distribution of ventilation and perfusion is therefore still 

going on e.g. [43, 93-95]. Since passive (including gravity) and active mechanisms are hard to separate in 

experimental setups their individual interactions are even more speculative than their existence. As will 

be described below, mathematical models are a way to explore and explain the connections between these 

complex properties of the lungs. 

PHYSIOLOGICAL MATHEMATICAL MODELLING 

Mathematical modeling of physiological systems is a craft of interdisciplinary fields that applies 

fundamental laws of mathematics, physics, chemistry, and engineering to characterize the interactions of 

physiological subsystems. Such models are useful tools in various applications in medicine including 

respiratory physiology [96]. As shown in Fig. 9 a mathematical physiological model is developed as a set 

of equations and model parameters which take a number of inputs e.g. pressure exerted by the ventilator 

and inspired oxygen level. These model equations then generate outputs such as alveolar ventilation,    , 

arterial blood pressure of oxygen, PaO2,     -relationship and so on. 

 

Fig. 9 A schematic diagram of the inputs and outputs to a mathematical and physiological model. 

Modelling has three advantages in science according to Kansal et al. [97]. First a model can be based on 

many experimental studies, providing a joint interpretation of these data. Second, the process of bringing 

together data from different studies into one model can reveal gaps in our knowledge of the system. 

Third, a model that fits reality can help researchers in testing new hypotheses.  

Carson et al. [98, 99] divide the general purpose of development of models into three categories: 

descriptive, explanatory and predictive models. Descriptive models are a way of mathematically 

describing a system or relationship shortly and accurately, for instance a linear equation describing a 

proportional relationship between two parameters. Explanatory models can explain some connections 

among different parameters and structures in a system. This can improve the understanding of the system, 

or this type of model can be used as a hypothesis that can be tested against experimental data. 

Explanatory models can also be used for estimating parameters that cannot otherwise be measured using 

only the available variables as input. The predictive model can determine how a system would react to a 

change or stimulus, for instance how the human lungs would respond to a change in respirator treatment. 

STATE OF THE ART IN MATHEMATICAL MODELS OF THE RESPIRATORY SYSTEM 

The respiratory system has been modelled and studied in the past from different perspectives and at 

different levels of detail. Within gas-exchange, some of the simplest models use the concepts of 

continuous ventilation and perfusion describing gas mixing and pulmonary gas-exchange, see e.g. [12, 96, 

100]. These models are sometimes referred to as gill models, since they model the concept of fish gills, 

with a continuous flow of water over the filaments and a continuous flow of blood through the laminae 
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mounted on them [101]. Whilst these models describe the physiological processes in an intuitive way, 

they do, however, neglect that human ventilation and perfusion is not continuous but tidal in nature [65, 

102, 103]. Other models including non-physiological analogies like springs and dashpots for the lungs 

exists e.g. [56, 96, 104], however, they do not improve our understanding of the local behavior of the 

respiratory system either. Other more detailed models have focused either exclusively on airway and lung 

mechanics [105-108], gas-exchange [102, 109, 110] or pulmonary circulation [87, 111, 112] without 

coupling them. Liu et al. [113] was the first to combine airway mechanics, gas-exchange and perfusion in 

a nonlinear model of the normal human lungs. However the model still describes the lungs as a lumped 

single compartment unable to describe local behavior of e.g. ventilation and perfusion in the lungs.  

The Nottingham Physiology Simulator is another physiological model that combines: cardiovascular, 

acid-base, respiratory, cerebrovascular and renal physiology [114-117]. The Nottingham Physiology 

Simulator is a stratified model from the non-dependent to the dependent part of the lungs capable of 

reproducing typical clinical data (e.g. partial pressures of O2 and CO2 in the arterial and mixed venous 

blood). However, in order to investigate whether gravity alone can describe the distribution of ventilation 

and perfusion the model must be expanded with several important physiological aspects such as the effect 

of surfactant, pulsatile blood flow, changes in lung density during tidal breathing and the Bohr-Haldane 

effect.  

To summarize, several models have been developed to describe different aspects of the respiratory 

system, but none couples airway and lung mechanics, gas-exchange and pulmonary circulation in a way 

that clarifies the effects of gravity on the local ventilation, perfusion and gas-exchange for different 

ventilator settings.  
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AIM OF STUDY  

In the previous sections it was reviewed that patients in the ICU with severe lung injuries have reduced 

lung function and therefore often require mechanical ventilation. Appropriate ventilator settings are of 

crucial importance to reduce the risk of VILI, and to minimize the duration of mechanical ventilation and 

improve mortality. Currently, the management of the ventilator settings is difficult and based on limited 

understanding. The effects of different ventilator settings on the respiratory system are not fully 

understood and more knowledge is needed concerning mechanical properties of the lungs that affect local 

distribution of ventilation, perfusion and gas-exchange, especially the effects of gravity. Furthermore we 

currently do still not know how alveoli behave during mechanical ventilation and it has not been 

determined to which extend alveoli opens and close during breathing even for healthy lungs. 

Mathematical models can be used to explore and clarify complex properties of the lungs. This implies a 

need for a novel mathematical model describing the entire respiratory system enabling simulation of the 

effects of mechanical ventilation on distribution of ventilation, perfusion and gas-exchange. Such a model 

would potentially close the gap in our understanding of local ventilation and perfusion. In the future this 

could assist doctors and other medical personnel in reducing ventilator associated lung injury and might 

prove to be a powerful tool for choosing appropriate ventilator settings. 

The first step in this direction is to fully understand how the healthy human lungs behave. Hence this 

study aims at developing a mathematical physiological model describing the distribution of ventilation, 

perfusion and gas-exchange in the lungs of a healthy human subject. In order to describe ventilation in the 

lungs properly, the model should include the most important lung mechanics components of the 

respiratory system i.e. lung tissue elasticity, surface tension determined by the effects surfactant, chest 

wall elasticity, gravity, airway resistance and viscoelastic properties of the lungs. In order to describe 

pulmonary perfusion the model should include a description of: pressure exerted by the heart, pulmonary 

resistance determined by viscosity, length and elasticity of the blood vessels. 

By including the effect of gravity as the only determinant for the distribution of ventilation and perfusion, 

the model can clarify to which extend gravity may affect the distribution of ventilation and perfusion and 

if other passive or active mechanisms should be included to redistribute air and blood in the lungs. The 

model therefore firstly omits speculative mechanisms as geometries of the pulmonary vascular and airway 

trees, hypoxic vasoconstriction and bronchodilation. 

On this basis, the PhD-thesis aims to answer the following three research questions: 

o Can a physiological mathematical model be developed which describes the 

distribution of ventilation, perfusion and gas-exchange in the healthy human lungs? 

 

o How do alveoli behave during breathing in healthy lungs – do they collapse? 

 

o Can gravity alone describe the ventilation and perfusion distribution down the lungs 

– or should additional active or passive component be included in the model? 

In the terminology of Carson et al. [98, 99], the primary goal for the desired model of the respiratory 

system is to be an explanatory model. Explaining how alveoli behave and how gravity affects the 

respiratory system. As a secondary goal the model should also be predictive in the sense that changes in 

ventilation, perfusion and gas-exchange could be predicted in response to changes in ventilator settings.  
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CHAPTER 2 – MODEL DEVELOPMENT AND IMPLEMENTATION 

 

This chapter describes the overall model structure and the connection between the model components, 

before going into details with them individually. 

MODEL COMPONENTS 

In order to answer the three main research questions a physiological mathematical model of the healthy 

lungs is constructed. Fig. 10 shows the main components included in the model. The model simulates a 

paralyzed subject during mechanical ventilation, pressure generated by the respiratory muscles is 

therefore firstly neglected. Pressure exerted by the ventilator is given as input to the model. During 

inspiration the ventilator exerts a positive pressure that forces air through the anatomical dead space, AD, 

into the alveoli, A. During expiration the positive ventilator pressure is removed and the lungs exhale 

according to the mechanics of the lungs. The model includes a description of the airway resistance. The 

lungs are divided into a number of horizontal layers, NLayer, distributed from the non-dependent part (i=1) 

to the dependent part (i= NLayer) of the lungs. In this way each layer reflects a lung depth corresponding to 

a hydrostatic pressure. The hydrostatic pressure is caused by the lung tissue weighting down on the layers 

below due to gravity. Blood in the capillary network also imposes a hydrostatic gradient that increases the 

blood pressure down the lungs. In addition to the ribs that illustrates chest wall elasticity also surfactant 

lining inside the alveoli, lung tissue elasticity and viscoelastic properties are included in the model.  

 

Fig. 10 Illustration of model components included in the total lung model. The lungs are divided into a number of 

horizontal layers, NLayers. Shown are the anatomical dead space, AD, alveoli at layer i, Ai, capillaries, arterial and venous 

blood. Physiological components included are the ventilator pressure, airway resistance, gravity, chest wall elasticity, 

surfactant, tissue elasticity, viscoelastic properties of the lungs, gas-exchange, arteriolar resistance, capillary elasticity, 

pulmonary arterial pressure, Ppa, perfusion at layer i, Qi, shunt, QShunt, acid/base chemistry of the blood, tissue 

elimination of CO2 and consumption of O2,     2, and    2.  

 



20 

 

 

The transfer of respiratory gasses between alveoli air and capillary blood (gas-exchange) is a passive 

process of diffusion that is mainly determined by capillary transition time of the erythrocytes and the 

diffusing capacity [61, 118]. In this model equilibrium is assumed, such that end-capillary blood has the 

same partial pressures of O2 and CO2 as the alveoli air. Pulsatile pulmonary capillary perfusion at 

different lung depths, Qi, is simulated during tidal breathing. The model includes a physiological 

description of the capillary elasticity and resistance, viscosity of the blood, number and length of lung 

capillaries and pulmonary arterial pressure, Ppa, driven by the heart. The model, furthermore, includes a 

uniform pulmonary arteriolar resistance throughout the lungs. A constant fraction of the total cardiac 

output, QShunt, is not involved in gas exchange and mix with the pulmonary end-capillary blood on the 

arterial side of the circulation. It is assumed that the simulated resting healthy subject has a constant 

elimination of CO2 and consumption of O2 (    2, and    2). A model of acid/base chemistry of the blood 

including the Bohr-Haldane is used for calculation of the partial pressures of O2 and CO2 in the capillary, 

arterial and venous blood [17, 19]. 

The total model of the respiratory system is divided into four sub models described in details in six 

papers: 1) A model of pulmonary ventilation; 2) a model of pulmonary perfusion; 3) a model of blood 

acid/base chemistry; 4) a model of gas-exchange. Fig. 11 shows the four sub models. The important 

physiological components included in each of the sub models are listed in the model boxes. The solid 

arrows between the boxes indicate that the gas-exchange model incorporates the models of ventilation, 

perfusion and blood acid/base-chemistry. The dashed arrow between the ventilation model and the 

perfusion model indicates that the models interact with each other through the extra alveolar pressure, 

which is the pressure outside the alveoli and capillaries. The extra-alveolar pressure is the sum of the 

hydrostatic pressure and the pressure exerted by chest wall. In the boxes it is also indicated in which 

papers the individual model parts are described. The individual physiological components are introduced 

below in order to give the reader an overview of the model components, before each paper is presented in 

a summary.  

VENTILATION MODEL 

The ventilation model includes a description of the physiological model components that affect alveolar 

ventilation during tidal breathing. The total ventilation model is described in papers I to III, which can be 

seen as a chronological development of the model. Paper I introduces lung mechanics that affect 

ventilation at the level of an alveolus i.e. the effects of surfactant and alveolar shape upon the surface 

pressure and the static elastic properties of the alveolar wall. Paper II expands this model by incorporating 

the model of an alveolus into a model of the entire lung. This includes a description of lung anatomy, 

effect of chest wall elasticity and hydrostatic gradient caused by the weight of lung tissue and blood. 

Paper II also describes changes in the hydrostatic pressure gradients due to variations in lung density and 

height during breathing. Paper III finalizes the ventilation model by describing the dynamic lung 

mechanics regarding airway resistances and viscoelastic properties of the lungs. The paper also describes 

how the dynamic model parameters are identified and how the model is validated against experimentally 

measured flow, volume and pressure profiles obtained from five healthy subjects at rest. 

PERFUSION MODEL 

The perfusion model describes physiological components affecting pulmonary perfusion, this work is 

described in paper IV and paper V. Geometry and elastic properties of the pulmonary capillaries are 

described in details in paper IV. This paper also includes a description of how the blood flows, including 

the effects of blood viscosity, capillary elasticity and the pressure at the proximal end of the capillary. The 

model of the capillary perfusion also describes the lungs as divided into layers distributed from the non-
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dependent part to the dependent part of the lungs. In this way the distribution of perfusion down the lungs 

can be simulated. As paper IV will show, the capillary model overestimates the ratio between perfusion at 

the dependent and non-dependent parts. Paper V therefore describes how inclusion of a passive arteriolar 

resistance reduces this ratio towards values similar to those found in the literature.  

Ventilation model
 Alveolar model (Paper I)

       - Geometric model of the alveoli

       - Surface tension (Surfactant) 

       - Elasticity of the alveoli

 Static lung model (Paper II)

       - Lung anatomy 

       - Dynamic density changes

       - Dynamic height changes

       - Hydrostatic effects

       - Chest wall pressure

 Dynamic lung model (Paper III)

       - Airway resistance

       - Viscoelastic properties 

   Perfusion model (Paper IV)

       - Capillary geometry

       - Capillary elasticity

       - Extra alveolar pressure 

       - Blood viscosity

       - Pressure exerted by the heart

       - Arteriolar resistance (Paper V)

Gas exchange model (Paper VI)

- O2 and CO2 flow between environment, dead space, alveoli, 

capillary, arterial and mixed venous blood

- Mixing of air in anatomical dead space

- Partial pressures of O2 and CO2 in alveoli, capillary, arterial and 

mixed venous blood

Total model of the respiratory system

Blood model 
- Acid/base chemistry of blood, 

including Bohr-Haldane effects

Fig. 11 The lung model is composed of four sub models i.e. a model of pulmonary ventilation, a model of pulmonary 

perfusion, a model of blood acid/base-chemistry and a model of gas-exchange. The sub models each include a number 

of physiological components that are listed in the model boxes. In the figure it is also indicated in which paper the 

different parts of the models are described. The dashed arrow shows the link between the ventilation model and the 

perfusion model through the extra alveolar pressure and the effect of capillary blood on lung density. The full arrows 

indicate that the gas-exchange model incorporates the other three sub models. 

BLOOD MODEL 

Oxygen concentration in the blood depends both on the oxygen and carbon dioxide partial pressures 

because of the Bohr-Haldane effect i.e. competitive binding of O2 and CO2 to hemoglobin. In addition the 

oxygen and carbon dioxide concentrations depend on other properties of the blood, i.e. the concentration 

of haemoglobins, 2,3-diphospoglycerate and non-bicarbonate buffers. An already developed model of 

blood acid-base chemistry by Rees and Andreassen [17, 19] is therefore used for calculation of 

concentrations of oxygen and carbon dioxide in the blood. The blood model also includes a description of 

the dynamics of O2 and CO2 between the arterial and venous blood pool. 

GAS-EXCHANGE MODEL 

Paper VI describes gas-exchange in the lungs by incorporating the other sub models. Storage and 

transport of O2 and CO2 between environment, anatomical dead space, alveoli, capillaries, arterial and 

venous blood are described in details. Flow of air from the environment and into the lungs involves 
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heating and addition of water to the air. Pulmonary gas-exchange is calculated by assuming equilibrium 

between partial pressures in the alveoli and arterial end of the capillaries. In this way gas-exchange can be 

calculated by mass balance of the gas concentrations at the venous and arterial end of the capillaries and 

capillary perfusion. The paper also introduces a simplified model of the mixing of gas within the 

anatomical dead space. 
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CHAPTER 3 – SUMMARY OF PAPERS  

 

As described in chapter 2 the total model of the respiratory system has led to the writing of six papers. 

The following chapter summarizes all the papers and enhances the main points of the individual papers 

regarding the answers to the three main research questions stated in chapter 1. Readers are referred to 

appendix A for the papers in their complete form. 

PAPER I 

AIM 

The aim of this paper is to build a model that can be used to explore theoretically under which conditions 

an alveolus will show instability, when subjected to a range of transmural pressures. To investigate this, a 

model of an alveolus including the effects of surfactant and elastic properties of the alveolar wall is 

developed.  

METHODS 

The alveoli are modelled as being spherical with an opening consisting of a rigid ring (Fig. 12). In this 

way simple geometric formulas can be used to determine radius, surface area and volume of the alveolus.  

 

Fig. 12 Illustration of an alveolus, assuming that the circumference of the alveolar opening is constant. a: alveolar 

opening radius. r: radius of the alveolus. b: height of the alveolus. 

Alveolar transmural pressure, PTM, is defined as the difference between the pressure inside the alveolus 

and the extra alveolar hydrostatic pressure exerted by the parenchyma surrounding the alveolus. PTM, is 

counterbalanced by the mechanical properties of the alveolus i.e. an elastic component due to the alveolar 

wall, PE, and a component due to the surface tension of the alveolar air-liquid interface, PS, as stated in 

Eq. 2.  

SETM PPP       (2) 

The model of PE is based on PV-measurements from excised rabbit lungs inflated with saline [37]. Fig. 13 

shows the data read from Smith and Stamenovic [37] and a fitted empirical model of PE. PV-

measurements by Smith and Stamenovic [37] showed some degree of hysteresis, which has been 

disregarded in this model.  

It is assumed that the pressure, PS, due to the surface tension, γ, of the alveolar air-liquid interface can be 

calculated from Laplace’s law, as stated in Eq. 3. 
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      (3) 

where r is the radius of the alveolus. 

The model of the surface tension is shown as a function of relative compression of alveolar surface area 

in Fig. 14. The figure shows how properties of surfactant impose hysteresis when the alveolar surface 

area is compressed below 62%. 

 

Fig. 13 The model (curve) of recoil pressure, PE, exerted by the tissue of an alveolus and the volume of the alveolus. 

Data (crosses) have been read from Smith and Stamenovic [37]. 

During the compression starting at “Start expir1” the concentration of the surfactant monolayer in the air-

liquid interface is increased and the surface tension is reduced accordingly. When surface area has been 

reduced to 62% of its initial area, the maximal possible surfactant concentration has been reached and the 

surface tension is constant. When the relative surface area is increased again at “Start inspir1” the surface 

tension rises up to a maximal equilibrium surface tension of 28 mN/m.  

 

Fig. 14 Surface tension, γ, as a function of the relative alveolar surface area 

In order to determine under which circumstances alveoli show instabilities, model simulations have been 

performed in five situations: 1) no effect of lung tissue elastic properties and a constant surface tension 

from a liquid-air interface without surfactant, 2) the effect of lung tissue elastic properties alone, 3) the 

effect of lung tissue elastic properties and a constant high surface tension from a liquid-air interface 

without surfactant, 4) the effect of surfactant alone and 5) both the properties of surfactant and tissue 

elastic properties included. Finally the simulated total PV-relationship is compared with data obtained 

from excised cat lungs. However, in this summary only results from simulation experiments number 1, 3 

and 5 will be shown.  
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RESULTS 

Fig. 15-A shows simulated PV-curves for an alveolus without the effects of lung tissue elasticity and a 

constant surfactant tension equal to surface tension of plasma. Negative slopes of the curves, implies that 

pressure increases with decreasing volumes. This is a situation of unstable equilibrium, where at a given 

pressure any small perturbation of the alveolar volume will either lead to collapse to zero volume or 

expansion to infinite volume. By increasing the radius of the rigid ring the alveolar PV-relationships show 

some degree of stability for small volumes. However the alveoli will still “pop-open” when pressure 

reaches a certain level. Fig. 15-B shows the effect of including the tissue elastic properties. The tissue 

elasticity stabilizes the alveolus so that when the opening pressure is reached it pops open to a finite 

volume. When the opening radius is increased to 150 μm the alveolus is stabilized by the tissue elastic 

properties even without the effects of surfactant. 

 

Fig. 15 A: PV-curves for an alveolus without surfactant and tissue elastic properties. B: Simulations of the alveolar PV-

curve including the effects of tissue elastic properties and a surface tension of 73 mN/m. The radius of the rigid ring a, 

varies between 0 μm, 75 μm, 100 μm and 150 μm. Experimental data indicated by dots [119]. The dashed lines indicate 

RV, FRC and TLC if all alveoli in the lungs were assumed to be identical. 

Fig. 16 shows simulation results of an alveolus including both properties of surfactant and tissue 

elasticity. For the geometry where the radius of the rigid ring is zero, the alveolar PV-curve is plotted in 

Fig. 16-A. During deflation the alveolus is now completely stable and even deflation from TLC (point 1) 

down to RV (point 5) followed by inflation through points 6, 4 and 1 will keep the alveolus stable. 

However, if the alveolus is subjected to alveolar pressure below 0.1 kPa, it will close and this closure is 

irreversible.  

If the radius a of the rigid ring is 75 μm (Fig. 16-B), then closure of the alveolus becomes reversible with 

an opening pressure of 0.8 kPa. In this situation the alveolus will open with a “pop”, jumping from the 

volume at the opening pressure to a higher volume. This is shown in Fig. 16-B by an arrow with “Pop” 
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noted.  A further increase to a = 100 μm will eliminate the ability of the alveolus to pop open and with a 

= 150 μm the alveolus will be completely stable.  

 

Fig. 16 The simulated PV-relationship of an alveolus including the mechanical properties of the tissue elasticity and 

surfactant. The bold line is a simulation with alveolar volumes ranging from TLC to FRC and back. The bold dashed 

line represents the physiological range of volume changes from TLC to RV. The lowermost line shows a simulation of 

compressions from maximum surface area to 5 %. In B the alveolus will “pop” open, once the transmural pressure 

exceeds the opening pressure of 0.8 kPa. The alveolar volume will suddenly increase as indicated by the arrow labeled 

Pop. 

CONCLUSIONS 

The analysis indicates that without surfactant and with a small radius, a, of the rigid ring, the alveolus is 

always at an unstable equilibrium with the capacity to both close irreversibly and to open with infinite 

volume. By assuming the radius of the rigid ring to be larger than zero, the closing can be made 

reversible, although a fairly large pressure is required to reopen a collapsed alveolus. A radius of 100 µm 

seems in agreement with radiograph of the alveoli [120]. Simulations performed without surfactant, but 

with the tissue elasticity unaffected shows that the alveoli are stable when the alveolar opening radius is 

150 µm, but unstable for opening radii of 0, 75 and 100 µm. Alveolar behavior is stable for radii larger 

than 100 µm when both surfactant and tissue elasticity are taken into account. Having investigated under 

which conditions a single alveolus shows instability, the next step is to incorporate this model into a 

stratified model of the respiratory system and include the effect of chest wall and hydrostatic gradient 

down the lungs.  
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PAPER II 

AIM 

The aim of this paper is to include the alveolar model developed in paper I in a stratified model of the 

whole lungs. The paper introduces the effects of the chest wall elasticity and hydrostatic gradient caused 

by the weight of the lung tissue and blood. Furthermore, the model includes an anatomical description of 

the cross-sectional area of the lungs derived from CT-scans. The model is validated against data found in 

the literature regarding hysteresis and lung compliance of the static PV-curve, change in lung depth and 

density during tidal breathing and distribution of ventilation in the lungs. 

METHODS 

The paper introduces the concept of the lungs divided into layers distributed from the non-dependent to 

the dependent part of the lungs, as it was shown conceptually in Fig. 10. By including the effect of chest 

wall elasticity, PCW, and hydrostatic gradient, PHydro, of lung parenchyma, pressure within the alveoli, PA, 

can be described by Eq. 4. 

Musi,HydroCWiEiSA PPPPPP  ,,      (4) 

where i is the index controlling layer depth measured from the non-dependent (i=1) to the dependent part 

(i=NLayers) of the lungs. PMus is the pressure generated by respiratory muscles, which is assumed to be 

zero. The model of the pressure component due to chest wall elasticity is built on experimental data from 

Konno and Mead [121]. Data read from Konno and Mead [121] are shown with a fitted sigmoid curve for 

PCW in Fig. 17. 

 

Fig. 17 The relationship between total lung volume and pressure exerted by chest wall. Data (crosses) read from Konno 

and Mead [121]. 

The pressure component due to the hydrostatic gradient is calculated by Eq. 5. 








1i

1j

jjLungiHydro tgP ,,       (5) 

where ρLung,j is the density of layer j, g is the gravitational acceleration and tj is the vertical thickness of 

layer j. In addition to these components a new model of the tissue elasticity is introduced. The new model 

(model II), assumes that lung tissue to some degree resists collapse, by means of producing a small 

negative pressure at low lung volumes. 
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A profile of lung cross-sectional areas, AScan, as a function of lung depth, DScan, was constructed from high 

resolution CT-scans taken of a healthy subject in supine position provided and segmented by Lo et al. 

[122]. During simulation the depth-area curve must be scaled to match the simulated lung volume. This is 

shown in Fig. 18-A where the volume of air in the lungs decreases from a volume at TLC to a lung 

volume of 3l. Fig. 18-B shows the distribution of volume when the lungs are divided into 10 layers 

(NLayers = 10) at TLC. 

 

Fig. 18 A: The relationship between the cross sectional area, A, and lung depth, D, at total lung capacity of 6.8 l (solid 

line) and at 3 l (dashed line). B: The distribution of volume in layers when the lungs are divided into 10 layers. The 

thickness, ti, and volumes, Vi, of each layer are also illustrated.   

Different model simulations are performed by varying the alveolar pressure in order to validate the model 

against experimentally measured hysteresis and lung compliance of the static PV-curve, change in lung 

depth and density during tidal breathing and ventilation distribution down the lungs. 

RESULTS 

Fig. 19 shows the mean PV-curve in healthy subjects for a study by Sharp et al. [49] and a model 

simulation with the same alveolar pressure range from 0 to 2.66 kPa. Both simulated hysteresis and 

compliance are in good agreement with measurements by Sharp et al. [49]. 

 

Fig. 19 The static pressure-volume relationship during a simulation with an alveolar pressure range between 0 and 2.66 

kPa. PV-measurements by Sharp et al. [49] (crosses) are also shown. Dashed and solid lines indicate inspiration 

Fig. 20 shows density calculations from a study by Millar and Denison [123] along with simulated 

density distribution down the lungs at TLC and RV using the two models of lung tissue elasticity. No 

difference between the two models is observed at TLC and both simulations follow well the homogenous 

density around 0.1 g/cm
3
. However, using model I the alveoli collapse at the most dependent layers of the 

lungs leading to a marked increase in density in these layers. This is not shown in the data by Millar and 
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Denison [123]. The density simulated by using model II, however, is in good agreement with measured 

data. Therefore it is indicated that lung tissue may to some degree resist collapse and model II is the most 

appropriate model to describe density distribution. 

 

Fig. 20 Simulated density, ρLung, related to lung depth, D, is shown at TLC (dashed line) and RV (solid line) for both 

models of the lung tissue elasticity. Data read from Millar and Denison [123] are shown for TLC and RV (crosses and 

dots, respectively). 

Fig. 21 shows the simulated ventilation distribution with models I and II of the lung tissue elasticity along 

with data read from a study by Brudin et al. [75]. Even though both models imitate the main trend in data, 

both models underestimate the increase in ventilation from the non-dependent to the dependent part of the 

lungs, observed by Brudin et al. [75].  

 

Fig. 21 Simulation of the ventilation distribution down the lungs using model I (solid line) and model II (dashed line) 

along with the data read from Brudin et al. [75] (dots) . 

CONCLUSIONS 

The presented model of the whole lung is validated against experimentally measured ventilation 

distribution, density distribution, lung volumes, PV-curve compliance and hysteresis of healthy human 

subjects in supine posture. Two models of lung tissue elasticity have been developed. According to 

measurements of density distribution at RV it appears that the connecting fibers and tissue exert some 

negative pressure at very low lung volumes resisting collapse. The model simulates a heterogeneous 

ventilation distribution down the lungs and indicates no alveolar collapse at FRC and RV. The model is 

capable of describing the most important static mechanical properties of the respiratory system, however 

in order to simulate mechanically ventilated subjects the model should also include important dynamics 

lung mechanics i.e. airway resistance and viscoelastic properties.    
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PAPER III 

AIM 

The aim of this paper is to combine a model of airway resistance and viscoelastic properties of the lungs 

with the static ventilation model described in paper I and II. The dynamic model parameters are identified 

from an experimental study performed on five mechanically ventilated healthy subjects without any 

sedation and anesthetics. 

METHODS 

By including the effect of airway resistance and viscoelastic properties, pressure at the mouth, PM, is 

partitioned into the pressure, PAW, overcoming airway resistances, the pressure, PSt, to balance the 

recoiling force from the static compliance, and the pressure, PVE, accounting for the viscoelasticity. The 

static pressure, PSt, is similar to Eq. 3, composed of pressures due to: the chest wall, PCW; the hydrostatic 

effects of the lung tissue and blood, PHydro; surface tension, PS; lung tissue elasticity, PE. The pressure at 

the mouth can be expressed by Eq. 6. 
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The pressure drop due to airway resistance can be described using Rohrer’s equation as stated in Eq. 7 

[124]. 

LL2AWL1AWAW VVKVKP   __       (7) 

where     is the total pulmonary ventilation and KAW_1 and KAW_2 are the constant Rohrer’s parameters, 

describing the laminar flow resistance and turbulent flow resistance, respectively. Alveolar viscoelasticity 

at layer i has been implemented with parameters describing the viscoelastic capacitance (CVE) and 

resistance (RVE) in the same way as it was done previously by e.g. Jonson et al. [58] and Ganzert et al. 

[62] for the whole lung. 

An experiment was performed on five healthy subjects to identify the dynamic model parameters (KAW_1, 

KAW_2, CVE and RVE). The experiment was performed by a large inflation and deflation of the lungs 

including airway occlusions, similar to the one presented by Zhao et al. [42]. Effects of lung volume and 

flow on airway resistance and viscoelasticity were during the experiment separated by delivering a fixed 

volume of 500 ml in six steps at two fixed flow rates. Before the experiment subjects were carefully 

instructed to relax and not participate in the ventilation because no sedation and anesthetics were given. 

RESULTS 

Fig. 22-A shows a typical pressure profile measured by the ventilator from a subject that is participating 

in the ventilation and is not fully relaxed. Fig. 22-B shows a pressure profile from the same subject after 5 

minutes. Since no ripples are present it is assumed that the subject is fully relaxed. 
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Fig. 22 Pressure measured by the ventilator, PV, as a function of time. A: Pressure measurements of a subject 

participating in the ventilation. B: A fully relaxed subject not participating in the ventilation. 

An example of the dynamic PV-curve is shown in Fig. 23. Each of the six inflation steps with two fixed 

flow rates and six deflation steps can be identified. Due to viscoelastic properties, ventilator circuit and 

airway resistances it can be identified that the two different inflation rates cause two different pressure 

drops. The developed dynamic model was capable of reproducing the measured dynamic PV-curve with 

very small error. The static PV-points were used to estimate static lung compliance and hysteresis. The 

mean static compliance between the two extremes was 1.04 ± 0.17. Mean maximum hysteresis being the 

maximum pressure difference between the static expiratory and inspiratory limbs at equal volumes was 

0.084 ± 0.035.  

 

Fig. 23 Measured pressure-volume relationship from subject number 2. Crosses indicate the measured static pressure-

volume points. Dotted line shows a simulated static pressure-volume curve using the identified parameters. 

CONCLUSIONS 

Using the measured ventilator pressure as input, the model was able to reproduce the measured 

ventilation and volume profiles with small errors. Furthermore, the model simulates the hysteresis and 

compliance observed in the static PV-curve in the healthy subjects. By comparing the pressure profiles 

measured by the ventilator at the beginning of the experiment with measurements after five minutes, 

smooth and homogenous profiles in the later of the two indicate that it is possible to measure both static 

and dynamic lung mechanics without sedation and anesthetics. This paper shows that the developed 

model is able to describe local ventilation in the lungs during mechanically ventilation by taking into 

account the most important properties of the respiratory system i.e. lung tissue elasticity, surface tension 

determined by the effects surfactant, chest wall elasticity, gravity, airway resistance and viscoelastic 

properties of the lungs. The paper concludes the development of the ventilation model. The next step is to 

develop a model of the pulmonary perfusion.  
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PAPER IV 

AIM 

The aim of this paper is to describe pulmonary microcirculation mathematically by a stratified model of 

the lungs, enabling simulation of capillary blood perfusion around the alveoli. The model includes aspects 

of the capillary geometry, hemodynamics and blood rheology. Model simulations are compared to 

measurements of the perfusion distribution in the pulmonary microcirculation during mechanical 

ventilation; total capillary blood perfusion; capillary blood volume; capillary surface area and transition 

time during different ventilator settings.  

METHODS 

The blood perfusion through a capillary at layer i, conceptual shown in Fig. 10, can be determined by Eq. 

8. 
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where Pa,i is the blood pressure proximal to the capillary, Pv,i is the venous capillary blood pressure and 

RCap,i is the resistance to flow in the capillary at layer i.  

Capillary transmural pressure is not uniform along the entire length of a capillary and the capillary 

pressure should decrease along the capillary before finally reaching the venous pressure, Pv,i. This is 

approximated by modelling the capillaries in a number of segments, NSegments, of equal lengths each 

accounting for a pressure drop. This is illustrated in Fig. 24 for a capillary divided into three segments. 

 

Fig. 24 Schematic representation of the capillaries divided into three segments each having a pressure drop. PEA: 

Extraalveolar pressure. Pa and Pv: Arterial and venous blood pressure. Q: Blood perfusion. PCapTM: Capillary 

transmural pressure. PCap: Capillary pressure 

Scanning electron micrographs of the alveolar wall reveals a circular capillary cross-section under 

positive transmural pressures, but under negative transmural pressures the capillaries flattens. A modified 

version of Poiseuille’s law stated in Eq. 9 is therefore used to calculate capillary resistance, RCap,i,n, at 

segment n  for elliptic capillaries at negative transmural pressures [125].  
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where LCap is the length of a capillary, ηBlood is the blood viscosity calculated from the model by Pries et 

al. [71] shown Fig. 7, r1,i,n and r2,i,n are the radii describing the shape of the elliptic capillaries and M0 is a 

correction factor. 
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Fig. 25 shows observation of capillary dimensions under different transmural pressures performed by 

Sobin et al. [126] and Glazier et al. [127] along with an empirical fitted curve of the radius, r2,i,n, as a 

function of capillary transmural pressure.  

 

Fig. 25 The relationship between capillary transmural pressure and capillary radius. Data read from Sobin et al. [126] 

(dots) and Glazier et al. [127] (crosses) are illustrated. A sigmoidal curve has been fitted to the data points. The shapes 

of the capillaries are indicated at different transmural pressures. 

The pressure proximal to the capillaries was estimated by scaling a pressure profile measured in the 

pulmonary artery [128] to a pressure range between 1-2.7 kPa with a mean of 1.73 kPa [61, 67] (Fig. 26).  

 

Fig. 26 The pulmonary pressure proximal to the capillaries at the height of the pulmonary valve, Ppa. The profile is 

shown for one heartbeat [128] scaled into the pressure range for pulmonary capillaries [61, 67]. 

RESULTS 

The simulated distribution of mean capillary perfusion at different lung depths during tidal breathing  is 

shown in Fig. 27 against measured data read from Brudin et al. [74]. It can be seen that the model is 

capable of imitating the major trend in data, however, the perfusion at the top of the lungs is 

underestimated, which causes a too high ratio between dependent/non-dependent perfusion. Furthermore, 

the reduced perfusion in the dependent part (zone IV) of the lungs, shown by others [73, 83, 129, 130], is 

not simulated. 
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Fig. 27 Simulation of the perfusion (solid line) calculated as ml per minute per cm
3 

lung parenchyma (including air) 

along with data read from Brudin et al. [74] (dots). 

Fig. 28-A shows the pulmonary capillary transition times, TTCap, for layers number 1, 25, 50, 75 and 100. 

The mean transition times are plotted against lung depth in Fig. 28-B. The simulation shows a highly 

pulsatile and heterogeneous distribution of the transition time, with a mean range from 2.2 to 10.9 

seconds (dependent to non-dependent). In good agreement with transition time estimated in the literature 

[131-135].  

 

Fig. 28 A: Transition time during a tidal breath in layer number 1, 25, 50, 75 and 100 (most dependent, dashed line) 

and B: Mean transition time as a function of the lung depth. 

CONCLUSIONS 

The developed model of pulmonary capillary perfusion that links perfusion with lung mechanics in a 

stratified model is capable of simulating the effect of gravity upon distribution of the pulmonary 

perfusion. Even though the reduced perfusion at the dependent part (zone IV) of the lungs is not 

simulated, the model is in agreement with experimentally measured data of the total capillary perfusion, 

total capillary blood volume, total capillary surface area and transition time of the red blood cells passing 

the pulmonary capillary network. The simulated ratio between dependent/non-dependent perfusion was, 

however, overestimated therefore another physiological component that can lower this ratio between the 

perfusion in the dependent and non-dependent part of the lungs is needed. As paper V will show, this 

component is a constant and uniformed distributed arteriolar resistance.   
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PAPER V 

AIM 

The aim of this paper is to reduce the simulated ratio between dependent/non-dependent perfusion. As 

described in chapter 1 arteriolar resistance accounts for a pressure drop similar to the one caused by the 

capillary network. Hence, this paper investigate to which extend inclusion of a constant pulmonary 

arteriolar resistance in the model of pulmonary perfusion described in paper IV improves the ratio 

between dependent/non-dependent perfusion.  

METHODS 

Fig. 29 shows a modification of Fig. 24 i.e. a conceptional drawing of the perfusion model with a constant 

arteriolar resistance and the capillary segments. 

 

Fig. 29 Schematic representation of an arteriole and a capillary divided into segments each having a pressure drop. 

PEA,i: Extraalveolar pressure. Pa,i: Arterial blood pressure. Pv,i: Venous blood pressure. Qi: Blood perfusion. PCapTM,,i: 

Capillary transmural pressure. PCap,i,n: Capillary pressure at layer i and segment n. PArt,i: Arteriolar pressure. 

By including an arteriolar resistance the perfusion through an arteriole and a capillary, Qi, at layer i can be 

determined by Eq. 10. 
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where PArt,i is the arterial blood pressure, Pv,i is the venous capillary blood pressure, RArt and RCap,i is the 

resistance to flow in the arteriole and capillary at layer i. In order to explore the effect of an arteriolar 

resistance on the ratio between dependent/non-dependent parts of the lungs, a sensitivity analysis with 

four different arteriolar resistances was performed. 

RESULTS 

Fig. 30 shows results from the sensitivity analysis of the arteriolar resistance on the distribution of 

perfusion down the lungs. 

The figure includes a simulation similar to the one described in paper IV (bold line). As shown this 

simulation underestimated the perfusion in the non-dependent part of the lungs compared to data from the 

study by Brudin et al. [74] and the perfusion ratio between dependent/non-dependent part of the lungs 

was 11.2. In the data from Brudin et al. [74] the ratio is about 3.0, determined from a second order 

polynomial fit to the data. Since the pulmonary input blood pressure is the same for all simulations, 

simulation with a low arteriolar resistance of 0.1 kPa  s/nl overestimates the perfusion measured by 

Brudin et al. [74]. Simulation with a high arteriolar resistance of 1.0 kPa  s/nl on the other hand reduces 

perfusion so much that the data by Brudin et al. [74] is underestimated.  
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Fig. 30 Simulation results of the sensitivity analysis on RArt. Perfusion distribution is shown as a function of lung height. 

Thick line shows simulation similar to one described in Fig. 27. Indicated on the figure are simulation results of 

arteriolar resistances of 0.1 kPa  s/nl and 1 kPa  s/nl. In between are simulation results of arteriolar resistances of 0.25 

kPa  s/nl and 0.5 kPa  s/nl. Data are from Brudin et al. [74] (dots). 

The pressure drop caused by arterioles was here assumed to be 0.53 kPa. This was simulated for an 

arteriolar resistance RArt = 0.5 kPa  s/nl. This value of arteriolar resistance gives a perfusion ratio of 4.0 

and although this remains higher than the experimentally observed ratio of 3.0 the results indicate that 

including an arteriolar resistance significantly improves the capability of the model to fit measured 

perfusion distributions. The fit to experimental data could be further improved by modifying the number 

of capillaries per alveolus or the length of capillaries both of which are model parameters resulting in 

scaling of the perfusion distribution curves. 

CONCLUSIONS 

Model simulation with arteriolar resistance reduced the perfusion ratio between dependent/non-dependent 

and improves the ratio to 4.0 using a resistance of 0.5 kPa  s/nl. This leaves room for other mechanisms, 

either passive (anatomical) or active (hypoxic vasoconstriction) to further reduce this ratio. Before 

concluding that other mechanisms must be included in the model it is interestingly to see the effects on 

the respiratory system and the gas-exchange. The next paper will combine the ventilation model described 

in paper I-III, the perfusion model described in paper IV-V with a previous model of blood acid/base 

chemistry by Rees and Andreassen [17, 19]. This combined model of the respiratory system is then used 

to investigate the effects of gravity on the respiratory gas-exchange. 
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PAPER VI 

AIM 

The aim of this paper is to investigate the effect of gravity on the respiratory system and pulmonary gas-

exchange. The investigating is performed with a stratified model describing storage and transport of CO2 

and O2 in the environment, anatomical dead space, alveoli, capillaries, arterial and mixed venous blood. 

The model incorporates the previous models of the pulmonary ventilation and perfusion described in 

paper I-V. The model is expanded with a physiological description of the pulmonary gas-exchange 

similar to the one presented by Poulsen et al. [136]. Also the acid-base chemistry of the blood is included 

in the model [17, 19]. Furthermore, equations are added in order to describe the mixing of air in the 

anatomical dead space. 

METHODS 

Fig. 10 in chapter 1 showed the conceptual drawing of the total tidal breathing model describing flow of 

O2 and CO2 between six compartments: environment, E, anatomical dead space, AD, alveoli, A, 

capillaries, c, arterial blood, a, and mixed venous blood, v. The model describes the lungs as divided into 

layers distributed from the non-dependent, (i=1) to the dependent part of the lungs (i=NLayers) similar to 

the structure described in paper II-V.  

In order to make model simulations comparable with data found in the literature of quiet voluntarily 

breathing subjects the model described in paper I-V is modified. Instead of using the pressure exerted by 

the ventilator as input to the model, the pressure at the mouth is kept constant at barometric pressure 

(101.3 kPa) and pressure exerted by the respiratory muscles is used as the driving variable of the model. 

The anatomical dead space is modelled as a straight pipe divided into a number of longitudinal and radial 

segments. During simulation of a time step, the model moves air between environment and alveoli by 

shifting the gas either towards the alveoli or the environment according to the radial distribution of flow 

velocities. 

A simulation of a subject in supine position is used to investigation of the model’s capability of 

describing ventilation, perfusion and gas exchange of healthy subjects. In addition a simulation of a 

subject exposed to zero gravity and a subject in upright position are used to investigate gravity’s effect on 

the respiratory system and gas exchange. In order to make the three simulations comparable the overall 

minute ventilation and perfusion were maintained by adjusting peak pressure exerted by the respiratory 

muscles and systolic/diastolic pulmonary arterial pressure. 

RESULTS 

The model is validated against a number of measured values found in the literature from supine and quiet 

voluntarily breathing subject regarding: regional ventilation-perfusion distribution, end-tidal partial 

pressures, arterial and mixed venous partial pressures of O2 and CO2, and arterial and mixed venous 

oxygen saturations.  

Fig. 31 shows simulated distributions of ventilation and perfusion for a quiet voluntarily breathing subject 

(full line) calculated as ml/min/cm
3
 lung parenchyma (including air).  

The number of alveoli and capillaries per cm
3
 lung parenchyma increases by a factor of 2.2 from the non-

dependent (i =1) to the most dependent layer (i = 20). So even though the ratio of ventilation between the 

dependent and non-dependent layers is 0.47 meaning that ventilation per alveolus is lowest in the 

dependent part of the lungs, the ventilation per cm
3
 lung parenchyma becomes almost uniform (Fig. 31-
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A). PET scan data from Brudin et al. [74] are shown for comparison. Apparently the model 

underestimates the experimentally determined increase in ventilation with lung depth. Fig. 31-B shows 

that perfusion increases from the top towards the bottom of the lungs both due to the effect of gravity and 

the increasing number of capillaries per cm
3
 lung parenchyma at the bottom. The simulated ratio of 

perfusion per cm
3
 between the dependent and the non-dependent part of the lungs Q20/Q1 is 3.9. This is in 

good agreement with the ratio in the experimental data by Brudin et al. [74] (Fig. 31-B). 

Simulated      -distribution is shown in Fig. 31-C (full line) along with PET scans from Brudin et al. [74] 

and Rhodes et al. [76]. The simulated     -distribution decreases by a factor of 3.6 from 1.6 in the non-

dependent part of the lungs to 0.4 in the dependent part of the lungs. This is in contrast to the      -ratios 

measured by Brudin et al. [74] and Rhodes et al. [76] which was almost independent of lung depth.  

 

Fig. 31 A: Simulated alveolar ventilation calculated per cm
3
 lung tissue (line) for a subject in the supine position and 

data measured by Brudin et al. [74] (dots). B: Simulated perfusion per cm
3
 lung parenchyma (line) and data measured 

by Brudin et al. [74] (dots). C: Simulated ventilation-perfusion distribution according to lung depth and data measured 

by Brudin et al. [74] (dots) and Rhodes et al. [76] (crosses). 

The effect of gravity on the respiratory system is investigated with a simulation of subject in upright, 

supine and exposed to no gravity. Fig. 32 shows the simulated       -distributions down the lungs for the 

three simulations. The simulated mean lung height in upright position was 21.2 cm compared to a mean 

lung height of 12.8 cm for the subject in supine position. As a result of larger lung height in upright 

position the effect of gravity also increases the difference between       -ratio at the top and bottom of 

the lungs. The       -ratio for the simulated subject exposed to no gravity is represented as straight line 

independent of lung height.  
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Fig. 32 Simulation results of ventilation-perfusion distribution down the lungs for a subject in upright, supine and with 

no gravity. 

Table 1. shows the mean values of alveolar, arterial and mixed venous O2 and CO2 contents for the three 

simulations along with values found in the literature. As a measure of the extent to which gravity 

compromises the gas exchange properties of the lungs we use the pressure difference of O2 and CO2 

between end-tidal and arterial blood, PETO2-PaO2 and PaCO2-PETCO2. 

Table 1. Simulation results of the effect of gravity in the alveoli, arterial and venous blood. Included in the table are 

mean results from simulation of a subject in supine and upright position along with the mean results with no 

gravitational distribution. For comparison values found in the literature are also included.  

 

 

 

Alveoli Arterial Venous Gas exchange 

PAO2 (kPa) PACO2 (kPa) PaO2  

(kPa) 

PaCO2 

(kPa) 

saO2 

(%) 

PvO2 

(kPa) 

PvCO2 

(kPa) 

svO2  

(%) 

PETO2-PaO2   

(kPa) 

PaCO2-PETCO2   

(kPa) Non.Dep Dep. End- 

tidal 

Non.Dep Dep. End- 

tidal 
Supine 15.7 10.3 13.9 4.6 5.7 5.1 12.0 5.3 96.9 5.4 5.9 74.7 1.8 0.2 
No G. 13.5 13.5 13.6 5.2 5.2 5.1 12.6 5.2 97.2 5.4 5.8 75.1 1.0 0.1 
Upright 16.1 8.2 14.3 4.5 5.9 5.1 11.0 5.4 96.0 5.3 6.0 73.7 3.2 0.3 
Lit.  13.6 

[137] 

 5.1 
[137] 

12.1[61] -

12.8[137] 

5.0[137] - 

5.3[61, 67] 

97.0 
[138] 

5.1[138] - 

5.3[67] 

5.6[138] - 

6.1[61, 67] 

71.0[138] - 

75.0[67] 

0.8 [137] - 

 2.0[139] 
0.2[140] - 

0.3[137] 

 

As stated in Table 1 results showed that for a normal healthy subject in zero gravity the gas exchange was 

largely normal, except that the difference PaCO2-PETCO2 is improved from 0.2 kPa to 0.1 kPa, which is 

slightly better than normal. For a supine subject gas exchange was also normal, except for PaO2 = 12.0 

kPa being a bit below normal, indicating slightly impaired gas exchange. For an upright subject both the 

arterial saturation SaO2 = 96.0 % and partial pressure PaO2 = 11.0 kPa are below normal and the end-tidal 

to arterial difference, PETO2-PaO2, is increased to 3.2 kPa, which is higher than normal, all indicating 

compromised gas exchange.  

The conclusion is therefore that, according to the model, gravity by itself compromises gas exchange in 

the upright position, beyond what is seen experimentally.  

CONCLUSIONS 

The developed model of the respiratory system simulates the CO2 and O2 storage and transport in the 

respiratory system of resting healthy person. The model was capable of reproducing physiological 

parameters measured in supine position, e.g. expired partial pressure, distribution of ventilation and 

perfusion down the lungs, saturations and partial pressure of the venous and arterial blood. Simulations of 

normal ventilation in supine position gave results in good agreement with those found in the literature. 

Only       -distribution and arterial partial pressures were in supine position simulated just outside the 

values found in the literature. The model was used to investigate how gravity influences the respiratory 

system by simulating a subject exposed to zero gravity and a subject in upright position. The results 
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showed that SaO2 and PaO2 were the parameters that were affected the most by gravity. By including the 

effects of gravity the model simulated an oxygenation and partial pressure of the arterial blood outside the 

normal range reported in the literature especially in the upright position where the simulation showed 

arterial partial pressure of 11.0 kPa, arterial saturation of 96.0 % and pressure difference of O2 between 

end-tidal and arterial blood of 3.22 kPa. This indicates that passive or active mechanisms should be 

included to counteract the effect of gravity. 
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CHAPTER 4 – DISCUSSION AND CONCLUSIONS 

 

Patients with severe lung injuries in the ICU require mechanical ventilation. Appropriate ventilator settings 

reduce mortality associated with mechanical ventilation. Finding these settings is, however, a compromise of 

conflicting goals. It is important to secure sufficient oxygenation of the patients, but at the other hand 

excessive use of pressure, tidal volumes and FiO2 to achieve this may cause VILI. Currently this complex task 

of finding appropriate ventilator settings has not been fully understood e.g. [4, 8, 11-16]. There is therefore a 

need for a better physiological understanding of the effect of mechanical ventilation on the respiratory system. 

It needs to be clarified how the mechanical properties of the lungs, local distribution of ventilation, 

perfusion and gas-exchange are affected by mechanical ventilation. In addition, it has not been fully 

understood to which extend alveoli are recruited (opens) and derecruited (collapses) during normal tidal 

breathing. Furthermore, it has not been determined how and to which extent passive or active mechanisms 

interact with gravity and how they influence the regional distribution of ventilation, perfusion and gas-

exchange.  

Physiological mathematical models may be a way to explore and clarify these uncertainties and complex 

connections that may be difficult to investigate experimentally. The overall aim of this PhD-project was 

therefore to develop a physiological mathematical model that could improve our physiological understanding 

of the respiratory system. The model developed of the respiratory system describes distributions of 

ventilation, perfusion and gas-exchange in lungs of a healthy human subject during mechanical 

ventilation. The model was used to investigate how alveoli behave during breathing and how gravity 

affects the respiratory system. In chapter 1 the aim of the PhD-project was summarized in three research 

questions. In the following sections the answers to these three questions will be discussed based on the 

results presented in the six papers. Furthermore, this chapter will discuss the limitations of the model and 

necessary future work including a short clinical perspective. 

MAJOR FINDING OF THE THESIS 

TOTAL MODEL OF THE RESPIRATORY SYSTEM 

A novel comprehensive stratified model of the healthy human lungs has been developed. The model is 

composed of four sub models, i.e. a ventilation model, a perfusion model, a blood model and a gas-

exchange model. The ventilation model describes lung mechanics regarding the lung tissue elasticity, 

surface tension determined by surfactant, chest wall elasticity, gravity, airway resistance and viscoelastic 

properties of the lungs. The perfusion model includes a description of the pressure in the pulmonary 

vessels, the effect of gravity and pulmonary resistance determined by viscosity of blood and the number, 

length and radius of the blood vessels. Furthermore, the perfusion model includes a distribution of the 

capillary compliance and arteriolar resistance. The blood model describes the acid/base chemistry of the 

blood including the Bohr-Haldane effect. The gas-exchange model incorporating the other sub models 

and describes the storage and transport of O2 and CO2 between environment, anatomical dead space, 

alveoli, capillaries, arterial and venous blood. Each of the sub models is based on physiological 

assumptions and despite they are founded on measurements from many different studies they are capable 

of reproducing experimental data from the literature e.g. PV-curves, distribution of lung density, 

ventilation and perfusion, total capillary perfusion, capillary transition time of the red blood cells, arterial, 

mixed venous and end-tidal partial pressures of O2 and CO2.  

The model developed of the respiratory system uses pressure exerted by the ventilator as input and is able 

to simulate the effects of mechanical ventilation on the entire respiratory system. The following sections 
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will discuss what can be learnt from the model regarding stability of the alveoli and the effect of gravity 

on the respiratory system. 

STABILITY OF THE ALVEOLI DURING BREATHING 

The conditions under which single excised alveoli show instability were investigated in paper I. The main 

finding was that the alveolus was stable when properties of both surfactant and tissue elasticity for a 

healthy subject are taken into account. The alveolar model was incorporated into a stratified model of the 

entire respiratory system in paper II. Here a new model of tissue elasticity (model II) was introduced and 

compared to the elasticity model presented in paper I (model I). The new model assumes that lung tissue 

to some degree resists collapse, by producing a small negative transmural pressure at low lung volumes. 

Simulations described in paper II showed that the hydrostatic pressure gradient induces an alveolar 

volume and density gradient down the lungs. Fig. 20 shows comparison of measured and simulated 

density distribution down the lungs using the two lung tissue elasticity models. As indicated in Fig. 20 

model I simulates alveolar collapse at RV. The collapse of the most dependent layers leads to a marked 

increase in density in these layers, which is not shown in the data. The density simulated by using model 

II, however, does not show alveolar collapse and is in good agreement with data. It is therefore indicated 

that alveoli do not collapse in the healthy lungs because connecting fibers and tissue to some degree resist 

collapse. 

Other mathematical models in the literature have previously simulated hysteresis based on opening and 

closing of the alveoli e.g. [32, 141, 142]. In these models the effect of surfactant is neglected and 

hysteresis is a result of recruiting previously closed alveoli. Alveoli simulated in this thesis do not 

collapse and the simulated hysteresis is mainly a result of the hysteresis of surfactant.  

THE EFFECT OF GRAVITY ON THE RESPIRATORY SYSTEM 

Paper VI investigates the effects of gravity on the respiratory system, which has been widely discussed in 

the literature e.g. [43, 93-95, 143-146]. The main aim of Paper VI was to clarify to which extent gravity 

alone influences the ventilation, perfusion and gas-exchange distribution down the lungs. In this way it 

could be elucidated to which extent other mechanisms are responsible for the distribution of blood and air 

in the lungs. Because simulated lungs in upright position were unable to sustain sufficient oxygenation of 

the arterial blood and gas-exchange expressed as the pressure difference of O2 and CO2 between end-tidal 

and arterial blood was compromised, it was concluded that there must be other mechanisms counteracts 

the effects of gravity. It needs further investigations to conclude how and whether passive anatomical 

gradients [84, 87, 147, 148] or active mechanisms such as hypoxic or hypercapnic pulmonary 

vasoconstriction [88-90] and bronchodilation [91] participate in the redistribution of air and blood in the 

lungs.  

MODEL LIMITATIONS AND FUTURE WORK 

The development of mathematical physiological models introduces a number of assumptions and 

simplifications. The assumptions and limitations for this PhD-project are discussed in the following. 

SURFACTANT MODEL 

The properties of surfactant described in Paper I and Paper II are based on the rate of compression 

defined by the surface area from the study by Lu et al. [149]. However the speed of compression [150] 

and surfactant composition [151] have also proven to be important aspects [152]. Lu et al. [149] used 

dynamic cycles lasting 25 seconds per cycle, while human breathing at rest is 12-16 breaths per minute 

[67] corresponding to 5-3.75 seconds per cycle. Furthermore Lu et al. [149] performed experiments with 

bovine surfactant. More experimental research regarding surfactant function under the influence of 
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compression ratio, speed of compression and surfactant composition is required for validation of the 

surfactant model. In this context the model of the viscoelastic properties presented in paper III also need 

further investigation. It is not clear whether the viscoelastic properties of the lungs are due to stress 

adaption in the lung tissue alone, a result of the mechanical behavior of surfactant or something else. 

ALVEOLAR DUCTS 

The finding that alveoli may not collapse in the healthy lungs might be interpreted with some cautions.  It 

has been discussed in the literature whether the surface area of the alveoli changes during quiet breathing 

[153, 154]. In a model by developed by Wilson et al. [155-157] the surface area of the alveoli is allowed 

to change without changing the lung volume since the volume in the alveolar ducts are assumed to change 

depending on surface tension. The alveolar ducts are not included in the present model and the alveolar 

surface area and volume are in this study assumed to be directly linked through the alveolar radius. 

Furthermore, the assumption of a rigid ring at the opening of the alveoli still needs further investigation. 

In a model by Kitaoka et al. [158] the opening radius was modelled as changing with the alveolar volume. 

In this way it is possible for the alveoli to close and be unventilated without collapsing. The moderate 

lung densities in the dependent part of the lungs observed by Millar and Denison [123] might therefore be 

explained by air trapping in closed but not collapsed alveoli. However, it is still not clear in which way 

the alveoli may close or collapse and in which way the alveolar duct and opening are participating in 

resisting collapse at very low lung volumes. How they generally affect the lung mechanics is therefore a 

topic for future investigations. 

HEART FUNCTION AND PASSIVE PULMONARY RESISTANCE 

The capillary blood flow in the model of the blood perfusion was estimated at rest. During mechanical 

ventilation at high pressures, the perfusion is diminished due to the increasing extra alveolar pressure 

within the lung parenchyma restricting the capillary radius, as seen in paper IV. The cardiac output can be 

increased from 5-6 l/min at rest to a maximum of 25 l/min during exercise [67]. In response to 

epinephrine and norepinephrine the heart can increase the isovolumic pressure peaks and hence pump 

against increased airway pressure levels [67]. The heart could be expected to increase the output in 

response to constriction of the blood flow in order to improve gas-exchange. Integrating changes in the 

heart function during mechanical ventilation in the presented model would enable more physiological 

simulations of changes in the     -ratio when the PEEP level is raised. This could be of clinical interest 

according to the problem of avoiding lung edema by means of PEEP while maintaining adequate gas-

exchange. 

ANATOMICAL GRADIENT AND THE ANATOMICAL DEAD SPACE 

The developed model of the respiratory system does not include parameters that describe the 

heterogeneity of ventilation and perfusion within the same vertical lung depth, which has previously been 

reported with high spatial resolution imaging methods (e.g. SPECT [80, 81], PET [82], HRCT [83], 

microspheres [84, 85]). Alveoli close to the hilum of the lungs tend to be better ventilated and perfused 

and such differences can of course not be explained by gravity, but may be explained by the anatomy of 

the pulmonary vascular and airway trees [84, 87]. This might also contribute to the relatively low 

perfusion observed at the top and bottom of the lungs [73]. Additional contributions to regional 

differences may arise from for example a ventral-dorsal gradient in the properties of the lung 

parenchyma, as has been shown in quadruped animals independent of body position [84, 159, 160]. It is 

also possible that mechanical dilation of vessels situated in the corners between alveoli may increase 

perfusion in the non-dependent parts of the lungs [147, 148]. The anatomical gradients can not be 

described with the current model and should be included in the future.  



44 

 

 

The mixing of air within the anatomical dead space is not only determined by the turbulence as it is 

assumed in the current model, also diffusion, distance and anatomy of the upper airways all play an role 

in gas mixing [161]. Especially the anatomical distances from the mouth to the layers at the dependent 

and non-dependent part of the lungs (here assumed identical) are important for e.g. the end-tidal partial 

pressure of O2 and CO2. 

CLINICAL PERSPECTIVE OF THE MODEL 

The presented lung model provides a tool for estimating many parameters that may have both clinical and 

physiological relevance. The model assists in the understanding of lung function and the effect of 

different treatments with mechanical ventilation. However, to complete the model it will be necessary to 

add passive or active mechanisms, which counteracts the effects of gravity. Given such a model, capable 

of describing gas-exchange in the healthy lungs, the model can be used to study how tidal volume and 

PEEP affect the distribution of ventilation, perfusion and gas-exchange [162]. The model can also be 

applied to the injured lungs. The model could be used to study how lung edema develops, how fluid 

distributes in the lungs and how the presence of fluid and proteins compromises the function of 

surfactant.  
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GENERAL CONCLUSIONS 

 

1. A comprehensive stratified physiological model of the total respiratory system has been 

developed. The model is composed of four sub models, i.e. a ventilation model, a perfusion 

model, a blood model and a gas-exchange model. The model is able to reproduce physiological 

data observed in the literature, of e.g. PV-curves, distribution of lung density, ventilation and 

perfusion, total capillary perfusion, capillary transition time of the red blood cells, arterial, mixed 

venous and end-tidal partial pressures of O2 and CO2. 

 

2. Simulated and experimentally measured lung densities indicate that alveoli do not collapse in the 

healthy lungs and that the hysteresis of the PV-curves is mainly due to the hysteresis of surfactant 

and not to recruitment of alveoli.  

 

3. The simulated lungs were unable to sustain sufficient oxygenation of the arterial blood in upright 

position, it is therefore concluded that other mechanisms counteract the effects of gravity.  
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DANISH SUMMARY/DANSK RESUMÉ 

 

En af de primære livsreddende terapiformer på en intensivafdeling er mekanisk ventilation. Terapien og 

indstillingen af respiratoren er imidlertid kompliceret af modstridende kliniske mål. På den ene side skal 

patienterne være tilstrækkeligt oxygeneret, men samtidig kan overdreven brug af positiv end expiratory 

pressure (PEEP), tidal volumen og inspireret iltfraktion medfører ventilator induced lung injury (VILI). 

Terapi med mekanisk ventilation er endvidere kompliceret af en manglende forståelse af hvordan 

respiratoren påvirker ventilationen, perfusion and gas-udvekslingen lokalt i lungerne. Der er endnu ikke 

opnået enighed i litteraturen om hvorvidt de mindste lungeenheder (alveolerne) kollapser under normal 

vejrtrækning samt hvilken effekt tyngdekraften har på det respiratoriske system. Det første skridt mod en 

bedre behandling af mekanisk ventilerede patienter er at opnå en fuldendt forståelse af de raske lunger. 

Denne PhD-afhandling, som er basseret på seks artikler, omhandler udviklingen og brugen af 

matematiske fysiologiske modeller til at undersøge effekten af mekanisk ventilation på raske personer. 

Den udviklede model består af fire grundmodeller af henholdsvis den pulmonære ventilation, perfusion, 

gas-udveksling samt blodets syre/base kemi. Den lagdelte ventilationsmodel beskriver de lokale tryk-

volumen forhold i lungerne og indeholder en beskrivelse af luftvejsmodstanden, brystvæggens elasticitet, 

lungevævets visko-elastiske egenskaber, effekten af surfaktant, samt de hydrostatiske effekter i lungerne. 

Perfusionsmodellen beskriver den lokale perfusion i lungerne under mekanisk ventilation og inkluderer 

en beskrivelse af den arteriolemodstand, kapillærerelasticitet og modstand, blodviskositet samt længde og 

antal af lungekapillærer. Ydermere er der lavet antagelser om trykprofilen i den pulmonale arterie. 

Modellen af blodets syre/base egenskaber beskriver transporten af ilt og kuldioxid i blodet og inkluderer 

en beskrivelse af Bohr-Haldane effekten. Modellen af gas-udvekslingen inkluderer de andre tre 

grundmodeller og  beskriver ilt og kuldioxid distributionen i det respiratoriske system, hvilket vil sige 

transporten mellem omgivelserne, det anatomiske dead space, alveolerne, kapillærerne, samt det arterielle 

og venøse blod. Den samlede model er valideret mod en række eksperimentelle data fundet i litteraturen. 

Modelsimuleringerne er i god overensstemmelse med en bred vifte af disse fysiologisk målte parametre 

under normal vejrtrækning. F.eks. er modellen i overensstemmelse med globale tryk-volumen kurver, 

distribution af lungedensitet, ventilation og perfusion, total kapillærerperfusion, transition time af de røde 

blodlegemer, arterielle og venøse partialtryk af ilt og kuldioxid. Resultaterne præsenteret i denne 

afhandling indikerer, at alveolerne hos raske personer ikke kollapser under normal vejrtrækning. 

Endvidere har modelsimuleringerne vist at den oprejste lunge ikke er i stand til at opretholde tilstrækkelig 

gasudveklsing og ilting af det arterielle blod. Det er derfor indikeret at effekten af tyngdekraften bliver 

modvirket af andre mekanismer f.eks. hypoktisk vasokonstriktion og bronkodilation. 
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