UNIVERSITY OF LEEDS

This is a repository copy of Improved parallel mesh generation through dynamic
load-balancing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1659/

Proceedings Paper:

Touheed, N. and Jimack, P.K. (1997) Improved parallel mesh generation through dynamic
load-balancing. In: Topping, B.H.V., (ed.) Advances in Computational Mechanics with
Parallel and Distributed Processing. The First Euro-Conference on Parallel and Distributed
Computing for Computational Mechanics, 26th April-1st May 1997, Lochinver, Scotland.
Civil-Comp Press , Edinburgh , pp. 105-111. ISBN 0-948749-47-4

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘ Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Advances in
Computational Mechanics with Parallel and Distributed Processing.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/1659/

Published paper

Touheed, N. and Jimack, P.K. (1997) Improved parallel mesh generation through dynamic
load-balancing. In: Topping, B.H.V., (ed.) Advances in Computational Mechanics with
Parallel and Distributed Processing. The First Euro-Conference on Parallel and
Distributed Computing for Computational Mechanics, 26th April-1st May 1997, Lochinver,
Scotland. Civil-Comp Press , Edinburgh, pp. 105-111. ISBN 0-948749-47-4

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

Improved Parallel Mesh Generation Through Dynamic Load-Balancing

N. Touheed and P.K. Jimack
Computational PDE Unit
School of Computer Studies

University of Leeds
Leeds L52 9JT, UK

Abstract

Parallel mesh generation is an important feature of any
large distributed memory parallel computational mechan-
ics code due to the need to ensure that (i) there are no se-
quential bottlenecks within the code, (ii) there is no paral-
lel overhead incurred in partitioning an existing mesh and
(iii) that no single processor is required to have enough
local memory to be able to store the entire mesh. In re-
cent years numerous algorithms have been proposed for
the generation of unstructured finite element and finite
volume meshes in parallel. One of the main problems
with many of these approaches however is that the fi-
nal mesh, once generated, cannot generally be guaranteed
to be perfectly load-balanced. In this paper we propose
a post-processing step for the parallel mesh generator,
based upon a cheap and efficient dynamic load-balancing
technique. This technique is described and a number of
numerical examples are presented in order to demonstrate
that the quality of the partition of the mesh can be im-
proved significantly at only a small additional computa-
tional cost.

1 Introduction

This paper is concerned with algorithms for the parallel
generation of unstructured meshes of triangles or tetrahe-
dra for complex geometries in two and three dimensions.
Parallel mesh generation is a vital component of any dis-
tributed memory parallel computational mechanics code
since it is highly undesirable that the size of the finite el-
ement or finite volume mesh be limited by the amount of
memory on a single processor. Moreover, from the point
of view of parallel efficiency and scalability it is essen-
tial to minimize the sequential bottlenecks within a code.
In addition, the parallel overhead associated with parti-
tioning a mesh generated on a single processor should be
avoided.

A large number of algorithms and codes have been de-
veloped for parallel mesh generation in recent years and
these may be divided into two broad categories: those
based upon refinement of an initial coarse background
mesh (e.g. [5, 10, 13, 12]), and those which mesh the
domain in an alternative manner (e.g. [1, 9]). In this
paper we are concerned only with the first of these two
categories and, for simplicity of exposition, we concen-
trate on the 2-d case. Extension to 3-d is possible and is

the topic of much current research.

The common feature of all of the parallel mesh gener-
ators based upon refinement of a background grid is that
this grid must first be partitioned across the available pro-
cessors. The techniques by which this is done vary signif-
icantly but they each have the same goal: to ensure that
the total number of generated elements or points on each
processor is about the same. Hence, if a mesh of uniform
density is being generated and the background grid is also
of uniform density then we would expect each processor to
be assigned about the same number of coarse elements. If,
on the other hand, a mesh of non-uniform density is being
generated from a uniform background grid then we would
expect a potentially different number of coarse elements
to be assigned to each processor. A secondary objective
when partitioning the background grid is to ensure that
the number of generated elements which have an edge on
the boundary between two processors is as small as possi-
ble. This will ensure that the amount of communication
required by the finite element or finite volume solver will
be minimized.

In order to attempt to achieve these objectives, a pri-
ort estimates need to be made about how many elements,
edges and nodes will be generated within each coarse ele-
ment. Inevitably the actual values of these three numbers
after generation will not precisely match these estimates.
In order to keep the differences as small as possible some
authors have developed quite elaborate schemes for im-
proving the quality of their estimates; including the use
of neural networks [13] or “virtual refinement” [5] for ex-
ample. Even with these schemes however final load im-
balances of up to 10% are frequently observed in practice.

In this paper we suggest that, so long as a reasonable
partition is produced a priori, a more profitable use of
resources is to improve the quality of the partition af-
ter the mesh has been generated in parallel through the
use of a parallel post-processing step. This step simply
involves making local modifications to the load-balance
before the solution phase commences. As will be demon-
strated these local modifications are made in a manner
designed to strike a balance between the potentially con-
flicting requirements of

1. improving the load-balance,
2. maintaining data locality,

3. minimizing the number of fine edges shared by two
Processors,

4. avoiding sequential bottlenecks.

2 The Post-Processing Step

In this section we describe our post-processing algorithm
in quite general terms. Section 3 then discusses some of
the implementation issues, with reference to a particu-
lar parallel mesh generation code ([5]) where necessary.
We begin by assuming that a mesh has just been gener-
ated in parallel based upon some refinement of a coarse
background grid which is partitioned across a distributed
memory architecture. We now define the weighted dual
graph for the background grid to be such that each node
of the graph corresponds to a coarse element (with weight
equal to the number of generated elements within it), and
each edge of the graph joins nodes whose corresponding
coarse elements have a common edge (with weight equal
to the number of generated edges along it). The task
of the post-processor is to modify the existing partition
of this weighted graph in line with the four requirements
enumerated at the end of the previous section.

2.1 Group balancing

Following Vidwans et al[16], we define a further weighted
graph: the weighted partition communication graph
(WPCG). This represents the face adjacency of the p pro-
cessors being used (processors that share at least one edge
of a coarse element with a given processor are said to be
face adjacent to that processor). A WPCG is obtained
by having one vertex for every processor and an edge be-
tween two vertices if and only if they are face adjacent
to each other. The weight wy, of the i** vertex is equal
to the sum of weights of all coarse elements on the i*?
processor and the weight wg,; of the edge connecting the
it" and j** processors is equal to the sum of weights of
all coarse element edges on the interpartition boundary
between the two processors.

We now divide the WPCG into two subgroups denoted
by Groupl and Group2. Unlike in [16] however we use
a weighted version of the spectral bisection method [5]
which results in a partition which is based upon having
an approximately equal weight in each group, rather than
an equal number of processors. Moreover the spectral al-
gorithm is also designed to keep the weight of those edges
of the WPCG which are cut by the partition (the “cut-
weight”) as low as possible. The cost of implementing
this algorithm is not significant since the number of pro-
cessors, p, is always small compared with the size of the
coarse mesh.

A full description of the weighted spectral bisection al-
gorithm may be found in [5]. Briefly, a weighted Laplacian
matrix, L, for the WPCG is first formed and then scaled

1
\/w_N,) . The second

eigenvector (or Fiedler vector), u,, of the scaled matrix
S = DTLD is then found. Finally a partitioning vec-
tor, x, is defined by z; = uy,/wy, for i = 1,...,p. The
two subgroups are then defined by sorting the p vertices
of the WPCG according to the size of their entry in z

by the diagonal matrix D = diag(

and placing elements represented by :L‘; ¢ = 1l..n in one
group (with z being the sorted vector) and those by J:;
1=mn+1,...,pin the other, with n chosen so that

n P
’ /
> wn, = Y w, (1)
i=1 i=n+1

is as small as possible (where w;\,i is the weight of the

vertex represented by I;)

If the generated mesh is quite uniformly distributed
across the processors then we would expect each group
to contain about the same number of processors and an
almost identical total weight. If the generated mesh is not
uniform or the partition is not well load-balanced how-
ever then the number of processors in each group may be
very different. In either case the cut-weight resulting from
this bisection will generally be small. In the next stage
of the algorithm we use the idea of local migration from
the “larger” to the “smaller” group so that after migra-
tion each group contains approximately the same average
weight per processor without there being a significant in-
crease in the cut-weight.

2.2 Local migration

As mentioned above the subgroups formed in the last sub-
section may not be ideally balanced. To balance them we
now migrate nodes of the weighted dual graph (i.e. coarse
elements and their generated meshes) from the “larger”
to the “smaller” group. There are many ways to do this
but, due to the non-linear complexity of the Kernighan
and Lin algorithm ([8]), we apply the ideas of Fiduccia
and Mattheyses ([3]) who suggest a similar algorithm but
whose complexity is linear.

We first decide which of the subgroups is to be the
Sender and which the Receiver. We then define the num-
ber Mig,,; to equal the total weight of all the nodes
which are to be migrated from the Sender to the Re-
ceiver. Let N; and Ns be the number of processors in
Groupl and Group?2 respectively. Also let Ave be the av-
erage weight per processor in the WPCG and Ave; and
Awves be the average weights per processor in Groupl and
Group?2 respectively. Then the calculation of Sender, Re-
ceiver and Mig,,, is shown in figure 1 below (in order to
calculate Mig, , one simply multiplies the average excess
load per processor by the number of processors in the
Sender group). Note that if the combined weight of the
nodes transferred between the Sender and the Receiver is
nearly or exactly equal to Mig,,, then the two groups will
be load-balanced upon completion.

Having established the required load to be transferred,
the next issue to address is that of how many nodes
(i.e. coarse elements) each processor in the Sender group
should actually send and which processors in the receiver
group they should be sent to. Again we build upon the
algorithm of Vidwans et al [16], by defining the concept of
candidate processors. Processors in each group that are
face-adjacent to at least one processor in the other group
are called candidate processors. We only allow the can-
didate processors to be involved in the actual migration

if(Ave; < Aves){
Sender = Group2;
Receiver = Groupl;
Mig,,; = Na * (Aves — Ave);

else{
Sender = Groupl;
Receiver = Group?2;
Mig,,; = N1 * (Ave; — Ave);

Figure 1: Calculation of Sender, Receiver and Mig,,,.

of nodes from Sender to Receiver. Let N;,; be the total
weight on all candidate processors of the Sender group.
Then if the ' candidate processor in the Sender group
is face adjacent to more than one candidate processor in
the Receiver group we migrate nodes to that candidate
processor which has the “longest” boundary (by this we
mean that the cut-weight between the two processors in-
volved is maximum as compared to other possible pairs).
The amount of load shifted from the i** candidate pro-
cessor in Sender group is denoted by Mig; and is given

by,

N;)
Mig; = * Mig, .., 2
g <Nt0t) 8ot ()

where N; is the total weight of the i*® processor.

Finally, it is necessary to decide precisely which nodes
in the weighted dual graph of the coarse mesh should be
transferred. Our aim is to transfer those nodes which re-
sult in as low a cut-weight as possible. The fundamental
ideas behind this are the concepts of the “gain” and “gain
density” associated with moving a node onto a different
processor. For a node, k say, which is situated on the "
candidate processor in the Sender group, we define the
gain(k) associated with this node to be the net reduction
in the cut-weight that would result if this node were to
migrate to the Receiver group (the j'* candidate proces-
sor in the Receiver group say). The calculation of gain(k)
is shown in figure 2.

wg,, if [€ j1* processor,
gain(k) = Z —wg,, ifl€ i processor,
(k1) 0 otherwise.

Figure 2: The calculation of gain.

The gain density of a node is defined as the gain of the
node divided by the weight of the node. The bulk of the
work needed to make a move consists of selecting the base
node (a node which is about to be shifted from one pro-
cessor to another processor is called a base node), moving
it, and then updating the gains of its neighbouring nodes.
We solve the first problem, that of selecting a base node,
by choosing the node with the largest gain density on the
it" processor whose weight is less than or equal to Mig;.
We shift the node to the receiving processor and update

the gains of its neighbouring nodes (observe that in gen-
eral the node k will have three neighbours when we are
working with triangulations of two-dimensional domains
and four neighbours when we are working with triangula-
tions of three-dimensional domains) using the algorithm
outlined in figure 3. Observe that, if the gain associated
with the base node is positive, then transferring it will
not only improve the load-balance but will also reduce
the total cut-weight between the two groups.

For each ny which is a neighbour of the node k {
Let pg be the processor to which n belongs;
if (pr ==j) then

decrement gain(ng) by 2*wg
else if(py == 1) then
increment gain(ny) by 2*wg

nyk)

ngk)

Figure 3: Updating the gains.

2.3 Divide and conquer and parallel im-
plementation

Once we have obtained Sender and Receiver groups with
the same average weights, it is possible to recursively ap-
ply the above splitting algorithm to each of these two
processor groups in parallel: bisecting them and load-
balancing them. The recursion terminates when every
group consists of a single processor: each with approxi-
mately the same load.

This divide and conquer approach naturally permits a
certain degree of parallelism in its implementation. Fur-
ther parallelism is also facilitated by the fact that it is
possible for more than one sending processor in a Sender
group to migrate data onto its corresponding receiving
processor at any given time. To ensure that no data con-
flicts arise as a result of this parallel communication an
additional global communication is required at each step
of the recursion. Full details are given in subsection 3.1.

The implementation of this load-balancing algorithm
that is used for the numerical experiments described in
section 4 was completed using the MPI library ([11]).
This is ideally suited to the divide and conquer philos-
ophy since it provides explicit mechanisms for the defi-
nition and splitting of processor groups. To implement
this divide and conquer philosophy we make use of the
function MPI_Comm split() available in the MPI library.
This function takes as input a communicator, a colour,
and a key. All processors with the same colour are placed
into the same new communicator, which is returned in
the fourth argument. The processes are ranked in the
new communicator in the order given by the key. In our
application we assign the value 1 (value 0) to colour if the
processor is in the Sender group (Receiver group) and the
key is taken to be the ID (rank) of the processor.

When a coarse element migrates from the Sender group
to the Receiver group we have to update numerous data
structures (which not only involve the processors on the
Receiver and the Sender groups but may also involve pro-
cessors outside these two groups), so it is necessary to

maintain the presence of the initial group. This means
that each processor is a member of two groups: the initial
group (called the I_Group) which consists of all p proces-
sors and remains unchanged throughout, and the current
group (referred to here as “the Group”) which is vari-
able and changes with each application of the Divide and
Conquer algorithm.

Note that the above Divide and Conquer algorithm is
repeated until all Groups contain exactly one processor. If
a group consists of a single processor before the algorithm
terminates then that processor is not entirely idle since
it must still communicate with other processors in case
neighbouring coarse elements are migrated between two
processors.

3 Implementation Issues

An overview of the above post-processing algorithm is
given in figure 4. In this section we briefly consider how
this may be efficiently implemented and describe what is
meant by the step in figure 4 entitled “modify the nec-
essary data structures to reflect the migration”. A much
more comprehensive discussion of these issues for the par-

ticular parallel mesh generator described in [5] may be
found in [14].

While (Any Groups contain two or more processors){

Find the maximum load Maz and the avarege load

Ave

of the Group;

Find the percentage of maximum imbalance max_imb

in the Group by using the formula;

maximb = ((Maz - Ave) / Ave) * 100;

If (The Group contains more than one processor){
Send the contribution to the Laplacian matrix to
processor 0;

If (Rank of the processor is 0){

Form the Laplacian matrix after receiving the
contribution from other processors;

Find the Fiedler vector and by using it decide
the Receiver and Sender groups;

}

If (max.imb is more than a given tolerance){
Move load from processors in the Sender Group
to processors in the Receiver in such a way that
after migration the two Groups have the same
average load and the increase in the cut weight
is as small as possible;

}
}

If (The migration effects the current processor){
Modify the necessary data structures to reflect the
migration;

}

Divide the Group into two Groups (i.e. from now on

both Sender and Receiver will be called Group);

Figure 4: Parallel post-processing algorithm.

3.1 Avoiding data conflicts due to paral-
lel communication

As outlined in subsection 2.3 one aspect of the parallel im-
plementation is to allow more than one sending processor
in a Sender group to migrate data to its corresponding
receiving processor at a given time. In fact all of the
communication of coarse elements may be left to the end
of each divide and conquer iteration and completed con-
currently. The difficulty with this is that when a coarse
element (and its corresponding region of the generated
mesh) is transferred, it is not just the sending and re-
ceiving processor that are required to communicate. If a
neighbour of the coarse element happens to reside on a
third processor then this also needs to be notified of the
transfer (to facilitate communication within the parallel
finite element or finite volume solver when this is used).
Clearly a difficulty will arise if this neighbouring coarse
element is also being transferred to another processor.

One way to overcome this difficulty would be to
route messages forward from processors that neighbouring
coarse elements have just left. This would not be straight-
forward to implement however. We prefer to avoid the
difficulty by making an all-to-all global communication
immediately before the data migration phase of each di-
vide and conquer iteration. This communication informs
each processor of the destination of each coarse element
that is about to be migrated, hence allowing all prob-
lems of locating neighbours to be avoided. The price that
we pay for this simplicity is the introduction of a global
synchronization point within the algorithm as well as the
cost of these global communications (although the com-
munication costs associated with forwarding messages to
neighbours are saved of course).

Yet another approach to dealing with this difficulty of
locating neighbouring coarse elements is to use a colour-
ing of the weighted dual graph in which neighbouring ele-
ments have different colours. By only transferring coarse
elements one colour at a time it becomes easy for these
elements to keep track of their neighbours. This method
appears to work well in two dimensions [14, 15] however,
for problems in three dimensions the number of different
colours required becomes prohibitive and so we take this
approach no further.

3.2 Updating data structures

Having generated a mesh in parallel and then decided
which background elements to migrate locally in order to
improve the partition of this mesh, the final stage of the
algorithm is to complete this migration. As indicated in
subsection 3.1 there are a number of practical considera-
tions to be made here. These are due to the requirement
that the consistency of the distributed mesh data be main-
tained so that the parallel finite element or finite volume
solver will still function correctly. Clearly the exact de-
tails of what data structures within a code are affected
by these local migrations will depend upon the specific
implementations of the parallel mesh generator and the
differential equation solver. In [14] details of the book-
keeping associated with modifying the partition resulting

from one such parallel mesh generator (see [5]) are ex-
plained in some depth.

The main requirements for this particular generator and
solver are that all vertices and edges of the background
grid which lie on the interprocessor boundary should be
identified. This means that whenever a coarse element is
transferred it is necessary to check which of its vertices, if
any, are added to the interprocessor boundary, and which,
if any, are removed. A similar check is required for each
edge of the coarse element so that data structures on the
processors on either side of the boundary may be kept
consistent (again, see [14] for further details).

4 Computational Examples

In this section we present two representative example
problems in which the parallel post-processing procedure
is used to improve the performance of a parallel mesh
generation code. The mesh generator is again taken from
[5], as is one of the geometries which we use. The other
geometry is taken from [2].

In the first example the domain is L-shaped (geome-
try 1 in [5]) and the generated mesh is heavily refined
in the regions surrounding three of the corners. Table 1
shows how the original parallel mesh generator performs
and also how the load-balance is improved by the post-
processing step. The time taken by the slowest processor
in the mesh generation phase is 8.3 seconds on a Cray
T3D whilst the time taken by the last processor to fin-
ish the post-processing step is a mere 0.2 seconds. One
measure of the improvement in the load-balance is the
percentage by which the processor with the largest load
exceeds the average load across all of the processors: the
maximum imbalance. This has been reduced from 10.4%
to just 3.4%. A small price is paid for this significant im-
provement in that the total number of fine triangle edges
which lie on the interprocessor boundary has increased
slightly: from 3091 edges to 3168 edges. Nevertheless,
practical experience of the trade-off between cut-weight
and load-balance suggests that this is a price well worth
paying [4].

The second example involves the generation of a mesh
on a slightly more complex domain which is taken from [2]
(Bank’s “Texas” geometry). In contrast with the previous
example the mesh that is generated is not so non-uniform
in its density throughout the domain and so the number
of coarse elements associated with each processor does
not vary so dramatically. Table 2 shows how the original
mesh generator performs for this problem and how the
post-processing step improves the load-balance. In this
case the initial maximum imbalance is only 2.7% but this
figure is still improved to just 0.6% by the post-processing
step. As with the first example the dynamic re-balancing
is also very cheap: taking just 0.2 seconds to complete
on a Cray T3D, as compared with an initial parallel mesh
generation time of 84.1 seconds. Finally, the total number
of fine element edges lying on the partition boundary has
only been increased from 11533 to 11563.

Note that the reason that the final load-balance is so
much better in the second example than in the first is

Original Modified
Processor

coarse fine coarse fine

1 112 13044 111 13457

2 112 13304 111 13404

3 26 14963 22 13725

4 22 14146 21 13857

5 161 13058 161 13357

6 46 14012 43 13523

7 16 14013 16 14013

8 18 13625 18 13360

9 16 13767 16 13641
10 41 13895 38 13545
11 168 13072 175 13627
12 130 12647 132 13539
13 72 13687 70 13485
14 102 13002 106 13390
15 173 13261 175 13463
16 115 13342 115 13452
average 83 13552 83 13552

Table 1: The performance of the post-processing algo-
rithm on example one.

that the elements of the background grid are much more
evenly spread across the processors in this case. When a
very large number of fine elements are generated in just
a few background elements it is significantly more diffi-
cult to obtain a precise load-balance by partitioning the
background grid. It is important therefore that, in re-
gions of heavy local refinement, there should be a suffi-
cient number of coarse elements to permit the possibility
of obtaining a reasonable load-balance.

5 Discussion

In this paper we have introduced a post-processing algo-
rithm for the parallel generation of unstructured meshes
for use in parallel finite element or finite volume anal-
ysis. The algorithm is based upon performing a local
modification of the partition of an underlying background
grid from which the mesh was generated in parallel. This
modification aims to improve the load-balance whilst re-
specting data locality and ensuring that the length of the
partition boundary is not increased unnecessarily.

We have successfully demonstrated an implementation
of this algorithm for two different problems in two dimen-
sions. In addition it has been shown that the execution
time of the code, implemented in C using MPI, is ex-
tremely competitive. It should be noted however that the
post-processing step described here can only be as effec-
tive as the coarse mesh allows it to be. For example, if
the background grid only has a small number of elements
which are evenly spread across the domain and the fine
mesh is very fine in some particularly local regions, then
it is possible that even an optimal solution of the corre-
sponding load-balancing problem may have a very large
imbalance and/or cut-weight.

There are a number of alternative parallel dynamic

Original Modified
Processor
coarse fine coarse fine
1 302 200856 297 197704
2 224 194426 229 197578
3 214 194531 219 198018
4 259 196816 260 198715
5 262 203560 255 198326
6 244 196841 245 198142
7 257 199044 257 198152
8 268 196539 271 198148
9 240 198223 240 198223
10 225 199385 225 199385
11 221 199123 220 198393
12 227 199179 227 199179
13 233 196701 233 196701
14 224 196846 224 196846
15 256 199915 255 199194
16 238 198702 237 197983
average 243 198168 243 198168

Table 2: The performance of the post-processing algo-
rithm on example two.

load-balancing algorithms that we might have used as
part of the post-processing step in this work. In [14, 15]
we make comparisons with two such algorithms: our own
implementations of [6] and [16]. The conclusion there is
that for problems with a fairly uniform final mesh all of
the approaches implemented work very well. However, for
more demanding (and perhaps more realistic) examples
in which there is heavy local refinement in some regions
of the domain, the technique described in this paper ap-
pears to find a good balance between maintaining a low
cut-weight and distributing the dual graph in a balanced
fashion.

Recently, parallel versions of the publicly available soft-
ware packages METIS [7] and Jostle [17] have been an-
nounced and so it may also be possible to make use of
these within the post-processing step. In addition, cur-
rent research is looking at the application of this post-
processing step to a 3-d parallel adaptive code ([12]). This
particular code is rather different from that used for the
results in section 4 since it makes use of “halo” elements
on the boundary between processors. These significantly
simplify the parallel solver by allowing each processor to
have copies of those elements immediately on the other
side of each processor boundary. This use of halo elements
serves to complicate the dynamic load-balancing phase
however since halo information must also be passed when
elements are relocated. Nevertheless, initial re-balancing
results obtained for typical meshes generated and adapted
in 3-d appear to be very encouraging.

Acknowledgements
Our parallel computations were carried out on the Cray

T3D computer at the Edinburgh Parallel Computing Cen-
tre. N'T would like to acknowledge the financial support

of the UK and Pakistan governments in the form of ORS
and COTS scholarships respectively.

References

[1] T. Arthur and M.J. Bockelie, “A Comparison of Using
APPL and PVM for a Parallel Implementation of an
Unstructured Grid Generation Program”; Tech. Re-
port 191425, NASA Computer Sciences Corporation,
Hampton, Virginia, 1993.

[2] R.E. Bank, “PLTMG Users’ Guide 7.07, SIAM,
Philadelphia, 1994.

[3] C.M. Fiduccia and R.M. Mattheyses, “A Linear_Time
Heuristic for Improving Network Partitions”, Pro-
ceedings of the Nineteenth IEEE Design Automation
Conference, IEEE, pp. 175-181, 1982.

[4] D.C. Hodgson and P.K. Jimack, “Efficient Mesh Par-
titioning for Parallel Elliptic Differential Fquation
Solvers”, Computing Systems in Engineering, 6, pp.
1-12, 1995.

[5] D.C. Hodgson and P.K. Jimack, “Efficient Paral-
lel Generation of Partitioned, Unstructured Meshes”,
Advances in Engineering Software, 27, pp. 59-70,
1996.

[6] Y.F. Hu and R.J. Blake, “An Optimal Dynamic Load
Balancing Algorithm”; Preprint DL-P-95-011 of The
Central Laboratory for the Research Councils, Dares-
bury Laboratory, Daresbury, Warrington, Cheshire
WA4 4AD, UK, 1995.

[7] G. Karypis and V. Kumar, “A Coarse-Grain Paral-
lel Formulation of Multilevel k-way Graph Partition-
ing Algorithm”, Proceedings of Eighth STAM Confer-
ence on Parallel Processing for Scientific Computing,

SIAM, Philadelphia, 1997.

[8] B. Kernighan and S. Lin, “An Efficient Heuristic Pro-
cedure for Partitioning Graphs”, Bell System Techni-
cal Journal, 29, pp. 209-307, 1970.

[9] AI. Khan and B.H.V. Topping, “Parallel Adaptive
Mesh Generation”, Computer Systems in Engineering,

2, 75-101, 1991.

[10] R. Lohner, R. Camberos and M. Merriam, “Parallel
Unstructured Grid Generation”, Comp. Meth. in Apl.
Mech. Eng., 95, 343-357, 1992.

[11] Message passing Interface Forum, “MPI: A Message
Passing Interface Standard”, Int. J. of Supercomputer
Applications, 8, no. 3/4, 1994.

[12] P.M. Selwood, M. Berzins and P.M. Dew, “3D
Parallel Mesh Adaptivity: Data-Structures and Algo-
rithms”, Proceedings of Eighth SIAM Conference on
Parallel Processing for Scientific Computing, STAM,
Philadelphia, 1997.

[13] B.H.V. Topping and A.I. Khan, “Sub-Domain Gen- [16] A. Vidwans, Y. Kallinderis and V. Venkatakrish-

eration Method for Non-Convex Domains”, in Infor- nan, “Parallel Dynamic Load_Balancing Algorithm
mation Technology for Civil and Structural Engineers for Three_Dimensional Adaptive Unstructured Grids”,
(B.H.V. Topping & A.I. Khan, eds.), Civil-Comp ATAA Journal, Vol.32, No.3, pp. 497-505, 1994.
Press, 1993.

[17] C. Walshaw, M. Cross and M.G. Everett, “Dy-
namic Load-Balancing for Parallel Adaptive Unstruc-

[14] N. Touheed and P.K. Jimack, “Parallel Dynamic tured Meshes”, Proceedings of Eighth SIAM Confer-
Load-Balancing for Adaptive Distributed Memory ence on Parallel Processing for Scientific Computing,
PDE Solvers”, School of Computer Studies Research SIAM, Philadelphia, 1997.

Report 96.34, University of Leeds, Leeds LS2 9JT,
UK, 1996.

[15] N. Touheed and P.K. Jimack, “Dynamic Load-
Balancing for Adaptive PDE Solvers with Hierarchical
Meshes”, Proceedings of Eighth SIAM Conference on
Parallel Processing for Scientific Computing, STAM,
Philadelphia, 1997.

