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Abstract

This thesis aims at the learning of action primitives and their application on the perceptive side
(tracking and action recognition) and the generative side (synthesizing movements for robot con-
trol). A major motivation is to use a unified primitive representation which represents the primitives
in a context-dependent way and can be used for both, perception and generation. A motivation for
a unified model comes from neuroscience: certain regions in the human brain are active during
recognition and generation of certain actions. Suitable models in such a context are generative
stochastic models such as the hidden Markov model (HMM). This thesis considers arm actions
in a table-top scenario. The actions are for example: pointing to, reaching for, and relocating an
object. These actions are highly context dependent, i.e. they depend on the actual locations of the
objects. A promising extension of the commonly used HMM is the parametric HMM (PHMM),
which has been introduced previously in the context of parametric gestures. The PHMM can learn
and generalize the dependency of a movement trajectory on a set of parameters, as, for example,
object locations. This capability is crucial in both cases: the recognition and the generation of arm
movements. Besides the training of the PHMMs and the accuracy of this action representation, the
following two applications are considered: imitation and intertwined tracking and recognition.

In the robotics imitation application, a humanoid robot is enabled to relocate objects placed
on a table-top. An important aspect is to synthesize movements on the robot such that the robot
reaches for the right object in order to grasp it. The learned parametric HMM enables the robot to
generate an action for specific parameters given by the location of the object for which it should
reach. Thus, the robot is able to achieve the desired effect by its actions as required in the current
context. An interesting aspect of the imitation application is that the actions and their effects are
learned on the basis of another embodiment, i.e. the PHMMs are trained on human performances.
Both, the actions and their corresponding effects need to be mapped to the robot’s embodiment.

In the tracking and recognition application, the action primitives are used to define a space
of possible actions and action sequences, where the sequences are defined by a grammar. The
tracking is performed in the action space which reduces the dimensionality of the tracking problem
and allows for recognition. From the tracking perspective, it is crucial that the parameters of the
action primitive can be used to adapt the primitive to the actual appearance of the tracked motion,
since the actions visually appear different when applied to different object locations. From the
recognition perspective, it is necessary to recognize that an action has been performed, but in
order to understand the full semantic of an action, also the recovery of the action parameters is
important. For example, in order to identify an object to which a person is pointing, it is necessary
to identify the location to which the person is pointing. This is provided by the estimate of the
action parameters.

Findings of the thesis are: a method is developed thus that PHMMs can be utilized to represent
parametric actions/primitives not only for recognition but also for the synthesis of accurate tra-
jectories. This is evaluated by experiments. The experiments with the humanoid robot show that
the proposed methods of reproducing the actions on the robot and synthesizing actions from the
parametric models (trained on demonstrations by a person) enable the robot to accomplish tasks
by generating appropriate actions with the desired effect. In a rule-learning application the robot
learns what to do with several objects. The implemented framework for recognition and tracking
makes use of several action models, which are trained on demonstrations. The framework runs in
real time and allows one to recover the pose and recognize actions and their parameters online.
The experiments show that different actions can be distinguished and that the primitive actions
of complex actions being tracked can be recognized even from a single view in an view invariant
manner.
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Chapter 1

Introduction

Over the last decades, one can recognize an increasing interest of the vision, robotics, and computer
graphics communities in human motion, actions and activities. Typical vision-based recognition ap-
plications for video footage are content-based video annotation, retrieval, summarization, or sign-
language recognition. Further recognition applications are: face recognition, vision-based human-
computer interaction, or surveillance, either in public, e.g., for theft detection, or at home for the
surveillance of elderly people. The applications can be very specific, as, for example, the recognition
of certain incidents as fall detection in the home, or complex activity recognition tasks as in compre-
hensive surveillance systems. On the other hand, the focus of video-based un-intrusive motion capture
is mainly the acquisition of the body pose in a sequence of frames without the use of special suits or
markers. One motivation is to capture the motion on the basis of usual cameras in unconstrained en-
vironments. Since motion capture is a complicated vision task, several novel works on motion capture
make use of motion models. Further application of motion capture are human-computer interaction
(HCI) and motion analysis. For HCI, motion capture may be used as a preprocessing step for a gesture
recognition engine or to control an avatar in a virtual world. Typical application of motion analysis are
clinical studies, assisted sports training, and diagnosis of orthopedic patients. The robotics community
is interested in HCI to establish an easy way to program robots for certain tasks. An interesting field
in robotics is the one of humanoid robots (humanoids). Here one is interested in communicating with
a humanoid in a human-like way and enabling the robot to learn from demonstrations. Such a system
would require advanced perceptive/cognitives skills to understand the action/activities of other agents,
but also requires advanced planning and motor control skills to allow the robot to communicate with
people and to perform complex tasks.

What makes human movements so important? The importance becomes obvious if one notices that
human movements are ubiquitous in entertainment, communication, work, or at home. Most movies
would not be the same without animated computer characters. People who communicate with each
other usually support their utterances with gestures. Such gestures transfer often an important part
of information of the dialog. Sometimes the dialogs can not be grasped without understanding the
gestures. Such gestures are, for example, pointing gestures, which are used to specify an object, or
gestures for communicating the size or length of an object. A nice example is the fish size gesture (see
Figure 1.1), where a person tells about a fish he has caught: “The fish is that big”. However, this is
only one aspect. Movements are of course also important to manipulate and interact with environment.
Basic examples are actions such as grasping or pushing an object. These examples are rather simple.
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Figure 1.1: Fish Size Gesture. The shown gesture communicates the size of a fish during a
speech: “I cought a fish... it’s that big”. The idea of the drawing and speech stems from [134].

These actions can be understood in isolation. However, the actual meaning of those actions becomes
by far harder to grasp if one increases the complexity of a scene. This is, for example, the case when
a number of people interact or manipulate a set of objects over a long time, e.g., cleaning a dinner
table or repairing a car. It is obvious that the perception and understanding of such activities or tasks
is complicated, but this is also true for the execution of such tasks. The humans have to control their
embodiment and have to plan and coordinate their activities.

So what makes the applications of computer vision and the tasks of a humanoid robotics so dif-
ferent? An important aspect is that the perception and understanding can be performed on differ-
ent levels. In applications such as surveillance, automatic video annotation, sign-language recogni-
tion, and human-computer interfaces one has the possibility to define specifics aspects which have
to be recognized. In sign-language recognition and human-computer interfaces the gestures are lim-
ited/predefined. In video annotation the works aim, for example, at recognizing certain actions and
scenes. In surveillance one can define certain situations and events which are of interest and need to
be detected. Of course, this does not mean that these tasks are simple; and in surveillance one can
identify situations which cannot be interpreted easily due to the concurrency of the real world where
people interact with other people and objects, see [58]. It only means that one has in most of these
applications the possibility to break down the problem to certain aspects which can be addressed in
isolation. However, in humanoid robotics [110] one is interested in equipping the robot with the capa-
bility to interact with the environment and people, enabling the robot to improve its skills by learning
from observations, and enabling the robot to apply this knowledge in unknown situations. One strat-
egy might be to record and label all possible movement sequences the robot might need to perform or
recognize. However, this seems to be a rather poor approach, if one considers complex real life situ-
ations. The number of scenes that robot might encounter are infinite even for a specific task such as
cleaning a dinner table. Here, the number of plates, knifes, forks, and cups may vary. The objects can
be placed at different locations and in arbitrarily many constellations. As a consequence, the actions
for cleaning the dinner table need to be planned and adapted to the current situation. If the robot ob-
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serves now a person who is cleaning the table, then there are obviously different levels of interpreting
the scene. One could recognize, for example, low-level actions such as picking up a fork or stacking
the plates. In a global view one would rather tend to interpret these actions as cleaning up the dinner
table. Both levels of understanding would be important for the robot in order to understand the task as
such. Consequently, one needs a more structured hierarchical representation of actions or activities in
order to recognize and handle complex activities. This seems to be especially crucial if one considers
a planning system on a robot which needs to compose a global goal through a number of subgoals.
However, a general representation of human motions seems to be also important in a motion capture
and recognition system of such a robot. Otherwise, the system would be applicable only in a very
constrained context. Several works on motion capture consider only motion models for a single action
or a small unstructured set of actions.

In computer vision and robotics, a number of different notions have been introduced to structure
actions and activities. In [85], a hierarchy of change, event, verb, episode, and history has been intro-
duced. In [16], the words motion, action and activity are used to address different abstraction levels. In
the context of this thesis, the following hierarchy [80, 65] seems to be more appropriate: action/motor
primitives, actions, and activities. Actions are supposed to be composed from action primitives, and
activities are composed from actions. In [80] this is exemplified by the use of a tennis game scenario,
where the player’s activity of playing tennis is composed of actions as returning the ball, which in
return is composed from motor primitives as running left/right and performing a forehand/backhand.
This taxonomy is basically compatible to the levels of actions and activities that are discussed in the
survey [125] on activity recognition. In [125], an action is understood as a simple motion pattern typi-
cally lasting for tenth of seconds and is executed by a single person, whereas an activity is characterized
as a complex sequence of actions which can involve interaction of several humans.

In this thesis the following notion is used: a movement is a short motion sequence of the body or
some body parts of a person. A movement can be an action or a gesture. A gesture is supposed to con-
vey some meaning. An action is associated with some object. Either an action has a certain effect on an
object or conveys a certain meaning as, for example, pointing to an object or a supposed object location.
A complex action/movement is a composition of basic actions/movements. Actions and movements
which can be composed to a complex action/movement are addressed as (action/movement) primitives.

The notion that human motion is composed from primitives is supported by neuroscience [102,
103] and physiology [86]. The composition of human motion is similar to speech being composed
from phonemes. The hierarchical notion of complex actions/activities and the similarity of the mo-
tion composition process and language speak for the use of grammars to structure the primitives and
to define their composition to complex actions/movements. A concrete grammatical framework for
human movements is given in the work [38]. The work defines a language for human motion and
uses parallel grammars to describe the synergetic composition of body motion on the basis of motor
primitives for the different body parts. Another finding in neuroscience is the discovery of the mirror
neuron system in the brain of monkeys and humans. This region is thought to encode action primitives
[103, 101] and uses the same neural mechanism for the recognition and generation of action primitives.
This discovery and the founded attitude that imitation is an expression of higher intelligence [110] are
important motivations for the field of imitation learning in robotics. Among other objectives in imi-
tation learning, one is interested in the acquisition/learning of movements from demonstrations, and
the generation and recognition of movements. The use of a generative model for the representation of
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primitives, which combines motion recognition and generation in one system, is motivated through the
mirror system [56]. The mimesis framework proposed in [56] uses hidden Markov models (HMMs)
as a representation of primitives. However, usual HMMs lack the capability of modeling primitives in
a context dependent way.

Context dependency is an important aspect of many movements. The fish-size gesture mentioned
above varies depending on the fish-size. The conveyed meaning of the gesture is the size of the fish.
In a similar way actions that are applied on objects vary depending on the object location(s). Such
actions are for example: reaching for an object in order to grasp it, pointing to an object, or pushing an
object from a location A to a location B. The reaching and pointing actions are examples for simple
goal-directed actions which depend (at least) on the location of one object. However, a primitive for
pushing an object depends at least on both locations, A and B, in order to achieve the desired effect
in a given context. In robotics several representations for goal-directed action primitives exist (see
Section 1.1.1). An application in the work [127] is to enable a robot to throw a ball into a basket placed
at different locations. Here, the throwing primitive varies depending on the basket location. Contrarily
to the fish-size gesture, an important aspect of the throw is the dynamics of the action. All the so
far described movements (i.e. actions and gestures) depend on the context (effect, meaning, or goal).
This context is assumed to be characterized through some continuous parameters. In the following
these context dependent movements are addressed as parametric movements, primitives, actions, or
gestures. For a useful representation of such a parametric movement it is important that the model used
generalizes over the parameter space even though it is trained only on a small set of examples. Similar
to the arguments (mentioned above) for composing actions/activities from primitives, the argument
for such a parametric movement model is again that it is impossible to record and store all possible
trajectories of a parametric movement, since the parametrization is continuous. The recognition and
generation of parametric movements for only certain parameters would be only useful in a predefined
and constrained context.

If one looks at the scene context from a more global view, then one can see further relations
between actions and context. Assume an environment with two objects including a cup that is placed
on a heavy table. A person could point to each of the objects, but a grasping action can be applied only
on the cup. One sees that each object has only certain affordances, i.e. only a certain set of actions can
be applied on a specific object. (Object affordances are discussed in psychology [53].) In addition,
one can see that the context basically constrains the set of actions which are likely to occur. Moreover,
the context constrains which parameters of each parametric action are likely (e.g., the grasping action
is usually applied on an object). The concept that objects and actions are intertwined is well known
to the robotics community. The OAC (object action complex) concept [135] combines the relation
between action, object, the likely effect of the action, and a measure of success. This formalization
aims at planning and execution at all levels of a cognitive agent.

The discussion above shows that the representation of parametric primitives and the representa-
tion of complex movements/actions through hierarchies (as grammars) is an important aspect of a
humanoid robot that should operate in a general environment and needs to recognize and generate
movements. However, the robot as an autonomous online learning imitation system also needs to
segment and categorize the observed motions into meaningful sequences and groups in order to re-
fine existing primitives or to create novel primitives. Another aspect is the transfer of the movements
onto the robot’s embodiment. For example, the mapping of one movement trajectory demonstrated by
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Figure 1.2: Table-Top Scenario. A person is pointing at an object.

a person may look different on the robot’s embodiment due to different body sizes and proportions.
Hence, an imitated movement may have a different effect/meaning even in the same environment.
This thesis proposes a unified representation of parametric movements/primitives through a model
which can be used for both perception and generation. This is motivated by the mirror neuron system
and the fact that an imitation system [56] requires both recognition and generative capabilities. The
considered applications are imitation of parametric movements by a humanoid and the tracking and
recognition on the basis of such representations which are learned on the basis of demonstrations. The
learning of the model is based on segmented demonstrations labeled by their parameters (specifying the
effect/meaning). However, in a joint work [66] it is shown how the learning of parametric movements
can be achieved in an automatic way. The segmentation into meaningful movement sequences is
performed based on salient points. However, as described in [109], the movement trajectories of the
human demonstrators can be vastly different from each other if the human agent or the involved objects
are at different locations even for the same actions. The strategy [109] to cluster the actions applied
onto the objects is to take the change of the object state into account. Since the state changes of the
objects define the effects of the body movements, the clustering results in a more meaningful set of
primitives, where the parameters of the demonstrations could be extracted form the object states.
Many different models for representing movements have been considered in computer vision and
robots (see Section 1.1). However, most of these models aim rather at either movement generation
or tracking/recognition. Most of these models which are applied in computer vision have not been
considered for the generation of precise parametric movements for robot control. A suitable model
for a unified representation of movements is the hidden Markov model (HMM), which is a generative
stochastic model. This model is suited to handle temporal and spacial variances in the movements
during training and recognition. However, the movements, which are supposed to be represented in
this thesis, are parametric, as mentioned above. If an HMM is trained on a set of demonstrations of a
parametric movement, the HMM would capture the structural variation depending on the movement
parameters either as variance or in an internal structure of the state transitions (see Section 2.3). In
both cases, the actual meaning of a specific instance of the parametric movement can not be recovered
from the HMM. In other words, if one considers a pointing action, a part of the semantic of the action,
i.e. the actual pointed to location, cannot be recovered from the HMM. One approach concerning this
issue is to use mixture-of-expert models [59]. However, a more promising approach is the parametric
HMM (PHMM), which has been introduced in the context of parametric gestures [134] for the recog-
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1 INTRODUCTION

nition of such gestures and their parameters. The PHMMs model explicitly the systematic variation
of the movements depending on the parameters. A PHMM can learn and generalize the systematic
variation within a set of demonstrations. The training procedure of the PHMM is supervised, i.e. a
label containing the parameters is provided for each demonstration. In this way, the meaning of the
parameters of the parametric movement is introduced to the PHMM and the parameters of the PHMM
can be interpreted in the same way. This is crucial for both, action recognition and generation. In the
case of recognition, a PHMM that is trained, for example, on pointing actions can be used to recognize
whether a presented movement is a pointing action. In addition, the PHMM framework [134] has a
mechanism for estimating the parameters of the action. The estimated parameters concretize then the
meaning of the action, i.e. the parameters specify the pointed to location. In the case of action gen-
eration, a PHMM can be used to synthesize a specific movement for given parameters. In the case of
the synthesis for robot control, a PHMM that is trained on reaching actions, can be used to synthesize
reaching actions for arbitrary object locations, thus the robot can grasp an object placed at an arbitrary
location in the working space. The utilization of PHMMs for learning a unified model of parametric
movements, which enables not only recognition but also the synthesis of accurate movement trajec-
tories (as required for robot control), is investigated. Therefore the notion of prototype movements is
established (Section 1.2.1) w.r.t. synthesizing from (parametric) HMMs (Section 2.2.4).

As an example, a table-top scenario is considered, see Figure 1.2. The considered actions are for
example: pointing to, reaching for, and relocating an object. All these actions are parametric and
depend on the object locations.

In the robotics imitation application, a humanoid robot is enabled to relocate objects placed on a
table-top. An important aspect is to synthesize movements on the robot such that the robot reaches
for the right object in order to grasp it. The learned parametric HMM enables the robot to generate
an action for specific parameters given by the location of the object for which it should reach. Thus,
the robot is able to achieve the desired effect by its actions as required in the current context. An
interesting aspect of this imitation application is that the actions and their effects are learned on the
basis of another embodiment, i.e. the PHMMs are trained on human performances. Both, the actions
and their corresponding effects need to be mapped to the robot’s embodiment.

In the tracking and recognition application, the primitive representation is used to define a space
of possible actions and action sequences, where the sequences are defined by a grammar. The tracking
is performed in the action space which reduces the dimensionality of the tracking problem and allows
for recognition. From the tracking perspective, it is crucial that the parameters of the action primitives
can be used to adapt the primitive to the actual appearance of the tracked motion, since the actions
visually appear different when applied to different object locations. From the recognition perspective,
it is necessary to recognize that a certain action has been performed, but in order to understand the full
semantic of the recognized action, also the recovery of the action parameters is important.

An overview of the thesis is given in Section 1.2.2. The contributions are discussed in Section 1.3.
Related work is discussed in the following section.

1.1 Related Work

Related work to parametric HMMs is given in Section 3.2. In the following the fields related to this
thesis are discussed.
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1.1.1 Imitation Learning

In 1996, Honda, announced a humanoid robot [52]. The research and development was initiated in
1986. However, it was far from satisfying that the machine required tele-operation to perform other
tasks besides, for example, locomotion [111]. In [111] it is postulated that the study of imitation
learning offers a promising route to gain new insights into the mechanisms of perceptual motor control
that could lead to the creation of autonomous humanoid robots. For example, the exploration of new
actions through reinforcement learning is rather impossible in the case of large state spaces as of
humanoid robots (30 DOFs), even when using only simple motor commands for each DOF [111]. The
learning of new actions through imitation of human agents can be seen here as an efficient alternative
to self exploration.

Robotics research on imitation started in the early 1990s [65] under names such as teaching by
showing, learning by watching, programming by demonstration (task-level learning). The focus was
on the extraction of task knowledge by analyzing changes in the environment and observing (tracking)
the hand [65]. For example, in the work [67] of learning by watching, the authors stress as a goal for
future robots to overcome the requirements such as the need of experts and programming to enable the
robot for certain tasks. The approach enables the learning of reusable task plans on a symbolic level by
watching a human performing assembly tasks. A plan can then be adapted to a different environment
to achieve the same assembly goal. The robot (a parallel-jow gripper supported by a Cartesian-type 6
DOF arm) is controlled in terms of control macros.

The advent of humanoid robots also made the acquisition of motor knowledge through imitation
more attractive due to the same kinematic structure [65]. Early works on mapping grasping or whole
body movements are [61, 100]. In [100], a kinematic model similar to the robot, but scaled to the
performer, is used to calculate joint angles for the robot based on the least-squares optimization of
3D point correspondences. The replicated performances have a similar appearance. In [8] a reference
description of motion data based on a kinematic reference model is established. This enables the
transfer of different types of recorded motion data (via the intermediate representation based on the
reference model) to different humanoid embodiments through the use of converter modules. The
problem of appearance-level imitation of actions is that the mapping to the robot may alter the achieved
effect.

Typical questions [10] in imitation learning are: what, when, and how to imitate. In [10] a frame-
work is proposed for the imitation of manual tasks which addresses the questions: what and how.
The relevance of the features (joint values of the arm and the 3D hand position) of the demonstrated
movements is analyzed based on the variance in the movements. This results in a cost metric. The
movements are then reproduced by minimizing the cost to imitate the relevant aspects given the further
constraints of the robot.

Various different models and approaches are used to represent movements and parametric move-
ments. In [78] via-points are used as control variables of the demonstrated trajectories. A selection
scheme of via point for different sub-goals is proposed based on which the trajectories can be adapted
to achieve the task goals (as a tennis serve). In the approach [6] to imitation, HMMs are trained on
key-points of trajectories in order to generalize the movements demonstrated to the robot. Gaussian
Mixture models are used in [23] to represent trajectories. The time is encoded by augmenting the
sequence samples by a time variable. In [126] and [127] a regression model is applied on a set of
exemplar movements to synthesize goal-directed actions as throwing a ball in a basket at arbitrary

15



1 INTRODUCTION

locations. The movements are represented for the regression through key-points. Dynamic movement
primitives (DMPs) [55, 111] have been proposed to represent cyclic movements (e.g., walking) and
goal directed movements (e.g., reaching). Typically these primitive models use differential equations
to describe the state evolution. The model parameters can be learned on the basis of demonstrations.
For goal directed movements an attractor is used to assure that the actual goal is reached. The mimesis
framework [56] uses HMMs as a representation of “symbols” (primitives). The framework generates
symbols based on observations and is used also for recognition. The synthesis process is based on
generating and averaging a large set of output sequences.

Discussion: A disadvantage of the regression model [127] is that the key-points have to be detected
in order to generate meaningful trajectories. The detecting of proper key-points is crucial. The advan-
tage of PHMMs is here that HMMs have built-in warping capabilities, which make a pre-processing
step as aligning the trajectories unnecessary. DMPs are an appealing approach for synthesizing move-
ments. However, they do not provide a statistic framework for recognition.

1.1.2 Motion Capture

The term, human motion capture, usually addresses the process of registering large scale human mo-
tions, as the movements of the head, arms, torso, and legs [79]. The capturing of small scale move-
ments are generally addressed in other research fields. Examples therefore are facial feature tracking
[25] and hand pose estimation [105, 104]. However, the term human motion capture applies also to the
capturing at different resolutions where the subject may be understood as a single entity (low resolu-
tion) or as a highly articulated subject with a skeletal structure (high resolution) [79]. Human motion
capture is an active research area due to its large number of applications and its inherent complexity
[80]. The vision-based recovery of the human motion comprises difficult and ill-posed problems, such
as inference of pose for a highly articulated and self-occluding non-rigid 3D object [80]. In contrast to
rigid objects, the clothes on the human subject can cause appearance and shape changes, e.g., through
lighting changes or the wrinkling of clothes. The clothes may even disguise some parts of the body
pose, an example for such clothes are frocks (see [21]).

Current and potential applications can be categorized into control (1.), surveillance (2.), and anal-
ysis (3.) [79]. 1. Typical control applications are [19]: character animation for movies, interactive
virtual worlds (e.g., in computer games), teleconferencing, or advanced human-computer interfaces.
Character animation is an example, where the pose estimates of an articulated human model is the
desired output of a capturing system. Contrarily, human-computer interfaces (HCI) require also some
understanding of the captured motion. The approach [134] to gesture recognition relies on trajectory
data, whereas other works approach the recognition problem on the basis of image features (see Sec-
tion 1.1.3). 2. In surveillance, typical systems track one or several subjects and monitor the subject(s)
[79]. The fall incident detection [72] makes use of the roughly tracked motion of the subject, whereas
the cashier activity recognition approach [29] works on the basis of image feature-based event de-
tectors. 3. Examples of applications of motion analysis are [79, 19]: clinical studies, assisted sports
training, diagnosis of orthopedic patients.

Due to the different applications and their requirements, different types of technologies exists.
Examples for active sensing [79] systems are electromechanical systems from Metamotion, which
measure directly the body pose (see [34]), and electromagnetic systems from Motionstar (see [34]),
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which use sensors which are attached to the person. Some systems from Vicon make use of reflective
markers which are recognized in different camera views. The use of video cameras or IR cameras
are typical examples for passive sensing. The use of markers can be seen as a compromise between
active and passive sensing [79]. However, the active sensing and the marker-based devices are to some
level intrusive and require the cooperation of the subject, which makes them impractical or unusable
in certain applications, especially in surveillance.

The use of usual consumer cameras seems to be preferable, due to cost and non intrusiveness, but
makes greatest demands on the processing of the data. To simplify the capturing task, most works on
vision-based motion capture rely on constraints [79] concerning: the environment (static or uniform
background, controlled lighting condition), the subjects (e.g., one subject, specially colored or tight-
fitting clothes, slow motions, or known motion pattern), and the view on the subjects (e.g., walking
parallel to the camera plane (e.g., [89])). Some works aim particularly at overcoming certain con-
straints: in the work [32], the body model’s surface adapts to the clothes, and the work [43] aims at
outdoor motion capturing.

The tasks which a motion capture system usually addresses are [79]: initialization (finding/setting,
e.g., thresholds, camera calibration, initial body pose, size of body parts), tracking (establishing coher-
ent relations of the subject(s) between frames), pose estimation (finding the configuration of the body
or body parts of the subject(s)). The focus is in the following on works for video-based capturing.
Usually these works make at some level of the task (tracking or pose estimation) use of a human body
model. Different models are for example [20]: stick figures, where the nodes define some stylized joint
positions (defined through 2D/3D locations or defined through local transformations within the built-in
hierarchy), or models, where the skeletal structure is fleshed out through basic geometries (cylinders
[114], superquadratic [121], meta balls [90], etc.) or a skin mesh [32, 36]. Typically, these models
are then articulated based on a set of parameters (e.g., describing joint values) which are defined as
a state vector. The state vector defining the body pose is then usually augmented by the global pose
[36, 26]. Such an augmented state vector has the advantage that the estimated state vector of the esti-
mated pose can serve directly as a description of the captured motion. The change of the state vector
between frames can be used to predict the pose [34] for the next frame (which addresses basically the
tracking task). Further model parameters are used, for example, to define the shape of the skin [32]
or the appearance [115] in form of texture parameters (of a trained appearance model). Analysis-by-
synthesis approaches, which analyzes a scene by comparing its appearance to a model of that scene
[19], are common practice in many works (e.g., [114, 26, 36, 90]). Either the model is synthesized in
a hypothesized pose and compared directly with the scene [26], or the synthesized model is used to
establish correspondence to define some error measure which is then optimized for the pose estimation
[36]. Note, not all works make (directly) use of body models and synthesize the body pose in order to
make pose estimates, see [80].

An early work on motion capture is for example [20], this work and also [90, 36] make use of
gradient based optimization techniques to estimate the pose. A disadvantage of these techniques is
that they can get stuck in local minima (e.g., due to the depth disambiguations in a monocular view)
from which they can not recover (easily).

In the following, the focus is on newer works which make either use of an articulated body model
or which are interesting in the context of this thesis. Three different directions are considered, which
aim also at overcoming the pose estimation problems of the gradient-based techniques: 1. Particle fil-
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tering. A typical technique to overcome the problems of gradient-based techniques is particle filtering.
These works approach the pose estimation usually in an analysis-by-synthesis approach, where each
hypothesis (given by a particle) is compared with the scene. However, the disadvantage of particle
filtering is that the number of required particles scales exponentially with the number of dimensions
[77, 26]. Due to the high dimensionality of an articulated body model, the processing time for evalu-
ating all hypotheses becomes large. In order to use the particles more efficiently, different approaches
have been investigated: annealing [26] (multi-stage filtering which allows reducing the number of
particles required without losing track of local maxima/minima), interval particle filtering [107] (fo-
cusing on certain DOF), jump diffusion [118] (approaching the problem of depth disambiguations in
monocular views), covariance scaled sampling [117], interacting particle filters [31], shape-encoded
particle propagation [81], and partitioned sampling [77]. Other works aim instead at reducing the di-
mensionality of the state space, e.g., by using motion models. These works are discussed under point
three.

2. Complex Frameworks (Combining Different Techniques). Novel frameworks use, for example,
multistage approaches ([70] considers the stages: coarse tracking of people, body part detection, 2D
joint location estimation, and 3D pose inference) or implement various constraints ([41] considers the
constraints concerning self-occlusions, the kinematic, and the appearance; and uses belief propagation
to infer the pose on the bases of a graphical model). The body model in the work [32] models also
deformations of the skin, e.g., in order to adapt to clothes. The framework uses of a mixture of particle
filtering and local optimization techniques, which are applied on different levels of the model (refining
the pose of limbs, refining the whole body pose, refining the meshes of the skin).

3. Utilizing Motion Models. The following works are especially interesting in the context of this
thesis. In the works [128, 114] linear subspace models are established, e.g., for cyclic motions as
walking. Based on example sequences of the walking cycle, a compact representation is generated
through principal component analysis [114]. The representation consists then of a number of eigen-
motions. An arbitrary motion is a linear superposition of these and is specified through some scalar
parameters. These (latent) parameters and the progress of the motion is part of the state space. The
technique used is particle filtering. An extension to multiple types of motions is given in [116], which
structures the motions in a tree.

In the work [89], a switching linear dynamic system (SLDS) is described. The SLDS is trained on
two different types of motion (running and walking). The model is then used for supporting the track-
ing and for classifying/identifying motion regimes (walking/running) based on the switching states.

The works [129, 130, 96, 131] make use of Gaussian process models (GPMs). The GPM in [129]
is a static model, which learns a low dimensional embedding in a latent space of the high-dimensional
pose data and provides a density function over the latent space and the pose space. The model provides
also a non-linear probabilistic mapping from the latent space to the pose space. In [130] an extension
of the GPM to a dynamic model (GPDM) is used, where the model includes in addition a dynamic
model in the latent space. In the experiments of [129, 130], the motions walking and golf swing are
considered (independently), where the pose estimations is done based on tracked 2D joint locations. In
[96], particle filtering is investigated in combination with GPDMs. In the experiments different actions
are considered, but the transition between models of different actions is not considered. An interesting
work in this regard is [25], in which a switching layer is introduced in top of the GPDM:s that enables
the simultaneously tracking/recognition of multiple motion types.
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Alternative techniques to GPDM are Laplacian eigenmaps latent variable models [73] and local
linear embedding (LLE) [28].

An interesting work concerning motion models for 3D motion capture is [122]. The work intro-
duces the so called implicit mixture of conditional restricted Boltzmann machines. The computational
cost of the training procedure is depending linearly on amount of training data (which is not given for
the GPMs [69]). It learns coherent models of different movements and can infer transitions between
the movements, even when not present in the training data. The dimensionality reduction is only im-
plicit such that large deviations from the training set are possible (e.g., if the model is trained on usual
walking the tracking is not condemned to fail when the tracked subjected scratches the nose).

Discussion: The works concerning GPDMs and linear subspace models (generated on the basis
of PCA) considered above do not aim at the recovery of the latent parameters. Even though the
latent parameters have a certain meaning, the interpretation is not obvious, since the low dimensional
embedding is generated in an unsupervised way. When aiming at recognition, the works (mentioned
above) concerning GPDMs and SLDS consider only the recognition of the type of motion. A problem
of the GPDM [131] learning procedure is that the procedure can produce gaps in the latent space, when
the same pose appears several times in the modeled motion, see [131]. An interesting aspect in the
context of this thesis is that the learning of NLDS requires a vast amount of training data [131]. The
GPMs training is in O(N?) or O(N?3) [122], where N is the number of training sequences. Whereas
the training of parametric HMMs is in O(N). An advantage of the PHMMs is that the meaning
of the latent parameters is given through the supervised training procedure. A further advantage of
the PHMMs in comparison to the linear subspace models (generated on the basis of PCA) is that
the PHMMs have the inbuilt capability to cope with different dynamics of the training examples.
Moreover, the PHMMs model also the variance of each instance of parametric movements, which is
preferable in the case of recognition.

1.1.3 Action Recognition

The recognition of human actions and activities has several applications as content-based video anno-
tation, retrieval, and summarization, human-computer interaction, and surveillance. Comprehensive
review articles on action and activity recognition are [80, 125]. Typically, authors [80, 65] make use
of terms as action, activities, simple/complex action or behaviors to characterize the complexity of the
recognition task.

Important aspects of action recognition are view invariance and identity invariance. As an example,
the point trajectories in the image plane of a subject are sensitive to translations, rotations, and scaling
[125] and are highly depended on the orientation of the subject to the camera due to the perspective
projection onto the image plane. Therefore alternative representations as speed and spatio-temporal
curvature are more useful [95]. The work [95] aims at view-invariant action recognition and presents a
representation which captures dramatic changes in speed and direction of 2D point trajectories. How-
ever, already the extraction of accurate point trajectories is complicated due to occlusions, noise, and
background clutter [125].

A typical hierarchical structure of a comprehensive activity recognition systems is [125]: modules
such as segmentation, tracking, and object recognition at the lower-levels, action recognition modules
at mid-level, and reasoning engines at the high-level. In the following, different categories of works
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on action recognition are discussed.

Template Based Approaches. In [91] the periodicity of (sufficiently) periodic movements of sub-
jects is detected to generate a sequence of 2D templates describing an action cycle. For template
generation, the subject is tracked and segmented, spacial/temporal scale changes and the subject’s
translation are compensated. Each 2D template consists of a grid aligned in x- and y-direction, where
each bin contains some flow-based statistics of the corresponding region over the corresponding tem-
poral segments of the cycles. The recognition is performed by template matching. In [17], the regions
of the subject’s motion in an image frame are segmented by using difference images. The segmented
image sequence of a performed action is aggregated in two types of template images: MEI and MHI.
The motion energy image (MEI) is a binary valued image, where a foreground pixel indicates where
motion has occurred in the image sequence; the motion history image (MHI) is a scalar-valued image
generated by summing up the segmented images with increasing weights. The MEI and MHI are then
used for recognition. The matching is performed by using the statistics of the scale, translation, and
orientation invariant Hu moments [17]. A proposed backward-looking algorithm is used to account
for different expansions in time. View invariance is established by using templates acquired for dif-
ferent viewing directions. An extension of the 2D templates in [17] to 3D templates of visual hulls is
considered in [133].

Volumetric Approaches. A video sequence can be understood as spatio-temporal volume. The
segmented silhouettes [15] or contours [137] of a person in a sequence of frames is then a volume
or a surface. Such a volume/surface can be interpreted as an object, which allows one to use object
recognition approaches. In [137], the stacked contours of an image sequence of an action are basically
an “action” surface. Action “surface” descriptors are generated for important interest points (ridges,
valleys, etc.) of an action “surface”. The action recognition task becomes then a matching problem
of these interest points. In [15], the silhouettes form an object volume. From the solution of the
Poisson equation a variety of local shape features are computed within the volume. A set of moments
of these features form then a global shape/action descriptor of an action. The recognition is performed
by descriptor matching. The advantage in comparison to [137] is that the approach does not rely
on a mechanism for matching points. In order to establish a better view point invariance (e.g., in
comparison to [15, 137]) the work [119] makes use of manifold learning in order to learn how the
appearance of an action varies when the viewpoint changes. The normalized R transform (translation
and scale invariant) is used as a shape descriptor of silhouette images. A time-normalized sequence
of silhouette images of a performed action is then described as a 2D surface by stacking the 1D shape
descriptors of each image. For a demonstrated action, the surfaces are generated for 64 views by visual
hull animation. The 1D cyclic embedding of the 64 surfaces is generated by the Isomap algorithm
which results in a functional description of the surface depending on the viewing angle.

Space-Time Features. The space-time (ST) volume is here understood in comparison to the ap-
proaches above rather as a 3D intensity image, which allows one to use image feature detectors and
descriptors specialized for detecting/describing salient points of the ST volume [68]. In [112], an SVM
approach is used for recognizing different actions. In [87], a graphical model is used to discover action
categories in an unsupervised manner. In contrast to the local approaches (based on salient points), the
tensor-based approach in [63] is a holistic approach on the basis of the ST volumes.

Statistical Models. Various different models are applied for action and activity recognition, only
some examples for different models are given: HMMs are used, e.g., in [4] and [120] for human action
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and sign language recognition. Dynamic Bayesian networks are used in [99] for gesture recognition.
A switching hidden semi-Markov model is used in [27] for activity recognition. In [58] stochastic
context-free grammars are used for the detection and recognition of temporal extended activities and

interactions between subjects.

1.2 Overview

As mentioned in the introduction, this thesis considers a table-top scenario as shown in Figure 1.2. A
person sits in front of a table-top and performs actions on different objects. The considered actions
are, for example, reaching or pointing which are parametrized by the object locations. In the intro-
duction and the related work section it is argued that HMM/PHMMSs are very appealing movement
models. HMMs are an appealing movement model, since HMMs enable both recognition and gen-
eration of movements, which suits the concept of imitation and mirror neurons. HMMs are able to
handle and model the natural variances of human movements. These variances are the spacial vari-
ances and different dynamics. The parametric extension of HMMs (PHMM) can model explicitly the
systematic variation within parametric movements. This enables the recognition of the full semantic
of a specific performance of a parametric action and the synthesis of a specific action with the desired
effect/meaning.

However, in order to make the chapter overview (Section 1.2.2) and the contribution of the thesis
(Section 1.3) easier to grasp, it makes sense to: a) give some example for the natural and systematic
variances of human movements, b) discuss the notion of prototype movements/actions that is used in
this thesis, and, c) discuss how one can compare movement trajectories.
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Figure 1.3: Dynamics of Human Movements and Dynamic Time Warping. Each function
shows one dimension of a recorded 3D finger-tip trajectory over time. Left: Two Recorded

Sequences. — Right: Time-Warped Sequences.

1.2.1 Parametric Movements

In Figure 1.3 (left) and Figure 1.4 (left) show performances of a pointing action, where a human
points repetitively in the same way at a single target location. However, each performance misses this
location slightly. In Figure 1.4 (left), the =, and y components of the 3D finger-tip trajectories are
displayed. Only the first part of the performances are shown here, where the finger approaches the
target. In Figure 1.3 (left), the z component of the finger-tip trajectories are displayed as functions
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Figure 1.4: Non-Parametric Human Movements: Spacial Variance and Prototypes.

Left: Recorded Trajectories. The plots show 4 recorded repetitions of the same pointing action
performed by a human. Only the 2D projection of the 3D finger-tip trajectories is shown. The
person had to point always at one location on the right side of the plot. Each trajectory shows
some spatial variation and also the target has been missed slightly. — Right: Prototype
Movement. A possible prototype of the action is shown in black. Here, it is calculated by
averaging.
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Figure 1.5: Parametric Human Movements: Spacial Variance and Prototypes.
Left: Recorded Trajectories. The plot shows several performances of a parametric pointing
action. Here, three pointing targets are considered. For each target 4 repetitions are displayed.
— Right: Parametric Prototype. For each target a possible prototype is shown in black. These
prototypes can be understood as three different instances of a parametric prototype.

over time. The approaching and the withdrawing parts of two performances of the pointing action
are shown here. The small plateau in the middle belongs to the phase where the finger rests for a
short while at the target. One can see in both figures that the finger-tip trajectories differ in their
location in 3D space, even though the recorded person tried to perform the same movement. In Figure
1.3 (left) one can also see that the execution speed varies over the performances. Since the person tried
to perform the repetitions in the same way, it makes sense to assume that there exists an underlying
prototype of the movement. Each performance is then a natural variation of the prototype. A possible
prototype is shown in Figure 1.4 (right). Figure 1.5 (left) shows repetitions of pointing actions for
three different target locations. Still, it makes sense to assume that there is some underlying prototype
for each target location (see Figure 1.5 (right)), where each performance is a natural variation of
the corresponding prototype. However, here it makes sense to assume that there is some prototype
movement which varies in a systematic way depending on the target. Such a prototype movement
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that varies in a systematic way depending on some parameters is called in the following parametric
prototype (movement/action/primitive). As mentioned above, HMMs are able to model and handle
the natural variance of movements. The parametric HMM (PHMM) is able to model explicitly the
systematic variation of the underlying parametric prototype.

Comparing and Aligning Movements. Another important aspect is to measure the similarity of
movements. The two trajectories Figure 1.3 (left) appear to be similar. However, the area between the
graphs is rather large. This is partially based on the different dynamics of the movements. Another
problem may be that the recorded movements can differ in their length or number of samples. Dynamic
time warping (DTW) is a method which allows one to align the movements to some degree with respect
to their dynamics. In Figure 1.3 (right), the two movements are warped by a DTW algorithm. This
works also when the movement sequences differ in length. The area between the warped sequences in
Figure 1.3 (right) is much smaller and seems to reflect the actual similarity of the sequences. DTW can
be also applied on multivariate sequences. A reasonable similarity measure is then, for example, the
root-mean-square of the Euclidean distances of the corresponding samples of two sequences aligned
by time warping. DTW is explained in Appendix B. Another aspect is the interpolation or averaging
of movement sequences. The sample-wise interpolation of the aligned sequences in Figure 1.3 (right)
seems to be reasonable to get a sequence with a similar shape. Contrarily, the sample-wise interpolation
of the un-aligned sequences (Figure 1.3 (left)) seems to be questionable, since one would interpolate
between parts of the sequences with different semantics. Here, one would interpolate, for example,
samples which belong to the parts of the movements, where the finger approaches the target and where
the finger is withdrawn from the target. This situation would become even severe if the movements
differ more in their dynamics.

1.2.2 Overview and Chapter Outline

The contributions of this thesis are discussed in the following Section 1.3. In the appendix, an intro-
duction to DTW (Appendix B), particle filtering (Appendix C), modeling of 3D scenes (Appendix D),
and Gaussian distributions (Appendix E) is given. An overview of the notation used in this thesis
is given in Appendix A. An overview of the main chapters of the thesis is given below. A final
conclusion of the thesis is given in Chapter 7. Publications which are related with this thesis are:
[47, 49, 48, 50, 45, 46, 66, 51]. D. Herzog is first author of the works [47, 49, 48, 50, 45, 46, 51], and
second author of the work[66]. The works [47], [48], [50], [51] are associated with the Chapters 3,
4,5, and 6, respectively. However, the thesis is only partially based on the these works and provides
further aspects and experiments.

e Chapter 2: This chapter provides an introduction to the hidden Markov model (HMM) and
investigates the utilization of HMMs for representing (non-parametric) prototype movements
w.r.t. recognition, training, and synthesis of prototype movements.

The introduction to HMMs is given in Section 2.1.1, which provides: an overview of the notation
that is used in this thesis w.r.t. HMMs (Section 2.1.2), a discussion of HMM-related problems
(Section 2.1.3), and approaches to these problems (Sections 2.1.4.2 and 2.1.5). Short notes are
given about the implementation of the HMM framework (Section 2.1.6) and its run time behavior
(Section 2.1.7).
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Section 2.2 discusses different types of HMMs, problems of the HMMs training procedure (Sec-
tion 2.2.2), and extensions of HMMs (HMMs with time restrictions (Section 2.2.3.2) and a
finish state (Section 2.2.3.1)). Different synthesis and recognition methods are discussed in Sec-
tion 2.2.4 and Section 2.2.5, respectively. A method of synthesizing prototype movements is
proposed (Section 2.2.4, Method D).

The training of HMMs on movements is then investigated in Section 2.3 with a view to syn-
thesizing prototype movements by Method D. The preliminary findings (summarized in Sec-
tion 2.4) are that the training of left-right model with time restrictions and a finish state is very
robust and converges quickly. Such a trained HMM is suitable for the synthesis of good proto-
type movements by Method D.

Chapter 3: This chapter introduces parametric HMMs (PHMMs) in the context of parametric
human movements.

Section 3.1 establishes the notion of PHMMs as it is used in this thesis. Section 3.2 provides
PHMM-related work which utilizes PHMMSs for the recognition and synthesis of human move-
ments. Section 3.3 gives an overview of the linear PHMM (LPHMM) and the non-linear PH-
MMs (NLPHMM) which are introduced in the work [134] (Wilson and Bobick). Another inter-
polative approach to PHMMs (IPHMM) introduced in [47] (Herzog et al.) is discussed in depth
in Section 3.4. This approach has the advantage that it makes only use of the usual HMM frame-
work, whereas the LPHMM and NLPHMM training procedures require some extensions of the
HMM framework. However, the training procedures of the LPHMM and NLPHMM are more
flexible, and the NLPHMM is more general. Final remarks on PHMMs are given in Section 3.5.

Chapter 4: This chapter discusses the representation of parametric human movements and the
representation of these through PHMMs (Section 4.1), also the representation of bi-parametric
movements is considered which can be used as primitives to build complex movements. The
PHMMs are then evaluated for the synthesis and recognition of parametric human actions.

Figure 1.6: Motion Imitation and Tracking in Action Space. Left: Motion Imitation. The
humanoid robot imitates a parametric reaching action in order to grasp the yellow object. —
Right: Action Tracking. A person is performing a pointing action. The arm pose is tracked.
The pointed to location is estimated online. The estimate is indicated by the green ball (close
to the hand). The color of the ball (green) indicates that a pointing action is recognized.



1.2 Overview

The training of PHMMs for utilizing recognition but also the synthesis of parametric human
movements is discussed in Section 4.1.2. The proposed approach is to use no-skip left-right
HMMs with time restrictions, a finish state, and a large number of states in order allow one to
use a trained model also for the synthesis of accurate prototype movements.

In Section 4.2 such PHMMs are evaluated for the synthesis of basic parametric human arm ac-
tions for arbitrary action parameters, where the parameters specify the table-top locations. The
actions are pointing and reaching. The PHMMs with a large number of states are still suitable
for classifying (Section 4.2) actions and recognizing their parameters. In these experiments IPH-
MMs and LPHMMs are evaluated. The recognition and synthesis experiments are an updated
version of [48] (Herzog et. al), since the HMM framework used in [48] makes implicitly use of
a covariance prior. Extensions of this section are: an quadratic extension of the linear PHMM is
proposed in Section 4.2.3. The quadratic PHMM (QPHMM) represents the systematic variation
of the considered action very accurately (which is evaluated). In addition, the time durations of
PHMM states are considered Section 4.2.4.2

In Section 4.3 it is shown that a PHMM can be also used to learn and synthesize more com-
plicated bi-parametric arm movements. The considered action is parametrized by two object
locations, where the hand approaches the objects in sequence.

Chapter S: This chapter concerns the imitation of parametric arm actions by humanoid robots,
see Figure 1.6 (left). The effect of the actions is modeled by the parameters of the actions.

The chapter begins with a discussion of imitating (parametric) actions which have a certain
meaning/effect. The meaning/effect can become quite different when the embodiment of the
imitator differs from the embodiment of the imitated demonstrator.

Approaches to mapping of parametric actions on and converting parametric actions models for
another embodiment is discussed in Section 5.1, an important aspect is to preserve/map the
meaning/effect of the action parameters.

The imitation of parametric arm action by humanoid robots is discussed in Section 5.2, see
Figure 1.6 (left). The action models (PHMMs), which are trained on demonstrations by a person,
are used to synthesize prototype movements for robot control. The implementation enables the
robot to reach for objects which are arbitrarily located on a table-top. The robot can then grasp
and place the object somewhere else (Section 5.2.5). Note, the robot’s embodiment differs
significantly from the demonstrator. The new capabilities of the robot are evaluated in a rule-
learning task (Section 5.2.6), where the robot has to relocate several arbitrarily located objects
as demonstrated by an advisor. The robot implementation is published in [50] (Herzog et. al).
However, this section is extended with details of the robot used. An evaluation of the imitation
error is added in Section 5.2.7.

Chapter 6: This chapter provides the theory, implementations, and experiments for the novel
approach (Tracking in Action Space) to 3D online-tracking and -recognition of parametric move-
ments/actions and their parameters, see Figure 1.6 (right). The approach allows the online-
capturing of the arm pose and the online-recognition of parametric arm actions and their param-
eters and this in the case of multiple actions and complex actions. The approach is published
first in [51] (Herzog et. al). However, the extension which makes the implementation ready for
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online-tracking and more robust is provided in this chapter. The experiments are completely
new (except one).

The chapter begins with a general discussion of motion capture and action recognition, where
the action conveys a certain meaning (parametric actions). The conveyed basic idea is to see
the tracking and recognition as an intertwined problem. Related work is given in Section 6.2.
The basic concept of Tracking in Action Space, is to perform the tracking in the space of the
parametric actions and concatenations thereof (Section 6.3). Section 6.4 explains the details:
utilizing the PHMM s for modeling the action space, the application of particle filtering to es-
tablish the tracking in this space, and the basics of recognizing the actions and their parameters.
The observation model including the scene and human body model are given in Section 6.6.
This includes a matching approach which makes the tracking more robust.

In the experiments (Section 6.7) the following aspects are evaluated: Section 6.7.1: The recovery
of the body pose when using a high or a low frame rate and when using single or multiple
views. The recognition of a single action and the recognition accuracy of the parameters of
the action while tracking online. Therefore, different actions are investigated. Section 6.7.2:
The recognition of actions and their parameters is investigated when the scenario consists of
different actions. Section 6.7.3: The tracking and recognition of complex actions, which are a
concatenation of several basic parametric actions (action primitives), are considered.

Final remarks are given in Section 6.8.

1.3 Contribution

The contributions of this thesis are in short: a) establishing PHMM as a movement and primitive
representation which allows one besides recognition also precise synthesis of prototype actions in an
effect/meaning dependent way as it is required for the imitation by a humanoid robot. b) imitation of
parametric actions on a humanoid robot in order to achieve the desired effect/meaning. c) establishing a
tracking/recognition framework which makes use of the representation of parametric actions/primitives
and enables tracking and recognition in an intertwined way, where the action primitives can be used to
model complex actions through grammars.

PHMMs as Representation of Parametric Movements and Action Primitives.
e A notion of (parametric) prototype movements/actions is established.

e The HMM/PHMM learning procedure is tuned w.r.t. this notion, thus that the trained (para-
metric) HMMs can be used to synthesize prototype movements/actions in an un-complicated
way.

e A main goal is to establish the PHMM as a unified framework for action recognition and syn-
thesis. For a precise representation of the actions, (parametric) left-right HMMs with a large
number of states and time-restrictions are used. It is shown that the training of such (parametric)
HMMs is uncomplicated and successful with the proposed training strategy. It is evaluated that
the representation of an parametric action through such a single PHMM allows one to synthesize
accurate prototype actions. Such a PHMM is evaluated as being appropriate for recognition. The
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1.3 Contribution

evaluation for synthesis and recognition considers here the whole parameter range of the learned
parametric actions.

o It is shown that PHMMs can be trained in order to represent bi-parametric actions. The bi-
parametric actions can then be used as primitives which can be concatenated in a meaningful
way to represent complex actions.

e Additional contributions are the proposed quadratic extension of the linear PHMM and the in-
terpolative approach to PHMMs.

Imitation of Parametric Actions on a Humanoid Robot.

e PHMMs have not been considered so far in robotics as a representation of parametric or goal-
directed actions.

e It is shown that the PHMM representation can be successfully applied to imitate learned actions
on a humanoid robot, where the action parameters are successfully used to achieve the desired
effect/meaning on the robot.

— A contribution is here the proposed way of converting the parametric representation of an
action which is learned based on demonstrations of a human (with a certain embodiment)
to a representation which suits the embodiment of the human robot used (note, the embodi-
ment differs in its proportions and the size). It is worthwhile to note that the effect/meaning
of a demonstration is only provided (in terms of parameters) for the embodiment of the
demonstrator not when reproduced on the robot. As a consequence, the conversion of the
body motion and the meaning of the parameters have to be considered.

— In addition, other approaches for a scenario with demonstrations from several demonstra-
tors and several imitators are proposed.

e A minor contribution is the extended application of an action primitive (reaching for) for a more
complex task (relocating objects) without introducing poses that are not part of the primitive.

Tracking and Recognition.

e One contribution is the proposed view of the tracking and recognition of action primitives and
complex actions as an intertwined problem, where the tracking is performed within the proposed
space of possible action which can be modeled through action primitives:

— The so called action space uses PHMMs to model action primitives and has a lower di-
mensionality than the pose space.

— The concept is to use only a basic set of action primitives which can model then many
different complex actions.

— The primitives are parametric, which generalizes their applicability in different contexts.

— The tracking is performed here within the proposed space of possible actions or action
sequences such that the recognition becomes a part of the tracking.
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The action primitives and their parameters can be recognized online, where the recognized
parameters provide an important part of the semantic of a performed action.

The approach allows for further argumentation and extensions: a) One could argue that it
is not necessary to have perfect pose estimates in order to accomplish the recognition of
the actions. b) The approach allows one to incorporate knowledge of the context into the
tracking. The argument is that objects of the context provide a prior knowledge of actions
and their parameters (this is discussed in the introduction). The notion of the action space
allows one to incorporate this knowledge into the tracking simply by adjusting the particle
propagation within the action space.

e the implementation and the recognition of actions and their parameters works in real time (on-

line) on the basis of a single camera view

o the experiments investigate and answer fundamental questions:

the recovery of the body pose

multiple views and single views

different viewing directions (in the case of single views)

recognition of actions and their parameters in the case of single and multiple actions

the recognition/tracking of complex actions which are concatenations of action primitives

e The application of motion models is not new to motion capturing community. Two contributions

can be seen here:

The latent variable models generate the embedding in the latent space in an unsupervised
way, where the meaning of the latent parameters is unknown. Consequently, the recogni-
tion is then constrained to recognizing the used motion model during the tracking. How-
ever, in the case of parametric actions/gestures also the recognition of the specific instance
of the action and its parameters are important to understand the full semantic. The PHMM
as motion model allows one here to recognize both, the action type and their parameters.

For generality of the tracking it is required to allow transitions between the motions that
are modeled by a set of motion models. A simple switching between models is not always
meaningful, for example, when the pose after the switching has nothing to do with the
pose before. Since the PHMM models the systematic variation explicitly, it is easy to
define proper transitions between movements. As a consequence, one can use a basic set
of movement primitives. A complex movement/action is then only a concatenation of these
primitives. In a complicated scenario with arbitrary movements/actions it is crucial to use
primitives since the number of complex movements can be arbitrarily large.



Chapter 2

Learning Movement Trajectories with
Hidden Markov Models

This chapter discusses the application of the HMM framework for the training of human movement
trajectories. It discusses, beside different hidden Markov models (HMMs), the recognition and differ-
ent methods for synthesizing trajectories from the model (Section 2.2). The preliminary findings are
that the left-right model (with time restrictions (Section 2.2.3.2) and a finish state (Section 2.2.3.1))
is well suited to generate good prototype movements (Section 2.3). However, without the parametric
extension (parametric HMMs, Chapter 3), the HMMs are not well-suited to model parametric move-
ment classes for the purpose of recognition and synthesis when one is interested in recognizing and
synthesizing particular instances of the movement class.

The chapter begins with an introduction to HMMs in Section 2.1 which includes a description of
the implementation of the HMM framework (Section 2.1.6) and its run time behavior (Section 2.1.7).

2.1 The Hidden Markov Model

This section provides an introduction to the hidden Markov model (HMM) in Section 2.1.1, an
overview of the notation that is used in this thesis w.r.t. HMMs (Section 2.1.2), and a discussion
of HMM related problems (Section 2.1.3) and approaches to these problems (Sections 2.1.4.2 and
2.1.5). Short notes are given about the implementation of the HMM framework (Section 2.1.6) and its
run time behavior (Section 2.1.7). Some references for HMMs are [54, 93, 92, 14, 11, 18].

2.1.1 The Model

The Hidden Markov Model (HMM) is a finite state machine that is described in a probabilistic manner.
This concerns the state transitions and the outputs of each state. The output distributions are either
probability mass function (pmfs) in the discrete case of an HMM, or, in the continuous case, probability
density functions (pdfs). A simple example of a discrete HMM is shown in Figure 2.1.

An HMM has a finite set S of states. For convenience, the states are addressed in this thesis
through integer numbers, where the set of states is assumed to be of the form S = {1,..., N}, where
N denotes the number of states. Generally, an HMM is denoted as a triple A = (A, B, 7). The
stochastic matrix A = (a;;) defines here the probabilities of transitions between the states, where a;;
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Figure 2.1: Two-State HMM. The figure shows an HMM with discrete output symbols.
Both, the transition arcs and the output symbols are labeled with probabilities. Possible output
sequences are for example: ACBBC, or ACBBAD. The sequence DDDDD is a rather unlikely
output sequence due to the probabilities of the self transition and the output symbol D of the
state on the right side.

is the probability of an outgoing transition from a state ¢ € S to a state j € S. As a consequence, it
is >, a;; = 1 for each state i. The output distributions are specified through B = (b;) for each state
t. In this thesis, only continuous HMM are of interest, where the HMM outputs are modeled through
multivariate Gaussian density function b;(x) = N(x|u;, X;). An output sequence is then of the form
X = x1x2 - x4 - - - T, Where x; denotes that the output is generated in the (discrete) time step ¢.
The sequence length T is (generally) not predefined through the HMM, and can be different for each
output sequence X . The prior distribution of an initial state in an output sequence is defined by the
pmf © = (m;), i.e., m = P(q1 = i), where ¢;—; denotes the “current” state at the time step ¢ = 1.

As mentioned in the introduction, an HMM is a generative model. An output sequence X =
a1 - - - &7 can be drawn from the model [92] by generating step-by-step a state sequence @ = g1 - - - q1
with respect to the initial probabilities 7; and the transition probabilities a;; and drawing for each
state ¢; an output a; from the corresponding observation density b;(x). Generally, there is no unique
correspondence between a given output sequence X and a state sequence, since different hidden state
sequences Q = ¢ - - - gr can generate the same output sequence X . Hence, the state variable ¢; is
latent (hidden), and only the posterior probability P(q; = |\, X) that a state ¢ is responsible for
generating the output x; can be inferred.

2.1.2 Notation

e \ = (A, B, ) denotes an HMM, where

— A = (ay;) is the transition matrix, where a;; defines the probability of the state transition
¢ — 7 (from state 4 to state j)

— B = (b;j(x)) defines the output densities b;(x) of the states i € S

— 7w = (m;) defines the prior state distribution of the initial states (7; = p(q1 = 7))
e S ={1,..., N} denotes the set of the states of an HMM with IV state

o X =x---xp =x1 - x4 - 7 denotes a multivariate output/observation sequence of length
T, where each output x; at time step ¢ is a (multidimensional) vector
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e X ={X*|k=1,...,K}asetof K output sequences X~ = 2% - :cl}k
e ¢; denotes a latent state ¢; € S at the time step ¢

e Q = qi...qr a(hidden) state sequence

2.1.3 Related Problems

In the section above, only the definition of a (usual) HMM and the notation are given. This section
discusses the three fundamental problems [92] and efficient algorithms that are an important part of
the HMM framework. The implementation is discussed in the Sections 2.1.6 and 2.1.7. The three
problems are the evaluation problem, the decoding problem, and the parameter estimation problem as
stated below. The algorithmic approaches to the estimation problem and the evaluation problem are
discussed in the Sections 2.1.5 and 2.1.4. Both problems are important in this thesis.

1. Evaluation Problem. Given an observation sequence X and a model A\, compute the likeli-
hood/probability L = p(X |\), efficiently. The value £ can be interpreted in two different ways
[92]. First, this can be seen from a generative viewpoint, where the probability £ measures how
likely the observation sequence X is produced by the model A. In the second viewpoint, the
likelihood £ is a score for how well the model A matches the sequence X . This interpretation is
very useful if one has to choose among several models A;. A method of evaluating the likelihood
allows one to chose the model A; which matches the observation X best. An efficient solution to
the evaluation problem is given by the forward-backward algorithm discussed Section 2.1.4.2.

2. Decoding Problem. Given an observation sequence X = x1---x and a model A, find a
corresponding state sequence Q = q1 - - - qr which is optimal in some sense. For example, a

state sequence that explains the observation best (i.e., a sequence which maximizes p(Q|A, X)

[92D).

It should be clear that there are generally many possible hidden state sequences that explain an
output sequence. Thus, it is not possible to refer to “the” corresponding sequence. In some
applications, a “decoded” state sequence @ has a meaningful interpretation. For example, in
a text recognition application [39], where certain states or parts of the decoded sequence Q
identify the glyphs.

3. Parameters Estimation. Given a set of sequences X = {X k Y, find the model parameters
of an HMM X\ which maximize the the liklihood function p(X|A). The meaning of this is to
find the parameters of the HMM such that the HMM matches the sequences best. The number
of model states and the type of the output distributions are usually assumed to be predefined.
The parameter estimation problem is stated above as a maximum likelihood (ML) problem.
There exists no known method to calculate the optimal parameters directly [92]. An efficient
iterative approach is the Baum-Welch expectation maximization algorithm, which is discussed
in Section 2.1.5. The observation sequences used for the parameter estimation are also called
training sequences, since they are used to adjust the model parameters, or in other words, to train
the model. An alternative to the ML criterion is the MAP (maximum posterior) criterion [74].
Further criteria are discussed in [92].
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2.1.4 Evaluation Problem

The forward-backward algorithm given in Section 2.1.4.2 is a means to efficiently evaluate p(X|X)
for a sequence X = x; --- 7 and an HMM A. The algorithm is also required by the Baum-Welch
algorithm (Section 2.1.5). The notation introduced in Section 2.1.2 is used in the following. It is
assumed that an HMM A\ = (A, B, 7) and a sequence X = @ ---xp are given. The purpose of
the following section is to show that it is necessary to overcome the enumeration of state sequences in
order to solve the evaluation problem efficiently.

2.1.4.1 Enumeration

A straight forward approach to the evaluation problem is the enumeration of all hidden state sequences
Q =q1---qroflengthT:

P(X|A) =) P(X,Q\ 2.1)
Q

=Y P(X|Q N P(QN) 2.2)
Q

T—-1
> (mqr - [ P@ilar, V) (I @gugirs) 2.3)
Q i=1

=1

~+

Z g1 bg, (T1) gy g5 bgo (T2) Qg - - - bgr (TT) 2.4)
Q

This enumeration is a rather poor approach, since it is, in principal, computationally infeasible for
problems of reasonable size. For example, for N > 10 states and a sequence length T' > 40, the
number of state sequences Q is #Q = N7 > 10?°, and for each state sequence there is one summand
in (2.4) that has to be evaluated. If one neglects the evaluation of the output distributions b, (x;) the
enumerative approach results in an O(T'NT) algorithm.

2.1.4.2 Forward-Backward Procedure

The forward-backward procedure is a dynamic programming approach based on the so called forward
and backward variables «;(t) and §;(t), where i and ¢ are a state number and a discrete time step.
The calculation of p(X|A) can be performed either on the forward variables «;(t) or the backward
variables /3;(t), but both variables are required in the EM algorithm in Section 2.1.5. The variables are
defined as

N
ai(t) = plar-mpq =iA) = D a;(t—1aj | bi(z), (2.5)
j=1
N
ﬁz(t) = p(mH_l s $T|qt = i, )\) = Z aijbj(:ctﬂ)ﬁj(t + 1). (2.6)
j=1

The left-hand side of these equation defines the meaning of the variables [92], the right-hand side
shows how these variables can be calculated recursively [92]. The recurrence on the right-hand side
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seems to be quite evident, but the proof [14] requires a large set of conditional independence properties.
The following values [92] can be used as a starting point to compute the variables:

a;(1) = p(x1,¢ = 1A) = mbi(x1), (2.7)
Bi(T) = p(~|g=1A) = 1 (2.8)

Using «;(1) and 5;(T") as a starting point, all forward and backward variables can be calculated it-
eratively with the aid of the recurrences (2.5) and (2.6). The values of «;(¢) can be evaluated in the
order aq (t),...,an(t) fort =2,3,...,T. Of course, the backward variables have to be evaluated in
reverse order t =7 — 1,7 — 2,..., 1. Once the forward variables have been evaluated, p(X |\) can
be calculated from

N

p(XIA) = Y ai(T), (2.9)

i=1

which is basically marginalizing over the states ¢ = 1,...,N: p(X|A) = >, p(X,qr = i|A) =
>, @i(T). The evaluation of p(X|A) through the forward/backward procedure requires O(TN?)
operations [92], and additionally, O(NT') evaluations of the output density functions b;(x;). The
O(T N?) operations are required to evaluate the sums in Equation (2.5)/(2.6) for the forward/backward
variables (there are O(T'N) forward/backward variables).

2.1.5 Baum-Welch Algorithm

The Baum-Welch algorithm (Baum et al. 1970 [9]) is an iterative method that allows one to estimate
the parameters of an hidden Markov model given a (set of) observation sequence(s). In [92], the update
formulas are derived primarily based on the classic work of Baum and colleagues. The update formulas
can also be derived within the framework of the EM algorithm [92]. The Baum-Welch algorithm is
equivalent with the EM algorithm for HMMs [12].

The variables are chosen in the following notes on the Expectation Maximization (EM) algorithm
on the basis of the notation which was introduced for HMMs. However, the EM algorithm is, of course,
a general concept. The EM algorithm is an iterative method of [18] finding a maximum likelihood
estimate

AML = arg max p(X|\) (2.10)
A

for some parameter set A of a statistical model and some data set X. The EM algorithm becomes
particularly useful in the case of missing data or when the ML estimate can not be solved analytically
[11]. In the latter case, it can be helpful to introduce some latent/hidden/missing variables and to as-
sume that some values or data @ is given for these variables. The complete data likelihood p( X, Q|\)
can then become tractable (as for HMMs). The data X together with @ is called the complete data
set.

The EM algorithm is an iterative method. In each iteration the model parameters of the previous
iteration " are refined to new values A. Each iteration of the EM algorithm is a two step procedure;
namely, the expectation (E) step, and maximization (M) step. In the E step [18], the latent variables
are estimated based on the model parameters A’ and the data X . In the M step [18], the maximization
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of the likelihood is performed under the assumption that the latent parameters are known. The new
model parameters A are computed by maximizing the Q-function [14]

QA N) =D p(QIX,X)Inp(X, QN) 2.11)
Q

with respect to A, where A’ is assumed to be fixed. Comprehensive explanations of the EM algorithm
are given in [14, 11, 18].

In the following, a sketch of the derivation [13] of the Baum-Welch update formulas in the EM
framework is given. The hidden Markov model (HMM) A = (A, B, ) is here assumed to be
an HMM with continuous outputs, where the output density b;(x) of each state i is modeled by
a single multivariate Gaussian density (see Appendix E) with a covariance matrix 3'; and mean
W, i.e., bi(x) = N(x|¥;, u;). For the training it is assumed that a single observation sequence
X = x1---xris given. In addition, initial values A" of the HMM parameters need to be given. This
includes the values (7,...,7y) = m, (a;;) = A, and the values for the matrices X; and vectors
;. It is worthwhile to note that an iteration of the EM algorithm does not change the structure of the
HMM, e.g., the number N of states is not changed.

2.1.5.1 The Expectation Step

In the E step, the following posterior distributions are calculated for the hidden (latent) state sequence
Q=q--qr:

Yi(t) = plge = i| X, X)), (2.12)
&ij(t) = plar = i, g1 = J|1 X, X)), (2.13)

The value ~;(¢) is the posterior probability that the state 7 is active at time step ¢ given the state sequence
X and the model X'. The value +;(#) is called in the following responsibility [14] (of state i at step
t). Similarly, &;;(¢) is the posterior probability that the state transition ¢ — j is used at the time step
t—t+1.

The values v;(t) and &;;(t) can be computed by using the forward and backward variables «;(t)
and 3;(t) (see Section 2.1.4.2), which need to be computed in advance for the observation sequence
X and the current model parameters A'. By the use of the Markovian conditional independence [13]

p(X,q = iXN) = plxr- -, g = AN )p(miyr - wrlgr = 1, N), = i (1) Bi(t)
the responsibility 7;(¢) can be written as

Yi(t) = p(Xoq=iXN) _ pla=1X,X) _ a