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a b s t r a c t

This paper demonstrates how averaging over individual learning and forgetting curves gives rise to
transformed averaged curves. In an earlier paper (Murre and Chessa, 2011), we already showed that
averaging over exponential functions tends to give a power function. The present paper expands on
the analyses with exponential functions. Also, it is shown that averaging over power functions tends to
give a log power function. Moreover, a general proof is given how averaging over logarithmic functions
retains that shape in a specific manner. The analyses assume that the learning rate has a specific
statistical distribution, such as a beta, gamma, uniform, or half-normal distribution. Shifting these
distributions to the right, so that there are no low learning rates (censoring), is analyzed as well and
some general results are given. Finally, geometric averaging is analyzed, and its limits are discussed
in remedying averaging artefacts.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As has been noted in the psychological literature since the
950s (Bakan, 1954; Sidman, 1952), arithmetic averaging (i.e.,
hen we take the average as usual) over individual learning or

orgetting curves from different subjects is not a neutral oper-
tion. It often results in a mathematical transformation of the
nderlying individual curves (Murre & Chessa, 2011), which was
irst established through simulations (Anderson & Tweney, 1997;
rown & Heathcote, 2003). The averaged curve is a valid math-
matical description of the individual curves only if they have
pecific mathematical shapes (Estes, 1956; Myung, Kim, & Pitt,
000) or if the to-be-averaged curves are highly similar.
This problem takes center stage in the debate surrounding the

hape of the learning curve, where a ‘Power Law of Learning’
as been proposed and defended by some (Anderson & Schooler,
991; Newell & Rosenbloom, 1981; Wixted & Ebbesen, 1991),
hereas others have argued that individual curves are not dis-
ributed according to a power function but rather an exponential
unction (Heathcote, Brown, & Mewhort, 2000) and have ad-
uced evidence that averaging over these causes an artefactual
ower function (Anderson & Tweney, 1997). We have proven
athematically that this is indeed a possibility: averaging over

ndividual exponential functions may result in a power function,
ither exactly or in the limit (Murre & Chessa, 2011).

E-mail address: jaap@murre.com.
https://doi.org/10.1016/j.jmp.2023.102816
0022-2496/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
The same debate continues in the forgetting literature and
started with the seminal work of Hermann Ebbinghaus, who was
the first researcher to fit an equation to forgetting data, namely
in his habilitation thesis of 1880. On the basis of a number of
well-argued assumptions, he constructed a differential equation,
solving it by deriving a forgetting equation. Curious is that despite
his excellent analysis, he deems the result merely of ‘empirical
significance’ (German: ‘‘nur ganz empirische Bedeutung’’, p.63)
without an important theoretical meaning. This is probably also
signaled by the fact that he put the whole section 12 (p. 57–63),
which describes this analysis, in square brackets. He is clearly not
very attached to his own equation either, because in the eventual
publication of his thesis as a book in 1885, he has replaced it with
a different one (Ebbinghaus, 1913/1885; see Murre & Dros, 2015,
for an in depth discussion).

Hermann Ebbinghaus used himself as a subject and hence the
problem of averaging over subjects did not occur in his work.
He also went to great lengths to find stimuli that were equally
difficult to learn and to forget. Unfortunately, because he learned
rows of nonsense syllables in a fixed order, the middle syllables
were more difficult to remember, still causing an uneven distri-
bution in the items learned (Murre & Dros, 2015). This makes
it unlikely that there was no averaging artefact in his forgetting
curve; averaging over trials with items of different levels of
learning could still have transformed the shape.

Sidman (Iversen, 2021; 1952) was one of the first researchers
to argue that despite the possible theoretical implications of the

mathematical shape of certain averaged curves, great care should

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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e taken when making inferences from them without further
nformation. A power function shape of an averaged learning
urve, for example, might be due to subjects all having exactly the
ame power curve but also because they have exponential learn-
ng curves with individual learning rates that follow a gamma
istribution (Murre & Chessa, 2011). The two resulting averaged
urves might be indistinguishable both in practice and in theory,
ven though their origins are quite different and would lead one
o propose diverging underlying mechanisms.

Whether one does or does not want to draw inferences from
he shape of averaged learning or forgetting curves, it is crucial
o be aware of averaging artefacts, especially if the original data
s not available. The raw data would allow one to examine and fit
he individual curves, which in all cases is to be preferred. This pa-
er expands our earlier mathematical analyses (Murre & Chessa,
011), which focused on averaging exponential learning curves
ith a learning rate that follows the gamma, half-normal, or uni-

orm distribution. Here, I will also consider the beta distribution,
hich is of considerable interest because of its great flexibility

n shape, being able to mimic other distributions (e.g., uniform,
eft and right triangular, [bimodal] arcsine distributions, and the
ernoulli and normal distributions in the limit). I will also ex-
end the analyses to averaging over individual power functions
nd logarithmic functions. The power function has often been
roposed as a learning or forgetting function (e.g., Anderson &
chooler, 1991; Ebbinghaus, 1880; Newell & Rosenbloom, 1981;
ickelgren, 1974). The logarithmic function is of interest and
as been proposed by some researchers as a forgetting function
e.g., Ebbinghaus, 1885/1964, replaces the power function by a
ogarithmic function). I will, furthermore, study what happens if
he distribution of learning (or forgetting) rates is shifted to the
ight, so that there are no slow learners (censoring). An analysis
ithin our framework of the pros and cons of using the geometric
ean instead of the usual arithmetic one completes the analyses.
he results are discussed in general terms in the next section,
ith most details of the mathematical derivations and proofs
iven in the Methods section, which has been placed in Appendix
.

. Mathematical analyses: Results

.1. Arithmetic averaging

Three types of individual learning functions will be consid-
red, which I will refer to as base functions: exponential, power,
nd logarithmic. Each of these has a learning rate parameter,
etermining how quickly learners progress. The analyses here
pply equally here to forgetting and any other response curves
hat can be modeled by the base functions; for brevity, I will
nly mention learning. When considering learning, one should
ear in mind that many factors influence its progress. Here, we
ill only focus on the role of learning time and ignore all other

actors. For a recent in-depth discussion of factors influencing the
earning process see, for example, Chechile (2018, Chapter 11).
hen averaging over subjects, it is likely that not all subjects
ave exactly the same learning rate. We will, therefore, assume
hat the variation from low to high rates may be captured by
ome statistical distribution. Performance on a typical learning
ask can be expressed either as percentage correct, which would
e an increasing function of time (assuming regularly spaced
earning trials), or as percentage incorrect.

For the learning rates we will use three well-known dis-
ributions: the gamma distribution (which has the exponential
istribution as a special case), the half-normal distribution, and
he beta distribution (which has the uniform distribution as a spe-
ial case). As is illustrated in Fig. 1, both the gamma and the beta
2

distribution are quite flexible in terms of possible shapes. The
beta distribution is suitable for cases where on a priori grounds
the learning rate must remain below some upper bound (which
is 1 by default but can be changed through a reparameterization).
None of the distributions allow negative values.

The results of the analyses are given in Table 1 with the details
of their derivation relegated to Appendix A. In some cases, the
results in Table 1 represent a limiting form: as time t (in suitable
time units) increases, the shape of the averaged function will
approach this form. The exact forms are given in Table A.1 in
the Methods section in Appendix A. The limiting forms are shown
here to emphasize the similarity in the equations for the averaged
curves, which are as follows.

(1) Averaging over exponential functions gives power functions.
his includes our earlier findings (Murre & Chessa, 2011), which
re here extended with the beta distribution. The fact that the
eta distribution gives such an elegant shape as a limiting form
s perhaps surprising, because it includes a bimodal shape for
ertain parameter values (see Fig. 1). It should be remarked, how-
ver, that the convergence for the bimodal shapes can indeed be
ather slow. As was already shown in our earlier paper, the result
or the uniform distribution shows a rather fast convergence
e.g., Murre & Chessa, 2011, Figure 2).

(2) Averaging over power functions gives logarithmic power func-
ions. Again, we observe the same general shape for all averaged
urves, despite the differences in the distributions. We must also
ote that the limiting form of the beta distributions also exhibits
rather slow convergence.
(3) Averaging over logarithmic functions retains their shape. This

esult was already noted by Estes (1956). Note that we use the
nconditioned form, c − log (x t), as a base function and keep the
quation shape similar to the other two, even though the actual
urve is now descending. It would be much better to use a well-
ondition version of the logarithm here such as (log(tx+1)+1)−1,
hich value would stay between 0 and 1, but I could only find
closed-form solution in the limit for the arithmetic average
ith the uniform distribution, yielding a log power log form (see
he proof in Appendix A). This is consistent with averaging over
ower functions yielding a log power shape, because we have
rapped a logarithmic function inside a power function with
xponent -1.
As shown in Appendix A, an interesting general result with

he unconditioned logarithmic base function can be obtained,
amely that arithmetic averaging over base functions of the shape
− log (x t) always gives an averaged curve of shape:

A (t) =
∫

∞

0 f (x) (c − log (xt)) dx
= c − log (t)− log

(
GMf

)
here GMf is the geometric mean of distribution f . For example,
he geometric mean of the beta distribution is eψ

(0)(a)−ψ(0)(a+b)

Vogel, 2020), which is why the constant −B in Table 1 is
(0) (a)− ψ (0) (a + b), where ψ (0) (z) is the digamma function.

3. Discussion

In Table 1, we can easily spot that are consistent patterns
in the equations of the averaged curves, which for the uncon-
ditioned logarithmic function could be proven mathematically;
I was not able to find a general proof that accounts for the
observed similarities in shape for the exponential and power base
functions. The results are illustrated in Fig. 2, which visualizes
how averaging affects the different base functions.

As can be seen in Fig. 2a, there are quite a few curves where
learning progresses very slowly. These contribute to a slowed-
down descent in the averaged curve, which in case of exponential
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Fig. 1. Illustration of the three learning rate distributions used in the paper. (a) Gamma distribution, f (x) =
b−axa−1e−

x
b

Γ (a) , with x > 0. (b) Gamma distribution with a

ariant shifted by 1. (c) Half-normal distribution, f (x) =
2θe−

θ2x2
π

π
, with x > 0. (d) Beta distribution, f (x) =

xa−1(1−x)b−1

B(a,b) , with 0 < x < 1.
d
s
o

ase functions is a power function. The reason for the many
low learners is that distributions often have a relatively high
ensity close to 0. This is clearly the case with the exponential
nd uniform distribution. What would happen if we shifted the
 t

3

istribution to higher learning rates, thereby removing the very
low learning rates? The effects of this can be analyzed, among
thers, by shifting distributions to the right. This is illustrated for
he gamma distribution in Fig. 1b.



J.M.J. Murre Journal of Mathematical Psychology 117 (2023) 102816

r
q
r

u

t
P

B

Fig. 2. Illustration of the averaging effects with a mixing gamma distribution
with parameters a = 2 and b = 0.5. The base curves (grey solid line) are spaced
egularly with rate values taken in steps of 5% quantiles, starting with the 5%
uantile (low learning rate) and ending with the 95% quantile (high learning
ate). For the three base functions, the averaged curve from Table 1, PA (t), is
plotted (black solid line) with the base function with the mean rate µ = 1
of the gamma distribution (black dashed line). (a) Exponential base functions.
(b) Power base functions. (c) Logarithm base functions. (d) Power base function

with the gamma distribution f (x − 1) shifted with z = 1.

4

Appendix A gives the derivation of the following general re-
sult: If we shift the learning rate distribution to the right with a
distance z, we obtain a rate distribution f (x − z). Mixing such
a distribution with exponential base functions gives Pz (t) =

e−ztPA (t), where Pz (t) is the averaged function using the shifted
distribution and PA(t) is the averaged function using the un-
shifted distribution (i.e., the equations shown in Table A.1 in the
Appendix A). Similarly, for power functions we have Pz (t) =

(t + 1)−z PA (t). The effects of shifting the gamma distribution
with z = 1 is shown in Fig. 2.d for power base functions. I was not
able to derive useful equations for the logarithmic base function
with a shifted distribution.

Some authors have suggested using geometric averaging
rather than (ordinary) arithmetic averaging to retain the shape
of exponential and power functions (Anderson & Tweney, 1997;
Estes, 1956). The sample geometric mean is:

GM = n
√
x1x2 . . . xn = exp

(
n∑

i=1

log xi
n

)
,where x > 0

For a mixing distribution f (x) with (arithmetic) mean µ, as-
suming a domain of 0 to ∞ (or the applicable domain of f (x)),
we calculate the averaged curve PA(t) as follows (Vogel, 2020),
sing g (x) as the base function:

PA(t) = exp
(∫

∞

0
f (x) log (g(x)) dx

)
As is shown in Appendix A, for exponential base functions,

his gives exactly PA (t) = e−µt , and for power base functions
A (t) = (t + 1)−µ. In other words, for exponential and power

base functions, no matter what the learning rate distribution is,
the geometric average will be a curve that has as the mean of the
distribution the learning rate parameter. In many cases, this will
be the desired result, which is why one should consider geometric
above arithmetic averaging in case the individual curves are
exponential or power functions.

The result above relies on certain properties of exponential
and power functions, which the logarithmic function does not
possess. For logarithmic base functions, I have not been able
to derive useful results for either the gamma, half-normal, or
beta distribution. In case of logarithmic base functions, it makes
most sense to use arithmetic averaging, which at least retains the
logarithmic shape (see above). Another case in which geometric
averaging does not give useful closed-form solution, is when base
functions are of the shape 1 − g (x), or more generally, A +

g (x). This gives expressions of the shape log (A + Bg (x)) in the
integral, which are difficult to integrate to closed-form solutions.
In Appendix A, I give the geometrically averaged curve of 1−e−xt

with a uniform rate distribution. A close-form solution exists, but
it does not preserve the exponential shape, indicating that indeed
geometric averaging may be of limited use in these cases. This
confirms mathematically what had already been demonstrated
through simulations by Brown and Heathcote (2003), namely
that the original shape of exponential functions is not necessarily
exactly preserved with geometric averaging in case of a non-zero
asymptote in the base function. Though the theoretical limits of
geometric averaging are worth investigating, the reader should
bear in mind that in case the base function is expected to be of
the form y = 1− e−xt , an easy solution to still obtain undistorted
geometric averaging results is to work with 1 − y rather then y.
Then, calculate the sample geometric mean M by summing all
observations log(1−y) and take the exponential, as in the formula
above. We can then use 1 − M as the final result.

In conclusion, I agree with Ebbinghaus (1880) that fitted
curves are first of all of empirical significance. As such, they can
be very useful and important in practice, for example, to predict
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Table 1
Functions – including some limiting forms for high t – resulting from arithmetic averaging over the base functions with different
mixing distributions on rate parameter x.
Mixing distributions Base functions (t is time, x is the learning rate)

1 − e−xt 1 − (1 + t)−x c − log (xt)

Gamma 1 − (1 + bt)−a 1 − (1 + b log (1 + t))−a c − log (bt)+ A
Exponential 1 − (1 + bt)−1 1 − (1 + b log (1 + t))−1 c − log (bt)+

Half-normal 1 −
2θ
π

t−1a 1 −
2θ
π

log−1 (t)a c − log
(√

π

2
1
θ
t
)

+
2

Beta 1 − Gt−ab 1 − Glog−a (t + 1)b c − log (t)+ B
Uniform 1 − t−1a 1 − log−1 (t + 1)a c − log (t)+ 1

Note. log(z) is the logarithm with base e. The constants are: is Euler’s constant (⋍ 0.577216 with ψ (0)(1) = − ),G =
Γ (a+b)
Γ (b) ,

where Γ (z) is the gamma function, A = −ψ (0)(a), and B = ψ (0)(a + b) − ψ (0)(a), where ψ (0)(z) is the digamma function.
a Limiting form for high t .
b Limiting form for high t that may have slow convergence for certain parameters.
Table A.1
Exact functions resulting from arithmetic averaging over the base functions with different mixing distributions on (learning or
forgetting) rate parameter x.
Mixing distributions Base functions (t is time, x is the learning rate)

1 − e−xt 1 − (1 + t)−x c − log (xt)

Gamma 1 − (1 + bt)−a 1 − (1 + b log (1 + t))−a c − log (bt)− ψ (0) (a)
Exponential 1 − (1 + bt)−1 1 − (1 + b log (1 + t))−1 c − log (bt)+

Half-normal 1 − e
π t2

4θ2 erfc
(√

π t
2θ

)
1 − e

π log2(1+t)
4θ2 erfc

(√
π log (1 + t)

2θ

)
c − log

(√
π

2
1
θ
t
)

+
2

Beta 1 − 1F1 (a; a + b; −t) 1 − 1F1 (a; a + b; − log (t + 1)) c − log (t)+ B

Uniform 1 − t−1
+

e−t

t
1 −

t
(t + 1)

log (t + 1)−1 c − log(t) + 1

Note. ψ (0)(z) is the digamma function, erfc(z) is the complementary error function, log(z) is the logarithm with base e, is Euler’s
constant (⋍ 0.577216 and ψ (0)(1) = − ), 1F1(a; b; z) is the Kummer confluent hypergeometric function, and B = ψ (0)(a+b)−ψ (0)(a).
o

p

the expected time-course of learning or forgetting. I also concur
with Sidman’s warning (Iversen, 2021; Sidman, 1952) that attach-
ing theoretical implications to the shape of an averaged curve
may lead to unwarranted conclusions, where averaging artefacts
over subjects and items form at the very least an important
source of distortion, as is demonstrated in this paper.
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Appendix A. Mathematical analyses: Methods

Table A.1 shows the exact results of arithmetic averaging,
which I will derive below for each of the three base functions in
turn: exponential, power, and logarithm, for the three (learning
or forgetting) rate distributions: gamma, half-normal, and beta.
Two special cases, the exponential and uniform distribution, will
be derived as well.
5

A.1. Arithmetic averaging

A.1.1. Exponential base functions
Both exact and limit results for the gamma, exponential, half-

normal, and uniform distributions were already derived in Murre
and Chessa (2011, p.596ff), and I will, therefore, only derive the
result for beta distribution here. The averaged curve pA(t) can be
derived by mixing the beta distribution on the rate parameter x
f the base function through integration, as follows:

A(t) =

∫ 1

0

xa−1 (1 − x)b−1

B (a, b)

(
1 − e−xt) dx

= 1 −

∫ 1

0

xa−1 (1 − x)ffb−1

B (a, b)
e−xtdx

= 1 − 1F1 (a; a + b; −t)

where 1F1(a; b+b; −t) is the Kummer confluent hypergeometric
function and B(a, b) is the beta function. This is a well-known
result that can, for example, be found in Abramowitz and Stegun
(1965, p. 505, Eq. 13.2.1), assuming that a > 0 and b > 0 are
real valued parameters. The limiting form in Table 1 is based on
Equations 13.5.1, 13.5.3, and 13.5.4 in the same chapter (p.508),
which I will not repeat here in detail, only giving the final result:

lim
t→∞

1F1 (a; a + b; −t) =
Γ (a + b)
Γ (b)

t−a

More details on this derivation can also be found in Luo and
Lin (2015, e.g., p. 5, Equation 1.30). Note that this convergence
can be quite slow for certain values of a and b, whereas for others
we get an exact solution that converges quite quickly to a power
function. Notably for a = 1 and b = 1, we have a special case of
the beta distribution, namely the standard uniform distribution,
giving:

1F1 (1; 2; −t) =
1 − e−t

,

t
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This is again a well-known identify, the result of which rapidly
converges to t−1 for high t.

A more general form the uniform distribution has pdf

f (µ) =

⎧⎨⎩
1

b−a for a ≤ µ ≤ b,

0 forµ < a orµ > b.

If we integrate this function directly with the exponential
individual learning curves, we obtain

PA (t) =

∫ b

a

e−µt

b − a
dµ =

e−at
− e−bt

t(b − a)
.

If b > a > 0 and if b approaches a very closely, we once more
obtain an exponential function. This is to be expected because in
that case (nearly) all subjects will have the same learning rate a:

lim
b→a

e−at
− e−bt

t(b − a)
= e−at .

We find a similar limit result with the averaged curve of the
eta distribution (with bounds 0 and 1 as usual) when b is close
o 0. This means that the mean a/(a + b) would approach 1 and
he variance (ab)/((a + b)2(a + b + 1)) would approach 0 in the
imit. The plot of such a beta distribution shows a thin pole close
o 1. The limit is

lim
→0

1F1(a; a + b; −t) = e−t

This is based on Equation 13.6.12 in Abramowitz and Stegun
(1965, p. 509). In other words, working with the beta distribution
we also find that if most learners are close to the same high
learning rate, the averaged function retains its original shape, as
is to be expected. A variant where we have a strongly bimodal
distribution is by taking both a and b small. If for simplicity we
take a = b, we obtain

lim
a→0

1F1(a; a + a; −t) =
1
2

(
1 + e−t)

his result simply reflects the fact that half the learners do not
earn anything at all.

.1.2. Power base functions
We first examine mixing with the gamma distribution:

−

∫
∞

0

(
b−axa−1e−

x
b

)
Γ (a)

(t + 1)−x dx = 1 − (1 + b log (t + 1))−a

Here, we can use the earlier result (Murre & Chessa, 2011) that

1 −

∫
∞

0

(
b−axa−1e−

x
b

)
Γ (a)

e−xtdx = 1 − (1 + bt)−a

Considering that (t + 1)−x
= elog((t+1)−x) = e−x log(t+1), we can

change t to log (t) to obtain the desired result:

1 −

∫
∞

0

(
b−axa−1e−

x
b

)
Γ (a)

e−x log(t+1)dx = 1 − (1 + b log(t + 1))−a

This same approach can also be used for the half-normal and
beta distributions, while noting that t itself does not take part in
the integration, as we are integrating over x. Also, for the limiting
forms we can do a simple substitution. As an example, I give the
full derivation for the limiting form of the uniform distribution,
which we can base on the special case shown above where we
substitute log(t + 1) for t .

1F1 (1; 2; − log (t + 1)) =
t

(t + 1) log (t + 1)

=
1

−
1

log (t + 1) (t + 1) log (t + 1)
6

This converges to the limiting form shown in Table 1:

lim
t→∞

(
1

log (t + 1)
−

1
(t + 1) log (t + 1)

)
=

1
log (t + 1)

The power function as used here, 1 − (t + 1)−x, has as a lim-
tation that it is not scale-free: changing the time units from say
econds to minutes would alter its shape. This can be remedied
y using a slightly more complex form: 1 − (yt + 1)−x, where y
llows adjusting to arbitrary time units. In the expressions above
e can simply substitute yt for t to obtain this more general
esult. We could also consider a mixing distribution on y given
hat is also some type of rate parameter that could potentially
iffer between subjects. From a theoretical perspective, however,
t makes more sense to consider this parameter to be fixed
nd shared between all subjects (see Murre (2014) for further
iscussion on subject-dependent versus shared parameters).

.1.3. Logarithmic base functions
Estes (1956) demonstrates that a sufficient criterion for arith-

etic averaging over base functions, while retaining their basic
hape, is that the higher orders of the Taylor expansion, above 1,
re zero, which is the case for the logarithm. As above, once we
now the distribution of the learning (or forgetting) rate, we can
lso calculate the constants of the averaged curve. We will use
he unconditioned logarithmic base function, c − log(tx), noting
hat it can only be considered as a viable function of learning
r forgetting over short stretches of the time domain, unless the
erformance is measured in units that can become negative.
The integral to be evaluated has the general form:

∞

0
f (x) (c − log (tx)) dx

here f (x) is the pdf of a statistical distribution and the integra-
ion is over the domain of that distribution (here taken as 0 to
). This can be rearranged as:

−

∫
∞

0
(f (x) log (t)+ f (x) log (x)) dx

Here, we remark that
∞

0
f (x) log (t) dx = log (t)

∫
∞

0
f (x) dx = log (t)

ecause by definition the integral over the domain of a pdf is
lways 1, and

∞

0
f (x) log (x) dx

s the logarithm of the geometric mean of f (x).
So, we conclude that mixing a distribution with the rate of a

ogarithmic base function always gives
∞

0
f (x) (c − log (tx)) dx = c − log (t)− log (GM (f ))

here GM(f ) is the geometric mean of the distribution.
As an example, we investigate mixing with the gamma distri-

ution:

−

∫
∞

0

(
b−axa−1e−

x
b

)
Γ (a)

log (tx) dx = c − log (bt)− ψ (0)(a)

We substitute bx for x, which gives

−

∫
∞

0

b−ae−x (bx)a−1 log (btx)
Γ (a)

b dx

where we use the first derivative of bx, which is b dx. This resolves
to

c −

∫
∞ e−xxa−1 log (btx)

dx

0 Γ (a)
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hich can be rearranged as

− log (bt)
∫

∞

0

e−xxa−1

Γ (a)
dx −

∫
∞

0

e−xxa−1

Γ (a)
log (x) dx

= c − log (bt)− ψ (0)(a)

where the first integral is over the gamma distribution with b =

, giving 1, and the solution of the second integral is a standard
esult (e.g., Olver et al., 2020, Eq. 5.9.19, see https://dlmf.nist.
ov/5.9#E19), adapted to fit the notation above. It is also the
ogarithm of the geometric mean of the gamma distribution.

For the half-normal distribution, the geometric mean cannot
asily be found in existing sources, so I give the derivation of the
veraged curve PA (t) in full.

A (t) = c −

∫
∞

0

2θe−
θ2x2
π log (tx)
π

dx

= c − log (t)
∫

∞

0

2θe−
θ2x2
π

π
dx −

∫
∞

0

2θe−
θ2x2
π log (x)
π

dx

= c − log (t)−

∫
∞

0

2θe−
θ2x2
π log (x)
π

dx

Changing variables from x to u =
θx
√
π
, with dx =

√
π

θ
du, gives

c − log (t)−

∫
∞

0

(
2θe−u2

)
log
(√

πu
θ

)
π

√
π

θ
du

c − log (t)−
2

√
π

(∫
∞

0
e−u2 log

(√
π

θ

)
du

+

∫
∞

0
e−u2 log (u) du

)
c − log (t)−

2
√
π

( 1
4

√
π
(
2 log

( 1
θ

)
+ log (π)

)
−

1
4

√
π ( + log (4))

)
= c − log

(√
π t
2θ

)
+ 2

Mixing with the beta distribution can most easily be derived
y taking the logarithm of its geometric mean – as outlined above
which is readily found (e.g., Vogel, 2020):

Mbeta = eψ
(0)(a)−ψ(0)(a+b)

A great limitation of the simple logarithmic function used
here is that it is not well-conditioned. I considered the function
log(tx+1)/ log(Ux+1) as a more viable candidate (Chechile, 2022),
but I was unable to derive any useful results from this. Another
approach is to wrap the logarithm in a power function (with
exponent -1): (log(tx + 1) + 1)−1. Though it is no longer a ‘pure’
logarithm, it is well-conditioned. Unfortunately, I could only find
a useful result when mixing with the uniform distribution:
Ei(log(t + 1) + 1) − Ei(1)

et
here Ei is the exponential integral. Taking into account that
i(−x) = −E1(x), we use the well-known bracketing result:
1
2
ex log(−

2
x

+ 1) < −Ei(x) < ex log(−
1
x

+ 1)

n the basis of this, after substituting the correct terms in the left
ound, we arrive at a somewhat more useful limit result for high
:
1
2
log(1 −

2
log(t + 1) + 1

)

This result is broadly in line with those obtained above, namely
that averaging over a power base function tends to yield a loga-
rithm function. I was unable to derive any useful results for the
gamma, beta, or half-normal distribution.
7

A.2. Arithmetic averaging of shifted exponential and power base
functions

We are interested in deriving the effect on arithmetic averag-
ing with a mixing distribution f (x) that has been shifted to the
right with a distance of z. That is, the probability density below z
is 0. In case of a learning curve this implies that there are no very
slow learners. The derivation starts from changing the pdf of the
distribution to f (x − z). For the power base function, this would
give the following expression for the averaged curve:∫

∞

z
f (x − z) (t + 1)−x dx

To solve the integral, we use a change of variables, using
(t + 1)−x

= (t + 1)−(x−z) (t + 1)−z to rewrite the product of the
pdf with the power base function to∫

∞

z
f (x − z) (t + 1)−(x−z) (t + 1)−z dx

Then, we change variable from x − z to x:

(t + 1)−z
∫

∞

0
f (x) (t + 1)−x dx = (t + 1)−z PA (t)

Here PA(t) is the averaged curve using the not-shifted pdf. The
same technique can be used with other distribution functions and
the power base function. With the exponential, we can use the
fact that e−xt

= e−(x−z)te−zt . As above, we can take e−zt out of the
integration, and change variable to obtain

e−ztPA (t)

For other base functions, this usually does not work as ele-
gantly, e.g., for c − log (tx − tz), it is not obvious how to remove
the log (−tz) from the integral.

A.3. Geometric averaging of exponential and power base functions

It is well-known that geometric averaging over exponential
and power base functions leaves the shape unaffected. For com-
pleteness, I still include the outline of the proof here.

For a mixing distribution f (x) with (arithmetic) mean µ, as-
suming a domain of 0 to ∞, we calculate the averaged curve PA (t)
as follows:

PA (t) = exp
(∫

∞

0
log
(
e−xt) f (x) dx)

= exp
(∫

∞

0
−txf (x) dx

)
= exp

(
−t
∫

∞

0
xf (x) dx

)
= e−µt

For a power base function, the proof is analogous:

PA(t) = exp
(∫

∞

0
log
(
(t + 1)−x) f (x) dx)

= exp
(
log
(
(t + 1)−1) ∫ ∞

0
xf (x) dx

)
= exp

(
log
(
(t + 1)−1)µ)

= exp(log((t + 1)−µ))
= (t + 1)−µ

For other types of base functions, e.g., logarithmic functions,
such a simple proof cannot be obtained, and I found that most
geometric means of mixing distributions could either not be

calculated or yielded very complicated expressions that gave little

https://dlmf.nist.gov/5.9#E19
https://dlmf.nist.gov/5.9#E19
https://dlmf.nist.gov/5.9#E19
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dditional insight. Also, the geometric averages of mirrored base
unctions or those with an asymptote did not yield a clear relation
ith the original base functions, at least not of the general nature
bove, where for exponential and power functions the shape is
ully retained.

As an example, I give the geometric average of a mirrored
xponential base function with a uniform rate distribution (as-
uming t > 0):

A (t) = exp
(∫ 1

0
log (1 − exp (−xt)) 1dx

)
= e

−6Li2(et)−3t2−6iπ t+π2

6t

here Li2(z) is a polylogarithm. Though this function does con-
erge to 1, it is not close to 1−exp(−µt), where µ =

1
2 , as we saw

bove (nor for any other values of µ). In other words, geometric
veraging of a mirrored exponential function does not (always)
etain the shape of the base function.
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