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Horn conditions for quiver subrepresentations
and the moment map∗

Velleda Baldoni, Michèle Vergne, and Michael Walter

AbstractWe give inductive conditions that characterize the Schu-
bert positions of subrepresentations of a general quiver representa-
tion. Our results generalize Belkale’s criterion for the intersection
of Schubert varieties in Grassmannians and refine Schofield’s char-
acterization of the dimension vectors of general subrepresentations.
This implies Horn type inequalities for the moment cone associated
to the linear representation of the group G =

∏
x GL(nx) associ-

ated to a quiver and a dimension vector n = (nx).

1. Introduction

Let Q = (Q0, Q1) be a quiver, where Q0 is the finite set of vertices and Q1
the finite set of arrows. We use the notation a : x → y for an arrow a ∈ Q1
from x ∈ Q0 to y ∈ Q0. We allow Q to have cycles and multiple arrows
between two vertices. A dimension vector for Q is a vector n = (nx)x∈Q0 of
nonnegative integers.

To every family of vector spaces V = (Vx)x∈Q0 , we associate the dimension
vector dimV with components (dimV)x = dim Vx. The space of representa-
tions of the quiver Q on V is given by

HQ(V) :=
⊕

a:x→y∈Q1

Hom(Vx, Vy),(1.1)

whose elements are families v = (va)a∈Q1 of linear maps va : Vx → Vy,
one for each arrow a : x → y. The Lie group GLQ(V) =

∏
x∈Q0 GL(Vx) and

its Lie algebra glQ(V) =
⊕

x∈Q0 gl(Vx) act naturally on V and on HQ(V).
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For g = (gx)x∈Q0 ∈ GLQ(V) and X = (Xx)x∈Q0 ∈ glQ(V), their actions
on u = (ux)x∈Q0 ∈ V are given by gu := (gxux)x∈Q0 and Xu := (Xxux)x∈Q0 ,
respectively, while their actions on v = (va)a∈Q1 ∈ HQ(V) are denoted
by gvg−1 := (gyvag−1

x )a : x→y∈Q1 and Xv − vX := (Xyva − vaXx)a : x→y∈Q1 ,
respectively.

We write S ⊆ V if S = (Sx)x∈Q0 is a family of subspaces Sx ⊆ Vx; its
dimension vector is called a subdimension vector for V , i.e., satisfies dim Sx ≤
dim Vx. The family S is called a subrepresentation of v ∈ HQ(V) if vaSx ⊆ Sy

for every arrow a : x→ y in Q1; we abbreviate this condition by vS ⊆ S.
Schofield [24] characterized (inductively) the subdimension vectors α such

that any v ∈ HQ(V) has a subrepresentation S with dimS = α. We call such
a dimension vector a Schofield subdimension vector for V and denote this
by α ≤Q n, where dimV = n. We also write α <Q n if in addition at
least one of the inequalities αx ≤ nx is strict. As the notation suggests, these
relations are transitive.

Consider

GrQ(α,V) :=
∏

x∈Q0

Gr(αx, Vx),

where Gr(αx, Vx) denotes the Grassmannian of subspaces of Vx of dimen-
sion αx. The dimension of GrQ(α,V) is given by

∑
x∈Q0 αxβx, where βx =

dim Vx − αx.
Given a representation v ∈ HQ(V) and a dimension vector α, we define

the corresponding quiver Grassmannian by

GrQ(α,V)v := {S ∈ GrQ(α) : vS ⊆ S}.

In this language, a Schofield subdimension vector is a subdimension vec-
tor α such that GrQ(α,V)v ̸= ∅ for every representation v ∈ HQ(V). In
this case, the dimension of each irreducible component of the quiver Grass-
mannian GrQ(α,V)v is, for generic v ∈ HQ(V), given by

⟨α, β⟩ :=
∑

x∈Q0

αxβx −
∑

a:x→y∈Q1

αxβy.(1.2)

Thus, the codimension of GrQ(α,V)v in GrQ(α,V) is
∑

a:x→y∈Q1 αxβy.

1.1. Schubert varieties and Q-intersection

It is natural to study the possible Schubert positions of quiver subrepresenta-
tions. For this purpose, we introduce the notion of filtered dimension vector
(partly inspired by the augmented quivers of Derksen-Weyman).
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Fix a family F = (Fx)x∈Q0 of (complete) filtrations, where each Fx is a
(complete) filtration on Vx. We call (V ,F) a filtered dimension vector (see Sec-
tion 2). Let BQ(V ,F) = (Bx)x∈Q0 denote the corresponding Borel subgroup
of GLQ(V), i.e., each Bx ⊆ GL(Vx) is the Borel subgroup preserving the fil-
tration Fx. Finally, let Ω = (Ωx)x∈Q0 be a Schubert variety in GrQ(α,V),
i.e., Ω is the closure of a BQ(V ,F)-orbit in GrQ(α,V). Then we say that Ω
is Q-intersecting (in V) if the intersection

Ωv := Ω ∩GrQ(α,V)v(1.3)

is nonempty for every v ∈ HQ(V). In other words, Ω is Q-intersecting if every
quiver representation on V has a subrepresentation in the Schubert variety Ω.
When Ω = GrQ(α,V) is the largest Schubert variety, then Ω is Q-intersecting
if and only if α is a Schofield subdimension vector. Thus, Q-intersection is a
more refined notion. The main result of this article is an inductive family of
necessary and sufficient conditions for Ω to be Q-intersecting (Theorem 1.1
below).

An important example is the Horn quiver Hs, which has s + 1 vertices
and s arrows:

(1.4)
s + 1

1 . . . s

Let 0 ≤ r ≤ n, Vx = Cn, and αx = r for x = 1, . . . , s+1. Then, a Schubert va-
riety Ω ⊆ GrQ(α,V) is an (s+1)-tuple of Schubert varieties Ω1, . . . , Ωs, Ωs+1
in Gr(r, n). The condition that Ω is Q-intersecting is equivalent to the con-
dition that the Schubert homology classes [Ωx]s+1

x=1 are intersecting (Exam-
ple 2.5). Horn [14] suggested necessary and sufficient conditions for Schu-
bert varieties to intersect. The validity of Horn’s criterion was established
by Knutson-Tao [16] using a combinatorial approach that established the
saturation conjecture for the Littlewood-Richardson coefficients. Derksen-
Weyman [10] gave an alternative proof using the theory of quiver represen-
tations, which was further simplified by Crawley-Boevey-Geiss [9] (see Sec-
tion 1.4 below). Finally, Belkale [2] gave a geometric proof of a strengthened
version of the Horn criterion and the saturation conjecture.

As in [2], our inductive criterion for Ω to be Q-intersecting is based on
a numerical quantity: the expected dimension of the intersection variety Ωv

defined in (1.3). Since the codimension of GrQ(α,V)v in GrQ(α,V) is gener-
ically equal to

∑
a:x→y∈Q1 αxβy, the ‘expected dimension’ of the intersection
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is given by

edimQ,F (Ω,V) := dim Ω−
∑

a : x→y∈Q1

αxβy.

It is easy to prove that if Ω is Q-intersecting then, for generic v, the dimension
of the intersection variety Ωv is indeed equal to the expected dimension.
Thus, edimQ,F (Ω,V) ≥ 0 is a necessary condition for Ω to be Q-intersecting.
However, this necessary condition is not sufficient (a simple example is given
below in Section 1.2).

Before giving a complete set of conditions we introduce some convenient
notation. Given a family of subspaces S ⊆ V , we denote by Ω(S,F) the
Schubert variety determined by S, i.e., the closure of the BQ(V ,F)-orbit of S,
and we let edimQ,F (S,V) = edimQ,F (Ω(S,F),V). We say S is Q-intersecting
in V if Ω(S,F) is Q-intersecting in V . That is, for generic v ∈ HQ(V), S is a
subrepresentation of some point in the BQ(V ,F)-orbit of v. We denote this
condition by S ⊆Q V , and write S ⊂Q V if at least one Sx is a proper subspace
of Vx.

As explained above, a necessary condition for S to be Q-intersecting in V
is that edimQ,F (S,V) ≥ 0. It is also easy to see that the relation ⊆Q is
transitive (Lemma 3.9): if T ⊆Q S and S ⊆Q V , then T ⊆Q V . Our main
result is that these two natural conditions are not only necessary but also
sufficient:

Theorem 1.1. Let V be a family of vector spaces, F a family of filtrations,
and S a family of subspaces of V. Then, S ⊆Q V if and only if

(A) edimQ,F (S,V) ≥ 0,
(B) T ⊂Q V for every T ⊂Q S.

In fact, we obtain slightly stronger results than Theorem 1.1. In condi-
tions (B), we merely need to consider those T ⊂Q S such that the generic
intersection variety is a point (Theorem 6.1).

Theorem 1.1 generalizes Belkale’s criterion for the intersection of Schu-
bert varieties in Grassmannians, and we believe that working in this general
context elucidates the arguments. The first ingredient of our proof is a gener-
alization of Schofield’s numerical computation [24] of the dimension of certain
Ext-groups to the filtered setting (Theorem 5.1). Here we follow closely (but
do not rely on) Schofield’s argument. We note that an alternative proof of The-
orem 5.1 was recently given by Bertozzi-Reineke [5] using augmented quivers
(see Section 1.4); however, their results do not imply Theorem 1.1. To obtain
the simple inductive characterization in our main result, Theorem 1.1, we use
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an argument on slopes inspired by Harder-Narasimhan filtration, adapting an
argument of Belkale (Section 6).

1.2. Example

To illustrate Theorem 1.1, consider the following quiver:

(1.5)

1 2

3 4

Let (V ,F) be the filtered dimension vector with V1 = V4 = C2 and V2 =
V3 = C3, and where Fx is the standard filtration for every vertex x. Then
there are 172 Q-intersecting Schubert varieties, corresponding to 46 Schofield
subdimension vectors.

For example, S = (Ce1,Ce2⊕Ce3,Ce2⊕Ce3,C2) is Q-intersecting, while
Ŝ = (Ce1,Ce2 ⊕Ce3,Ce1 ⊕Ce2,C2) is not. This is easy to see directly, since
the associated Schubert varieties are

Ω = ({Ce1}, Gr(2, 3), Gr(2, 3), {C2}),
Ω̂ = ({Ce1}, Gr(2, 3), {Ce1 ⊕ Ce2}, {C2}),

respectively, and for a generic representation v ∈ HQ(V) the component v1→3
does not map e1 into Ce1 ⊕ Ce2. Now, note that

edimQ,F (S,V) = dim Ω− (1 + 1) = (0 + 2 + 2 + 0)− (1 + 1) > 0,

edimQ,F (Ŝ,V) = dim Ω̂− (1 + 1) = (0 + 2 + 0 + 0)− (1 + 1) = 0,

so condition (A) of Theorem 1.1 is satisfied for both S and Ŝ. Thus, con-
dition (B) must be violated for Ŝ, so there exists a family T of proper
subspaces which is Q-intersecting in Ŝ, but not in V . Indeed, the family
T = (Ce1,Ce3,Ce2,C2) has this property. We discuss a more involved exam-
ple involving Collins’ ‘sun quiver’ [7] in Section 9.

1.3. An inductive numerical criterion and Horn-type inequalities

Inductively, Theorem 1.1 translates into the following criterion:

Theorem 1.2. S ⊆Q V if and only if edimQ,F (T ,V) ≥ 0 for all T ⊆Q S.
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Note that Theorem 1.2 amounts to a finite criterion since the right-hand
side depends only on the Schubert variety determined by T , of which there are
only finitely many. This can be made particularly concrete by parameterizing
the Schubert cells, which also makes the connection to Belkale’s Horn-type
inequalities directly apparent.

Let n = (nx)x∈Q0 be a dimension vector, and let V be the family of
standard complex vector spaces Vx = Cnx , equipped with the standard fil-
trations. Any family K ⊆ [n], by which we mean that K = (Kx)x∈Q0 con-
sists of subsets Kx ⊆ {1, . . . , nx}, determines a family S = (Sx)x∈Q0 of sub-
spaces Sx = ⊕i∈Kxei, where ei denotes the standard basis of Vx, with di-
mension vector k = (kx)x∈Q0 = (|Kx|)x∈Q0 , and hence a Schubert variety Ω.
Any Schubert variety can be obtained in this way. It is easy to see that if
Kx(1) < · · · < Kx(kx) are the elements of Kx then the dimension of the
Schubert variety determined by K is

dim Ω =
∑

x∈Q0

kx∑
j=1

(Kx(j)− j) .

Let us write K ⊆Q [n] to denote that S ⊆Q V . Now, any family L ⊆ [k]
rise to a family T = (Tx)x∈Q0 of subspaces Tx = ⊕lx

j=1eKx(Lx(j)) ⊆ Sx, where
Lx(1) < · · · < Lx(lx) are the elements of Lx and lx = |Lx|. We may calculate
that

edimQ,F (T ,V) =
∑

x∈Q0

lx∑
j=1

(Kx(Lx(j))− j) −
∑

a:x→y∈Q1

lx(ny − ly).

Accordingly, Theorem 1.2 translates into the following inductive numerical
criterion: K ⊆Q [n] if and only if

∑
x∈Q0

lx∑
j=1

(Kx(Lx(j))− j) ≥
∑

a:x→y∈Q1

lx(ny − ly)(1.6)

for all L ⊆Q [k]. In the case of the Horn quiver, we recognize Belkale’s inequal-
ities. The criterion in Eq. (1.6) is easy to test numerically. We note that one
may further restrict the families L that need to be considered (Remark 6.8).

1.4. A natural Schofield criterion and augmented quivers

As a particular consequence of Theorem 1.1 we also obtain the following
inductive characterization of Schofield subdimension vectors:



Horn conditions for quivers and the moment map 7

Theorem 1.3. Let α ≤ n be dimension vectors. Then, α ≤Q n if and only if

(A) ⟨α, n−α⟩ ≥ 0,
(B) β <Q n for every β <Q α.

Just like for Theorem 1.1, we obtain in fact a slightly stronger character-
ization by restricting part (B) to those β’s for which the generic intersection
variety is a point (Theorem 6.9). Theorem 1.3 is readily translated into the
following inductive numerical criterion:

Theorem 1.4. α ≤Q n if and only if ⟨β, n− β⟩ ≥ 0 for all β ≤Q α.

We note that Theorem 1.4 does not follow right away from the Schofield
criterion [24], despite the latter looking very similar: α ≤Q n if and only if
⟨β, n−α⟩ ≥ 0 for all β ≤Q α. Note that the condition on β coincides with
ours if and only if ⟨β, α− β⟩ = 0. Indeed, it follows from the strengthening of
Theorem 1.3 discussed above that it suffices to restrict to such β in order to
characterize Schofield subdimension vectors. To obtain the natural inductive
characterization given in Theorem 1.3 (and its strengthening) or, equivalently,
the numerical criterion of Theorem 1.4, we found it necessary to use a slope
argument (see Section 6 for the more general filtered setting).

Derksen-Weyman [10] deduced the Horn inequalities for tensor products
using an ‘augmented’ quiver Q̃ associated to Q. To see the relation, given a
filtered dimension vector (V ,F), we define by ñx,i = dim Fx(i) an ordinary
dimension vector ñ on an augmented quiver Q̃ with vertices (x, i) for x ∈ Q0
and i = 1, . . . , ℓx, where ℓx denotes the length of the filtration Fx. Given a
family of subspaces S ⊆ V , consider the subdimension vector α̃ with αx,i =
dim Sx∩Fx,i. Then, S ⊆Q V if and only if α̃ ≤Q̃ ñ, so one could use Schofield’s
criterion or our inductive conditions for Schofield subdimension vectors to
characterize Q-intersection. However, the resulting criterion for Q-intersection
is arguably less natural than our Theorem 1.1, and it is also weaker, since in
general there are in general many more subdimension vectors β̃ <Q̃ α̃ than
Q-intersecting subfamilies T ⊂Q S. We comment on the relation between the
two sets in Section 7.2.

1.5. Applications to representation theory and the moment map

Another motivation to study Q-intersection comes from representation the-
ory and symplectic geometry. Indeed, if K is a compact connected Lie group,
the celebrated [Q, R] = 0 or “quantization commutes with reduction” con-
jecture of Guillemin-Sternberg relates the quantization of a K-Hamiltonian
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manifold M to the image of the associated moment map. In their original ar-
ticle, Guillemin-Sternberg established this conjecture when M is a (smooth)
compact Kähler manifold [13]. In the case of a projective variety M = P(C)
associated to an algebraic cone C invariant under a linear representation of
a complex reductive group G, Mumford’s construction of the geometric quo-
tient directly describes the action of G on polynomial functions on C in terms
of the moment map on C associated to a compact form K of G [18, Ap-
pendix]. In both cases, it follows that the image under the K-moment map
of M (resp. of C) modulo the coadjoint action of K is a rational convex poly-
tope (resp. a rational convex polyhedral cone), see also [12, Appendix]. It is
in general a difficult problem to describe these moment polytopes or cones
explicitly and effectively.

Here we plainly consider the action of G = GLQ(V) on the complex
vector space C = HQ(V). Let CQ(V) denote the polyhedral cone spanned
by the highest weights of irreducible representations of GLQ(V) that occur
with nonzero multiplicity in Sym∗(HQ(V)), the space of polynomial functions
onHQ(V). Our aim is to describe this cone by inequalities associated to quiver
subrepresentations. It follows from the general theory described above that
CQ(V) is the moment cone associated with a natural moment map and we
will come back to this point momentarily.

The subcone ΣQ(V) ⊆ CQ(V) generated by the weights of semi-invariants
polynomials is of particular interest for invariant theory and moduli spaces
of quiver representations (see King [15], or Crawley-Boevey [8] for the dou-
ble quiver case). Derksen-Weyman [10] and Schofield-van den Bergh [25]
showed that ω = (ωx)x∈Q0 is a weight of a nonzero semi-invariant poly-
nomial on HQ(V) (that is, a polynomial that transforms by the charac-
ter g = (gx) 7→

∏
x det(gx)ωx of GLQ(V)) if and only if∑

x∈Q0

nxωx = 0

and, for all α <Q n, ∑
x∈Q0

αxωx ≤ 0,

where nx = dim Vx for x ∈ Q0. Thus, the cone ΣQ(V) is determined by
inequalities associated to Schofield subdimension vectors.

Similarly, the cone CQ(V) is determined by the Q-intersection of Schubert
varieties and hence by our Theorem 1.1. Choose a Hermitian structure on Vx,
and let U(Vx) be the maximally compact subgroup of GL(Vx) consisting of
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unitary operators, with Lie algebra ux. We may identify
√
−1ux with the

space of Hermitian operators on Vx. Let us choose an orthonormal basis of
each Vx, and consider the Weyl chamber Cx of diagonal Hermitian matrices λx

with nonincreasing real entries λx(1) ≥ . . . ≥ λx(nx). When λx is Z-valued, it
determines an irreducible representation Vλ of GL(Vx). Thus, the irreducible
representations of GLQ(V) are of the form Vλ =

⊗
x∈Q0 Vλx , where λ =

(λx)x∈Q0 is the highest weight.
The cone CQ(V) has an alternative description in terms of symplectic

geometry. Indeed, a moment map for the action of the maximally compact
subgroup UQ(V) =

∏
x∈Q0 U(Vx) is given by

µ : HQ(V)→
⊕

x

√
−1ux, v = (va)a∈Q1 7→ µ(v) = (µx(v))x∈Q0 ,

where µx(v) is the Hermitian matrix
∑

y,b:y→x vbv
∗
b −

∑
y,a:x→y v∗

ava. By the
results of Guillemin-Sternberg and Mumford discussed above, an element λ
of the Weyl chamber

∏
x Cx is in the cone CQ(V) if and only if −λ is in the

image of the moment map.
We may describe the cone CQ(V) by an inductively defined set of explicit

linear inequalities. Indeed, a general result by Ressayre [21] (see also [28])
implies that CQ(V) consists of the points λ ∈

∏
x Cx such that

∑
x∈Q0

nx∑
i=1

λx(i) = 0

and, for all K ⊂Q [n], ∑
x∈Q0

∑
i∈Kx

λx(i) ≤ 0.

Thus, Eq. (1.6) gives a complete and explicit set of linear inequalities for
the moment cone CQ(V). Following an argument of Ressayre [23], we also
compare CQ(V) with the cone ΣQ̃(Ṽ) of weights of semi-invariants for the aug-
mented quiver Q̃. We find that the saturation theorem of Derksen-Weyman [10]
implies that the conditions above are also sufficient for the irreducible repre-
sentation Vλ to appear in Sym∗(HQ(V)), in other words, that the semigroup
of highest weights is saturated. In summary, we obtain the following result
(see Section 8):

Theorem 1.5. For any highest weight λ = (λx)x∈Q0 of GLQ(V), the following
are equivalent:
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1. −λ is in the image of the moment map,
2. λ ∈ CQ(V),
3. Vλ ⊆ Sym∗(HQ(V)),
4.
∑

x∈Q0

∑nx
i=1 λx(i) = 0 and

∑
x∈Q0

∑
i∈Kx

λx(i) ≤ 0 for all K ⊆Q [n].

The equivalence between (1), (2), and (4) holds also when λ is not integral.
Moreover, K ⊆Q [n] if and only if

∑
x∈Q0

lx∑
j=1

(Kx(Lx(j))− j) ≥
∑

a:x→y∈Q1

lx(ny − ly)

for all L ⊆Q [k], using the notation of Eq. (1.6).

We previously announced this result in [1]. Recently, Bertozzi-Reineke [5]
gave a similar characterization of the image of the moment map based on The-
orem 5.1, which they proved using augmented quivers. In Section 9, we give
a minimal complete description of CQ(V) for the ‘sun quiver’ [7] mentioned
above.

1.6. Notation and conventions

The complement of a subset X ⊆ Y will be denoted by Xc := Y \X.
All vector spaces will be finite-dimensional complex vector spaces. Given a

vector space V , we write dim V for its (complex) dimension, and, for any 0 ≤
r ≤ dim V , we denote by Gr(r, V ) the Grassmannian that consists of the
subspaces of dimension r of V .

We use calligraphic and bold letters to denote families of objects labeled
by the vertex set Q0 of a quiver. For example, V = (Vx)x∈Q0 will be a family
of vector spaces indexed by the set Q0, J = (Jx)x∈Q0 a family of subsets Jx

of N = {1, 2, . . . }, and α = (αx)x∈Q0 will be a family of natural numbers.
We write GrQ(α,V) for the product of Grassmannians Gr(αx, Vx), dimV
for the vector of dimensions dim Vx, etc. The total dimension of V is denoted
by d(V) =

∑
x∈Q0 dim Vx. Such families of objects naturally inherit operations

and relations. Thus, given α and β, we write α ≤ β if αx ≤ βx for every x ∈
Q0, and we define the maps α ± β by (α ± β)x = αx ± βx. Similarly, if S
and V are families of vector spaces then we write S ⊆ V if Sx ⊆ Vx for every
x ∈ Q0. We write S ⊂ V if S ⊆ V and Sx is a proper subspace of Vx for at
least one x ∈ Q0.
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2. Quiver Grassmannians and Q-intersection

Definition 2.1 (Filtered vector space). A (complete) filtration F on a vector
space V is a chain of subspaces

{0} = F (0) ⊆ F (1) ⊆ · · · ⊆ F (i) ⊆ F (i + 1) ⊆ · · · ⊆ F (ℓ) = V,

such that dim F (i + 1) ≤ dim F (i) + 1 for all i = 0, . . . , ℓ − 1 (i.e., the
dimensions increase by at most one in each step). We call the pair (V, F ) a
filtered vector space.

The distinct subspaces in a filtration determines a flag. However, note
that the subspaces F (i) need not be strictly increasing. If S is a subspace
of V , then S inherits the filtration FS(i) := F (i) ∩ S, and the quotient space
V/S inherits the filtration FV/S(i) := (F (i) + S)/S. We will now consider the
analogue definitions for families of vector spaces and filtrations.

Definition 2.2 (Filtered dimension vector). Let V = (Vx)x∈Q0 be a family of
vector spaces. A filtration on V is a family F = (Fx)x∈Q0 where each Fx is a
filtration on Vx. We say that the pair (V ,F) is a filtered dimension vector.

Let S ⊆ V , i.e., Sx ⊆ Vx for every x ∈ Q0. We denote by V/S the
family of vector spaces (Vx/Sx)x∈Q0 . If F is a filtration on V then we obtain
a filtration FS on S and a filtration FV/S on the quotient V/S.

A filtered dimension vector (V ,F) determines a Borel subgroup of GLQ(V),
namely BQ(V ,F) =

∏
x∈Q0 Bx, where Bx is the Borel subgroup of GL(Vx)

preserving the filtration Fx. By definition, a Schubert cell Ω0 = (Ω0
x)x∈Q0 is

a BQ(V ,F)-orbit in GrQ(α,V). Its closure Ω = (Ωx)x∈Q0 is called a Schubert
variety. In other words, each Ω0

x (Ωx) is a Schubert cell (variety) in Gr(αx, Vx).
We can describe the Schubert varieties more concretely: Let n = (nx)x∈Q0

be a dimension vector. For x ∈ Q0, let Vx = Cnx , with standard basis (ej)1≤j≤nx ,
and consider the standard filtration Fx corresponding to the Borel subgroup Bx

that consists of the upper-triangular matrices in GL(nx). Let α be a dimen-
sion vector such that α ≤ n. Let J = (Jx)x∈Q0 be a family of subsets, where
each Jx is a subset of {1, . . . , nx} of cardinality αx. Then, SJx

:=
⊕

j∈Jx
Cej

is a subspace of Vx of dimension αx. Let Ω0(Jx) denote the orbit of SJx under
the action of Bx, and Ω(Jx) its closure. It is easy to see that

Ω(Jx) = {S ∈ Gr(αx, Vx) : dim(S ∩ Fx(Jx(a))) ≥ a for 1 ≤ a ≤ αx},

where Jx(1) < · · · < Jx(αx) are the elements of Jx. Then, Ω(J ) = (Ω(Jx))x∈Q0

is a Schubert variety. Moreover, every Schubert variety in GrQ(α,V) is of this
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form. It is easy to verify that

dim Ω(J ) =
∑

x∈Q0

dim Ω(Jx), dim Ω(Jx) =
αx∑

a=1
(Jx(a)− a).(2.1)

Definition 2.3. Let V = (Vx)x∈Q0 be a family of vector spaces, α ≤ dimV a
dimension vector, and v ∈ HQ(V) a representation. Define the corresponding
quiver Grassmannian as

GrQ(α,V)v := {S ∈ GrQ(α,V) : vS ⊆ S}.

We say that α is Schofield subdimension vector for V if GrQ(α,V)v ̸= ∅ for
every v ∈ HQ(V).

Quiver Grassmannians have been the subject of intensive research. We
only mention the striking result that, in fact, every projective variety is a
quiver Grassmannian [19]. For particular representations v, cellular decom-
positions of GrQ(α,V)v have been studied [6].

We can decompose each quiver Grassmannians into subvarieties consisting
of stable subspaces with fixed Schubert positions. This gives rise to the central
definitions of our article:

Definition 2.4 (Q-intersecting). Let (V ,F) be a filtered dimension vector,
α ≤ dimV a dimension vector, and Ω ⊆ GrQ(α,V) a Schubert variety. Given
a representation v ∈ HQ(V), define

Ωv := GrQ(α,V)v ∩Ω = {S ∈ Ω : vS ⊆ S}.

We say that Ω is Q-intersecting in V if Ωv ̸= ∅ for every v ∈ HQ(V).

In other words, Ω is Q-intersecting if, for every v ∈ HQ(V), the Schubert
variety Ω contains a subrepresentation of v. In this case, we call the variety
Ωv for generic v the generic intersection variety.

Clearly, a necessary condition for Ω to be Q-intersecting is that α is
a Schofield subdimension vector. As we will see in Lemma 3.4, Ω is Q-
intersecting if and only if Ωv ̸= ∅ for generic v ∈ HQ(V).

Example 2.5 (Horn quiver). For the Horn quiver (1.4) and the constant di-
mension vector α = (r, . . . , r), the problem of determining the Q-intersection
of Schubert varieties in GrQ(α,V) is equivalent to the problem of determining
the intersection of Schubert classes in Gr(r, n).

Indeed, let Ω1, . . . , Ωs+1 be Schubert varieties in Gr(r, n). By Kleiman’s
moving lemma, the homology classes [Ωx]s+1

x=1 are intersecting in Gr(r, n) if and
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only if, for every g1, . . . , gs+1 ∈ GL(n) there exists a point S ∈
⋂s+1

x=1 gxΩx.
Define vx→s+1 := g−1

s+1gx for x = 1, . . . , s. Then v = (vx→s+1)s
x=1 is a rep-

resentation of Hs. Now consider Ω = (Ω1, . . . , Ωs+1), which is a Schubert
variety in GrQ(α,V). Define Sx = g−1

x S ∈ Ωx. Then, S = (Sx)s+1
x=1 ∈ Ω.

Moreover, vx→s+1Sx = Ss+1 for x = 1, . . . , s. This means that S ∈ Ωv. The
set of v so obtained is dense in HQ(V), since each vx→s+1 can be an arbitrary
invertible map Vx → Vs+1. We conclude that Ω is Hs-intersecting if and only
if the homology classes [Ωx]s+1

x=1 are intersecting in Gr(r, n).

Belkale [2] has determined an inductive criterion for Schubert classes
in Gr(r, n) to intersect. Our aim in this article is to obtain a similar inductive
criterion for when a Schubert variety Ω = (Ωx)x∈Q0 is Q-intersecting.

3. Expected dimensions

In this section, we define the expected dimension of the generic intersection
variety (Definition 3.5).

Given two families of vector spaces V = (Vx)x∈Q0 and W = (Wx)x∈Q0 ,
define

HQ(V ,W) :=
⊕

a:x→y∈Q1

Hom(Vx, Wy),

gQ(V ,W) :=
⊕

x∈Q0

Hom(Vx, Wx).

If V = W , the space HQ(V ,V) is simply HQ(V), introduced previously in
Eq. (1.1), and gQ(V ,V) is the Lie algebra glQ(V) of GLQ(V).

If dimV = α and dimW = β then the dimension of HQ(V ,W) is given
by

∑
a:x→y∈Q1 αxβy. As it depends only on Q, α, and β, we also denote

this expression by dimHQ(α, β). Similarly, the dimension of gQ(V ,W) is∑
x∈Q0 αxβx. Thus,

⟨α, β⟩ = dim gQ(V ,W)− dimHQ(V ,W),

where ⟨α, β⟩ is the Euler form defined in Eq. (1.2).
The following proposition is well known. We give a proof since we will

below generalize it to compute the generic dimension of Ωv.

Proposition 3.1. Let V be a family of vector spaces and α a Schofield
subdimension vector for V. Then, for generic v ∈ HQ(V), the dimension
of each irreducible component of GrQ(α,V)v is given by dim GrQ(α,V) −
dimHQ(α, β) = ⟨α, β⟩, where β = dimV −α.
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Proof. Define the variety

X := {(T , v) ∈ GrQ(α,V)×HQ(V) : vT ⊆ T }.

The map

p : X→ GrQ(α,V), (T , v) 7→ T

equips X with the structure of a vector bundle over GrQ(α,V). Indeed, let
T ∈ GrQ(α,V). We can write V = T ⊕ U , choosing for each x ∈ Q0 a
complement Ux of Sx in Vx. Thus, dim(U) = β. The fiber p−1(T ) can be
identified with

X(T ) = {v ∈ HQ(V) : vT ⊆ T }.(3.1)

The right-hand side condition means that v is of the form

v =
(

v00 v01
0 v11

)
,

where v00 ∈ HQ(T ), v01 ∈ HQ(U , T ), and v11 ∈ HQ(U). Thus, X(T ) is a
vector subspace of HQ(V) of codimension dimHQ(T ,U) = dimHQ(α, β). It
follows that X is irreducible and of dimension

dimX = dim GrQ(α,V) + dimHQ(V)− dimHQ(α, β).(3.2)

We also have a map

q : X→ HQ(V), (T , v) 7→ v,

whose fibers can be identified with GrQ(α,V)v. If α is a Schofield subdimen-
sion vector then the map q is surjective. By the version of Sard’s theorem for
dominant maps between irreducible varieties, it follows that the image of q
contains a nonempty Zariski-open subset Z ⊆ HQ(V) such that, for v ∈ Z,
each irreducible component of the fiber GrQ(α,V)v is of dimension equal to
dimX−dimHQ(V). Comparing with Eq. (3.2), we obtain that, for generic v,
each irreducible component of GrQ(α,V)v is of dimension

dimX− dimHQ(V) = dim GrQ(α,V)− dimHQ(α, β) = ⟨α, β⟩ .

In the last step, we used that dim Gr(αx, Vx) = αxβx for x ∈ Q0.
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In particular, we see that a necessary condition for α to be a Schofield
subdimension vector is that ⟨α, β⟩ ≥ 0, where β = dimV −α. We now prove
an analog of Proposition 3.1 for generic intersection varieties.

Proposition 3.2. Let (V ,F) be a filtered dimension vector, α ≤ dimV a
dimension vector, and Ω ⊆ GrQ(α,V) a Q-intersecting Schubert variety.
Then, for generic v ∈ HQ(V), the dimension of each irreducible component
of Ωv is given by dim Ω− dimHQ(α, β), where β = dimV −α.

Proof. The proof is entirely similar. This time, we consider

X := {(T , v) ∈ Ω×HQ(V) : vT ⊆ T },(3.3)

which has now the structure of a vector bundle over Ω, with fibers as in
Eq. (3.1). Similarly to Eq. (3.2), it follows that X is an irreducible variety of
dimension

dimX = dim Ω + dimHQ(V)− dimHQ(α, β).

If Ω is Q-intersecting, the map

q : X→ HQ(V), (T , v) 7→ v,(3.4)

is surjective. As its fibers can be identified with Ωv, we conclude as before
that the dimension of each irreducible component is, for generic v, given by
dim Ω− dimHQ(α, β).

Thus, we find that a necessary condition for Ω ⊆ GrQ(α,V) to be Q-
intersecting is that dim Ω− dimHQ(α, β) ≥ 0, where β = dimV −α. Using
Eq. (2.1), the latter condition is easy to evaluate for a Schubert variety Ω(J ).
It amounts to

∑
x∈Q0

αx∑
a=1

(Jx(a)− a)−
∑

a:x→y

αx(ny − αy) ≥ 0.

Next, we study Schubert cells and varieties determined by families of
subspaces.

Definition 3.3 (Q-intersecting families of subspaces). Let (V ,F) be a fil-
tered dimension vector, α ≤ dimV a dimension vector, and S ∈ GrQ(α,V).
We define Ω0(S,F) as the BQ(V ,F)-orbit of S, and denote by Ω(S,F) its
closure, which is a Schubert variety.
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We say that S is Q-intersecting in V if Ω(S,F) is Q-intersecting in the
sense of Definition 2.4 and denote this condition by S ⊆Q V. We write S ⊂Q

V if in addition at least one subspace is a proper subspace.

The following lemma is similar to [4, Lemma 4.2.4].

Lemma 3.4. Let (V ,F) be a filtered dimension vector and S ⊆ V a family of
subspaces. If S is Q-intersecting in V, there exists a nonempty Zariski-open
set of v ∈ HQ(V) such that Ω0(S,F) contains a subrepresentation of v.

Conversely, if Ω0(S,F) contains a subrepresentation of v for generic v ∈
HQ(V), then S is Q-intersecting in V.

Proof. Abbreviate Ω = Ω(S,F) and Ω0 = Ω0(S,F). Consider the manifold

X0 := {(T , v) ∈ Ω0 ×HQ(V) : vT ⊆ T },(3.5)

which is a nonempty Zariski-open subset of the irreducible variety X defined
in Eq. (3.3). If Ω is Q-intersecting, the map q defined in Eq. (3.4) is surjective.
Thus, it is also dominant on any nonempty Zariski-open subset of X, hence in
particular on X0. It follows that the image of Eq. (3.4) contains a nonempty
Zariski-open subset of representations v ∈ HQ(V) with the property that Ω0

contains a subrepresentation of v.
Conversely, suppose that Ω0 contains a subrepresentation of v for generic

v ∈ HQ(V). Then, since the closure Ω of Ω0 is compact, it follows that Ω
contains subrepresentations of all v ∈ HQ(V).

We now define the expected dimension as the expression in Proposi-
tion 3.2.

Definition 3.5 (Expected dimension). Let (V ,F) be a filtered dimension
vector and S ⊆ V a family of subspaces. We define

edimQ,F (S,V) := dim Ω(S,F)− dimHQ(S,V/S)

and call it the expected dimension of the intersection variety Ω(S,F)v.

Thus, the following lemma is clear.

Lemma 3.6. Let (V ,F) be a filtered dimension vector and S ⊆ V a family
of subspaces. If S is Q-intersecting in V, then edimQ,F (S,V) ≥ 0.

The converse of Lemma 3.6 is not in general true. That is, it is possible
that edimQ,F (S,V) ≥ 0 even when S is not Q-intersecting. We already saw
an example of this when discussing the quiver (1.5) in Section 1.
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If S is Q-intersecting and edimQ,F (S,V) = 0, this means that the generic
intersection variety Ω(S,F)v is a finite set of points. We now consider the
important special case when it is a single point.

Definition 3.7. Let (V ,F) be a filtered dimension vector. We define PQ(V ,F)
as the set of subspaces S ⊆ V such that, for generic v ∈ HQ(V), the intersec-
tion variety Ω(S,F)v is equal to a point.

If S ∈ PQ(V ,F) then S is Q-intersecting in V and edimQ,F (S,V) = 0.
But the converse is not usually true, as the following example shows.

Example 3.8. Let W2 be the following quiver:

x1 x2

a1

a2

Let V = (C2,C2), F the standard filtration, and consider S = (Ce2,Ce2).
Then, Ω(S,F) = Gr(1, 2)×Gr(1, 2) has dimension 2, and

edimQ,F (S,V) = 2− (1 + 1) = 0.

Now let v = (v1, v2) ∈ HW2(V) = Hom(C2,C2)⊕Hom(C2,C2). For generic v,
both v1 and v2 are invertible. If L is an eigenvector of v−1

2 v1, then we have
v1(CL) = v2(CL), which implies that (CL, v1(CL)) is a subrepresentation
of v, and trivially contained in Ω(S,F). Thus, S is also Q-intersecting. How-
ever, v−1

2 v1 is generically diagonalizable, in which case there are two such
subrepresentations of v. Thus, S is not in PW2(V ,F).

Derksen-Schofield-Weyman [11] have determined the number of subrepre-
sentations of a general quiver representation in terms of certain multiplicities.

The following lemma shows that the notion of Q-intersection is transitive.

Lemma 3.9. Let (V ,F) be a filtered dimension vector and T ⊆ S ⊆ V
families of subspaces. Assume that S ⊆Q V and T ⊆Q S, where S is equipped
with the filtration FS . Then, T ⊆Q V.

Proof. Let v ∈ HQ(V) be generic. Since S ⊆Q V , Lemma 3.4 shows that there
exists b ∈ BQ(V ,F) such that ṽ = bvb−1 satisfies ṽS ⊆ S.

Since T ⊆Q S, there exists N ∈ Ω(T ,FS) such that ṽN ⊆ N . Every ele-
ment g ∈ BQ(S,FS) is the restriction of an element h ∈ BQ(V ,F) with hS =
S. It follows that Ω(T ,FS) is contained in Ω(T ,F), hence N ∈ Ω(T ,F). It
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follows that v(b−1N ) ⊆ b−1N . Since b−1N still belongs to Ω(T ,F), we see
that T ⊆Q V .

Lemmas 3.6 and 3.9 show that the two conditions (A) and (B) in Theo-
rem 1.1 are necessary for S to be Q-intersecting in V .

The objective of the following sections is to prove the converse statement.
In fact, we will prove a refinement of Theorem 1.1: In Theorem 6.1, we will
show that in condition (B) it suffices to consider only those T ≠ S such that
T ∈ PQ(S,FS). In turn, we obtain simple Horn conditions for testing Q-
intersection (Section 7). In the case of the Horn quivers, these conditions can
be readily reduced to Belkale’s conditions for intersecting Schubert classes [2].
This emblematic example suggested to us the statement of the more general
theorem.

4. Ext groups and Schofield Criterium

The proof of Theorem 1.1 will be based on computing the dimension of an
Ext group. We first state some easy lemmas about filtered vector spaces with
proofs left to the reader. Given two filtered vector spaces (V, F ) and (W, G),
a homomorphism Φ: V → W is a linear map that respect the two filtrations,
i.e., Φ(F (i)) ⊆ G(i) for all i (we assume that both filtrations have the same
length). We denote the space of morphisms by gF,G(V, W ).

Lemma 4.1. Let (V, F ) be a filtered vector space and S ⊆ V a subspace.
Then, the exact sequence 0→ (S, FS)→ (V, F )→ (V/S, FV/S)→ 0 is split.

Lemma 4.2. Let (V, F ) and (W, G) be filtered vector spaces and r = dim V .
Let i1 < · · · < ir denote the smallest indices such that dim F (ia) = a for a =
1, . . . , r. Then, dim gF,G(V, W ) =

∑r
a=1 dim G(ia).

Let B(V, F ) ⊆ GL(V ) be the Borel subgroup associated to F . Its Lie
algebra is b(V, F ) = gF,F (V, V ) ⊆ gl(V ). It is clear that any X ∈ b(V, F )
induces a map Φ ∈ gFS ,FV/S

(S, V/S).

Lemma 4.3. The map b(V, F )→ gFS ,FV/S
(S, V/S) is surjective.

Finally, we record the following lemma:

Lemma 4.4. Let (V, F ) and (W, G) be filtered vector spaces and let S ⊆ V
and T ⊆ W be subspaces. Then:

dim gF,G(V, W ) = dim gFS ,G(S, W ) + dim gFV/S ,G(V/S, W ),
dim gF,G(V, W ) = dim gF,GT

(V, T ) + dim gF,GW/T
(V, W/T ).
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We now consider families of filtered vector spaces, i.e., filtered dimension
vectors. Given two filtered dimension vectors (V ,F) and (W ,G), a homomor-
phism Φ = (Φx)x∈Q0 consists of a family of maps Φx ∈ gFx,Gx(Vx, Wx). We
denote the space of homomorphisms by gQ,F ,G(V ,W). As above, bQ(F ,V) =
gQ,F ,F (V ,V) ⊆ glQ(V) is the Lie algebra of a Borel subgroup of GLQ(V). The
following definition is the filtered analog of Eq. (1.2).

Definition 4.5 (Filtered Euler number). Let (V ,F) and (W ,G) be two fil-
tered dimension vectors. We define the filtered Euler number by

eulQ,F ,G(V ,W) := dim gQ,F ,G(V ,W)− dimHQ(V ,W).

For families of subspaces S ⊆ V and T ⊆ W , Lemma 4.4 implies that

eulQ,F ,G(V ,W) = eulQ,FS ,G(S,W) + eulQ,FV/S ,G(V/S,W),(4.1)
eulQ,F ,G(V ,W) = eulQ,F ,GT (V , T ) + eulQ,F ,GW/T (V ,W/T ).(4.2)

Filtered Euler numbers can be computed in the following way. For v =
(va)a∈Q1 ∈ HQ(V) and w = (wa)a∈Q1 ∈ HQ(W), consider the map

δv,w : gQ,F ,G(V ,W)→ HQ(V ,W), Φ 7→ Φv − wΦ,(4.3)

where the right-hand side denotes the element of HQ(V ,W) with compo-
nents Φyva −waΦx for each arrow a : x→ y in Q1, generalizing our notation
for the action of glQ(V) on HQ(V). Define

HomQ,F ,G(v, w) := ker(δv,w),
ExtQ,F ,G(v, w) := coker(δv,w),

so that we have a short exact sequence

0→HomQ,F ,G(v, w)→gQ,F ,G(V ,W)→HQ(V ,W)→ExtQ,F ,G(v, w)→0,

By exactness, the Euler number of this complex is zero, hence

eulQ,F ,G(V ,W) = dim HomQ,F ,G(v, w)− dim ExtQ,F ,G(v, w)

for any v ∈ HQ(V) and w ∈ HQ(W). Now define

homQ,F ,G(V ,W) := min
v,w

dim HomQ,F ,G(v, w),

extQ,F ,G(V ,W) := min
v,w

dim ExtQ,F ,G(v, w),
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where the minimizations are over all v ∈ HQ(V) and w ∈ HQ(W). There
exists a Zariski-open subset where both minima are simultaneously attained,
hence

eulQ,F ,G(V ,W) = homQ,F ,G(V ,W)− extQ,F ,G(V ,W).(4.4)

If S ⊆ V is a family of subspaces then the tangent space at S of the
Schubert cell Ω0(S,F) can be identified with gQ,FS ,FV/S (S,V/S). Thus:

dim Ω(S,F) = dim gQ,FS ,FV/S (S,V/S),

hence, using Definitions 3.5 and 4.5,

(4.5)
eulQ,FS ,FV/S (S,V/S) = dim Ω(S,F)− dimHQ(S,V/S)

= edimQ,F (S,V).

Our next theorem is the analog of Schofield’s theorem [24] in the context of
filtered dimension vectors:

Theorem 4.6. Let (V ,F) be a filtered dimension vector and S ⊆ V a family
of subspaces. Then S ⊆Q V if and only if extQ,FS ,FV/S (S,V/S) = 0.

Proof. Abbreviate Ω0 = Ω0(S,F). Consider again the smooth variety from
Eq. (3.5),

X0 = {(T , v) ∈ Ω0 ×HQ(V) : vT ⊆ T },

which is a BQ(V ,F)-equivariant vector bundle over the homogeneous space Ω0.
Recall from Eq. (3.1) that the fiber X(S) is the vector space consisting of all
elements

v =
(

v00 v01
0 v11

)
(4.6)

with v00 ∈ HQ(S), v01 ∈ HQ(U ,S), and v11 ∈ HQ(U), where U is a comple-
ment of S in V . Now consider the map

m : BQ(V ,F)× X(S)→ HQ(V), (b, v) 7→ bvb−1.

Then, S ⊆Q V if and only if the map m is dominant. Since m is a map between
smooth irreducible varieties, it is dominant if and only if there exists a point
(b, v) where the differential is surjective. By equivariance, we can assume that
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b = 1. Thus, S ⊆Q V if and only if the differential of m at (1, v) is surjective
for some v.

This differential can be written as

bQ(V ,F)⊕ X(S)→ HQ(V), (X, w) 7→ Xv − vX + w,

where X ∈ bQ(V ,F) and w ∈ X(S). In view of Eq. (4.6), this map is sur-
jective if and only if its ‘component’ bQ(V ,F)→ HQ(S,U) ∼= HQ(S,V/S) is
surjective. Since bQ(V ,F) surjects onto gQ,FS ,FV/S (S,V/S) by Lemma 4.3, it
even suffices to determine when

gQ,FS ,FV/S (S,V/S)→ HQ(S,V/S), Φ 7→ Φv00 − v11Φ

is surjective. But this is exactly the map δv00,v11 from Eq. (4.3). Thus, we
conclude that S ⊆Q V if and only if extQ,FS ,FV/S (S,V/S) = 0.

5. Calculation of ext

Let (V ,F) and (W ,G) be filtered dimension vectors. In this section, we com-
pute the quantity extQ,F ,G(V ,W) in terms of a minimization over filtered
Euler numbers (Definition 4.5). Using Theorem 4.6, this reduces the problem
of determining Q-intersection to an easy numerical criterion.

Theorem 5.1. Let (V ,F) and (W ,G) be filtered dimension vectors. Then,

extQ,F ,G(V ,W) = − min
S⊆QV

eulQ,FS ,G(S,W),

where we minimize over all S ⊆Q V including S = ({0}) and S = V.

The minimization is well-defined, since eulQ,FS ,G(S,W) only depends on
the BQ(V ,F)-orbit of S (i.e., the Schubert cell determined by S) and there are
only finitely many such orbits. The remainder of this section will be concerned
with the proof of Theorem 5.1.

Let v ∈ HQ(V), w ∈ HQ(W), and S ⊆ V a subrepresentation of v.
Consider the surjective map

HQ(V ,W)→ HQ(S,W)→ ExtQ,FS ,G(v|S , w)(5.1)

where the first arrow is componentwise restriction and the second the canon-
ical quotient map. The proof of the following lemma is left to the reader.
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Lemma 5.2. The map (5.1) descends to a surjection

ExtQ,F ,G(v, w)→ ExtQ,FS ,G(v|S , w).

In particular, for any two representations v ∈ HQ(V) and w ∈ HQ(W) we
have that dim ExtQ,F ,G(v, w) ≥ dim ExtQ,FS ,G(v|S , w).

Lemma 5.3. Let S ⊆Q V. Then, extQ,F ,G(V ,W) ≥ extQ,FS ,G(S,W).

Proof. For generic v ∈ HQ(V) and w ∈ HQ(W),

dim ExtQ,F ,G(v, w) = extQ,F ,G(V ,W)

and v has a subrepresentation T in the BQ(V ,F)-orbit of S (since S is Q-
intersecting). Thus:

extQ,F ,G(V ,W) = dim ExtQ,F ,G(v, w) ≥ dim ExtQ,FT ,G(v|T , w)
≥ extQ,FT ,G(T ,W) = extQ,FS ,G(S,W).

The first inequality is Lemma 5.2. The equality at the end holds by BQ(V ,F)-
invariance.

Proof of Theorem 5.1. It follows from Lemma 5.3 and Eq. (4.4) that, for every
S ⊆Q V ,

extQ,F ,G(V ,W) ≥ − eulQ,FS ,G(S,W).(5.2)

We will prove by induction over the dimension of V that there always
exists S ⊆Q V that saturates the inequality. If homQ,F ,G(V ,W) = 0 then
Eq. (4.4) shows that equality holds for S = V . This also covers the base case
of the induction (i.e., the case that d(V) = 0). We can therefore assume that
homQ,F ,G(V ,W) > 0. Consider:

Y := {(Φ, v, w) : Φ ∈ HomQ,F ,G(v, w), v ∈ HQ(V), w ∈ HQ(W)}

(Example 5.6 below shows that Y need not be irreducible.) Consider the
projection

q : Y→ HQ(V)×HQ(W), (Φ, v, w) 7→ (v, w).

Let Z denote the nonempty Zariski-open subset of (v, w) ∈ HQ(V)×HQ(W)
where dim HomQ,F ,G(v, w) = homQ,F ,G(V ,W). Then, Yq := q−1(Z) is a vector
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bundle over Z with fiber of dimension homQ,F ,G(V ,W). Since Z is Zariski-
open, it follows that Yq is a smooth irreducible variety of dimension

(5.3)
dimYq = dim Z + homQ,F ,G(V ,W)

= dimHQ(V) + dimHQ(W) + homQ,F ,G(V ,W).

For each x ∈ Q0, let δx denote the minimal dimension of ker(Φx) as we
vary (Φ, v, w) ∈ Yq. There exists a nonempty Zariski-open subset of Yq where
the minimum is obtained for every x ∈ Q0. It follows that δ = (δx)x∈Q0 is the
dimension vector of a family of subspaces ker(Φ) ⊆ V .

In fact, δ is a Schofield subdimension vector. Indeed, by construction, for
generic v there exists (w, Φ) such that (v, w) ∈ Z, Φ ∈ HomQ,F ,G(v, w), and
dim ker Φ = δ. The condition Φv = wΦ implies that ker(Φ) is a subrepresen-
tation of v. Moreover, δ ̸= dimV , since homQ,F ,G(V ,W) > 0 by assumption.

We can further consider the subspaces ker(Φx) ∩ Fx(i) for each x ∈ Q0
and i and similarly minimize their dimensions. We thus obtain a Zariski-open
subset of Yq such that ker(Φ) belongs to a fixed Schubert cell Ω0(S,F) of
GrQ(δ,V). We call S a generic kernel subrepresentation. Note that S ⊂Q V ,
arguing as before.

Claim 5.4. homQ,F ,G(V ,W) = eulQ,FS ,FV/S (S,V/S) + eulQ,FV/S ,G(V/S,W).

Claim 5.5. homQ,FS ,G(S,W) ≥ homQ,FS ,FV/S (S,V/S).

We will prove these two claims below. As a consequence,

extQ,F ,G(V ,W)− extQ,FS ,G(S,W)
= homQ,F ,G(V ,W)− eulQ,F ,G(V ,W)− homQ,FS ,G(S,W) + eulQ,FS ,G(S,W)
= homQ,F ,G(V ,W)− eulQ,FV/S ,G(V/S,W)− homQ,FS ,G(S,W)
= eulQ,FS ,FV/S (S,V/S)− homQ,FS ,G(S,W)
≤ eulQ,FS ,FV/S (S,V/S)− homQ,FS ,FV/S (S,V/S)
= − extQ,FS ,FV/S (S,V/S) ≤ 0

Here we used Eq. (4.4), Eq. (4.1), Claim 5.4, Claim 5.5, and again Eq. (4.4)
(in this order). Thus, we obtain that extQ,F ,G(V ,W) ≤ extQ,FS ,G(S,W). Since
the reverse inequality also holds by Lemma 5.3, we obtain the following fun-
damental formula:

extQ,F ,G(V ,W) = extQ,FS ,G(S,W).(5.4)
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This readily allows us to conclude the proof of the theorem. Since S ⊂Q V ,
by induction, there exists T ⊆Q S such that1

extQ,FS ,G(S,W) = − eulQ,FT ,G(T ,W).

By Eq. (5.4), it follows that

extQ,F ,G(V ,W) = − eulQ,FT ,G(T ,W).

Thus, Eq. (5.2) is saturated for T . Since also T ⊆Q V by Lemma 3.9, this
concludes the proof.

Proof of Claim 5.4. Abbreviate Ω0 = Ω0(S,F). Consider the variety

Yp = {(Φ, v, w) ∈ Y : ker Φ ∈ Ω0}.

Here we do not assume that (v, w) belong to Z, so it does not follow that Yp

is contained in Yq. However, Yp ∩ Yq is a nonempty Zariski-open subset of
both varieties. Consider

V = {Φ ∈ gQ,F ,G(V ,W) : ker Φ ∈ Ω0}.

This is a BQ(V ,F)-equivariant bundle over the homogeneous space Ω0. The
fibers can be identified with the injective maps in gQ,FV/S ,G(V/S,W) (by
construction, this is a nonempty open subset). Thus, V is a smooth irreducible
variety of dimension

dimV = dim Ω0 + dim gQ,FV/S ,G(V/S,W).(5.5)

We claim that the projection

p : Yp → V, (Φ, v, w) 7→ Φ

defines a vector bundle. To see this, consider the fiber at some Φ with ker Φ =
S (by equivariance, this is without loss of generality), which consists of the
(v, w) such that Φv = wΦ. To implement this condition, choose a comple-
ment T of S in V and denote M = ΦT . Then we have vS ⊆ S, while on T ,

1In fact, we may construct such a T via a cascade of generic kernel subrepre-
sentations. If homQ,FS ,G(S,W) = 0 then extQ,FS ,G(S,W) = − eulQ,FS ,G(S,W), so
we can choose T = S. Otherwise, we continue recursively with a generic kernel
subrepresentation for the pair (S,W).
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Φ is an isomorphism onto M, so we find that w(m) = Φ(v(Φ−1(m))) for all
m ∈M. If we also choose a complement N of M in W then we can write

v =
(

v00 v01
0 v11

)
, w =

(
w00 w01
0 w11

)
.

with respect to V = S ⊕ T and W = M⊕N , where w00 is determined by
v00 (and Φ); all other entries are completely arbitrary. Thus, the fibers of p
are vector spaces of dimension

(5.6)
dimHQ(V)− dimHQ(S,V/S)

+ dimHQ(W)− dimHQ(V/S,W),

and we obtain that Yp is a vector bundle over the smooth irreducible variety V,
hence itself smooth and irreducible. Combining Eqs. (5.5) and (5.6), we find
that

dimYp = dim Ω0 + dim gQ,FV/S ,G(V/S,W) + dimHQ(V)
− dimHQ(S,V/S) + dimHQ(W)− dimHQ(V/S,W).

Since Yp∩Yq is a nonempty Zariski-open subset of both irreducible varieties,
this is also the dimension of Yq. Comparing with Eq. (5.3),

homQ,F ,G(V ,W) = dim Ω0 + dim gQ,FV/S ,G(V/S,W)
− dimHQ(S,V/S)− dimHQ(V/S,W)

and using Definition 4.5 and Eq. (4.5) we obtain Claim 5.4.

Proof of Claim 5.5. Let s ∈ HQ(S) and w ∈ HQ(W) such that

dim HomQ,FS ,G(s, w) = homQ,FS ,G(S,W).

Here, w can vary in an open subset of HQ(W). Thus, by definition of the
generic kernel subrepresentation S, there exists v ∈ HQ(V) and Φ ∈ HomQ,F ,G(v, w)
such that (v, w) ∈ Z and ker Φ ∈ Ω0(S,F). By BQ(V ,F)-equivariance, we
may assume that ker Φ = S.

Since S is a subrepresentation of v, we can consider the quotient maps v̄ : V/S →
V/S and Φ̄ ∈ HomQ,FV/S ,G(v̄, w). The latter is injective, so composition with
Φ̄ defines an injective map

HomQ,FS ,FV/S (s, v̄) ↪→ HomQ,FS ,G(s, w).
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Thus:

dim HomQ,FS ,G(s, w) ≥ dim HomQ,FS ,FV/S (s, v̄)
≥ homQ,FS ,FV/S (S,V/S),

which concludes the proof.

Example 5.6. Consider the quiver W2 from Example 3.8. Let V = (C,C)
and choose F to be the standard filtration. Then we can identify HQ(V) = C2

and gQ,F ,F = C2. Given (v1, v2), (w1, w2) ∈ HQ(V) and (Φ1, Φ2) ∈ gQ,F ,F ,
the condition that Φ ∈ HomQ,F ,F (v, w) means that

Φ2v1 = w1Φ1 and Φ2v2 = w2Φ1.

Thus, the variety Y in the proof of Theorem 5.1 is

Y = {Φ1 = Φ2 = 0} ∪ {v1w2 − v2w1 = 0, Φ2v1 = w1Φ1}

so Y has two irreducible components, each of dimension 4.

Remark 5.7. In the minimization of Theorem 5.1, we only need to consider
families of subspaces S that can arise as generic kernel subrepresentations,
as well as possibly S = ({0}) and S = V. In many examples, this allows to a
priori restrict the minimization to families with particular properties.

For example, suppose that dim Vx = dim Vy and dim Wx = dim Wy for
one or more arrows a : x → y ∈ A. Then, for generic v ∈ HQ(V) and w ∈
HQ(W), the corresponding components va and wa are isomorphisms, so Φy =
waΦxv−1

a and dim ker Φx = dim ker Φy. Thus, in this case we can restrict the
minimization to subspaces S that satisfy dim Sx = dim Sy for each such arrow.

6. Proof of the main theorem

In this section, we will establish Theorem 1.1. In fact, we will prove a refined
version, which asserts that we only need to consider subspaces for which the
generic intersection variety consists of a single point:

Theorem 6.1. Let (V ,F) be a filtered dimension vector and S a family of
subspaces as above. Then, S ⊆Q V if and only if

(A) edimQ,F (S,V) ≥ 0,
(B) T ⊂Q V for every T ∈ PQ(S,FS), T ≠ S.
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We will need some intermediate results to prove Theorem 6.1. To test if
some S is Q-intersecting, we need to in principle consider generic represen-
tations in HQ(V). We first show that there exists a universal representation
that tests Q-intersection.

Lemma 6.2. There exists a nonempty Zariski-open set of v∗ ∈ HQ(V) with
the following property: For every S ⊆ V, we have that S ⊆Q V if and only if
there exists T ∈ Ω0(S,F) such that v∗T ⊆ T .

We say that v∗ is detecting Q-intersection in V .

Proof. Consider the finitely many Schubert cells of the Grassmannians GrQ(α,V),
where α ranges over all dimension vectors α ≤ dimV . For each Schubert cell
Ω0, denote by Ω its closure and define

HΩ0

Q = {v ∈ HQ(V) : ∃T ∈ Ω0 such that vT ⊆ T }.

By Lemma 3.4, if Ω is Q-intersecting then HΩ0

Q contains a nonempty Zariski-
open set, while it is otherwise not Zariski-dense. Thus,

H̃Q :=
⋂

Ω̸⊆QV
HΩ0

Q

c
∩

⋂
Ω⊆QV

HΩ0

Q

contains a nonempty Zariski-open set. By construction, every v∗ ∈ H̃Q is
detecting Q-intersection in V .

Next, we show that we can by an optimization procedure construct Schu-
bert cells for which the generic intersection variety consists of a single point
only. Recall that d(N ) =

∑
x∈Q0 dim Nx denotes the total dimension of a

family of vector spaces.

Definition 6.3 (Slope). Let (V ,F) and (W ,G) be filtered dimension vectors.
We define the slope of a nonzero subquotient N of V by

σ(N ) := 1
d(N ) eulQ,FN ,G(N ,W),

where FN denotes the filtration induced by F on N .

For fixed v ∈ HQ(V), consider the set of subrepresentations of arbitrary
dimension,

S(v) := {S ⊆ V : vS ⊆ S}.

Note that S(v) is closed under vector space sum and intersection.
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Proposition 6.4. Let (V ,F) and (W ,G) be filtered dimension vectors and
let v∗ ∈ HQ(V) be an element detecting Q-intersection in V. Define σ∗ =
min({0}) ̸=S∈S(v∗) σ(S) and d∗ = max({0}) ̸=S∈S(v∗),σ(S)=σ∗ d(S). Then there ex-
ists a unique family S∗ ∈ S(v∗) such that σ(S) = σ∗ and d(S) = d∗.

We call S∗ the maximin subrepresentation for v∗; it is Q-intersecting in V .

Proof. Existence is clear, so we only argue for uniqueness. Suppose for sake of
finding a contradiction that S1 and S2 are two distinct families of subspaces
with the desired maximin property. Consider the short exact sequence

0→ S1 ∩ S2 → S1 → S1/(S1 ∩ S2)→ 0.

If S1 ∩ S2 ̸= ({0}) then

σ(S1) = d(S1 ∩ S2)
d(S1) σ(S1 ∩ S2) + d(S1/(S1 ∩ S2))

d(S1) σ(S1/(S1 ∩ S2))

as follows from Eq. (4.1). Thus, σ(S1) is a convex combination of slopes. By
minimality, σ(S1) ≤ σ(S1 ∩ S2), hence we find that

σ(S1) ≥ σ(S1/(S1 ∩ S2)).(6.1)

This inequality also holds when S1 ∩ S2 = ({0}). Next, consider

0→ S2 → S1 + S2 → (S1 + S2)/S2 → 0.

Since S1 ̸= S2, d(S1 + S2) > d(S2), so σ(S1 + S2) > σ(S2) by extremality.
Thus, by the same argument,

σ((S1 + S2)/S2) > σ(S2) = σ(S1).

Together with Eq. (6.1), we obtain

σ((S1 + S2)/S2) > σ(S1/(S1 ∩ S2)).

As vector spaces, both quotients are isomorphic and hence have the same
dimension vector and total dimension. Thus, it follows from the definition of
the slope and filtered Euler number that

dim gQ,F1,G((S1 + S2)/S2,W) > dim gQ,F2,G(S1/(S1 ∩ S2),W),
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where we abbreviate the induced filtrations by F1 and F2. However, the
natural isomorphism that interprets each Φ̄ : (S1 + S2)/S2 → W as a map
S1/(S1 ∩ S2)→W restricts to an injection

gQ,F1,G((S1 + S2)/S2,W) ↪→ gQ,F2,G(S1/(S1 ∩ S2),W),

since if Φ: S1 + S2 → W is a representative of some Φ̄ then Φ((S1 + S2) ∩
F(i)) ⊆ G(i) implies that Φ(S1 ∩ F(i)) ⊆ G(i) for all i. This is the desired
contradiction.

Lemma 6.5. In the situation of Proposition 6.4, the slope σ∗ and dimen-
sion d∗ of the maximin subrepresentation do not depend on the choice of v∗.
Moreover, the maximin subrepresentations obtained by varying v∗ are all in
the same Schubert cell.

Proof. Consider another v# ∈ HQ(V) that detects Q-intersection and let S#

denote the corresponding maximin subrepresentation. Since S∗ is Q-intersecting,
there exists some T ∈ Ω0(S∗,F) such that v#T ⊆ T . Then σ(T ) = σ(S∗),
since the Euler number only depends on the Schubert cell, and hence σ(S∗) ≥
σ(S#). Running the argument in reverse, we obtain that σ(S∗) = σ(S#). We
similarly find that d(S∗) = d(S#), so S# = T ∈ Ω0(S∗,F), which confirms
the last statement.

Proposition 6.6. In the situation of Proposition 6.4, the maximin subrep-
resentation S∗ is in PQ(V ,F).

Proof. We abbreviate Ω = Ω(S∗,F). It suffices to argue that Ωv# is a single
point for every v# ∈ HQ(V) that is detecting Q-intersection (a nonempty
Zariski-open set according to Lemma 6.2). We will show that Ωv# = {S#},
where S# denotes the maximin subrepresentation.

Indeed, S# is a subrepresentation of v# and, by Lemma 6.5, belongs to the
same Schubert cell as S∗, so S# ∈ Ωv# . Conversely, suppose that T ∈ Ωv# .
Since it is in the same Grassmannian as S#, we have that d(T ) = d(S#) and
dimHQ(T ,W) = dimHQ(S#,W). Moreover,

dim gQ,FT ,G(T ,W) ≤ dim gQ,F#
S ,G(S#,W).(6.2)

Indeed, since T is in the closure of the BQ(V ,F)-orbit of S#, it is clear that,
for each x ∈ Q0 and i, dim Tx ∩ Fx(i) ≥ dim S#

x ∩ Fx(i), so Eq. (6.2) follows
from Lemma 4.2. Thus, σ(T ) ≤ σ(S#) and d(T ) = d(S#). As a consequence,
T = S# by the uniqueness of the maximin subrepresentation. We conclude
that Ωv# = {S#}, as we set out to prove.



30 Velleda Baldoni et al.

We thus obtain the following result, which strengthens the main conclu-
sion of Theorem 5.1.

Corollary 6.7. Let (V ,F) and (W ,G) be filtered dimension vectors such
that extQ,F ,G(V ,W) > 0. Then there exists a family T ∗ ∈ PQ(V ,F) such that
eulQ,FT ∗ ,G(T ∗,W) < 0.

Proof. Let v∗ ∈ HQ(V) be an element detecting Q-intersection. By Theo-
rem 5.1, there exists T ⊆Q V such that eulQ,FT ,G(T ,W) < 0. Thus, S(v∗)
contains an element of negative slope. As a consequence, the maximin sub-
representation T ∗ also has negative slope, hence negative Euler number. By
Proposition 6.6, it belongs to PQ(V ,F).

We now prove the main result of this article.

Proof of Theorem 6.1. As discussed before, Lemmas 3.6 and 3.9 show that if
S is Q-intersecting in V then (A) and (B) are necessarily satisfied.

We now prove the converse. Suppose that S is not Q-intersecting in V .
By Theorem 4.6, this means that extQ,FS ,FV/S (S,V/S) > 0. Therefore, Corol-
lary 6.7 shows that there exists T ∈ PQ(S,FS) such that

eulQ,FT ,FV/S (T ,V/S) < 0.(6.3)

If T = S, this filtered Euler number equals edimQ,F (S,V) (Eq. (4.5)), so (A)
is violated. We will therefore assume that T ⊂ S. In this case,

edimQ,F (T ,V) = eulQ,FT ,FV/T (T ,V/T )
= eulQ,FT ,FV/T (T ,V/T )− edimQ,FS (T ,S)
= eulQ,FT ,FV/T (T ,V/T )− eulQ,FT ,FS/T (T ,S/T )
= eulQ,FT ,FV/S (T ,V/S) < 0,

where the first equality is Eq. (4.5), the second equality holds because T ∈
PQ(S,FS) and so edimQ,FS (T ,S) = 0 (see discussion below Definition 3.7),
the next steps are Eq. (4.5) and Eq. (4.2), and we finally used Eq. (6.3). Thus,
edimQ,F (T ,V) < 0, which by Lemma 3.6 implies that T is not intersecting
in V . This shows that (B) is violated.

Remark 6.8. One can in specific cases further constrain the families T that
need to be considered in condition (B) of Theorem 6.1 by careful inspection of
the maximin construction and using Remark 5.7. For example, we may always
restrict to T that satisfy dim Tx = dim Ty for every arrow a : x → y ∈ Q1
such that dim Sx = dim Sy and dim Vx = dim Vy.
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To see this, recall that the subspaces T were produced by applying Corol-
lary 6.7 to S and V/S. In the proof of Corollary 6.7, we first invoked The-
orem 5.1 to obtain an element T ⊆Q S with eulQ,FT ,FV/S (T ,V/S) < 0 and
then used the maximin construction of Proposition 6.4 to find an element
in PQ(S,FS) with negative Euler number. Since dim Vx/Sx = dim Vy/Vy, we
may by Remark 5.7 assume that dim Tx = dim Ty for each arrow as above.
We would like to restrict the maximin construction to the subset S′ ⊆ S(v∗)
consisting of families that satisfy this dimension condition. For generic v∗

that detect Q-intersection in S, S′ is closed under vector space sum and in-
tersection, as follows by a similar argument as given in Remark 5.7. Thus,
the same proofs as given above allow us to conclude that there exists a unique
maximin subrepresentation T ∗ (with possibly different σ∗ < 0 and d∗ > 0)
which is an element of PQ(S,FS) and moreover satisfies dim T ∗

x = dim T ∗
y

for each arrow as above.
In the case of the Horn quiver, this optimization recovers Belkale’s condi-

tions for intersections of Schubert classes of the Grassmannian (Section 7).

By the same reasoning, but working with families of subspaces without
filtrations, one can prove a refined version of Schofield’s theorem [24]. To state
the result, write α ≤Q n if α is a Schofield subdimension vector of n, and
define PQ(α) as the set of subdimension vectors β ≤ α such that GrQ(β, α)v

is a point for generic v ∈ HQ(α).

Theorem 6.9. Let α be a subdimension vector of some dimension vector n.
Then, α ≤Q n if and only if

(A) ⟨α, n−α⟩ ≥ 0,
(B) β ≤Q n for every β ∈ PQ(α), β ̸= α.

7. Horn conditions for Q-intersection

Theorem 6.1 can readily be translated into a recursive algorithm for deciding
Q-intersection that only involves the easily computable expected dimensions
(Definition 3.5).

Definition 7.1 (Horn set). Let (V ,F) be a filtered dimension vector. We
define HornQ(V ,F) inductively as the set of S ⊆ V such that, if S ≠ V,

(A) edimQ,F (S,V) ≥ 0,
(B) edimQ,F (T ,V) ≥ 0 for every T ∈ HornQ(S,FS) such that T ≠ S

and edimQ,FS (T ,S) = 0.
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Theorem 7.2 (Horn conditions). Let (V ,F) be a filtered dimension vec-
tor and S ⊆ V a family of subspaces. Then, S ⊆Q V if and only if S ∈
HornQ(V ,F).

Proof. This follows by induction over the total dimension of S. Indeed, sup-
pose that we have proved the result for any T ⊂ S. Then the ‘if‘ follows from
Theorem 6.1, while the ‘only if’ is a consequence of Lemmas 3.6 and 3.9.

It is clear that in condition (B) of Definition 7.1 we only need to con-
sider subspaces T that belong to PQ(S,F). However, it is much harder to
check membership in PQ(S,FS) (i.e., whether the generic intersection va-
riety is a point) than to compute the expected dimension and check that
edimQ,FS (T ,S) = 0 (i.e., whether the generic intersection variety is a finite
set of points).

7.1. Combinatorial Horn conditions

Since the property of being Q-intersecting only depends on the Schubert cell,
we can also give a combinatorial version of the above characterization. We
will work in the following setup: For every finite subset J = {i1 < · · · < iℓ} ⊆
N, define the vector space V (J) =

⊕
j∈J Cej and the filtration F (J) with

elements F (J)(a) =
⊕a

k=1 Cejk
for a = 1, . . . , ℓ. Thus, every collection J =

(Jx)x∈Q0 of finite subsets Jx ⊆ N defines a family of vector spaces V(J ) and
a family of filtrations F(J ), i.e., a filtered dimension vector.

We will write K ⊆ J if K = (Kx)x∈Q0 is a family of subsets Kx ⊆ Jx

for every x ∈ Q0. In this case, V(K) is a family of subspaces of V(J ). As
discussed on Page 12, every Schubert cell in a Grassmannian of V(J ) is the
Borel orbit of some family of the form V(K). Let us also write Ω(K) for the
corresponding Schubert variety defined by V(K).

We write K ⊆Q J if V(K) is Q-intersecting in V(J ), and we abbreviate
the expected dimension by edimQ(K,J ) = edimQ,F(J )(V(K),V(J )). Using
Eq. (2.1), the expected dimension can be computed as follows:

(7.1)

edimQ(K,J ) =
∑

x∈Q0

∑
j∈Kx

(
pj(Jx)− pj(Kx)

)
−
∑

a:x→y∈Q1

|Kx|
(
|Jy| − |Ky|

)
,

where we write px(S) for the position of an element x in a set S in increasing
order, i.e., px(S) = 1 for the smallest element x ∈ S, etc. We obtain a simple
practical criterion for deciding Q-intersection:
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Definition 7.3 (Combinatorial Horn set). Let J = (Jx)x∈Q0 be a family
of finite subsets of N. We define HornQ(J ) as the set of K ⊆ J such that,
if K ̸= J ,

(A) edimQ(K,J ) ≥ 0,
(B) edimQ(L,J ) ≥ 0 for every L ∈ HornQ(K) that satisfies L ̸= K and

edimQ(L,K) = 0.

Theorem 7.4 (Combinatorial Horn conditions). Let J = (Jx)x∈Q0 be a
family of finite subsets of N and K ⊆ J a family of subsets. Then, K ⊆Q J if
and only if K ∈ HornQ(J ). Moreover, if K ⊆Q J then the generic intersection
variety is of dimension edimQ(K,J ).

It is straightforward to incorporate the optimizations discussed in Re-
marks 5.7 and 6.8 into this criterion. Given a family J that satisfies |Jx| = |Jy|
for every arrow x→ y in some subset A ⊆ Q1, define HornQ,A(J ) inductively
as the set of K ⊆ J satisfying the same dimension condition (i.e., |Kx| = |Ky|
for every arrow x→ y ∈ A) and, if K ̸= J ,

(A) edimQ(K,J ) ≥ 0,
(B) edimQ(L,J ) ≥ 0 for every L ∈ HornQ,A(K) with L ≠ K and edimQ(L,K) =

0.

Then, the elements of HornQ,A(J ) are precisely the Q-intersecting subfamilies
of J that satisfy the dimension condition.

We now specialize our result to the Horn quiver Hs from (1.4) and con-
stant dimension vectors (corresponding to the choice where A contains all
arrows of Hs). Thus, let J denote a family of s + 1 subsets of N, each of
cardinality n, and K ⊆ J a collection of subsets, each of cardinality 0 ≤
r ≤ n. If we identify each V (Jx) ∼= Cn, each V (Kx) determines a Schu-
bert variety Ω(Kx) in Gr(r, n). As explained in Example 2.5, the Schubert
classes [Ω(Kx)]x=1,...,s+1 are intersecting if and only if K ⊆Hs J . Thus, we
obtain the following necessary and sufficient condition for Schubert varieties
in Gr(r, n) to intersect:

Definition 7.5 (Belkale’s Horn set). Let J denote a family of s + 1 subsets
of N, each of cardinality n, and 1 ≤ r ≤ n. We define Belkales(r,J ) as the
set of K ⊆ J such that each Kx has cardinality r and,

(A) edimHs(K,J ) ≥ 0,
(B) edimHs(L,J ) ≥ 0 for every L ∈ Belkales(d,K) where 1 ≤ d < r and

edimHs(L,K) = 0.
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Note that for the quiver Hs, J = (Jx) with Jx = {1, . . . , n} for all x, and
K ⊆ J such that each Kx has cardinality r, Eq. (7.1) simplifies to

edimHs(K,J ) =
(

s+1∑
x=1

r∑
a=1

(
Kx(a)− a

))
− sr(n− r),

where Kx(1) < · · · < Kx(r) denote the elements of Kx. This coincides with
Belkale’s definition of the expected dimension [2].

Theorem 7.6 (Belkale). Let 1 ≤ r ≤ n, J a family of s + 1 subsets of N,
each of cardinality n, and K ⊆ J a family of subsets, each of cardinality r.
Then, K ⊆Hs J if and only if K ∈ Belkales(r,J ).

In his original proof [2], Belkale constructs an element T ⊂Q V with con-
stant dim T , by a ‘cascade construction’ of generic kernels (a priori different
from the one we used) such that T fails to satisfy the Horn conditions if the
Schubert classes are not intersecting. Belkale’s proof has been simplified by
Sherman [26], as explained in [4].

7.2. Relation to augmented quivers

We now discuss the relation between our criterion and the construction of
Derksen-Weyman in more detail (cf. Section 1.4).

Consider a quiver Q and a dimension vector n, and define J = (Jx)x∈Q0

by Jx = {1, . . . , nx}. Inspired by Derksen-Weyman [10], define an augmented
quiver Q̃ in the following way. For each vertex x ∈ Q0, introduce additional
vertices (x, i) for i = 1, . . . , nx − 1, and add arrows

(x, 1) −→ . . . −→ (x, nx − 1) −→ (x, nx) = x.

Define the dimension vector ñ with components ñx,i = i. Note that ñ co-
incides with n on Q. Given a family of subsets K ⊆ J , we can similarly
associate a subdimension vector α̃ by α̃x,i = |Kx ∩ {1, . . . , i}|.

Then the correspondence between our picture and the augmented quiver
picture is as follows: K ⊆Q J if and only if α̃ ≤Q̃ ñ, that is, if and only if α̃
is a Schofield subdimension vector of ñ.

Thus, one can also determine if K ⊆Q J by using Schofield’s inductive
criterion for subdimension vectors of the augmented quiver Q̃. This is not
obviously equivalent to our Theorems 1.1 and 6.1, which apply to Q directly.
Indeed, even using our refinement of Schofield’s criterion (Theorem 6.9), one
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would a priori need to test Schofield subdimension vectors in PQ̃(α̃), which
in general is a much larger set than PQ(V(K),F(K)).

As an easy example, consider the quiver Q with a single arrow, a → b.
For K = ({1, 2}, {1, 2}), the set PQ(V(K),F(K)) has 7 elements, namely the
following subfamilies of K:

(∅, ∅), (∅, 1), (∅, 12), (1, 2), (1, 12), (2, 1), (12, 12),

where we write 12 instead of {1, 2} etc. to improve readability. In contrast,
for the extended quiver (a, 1) → (a, 2) → (b, 2) ← (b, 1) and the dimension
vector α̃ = (1, 2, 2, 1) corresponding to K, there are 12 Schofield subdimension
vectors in PQ̃(α̃):

(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 0), (0, 0, 2, 1),
(0, 1, 1, 1), (0, 2, 2, 0), (0, 2, 2, 1), (1, 1, 1, 0),
(1, 1, 2, 0), (1, 1, 2, 1), (1, 2, 2, 0), (1, 2, 2, 1).

Indeed, while every L ∈ PQ(V(K),F(K)) produces an element β̃ ∈ PQ̃(α̃) by
β̃x,i = |Lx ∩ {1, . . . , i}|, it is clear that only elements with

β̃x,i ≤ β̃x,i+1 ≤ β̃x,i + 1(7.2)

can arise in this way.
While Theorem 6.1 is not a consequence of Schofield’s theorem, it is pos-

sible to give an alternative proof using the augmented quiver construction,
staying purely in the realm of ordinary dimension vectors. Indeed, using sim-
ilar arguments as in Remarks 5.7 and 6.8 one can prove a refined version of
Schofield’s theorem (or Theorem 6.9) for dimension vectors of the form α̃
and ñ, stating that in order to determine whether α̃ ≤Q̃ ñ, it suffices to
consider β̃ ∈ PQ̃(α̃) that satisfy Eq. (7.2) and hence arise from some fam-
ily L ∈ PQ(V(K),F(K)).

8. Applications to Representation Theory

In this section, we recall that the Q-intersecting Schubert varieties deter-
mine a complete set of inequalities characterizing the cone CQ(V) generated
by the highest weights of irreducible GLQ(V)-representations that appear
in the space of polynomial functions on HQ(V), as mentioned previously in
Section 1.5. Applying an argument of Ressayre, we also show that the semi-
group of highest weights is saturated. Together, we obtain Theorem 1.5 as
announced in the introduction.
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We largely follow the notation of Section 7.1. Consider a quiver Q and a
dimension vector n, and define J = (Jx)x∈Q0 by Jx = {1, . . . , nx}. Let V =
V(J ). It is easy to see that, if the quiver Q has no cycles, then the action of
GLQ(V) on the space Sym∗(HQ(V) of polynomial functions on HQ(V) decom-
poses with finite multiplicities. A basis for the Cartan subalgebra of gl(Vx) is
given by the diagonal matrices hx,i for i = 1, . . . , nx such that hx,iej = δi,jej

for j = 1, . . . , nx. Consider zx =
∑nx

i=1 hx,i. Then, z = (zx)x∈Q0 is in z =⊕
x∈Q0 Rzx, the center of glQ(V), and acts by zero in the infinitesimal ac-

tion of glQ(V) on HQ(K). We label the dominant weights for GLQ(V) by a
collection λ = (λx)x∈Q0 , where each λx is a function {1, . . . , nx} → Z such
that λx(i) ≥ λx(j) for all 1 ≤ i ≤ j ≤ nx. Let Vλ denote the irreducible
representation of GLQ(V) with highest weight λ. We decompose:

Sym∗(HQ(V)) =
⊕

λ

m(λ)Vλ.

Note that Vλ occurs with nonzero multiplicity (i.e., m(λ) > 0) if and only if
there exists a nonzero homogeneous polynomial P on HQ(V) which is semi-
invariant by BQ(V ,F) with weight λ. The cone CQ(V) is, by definition, the
cone generated by the dominant weights λ such that m(λ) > 0. As discussed
in Section 1.5, results of Guillemin-Sternberg [12, 13] and Mumford [18, Ap-
pendix] identify the cone CQ(V) with the image of a moment map modulo
the coadjoint action.

The following result can be proved in more general situations by using
Ressayre’s dominant pairs [21] (see also [28]). We give a short proof in our
setting.

Proposition 8.1. Let J = (Jx)x∈Q0 , where Jx = {1, . . . , nx}, and V =
V(J ). Let λ such that Vλ occurs with nonzero multiplicity in Sym∗(HQ(V)).
Then,

∑
x∈Q0

nx∑
j=1

λx(j) = 0,(8.1)

and for every Q-intersecting family of subsets K ⊆Q J we have that∑
x∈Q0

∑
k∈Kx

λx(k) ≤ 0.(8.2)

Proof. The first claim follows immediately from the fact that the element z ∈
glQ(V) acts trivially on Sym∗(HQ(V)).
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For the second claim, let K be a Q-intersecting family of subsets as above
and let P be an arbitrary nonzero homogeneous polynomial that is semi-
invariant by BQ(V ,F) with weight λ. Let S = V(K) and T = V(Kc), where
each (Kc)x = Kc

x, the complement of Kx in Jx = {1, . . . , nx}. Consider the
vector space from Eq. (3.1):

X(S) = {v ∈ HQ(V) : vS ⊆ S}

Since S is Q-intersecting, the BQ(V ,F)-orbit of X(S) is dense in HQ(V)
(Lemma 3.4). Thus, since P is nonzero and semi-invariant by BQ(V ,F), there
must exist v ∈ X(S) such that P (v) ̸= 0. As an element of X(S), it is
necessarily of the form

v =
(

v00 v01
0 v11

)
,

where v00 ∈ HQ(S), v01 ∈ HQ(T ,S), and v11 ∈ HQ(T ). Now consider the
element H = (Hx)x∈Q0 in the Cartan subalgebra of glQ(V) defined by Hx =∑

j∈Kx
hx,j for x ∈ Q0. That is, each Hx is of the form

Hx =
(

I 0
0 0

)

with respect to the direct sum Vx = Sx ⊕ Tx. The orbit of v by the natural
action of the one-parameter subgroup exp(−tH) of GLQ(V) is given by vt =
(exp(−tHy)va exp(tHx))a : x→y∈Q1 . Thus,

lim
t→∞

vt =
(

v00 0
0 v11

)
.

On the other hand, P has weight λ, so

P (vt) = e⟨λ,H⟩tP (v).

We conclude that ⟨λ, H⟩ ≤ 0, for otherwise the limit would not exist. This
inequality is exactly Eq. (8.2).

Conversely, geometric invariant theory [22] implies that if λ satisfies the
conditions in Eqs. (8.1) and (8.2) then it is an element of CQ(V) (see also [28]).
Equivalently, in this case there exists a positive integer N ≥ 1 such that
m(Nλ) > 0.
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In fact, we can choose N = 1, meaning that the semigroup of highest
weights is saturated. For the Horn quiver, this was proved first by Knutson-
Tao [16] and then by Derksen-Weyman [10]. A geometric proof was given
by Belkale [2] (see also [4]). We thank Ressayre for explaining to us that,
for a general quiver, this also follows from the Derksen-Weyman saturation
theorem [10], which asserts that, for a quiver Q without cycles, the semigroup
of weights of semi-invariants is saturated (i.e., whenever there exists a semi-
invariant of weight Nω for some weight ω and integer N ≥ 1, then there also
exists a semi-invariant of weight ω).

Indeed, augment the quiver Q to a quiver Q̃ and consider the fam-
ily Ṽ = (Cnx,i) of vector spaces with dimension vector ñ, as in Section 7.2.
To every family ω̃ = (ω̃x,i) of integers, we can associate a weight λ(ω̃) = (λx)
for GLQ(V) by λx(i) =

∑nx
j=i ω̃(x,j). Using the Cauchy formula for the decom-

position of
⊗nx−1

i=1 Sym∗(Hom(Ci,Ci+1)) under the action of
∏nx

i=1 GL(i), it is
easy to see that if there exists a semi-invariant of weight ω̃ for HQ̃(Ṽ), then
necessarily ω̃x,i ≥ 0 for i = 1, . . . , nx − 1 and every x ∈ Q0. Thus, the cor-
responding λ(ω̃) is a dominant weight. Conversely, any dominant weight λ
can be written in this form for some ω̃. Furthermore, λ(ω) is in CQ(V) if and
only if ω̃ ∈ ΣQ̃(Ṽ). Consequently, the semigroup of highest weights for HQ(V)
is saturated, since the semigroup of weights of semi-invariants for HQ̃(Ṽ) is
saturated. The proof sketched above is similar to the Derksen-Weyman proof
of the Horn inequalities [10], which has been further simplified in [9].

Let us discuss which among the inequalities in Eq. (8.2) are irredundant.
In a general setting, geometric conditions for irredundancy were given by
Ressayre in [21] and, in more detail for the particular case of quivers, in [20].
For K to define an irredundant inequality, it must satisfy two conditions:

(R1) V(K) belongs to PQ(V ,F), i.e., the intersection variety Ω(K)v is gener-
ically reduced to a point,

(R2) dim CQ(V(K)) + dim CQ(V(Kc)) = dim CQ(V) − 1, where Kc denotes
the family of complements Kc

x of Kx in Jx = {1, . . . , nx}.

For the Horn quiver Hs, condition (R2) is a consequence of (R1), but not in
general (see end of Section 9).

In practice, it can be difficult to determine when conditions (R1) and (R2)
are satisfied. It is often easier to use accelerated Fourier-Motzkin elimination
on the complete (but, in general, redundant) set of inequalities associated
to Q-intersecting Ω(K) with edimQ(K,J ) = 0 to obtain a complete set of
irredundant inequalities characterizing the cone CQ(V) (see also [28]).

The cone ΣQ(V) is, by definition, the intersection of CQ(V) with z∗. Here,
we embed z∗ into the dual of the Lie algebra of the maximal torus of GLQ(V)
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via ω 7→ λ, where λx(1) = · · · = λx(nx) = ωx. We note that, for a general
quiver Q, this intersection can be reduced to {0}. We can characterize ΣQ(V)
by restricting a complete set of defining inequalities of the cone CQ(V) to z∗,
such as our Eqs. (8.1) and (8.2). If K = (Kx) is a family of subsets Kx ⊆
{1, . . . , nx} and λ as above, then

∑
k∈Kx

λx(k) = |Kx|ωx. Moreover, if K is
Q-intersecting, then αx = |Kx| defines a Schofield subdimension vector α,
and any Schofield subdimension vector of n can be obtained in this way. It
follows that the cone ΣQ(V) is determined by the inequalities∑

x∈Q0

αxωx ≤ 0,

where α ranges over all Schofield subdimension vectors of n, together with
the equation ∑

x∈Q0

nxωx = 0.

In this way, we recover the description of ΣQ(V) due to Derksen-Weyman [10]
and Schofield-van den Bergh [25]. Irredundant inequalities are described in [10]
when n is a Schur root.

9. Sun Quiver

We now discuss the ‘sun quiver’ introduced in [7]:

1
2

3
4

5

6

The sun quiver has a discrete rotation symmetry (x 7→ x+2) and a reflection
symmetry that interchanges 2↔ 6 and 3↔ 5.

The family J = ({1, 2}, . . . , {1, 2}) and its dimension vector (2, . . . , 2)
respect both symmetries. We use Theorem 7.4 to compute the Q-intersecting
subfamilies K ⊆Q J . Up to symmetry, there are 113 subfamilies, correspond-
ing to 39 Schofield subdimension vectors. The latter are given by the following
list:

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 2), (0, 0, 0, 1, 0, 1),
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(0, 0, 0, 1, 0, 2), (0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 2), (0, 0, 0, 2, 0, 2),
(0, 0, 0, 2, 1, 2), (0, 0, 0, 2, 2, 2), (0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 2),
(0, 1, 0, 1, 1, 1), (0, 1, 0, 1, 1, 2), (0, 1, 0, 2, 0, 2), (0, 1, 0, 2, 1, 2),
(0, 1, 0, 2, 2, 2), (0, 1, 1, 1, 0, 2), (0, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 2),
(0, 1, 1, 2, 0, 2), (0, 1, 1, 2, 1, 1), (0, 1, 1, 2, 1, 2), (0, 1, 1, 2, 2, 2),
(0, 2, 0, 2, 0, 2), (0, 2, 0, 2, 1, 2), (0, 2, 0, 2, 2, 2), (0, 2, 1, 1, 1, 2),
(0, 2, 1, 2, 1, 2), (0, 2, 1, 2, 2, 2), (0, 2, 2, 2, 2, 2), (1, 1, 1, 1, 1, 1),
(1, 1, 1, 1, 1, 2), (1, 1, 1, 2, 1, 2), (1, 1, 1, 2, 2, 2), (1, 2, 1, 2, 1, 2),
(1, 2, 1, 2, 2, 2), (1, 2, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2).

Up to symmetry, there are 59 Q-intersecting subfamilies K that satisfy the
condition edimQ(K,J ) = 0. They are given by

(∅, ∅, ∅, ∅, ∅, ∅), (∅, ∅, ∅, ∅, ∅, 1), (∅, ∅, ∅, ∅, ∅, 12),
(∅, ∅, ∅, 1, ∅, 1), (∅, ∅, ∅, 1, ∅, 12), (∅, ∅, ∅, 1, 2, 2),
(∅, ∅, ∅, 2, 1, 2), (∅, ∅, ∅, 1, 2, 12), (∅, ∅, ∅, 2, 1, 12),
(∅, ∅, ∅, 12, ∅, 12), (∅, ∅, ∅, 12, 1, 12), (∅, ∅, ∅, 12, 12, 12),
(∅, 1, ∅, 1, ∅, 1), (∅, 1, ∅, 1, ∅, 12), (∅, 1, ∅, 1, 2, 2),
(∅, 1, ∅, 2, 1, 2), (∅, 1, ∅, 1, 2, 12), (∅, 1, ∅, 2, 1, 12),
(∅, 1, ∅, 12, ∅, 12), (∅, 1, ∅, 12, 1, 12), (∅, 1, ∅, 12, 12, 12),
(∅, 1, 2, 2, ∅, 12), (∅, 2, 1, 2, ∅, 12), (∅, 1, 2, 2, 2, 2),
(∅, 2, 1, 2, 2, 2), (∅, 2, 2, 1, 2, 2), (∅, 1, 2, 2, 2, 12),
(∅, 2, 1, 2, 2, 12), (∅, 2, 2, 1, 2, 12), (∅, 2, 2, 2, 1, 12),
(∅, 1, 2, 12, ∅, 12), (∅, 2, 1, 12, ∅, 12), (∅, 1, 2, 12, 1, 2),
(∅, 1, 2, 12, 2, 1), (∅, 2, 1, 12, 1, 2), (∅, 1, 2, 12, 1, 12),
(∅, 2, 1, 12, 1, 12), (∅, 1, 2, 12, 12, 12), (∅, 2, 1, 12, 12, 12),
(∅, 12, ∅, 12, ∅, 12), (∅, 12, ∅, 12, 1, 12), (∅, 12, ∅, 12, 12, 12),
(∅, 12, 1, 2, 2, 12), (∅, 12, 2, 1, 2, 12), (∅, 12, 1, 12, 1, 12),
(∅, 12, 1, 12, 12, 12), (∅, 12, 12, 12, 12, 12), (2, 2, 2, 2, 2, 2),
(1, 2, 2, 2, 2, 12), (2, 1, 2, 2, 2, 12), (2, 2, 1, 2, 2, 12),
(1, 2, 2, 12, 1, 12), (2, 1, 2, 12, 1, 12), (1, 2, 2, 12, 12, 12),
(2, 1, 2, 12, 12, 12), (1, 12, 1, 12, 1, 12), (1, 12, 1, 12, 12, 12),
(1, 12, 12, 12, 12, 12), (12, 12, 12, 12, 12, 12),
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where we again write 12 instead of {1, 2} etc. to improve readability. For exam-
ple, (1, 2, 2, 12, 1, 12) and (2, 1, 2, 12, 1, 12) are two (inequivalent) subfamilies
that both correspond to the Schofield subdimension vector (1, 1, 1, 2, 1, 2).

We now compute the polyhedral cone characterizing the highest weights λ
that appear in Sym∗(HQ(V)), where V = (C2, . . . ,C2). It is defined by the
constraints in Proposition 8.1 and the Weyl chamber inequalities λx(1) ≥
λx(2) for each vertex x. The resulting cone has 36 extreme rays and 75 faces. In
addition to the Weyl chamber inequalities and the constraint

∑6
x=1

∑2
a=1 λx(a) =

0, a minimal complete set of defining inequalities is (up to symmetry) given
by the following list

λ1(1) + λ2(2) + λ6(2) ≤ 0,

λ1(2) + λ2(1) + λ6(2) ≤ 0,

λ1(1) + λ2(2) + λ3(2) + λ4(2) + λ6(2) ≤ 0,

λ1(2) + λ2(1) + λ3(2) + λ4(2) + λ6(2) ≤ 0,

λ1(2) + λ2(1) + λ4(2) + λ5(2) + λ6(2) ≤ 0,

|λ1|+ |λ2|+ |λ6| ≤ 0,

λ1(1) + |λ2|+ λ3(1) + λ4(2) + λ6(2) ≤ 0,

λ1(1) + |λ2|+ λ3(2) + λ4(1) + λ6(2) ≤ 0,

λ1(2) + |λ2|+ λ3(2) + λ4(1) + λ6(1) ≤ 0,

λ1(1) + |λ2|+ λ3(2) + λ4(2) + λ5(2) + λ6(2) ≤ 0,

λ1(1) + λ2(2) + λ3(2) + |λ4|+ λ5(2) + λ6(2) ≤ 0,

λ1(2) + |λ2|+ λ3(2) + λ4(1) + λ5(2) + λ6(2) ≤ 0,

|λ1|+ |λ2|+ λ3(1) + λ4(2) + λ5(2) + |λ6| ≤ 0,

|λ1|+ |λ2|+ λ3(2) + λ4(1) + λ5(2) + |λ6| ≤ 0,

together with λx(2) ≥ 0 for odd x and λx(1) ≤ 0 for even x. We computed
these inequalities using Fourier-Motzkin elimination starting from the condi-
tions in Proposition 8.1 for Q-intersecting families K with expected dimen-
sion zero and the Weyl chamber inequalities. The above list coincides with
Collins’ updated result [7], obtained by using the isomorphism between CQ(V)
and ΣQ̃(Ṽ) described in Section 8 and the Derksen-Weyman description of ir-
redundant inequalities for ΣQ̃(Ṽ) in terms of decompositions into Schur roots.

In this simple case, it is also feasible to apply (and verify) Ressayre’s
criterion for irredundancy. All families K listed above satisfy Ressayre’s con-
dition (R1) on p. 38, except for the family K = ({2}, {2}, {2}, {2}, {2}, {2}),
which leads to a variety Ω(K)v which generically consists of two points.
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(Generically, the composition v−1
1→6v5→6v−1

5→4v3→4v−1
3→2v1→2 has two one-dimensional

eigenspaces S1, each of which gives rise to a point S ∈ Ω(K)v.) The corre-
sponding inequality

∑
x λx(2) ≤ 0 indeed follows by adding the Weyl chamber

inequalities λx(2)− λx(1) ≤ 0 to the equation
∑

x λx(1) + λx(2) = 0.
It is also not hard to see that if K is a family for which the undirected

subgraph of the sun quiver obtained by erasing the vertices corresponding
to empty sets (i.e., Kx = ∅) is a disconnected graph, then K (and also Kc)
do not satisfy Ressayre’s condition (R2) for irredundancy. For example, the
inequalities λ4(1) ≤ 0 and λ6(1) ≤ 0 are irredundant inequalities associated
to (∅, ∅, ∅, {1}, ∅, ∅) and (∅, ∅, ∅, ∅, ∅, {1})), respectively. In contrast, the family
K = (∅, ∅, ∅, {1}, ∅, {1}) satisfies condition (R1) but not condition (R2), and
the corresponding inequality λ4(1) + λ6(1) ≤ 0 is redundant.

A priori conditions for irredundancy have been given by Belkale-Kumar [3],
Derksen-Weyman [10], Knutson-Tao-Woodward [17], and Ressayre [21] in
terms of Schubert calculus (for GL(n), equivalently, in terms of Littlewood-
Richardson coefficients). They appear to be difficult to test in practice.
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