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INTRODUCTION

1.1 FROM KNOWLEDGE TO REPRESENTATION

Real-world problems present themselves in a variety of facets and dimensions, requiring
us to adapt quickly to tackle them. To do so, we build knowledge on specific problems
which we learn to solve by repetition and knowledge on patterns in problems that we use
to develop a solution strategy in general.

The game of chess serves as a good illustration. Following the first pawn move
of €2 — e4, there emerge between 10! and 10'> possible positions that can develop
during the game. Each turn a player must explore this enormously large search space to
pick an optimal strategy. Such a task, challenging even for modern-day chess engines,
seems nearly impossible for humans to grasp. Yet, the 2021 World Chess championship
witnessed an average accuracy of chess moves exceeding 97% '. This is possible
because professional chess players rely on prior knowledge in the form of chess theory.
Chess theory provides the guidelines for the game on what tactical goals players should
prioritize while identifying others that can be sacrificed. For example, control of the
center of the board and development of light chess figures such as bishop and knight as
opposed to capturing material advantage at all costs. Therefore, chess theory, although
not simple itself, significantly simplifies the search space for a winning strategy.

Language learning is another example. People starting to learn a new language initially
face an overwhelming multitude of word forms and cases, each of which seems like
an isolated entity governed by its own rule. As the learners progress with learning
grammar, they begin to identify the underlying grammatical structures that govern the
language. They realize how the multitude of word forms follows from a few specific
rules, enabling them to generalize and apply these rules to new vocabulary effortlessly.
Like this, grammar knowledge simplifies the understanding of language, providing a
framework to navigate and comprehend the intricacies of language structures more with
ease.

And a final example is in the realm of music. The intricacies of melodies, chords, and
rhythms may seem overwhelming for a beginner learning to play a musical instrument.
Nevertheless, as novices learn musical note theory, they begin to recognize the patterns
and relationships between musical elements. They realize that different melodies and
chord progressions are simply variations of established musical scales and harmonic
principles. For example, certain notes within a scale create harmonies that sound pleasing
when played together. This significantly simplifies the process of understanding and
creating musical compositions.

1 ratio of moves considered strong by a chess engine
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Although the tasks of winning in chess, learning a language, or composing a sonata
seem drastically different in the skill set they require, we approach all of them in a
similar conceptual manner. Relying on prior knowledge, we seek to represent the task in
a space where the path toward the solution can be efficiently navigated. Representing
a chess game through strategic layouts of a pawn structure and center control allows
one to readily see the strength and weaknesses of a position to make a strong move.
Representing the language through grammatical rules transforms the chaos of words
into a structured system where one can understand the meaning of a sentence even if
encountering an unfamiliar lexicon. Representing music through musical theory converts
a jumble of notes into a structured composition where a musician can easily navigate to
pick the next chord to play. In all those examples, finding a suitable representation is
the essential step of solving the task efficiently. We call the process of finding efficient
representations - representation learning.

Many everyday tasks, jobs, and routines involve some form of representation learning
when we approach them. To drive a car, we learn a mental representation of traffic
rules to navigate safely, and we use a map representation of a city layout to navigate
efficiently. At our jobs, we learn to use infographics in the form of diagrams, flowcharts,
or spreadsheets to represent complex processes or data to facilitate communicating them.
In social interactions, we learn to interpret body language and facial expressions as
representations of people’s emotions and intentions to better understand other people. In
each of those examples, we turn to representation learning to structure the information
and simplify solving the task at hand.

Naturally, in the era of Artificial Intelligence (Al), automated representation learning is
becoming the task of great interest and importance. Not only, the Al-driven representation
learning is a crucial component for Al-driven problem solving, but it also can serve as
a tool allowing to interpret and to explain predictions of an Al-agent [11]. Studying
Al-driven representation learning is thus crucial for building trustworthy intelligent
systems.

This thesis focuses on the process of representation learning in neural networks.

1.2 REPRESENTATION LEARNING AS A WAY OF EXPLAINING THE DATA

In the thesis, we view representation learning as a model describing the data subject to a
specific downstream task. That is, describing a chess position to see how to checkmate
an opponent, describing music harmonics to facilitate composing a sonata or describing
an image to decide on the categories of objects present.

A useful framework to approach representation learning within this context is the
Minimum Description Length principle [61,143]. Minimum Description Length suggests
seeking a model that provides the shortest, hence the simplest explanation of the data.
With Minimum Description Length, representation emerges naturally as a condensed
summary of the data subject to a downstream task. The best of such a summary would
include relevant causal factors that affect the outcome but omits irrelevant information to
enable the shortest description [87,117].
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Explaining the game of chess via such high-level structures as figure formations and
control over the center allows for a simpler and a shorter explanation of a winning
strategy compared to discussing each individual move. This way of structuring the game
provides a better representation of chess according to the Minimum Description Length
principle. Similarly, using a grammar to explain a language simplifies the description
of numerous word forms using a few basic rules. Along the same lines, representing
music as a collection of notes and scales readily allows describing millions of songs and
melodies as a combination of several fundamental harmonics.

As an example, from the realm of Al, consider the task of image classification with
Convolutional Neural Networks (CNNs) [102]. When we train a CNN to classify
images, say predicting the type of animal on a photo, a network effectively learns to
condense low-level raw pixel data into high-level features such as edges, textures, and
shapes [86,97, 194]. Those features are further condensed into high-level ones like the
silhouette or characteristic facial features. The process continues until the data is distilled
into a representation from which the type of the animal can be inferred directly. At this
stage, the data is distilled into a summary that contains essential factors influencing the
classification outcome but omits other irrelevant details, like the pose of an animal in an
image, to enable the shortest description.

The Minimum Description Length principle can be seen as a practical realization of
Occam’s razor, a philosophical principle that advocates for simplicity when drawing
hypotheses [150]. From a formal standpoint, Minimum Description Length is also closely
related to Kolmogorov complexity [95, 169], which measures the length of the shortest
program that can generate the observed data. In essence, the Minimum Description
Length principle seeks to find a concise representation of the data while capturing its
essential patterns and regularities, akin to compressing the data into a compact form;
and Kolmogorov complexity provides a theoretical bound for a minimum amount of
information needed to describe the data in the most compact form.

The Minimum Description Length principle underscores the nature of representation
learning as a way of finding an efficient description of the data for the purpose of solving
the downstream task of interest, be it the task of finding a winning move in chess,
choosing a right note to complete musical composition, or classifying objects on images.
In this thesis, we take inspiration from the Minimum Description Length perspective to
analyze representation learning in neural networks.

1.3 INVARIANCE

The key underlying assumption of the Minimum Description Length principle is that the
data comes with information redundant to solve the task of interest. Therefore the word
minimum in Minimum Description Length, encourages the discard of this redundant
information in representation space. The search for the minimum can be also understood
from a probabilistic point of view. Any assumption introduced into a model has a
probability of being wrong, hence it is most reasonable to limit assumptions to the core
set, which consists of information strictly necessary for the task of interest. According
to the Minimum Description Length principle, a good model is expected to reason on
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such a core set of assumptions, and only this core set, hence being invariant to all other
factors of variations.

We are arriving to the concept of invariance. In the context of neural networks, a
network f : X — Y is said to be invariant if there exists an invariance set 7~ such
that f(x) = f(T(x)) holds for YT € 7, where T : X — X. Put simply, invariance
implies that a neural network produces the same output when the input undergoes a
transformation from the invariance set 7. This property allows for generalizing learned
patterns by constructing the representation space, where objects that share the same
structure but may differ in other aspects, are mapped into the same point. In the task of
image classification, for example, two objects of the same category may vary in size,
position, and orientation, but a robust neural network would still map those objects into
the same representation, filtering out variations irrelevant to the classification task.

In a broader context, invariance shares a common basis with the inductive approach
to science [5] that involves deriving general principles from a collection of individual
observations. Scientists use this method to build theories or models that describe natural
phenomena. The goal is to find principles that hold true in various situations, identifying
patterns and rules that are both universal and constant, unaffected by specific conditions.
Invariance plays a key role in this process by focusing on elements that consistently
impact the phenomenon while excluding factors that do not have a direct influence.
This enables the formulated theory to be universally applicable, undeterred by varying
circumstances.

For instance, the law of planetary motions applies universally to all celestial bodies
orbiting around their stars, irrespective of the specific planet or star involved. Similarly,
principles governing chemical reactions, such as rules of chemical kinetics, apply univer-
sally for all chemical compounds regardless of specific reaction conditions. Likewise,
the law of supply and demand in economics holds true regardless of the specific goods or
services being traded.

Along the same lines, when we train a neural network to solve a task, we want it to
generalize across a whole range of input variations as long as truly causal factors remain
intact. In this thesis, we study invariance as a key property in representation learning
with neural networks that allows such generalizations.

Structure in invariance

In the thesis, we narrow our focus to a particular type of invariance called structured
invariance. This kind of invariance emerges when the transformations that a neural
network is invariant to follow an explicit mathematical structure. We choose to focus
on the case where such a structure takes the form of a group [83]. By taking the group-
theoretical framework, which has a well-established mathematical foundation, we aim
for a tool for analyzing and understanding the invariance properties of representation
learning in neural networks.

Groups are algebraic structures studied by group theory. In simple terms, a group is a
set of elements coupled with an operation that combines any of two of those elements

10
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into a third one. Additionally, the group axioms should be met for a set with an operation
to constitute a group. Those axioms are discussed in detail in Chapter 2.3.

Groups have practical relevance in describing many natural phenomena. In physics, for
instance, the conservation laws are a manifestation of an underlying symmetry described
by a group structure [165, 196]. In chemistry, the group theoretical approach is used
to describe molecular geometry that governs molecular properties [81, 196]. Even in
everyday routines, such as arranging furniture in a room, we unconsciously use the
concept of symmetry groups to plan balanced and aesthetically pleasing arrangements.
Due to this ubiquity of symmetries, neural networks inevitably face them when applied
to real-world problems. It makes the mathematical apparatus of group theory relevant to
analyze the invariance properties that emerge in neural networks’ representations.

In this thesis, we aim to study representation learning in neural networks through the
lens of structure and invariance. We further divide this topic into five research question.

Do neural networks learn structured invariance from the data?
Chapter 2: Investigating properties and limitations of learned invariance

Firstly, we study the invariance neural networks learn from the data. While, multiple
prior works have demonstrated the outstanding ability of neural networks to solve tasks
that requires structured invariance [13, 124, 132], the properties and limitations of such
learned invariance remain largely unexplored. To what extent there is a structure in
learned invariance? Does the invariance we observe in network’s predictions imply
genuinely invariant decision-making in a model? If we train a model to be invariant on
a particular task, does it imply that a network will universally this learned invariance
across other tasks?

To investigate the properties and limitations of learned invariance, in Chapter 2 we
compare the invariance learned from the data to the oracle invariance achieved with
group-invariance built into a model architecturally through the weight-tying [34]. While
the weight-tying approach provides guaranteed invariance regardless of the operating
conditions, we demonstrate that the invariance learned by unconstrained models is
strongly conditioned on the input data. We further conduct perturbation analysis for
networks with learned invariance revealing that even if a network learns to correctly
classify samples on a group orbit, the underlying decision-making process does not attain
genuine invariance. Instead, models without weight-tying constraints choose to learn a
separate set of features for each of the transformations from a group orbit, even when
invariance is enforced by strong data augmentation. As a result, the quality of learned
invariance deteriorates quickly when applied out-of-distribution.

11
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Can we infer invariance structure from learned representations?
Chapter 3: Extracting learned invariance by analyzing learned Lie group

generators

Most of the existing methods to analyze invariance in neural networks focus on
analyzing the invariance with respect to a group of transformations specified a priori
[57,59,104]. This requires prior knowledge of the transformation group which is not
always available in practice. In this research question, we focus on this limitation and ask
if we can analyze the invariance learned in neural networks without such prior knowledge.
Can we quantify the amount of structured invariance a neural network learns without
exactly specifying the transformation group? Can we retrieve the transformation group
to which a model has learned to be most invariant to?

To this end, we focus on Lie group invariance, which unifies a wide range of real-world
continuous transformations like rotation, scaling, or translation. From here, we analyze
the invariance criterion for Lie groups. We demonstrate that the learned invariance can be
retrieved explicitly by solving a simple matrix equation with respect to a generator of the
symmetry group. We further demonstrate that this approach allows evaluating learned
invariance without any prior knowledge of the transformations in the data. Additionally,
it provides a more nuanced analysis of the learned invariance as it allows to split the
invariance error into invariance bias and variance. Invariance bias and variance provide a
more nuanced understanding of the structure of learned invariance.

Can we improve contrastive representation learning with more
structured supervision?
Chapter 4: Contrastive representation learning with structured assignments

In this research question, we focus on the contrastive approach to representation
learning. Contrastive learning aims to train useful representation by contrasting pairs of
samples from different views [82, 110, 133], aiming to train invariance to non-semantic
variations in the data. The contrastive approach to representation learning has proven
effective in a wide range of tasks ranging from visual [7,28,193] and audio domains [133]
to natural language [50] and molecules [174]. Here, we investigate contrastive learning
through the lens of invariance. The emerging question is what are the limitations of the
invariance learned with contrastive approach? Can we improve contrastive representation
learning by bringing more structure into the underlying invariance learning method?

We start by identifying the limitation of a standard contrastive learning methodology.
We show that the pairwise contrast between data samples fails to capture both intra-set
and inter-set structure, where the sets are formed as transformed views of the data.
This inherently limits the information content of the supervisory signal available to
train invariance. To address this, we propose a novel contrastive learning method
based on combinatorial quadratic assignment theory [23,51]. Different from pairwise
contrastive learning, our method leverages both the intra-set and inter-set structure of

12
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transformed data views, which provides a more informative supervisory signal. We
conduct experiments and show that bringing this additional structure to the supervision
improves the quality of learned representations.

Can we improve object localization with structured representations?
Chapter 5: Scale equivariant representations for robust visual object tracking

Next, we turn to the practical advantage of structure and invariance in representation
learning. For that, we consider the task of visual object tracking, which requires localizing
specified objects throughout the video sequence. Object tracking is challenging because
a target may undergo changes in scale, pose, or illumination, apart from less structured
variants due to the weather, albedo change, and camera noise [33]. Overcoming these
challenges requires a tracker to learn representations with a high degree of invariance to all
those transformations, while still preserving the information that allows to discriminate
the target against other objects in a sequence. With this, the task of object tracking
provides a challenging environment to evaluate algorithms for robust representation
learning.

In this research question, we ask if we can improve object tracking with structured
representations. In particular, we focus on the scaling transformation, which as we
demonstrate is one of the most challenging for the network to learn. We address this
challenge by building scale equivariance into the model’s representations a priori. This
provides guaranteed processing of the scale regardless of the training. Building scale
equivariance directly into the model is also beneficial as it saves the model’s capacity to
learn it from the data. We experimentally demonstrate the power of scale-equivariant
networks to learn more robust representations, which results in more reliable tracking
even when factors of variations other than scale are present.

Can we improve object localization with structured invariance
prior?
Chapter 6: Relational prior for tracking groups of objects

In Chapter 6, we further delve into applying structured invariance to improve repre-
sentation learning in object tracking. In the previous chapter, we focused on building
the rigid structure in the form of equivariance into model’s representations. Although it
provides the advantage of guaranteed processing of the pre-defined transformation group,
it can also over-constraint a model in cases, when the data does not exactly exhibit the
exact symmetry with respect to this group. To address this, we explore the possibility
of encouraging structured representations while simultaneously providing a model with
the flexibility to diverge from this framework when the data does not align with the
pre-established structure.

An instance of the invariance that holds locally, but not globally is spatial and tem-
poral relations between objects in tracking. Two individuals may move together before

13
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diverging due to an obstacle. In this case, the walk-together relation acts as the invariant
feature in the first part of the sequence but would over-constraint the model in the second
part. To capture this dynamic invariance, we propose augmenting a neural network with
a soft architectural prior, which encodes the structure of the desired invariance while
allowing flexibility to diverge from it when necessary. To this end, we develop the
relation encoding that can be plugged into a neural network to encode relations between
objects. Relation encoding operates as a message passing on a dynamic spatio-temporal
graph of objects to compute relational information, which is then aggregated into objects’
representations using the self-attention mechanism [167]. The self-attention provides
flexibility to consider different objects together or to treat them individually when benefi-
cial. Experimental results on tracking benchmarks demonstrate that our method enhances
tracking quality, especially in challenging cases when objects are occluded or move in a
dense crowd.
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INVESTIGATING PROPERTIES AND LIMITATIONS OF
LEARNED INVARIANCE

2.1 INTRODUCTION

The ability to abstract from irrelevant details and focus on core aspects is a foundational
property of intelligent systems. Invariance, a crucial step of this abstraction process, en-
ables neural networks to recognize patterns regardless of their transformations. Achieving
effective invariance is vital for the robust performance of deep learning models.

There exist two approaches for invariance in neural networks: invariant weight-
tying and learning invariance from data. Networks with built-in invariant weight-
tying [10,34, 156,176,179, 180] offer genuine invariance, but require knowledge of geo-
metrical priors and incurs high computational and memory costs [153,154]. Alternatively,
neural networks can learn invariance directly from data. Recent works [13, 124, 132]
demonstrate that neural networks successfully learn invariant priors without any ar-
chitectural modifications. However, the nature of learned invariance remains largely
unexplored, particularly regarding whether it resembles the genuine invariance of weight-
tying methods at any level. Consequently, this raises concerns about how much we
can rely on the learned invariance when operating conditions evolve. In this work, we
investigate the properties of learned invariance to better understand its potential and
limitations.

To investigate properties of the learned invariance, we adopt the group theoretical
perspective and analyze invariance learning without weight-tying constraints. Firstly,
we analyze the saliency maps of no weight-tying networks with learned invariance. We
demonstrate that even when such networks learn to correctly classify samples on a group
orbit, the underlying decision-making process does not attain genuine invariance, see
Figure 1. Instead of learning genuinely invariant weight-tying, unconstrained networks
choose to learn a separate set of features for each of the transformations from a group
orbit, even when invariance is enforced by strong data augmentation. This results in
learned invariance being strongly conditioned on the input data. Consequently, the
effectiveness of learned invariance degrades rapidly when operating conditions evolve,
e.g. under input distribution shift. This renders neural networks with learned invariance
less reliable.

Secondly, we tackle the problem of aligning learned invariance with the genuine invari-
ance of weight-tying networks. To do so, we propose several measures to quantify the
invariance error; we next use those measures to regularize the task loss to promote gen-
uine invariance learning. We conduct experiments with rotation and translation groups,
and we show that the proposed regularization significantly aligns learned invariance
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- N
\>/‘ \,J

Figure 1: Left: The network learns a separate set of features for each of the orientations
as indicated by divergent saliency maps. Right: saliency maps of the networks with
group-invariant weight-tying. In both cases, predicted class distributions are identical for
all of the orientations. Bottom row: saliency maps normalized to a common orientation.

with the genuine invariance achieved through the weight-tying. However, the alignment
also induces performance decay on a downstream task. This presents a new challenging
problem of achieving genuine invariance by learning through data augmentation and
specialized losses, while also maintaining the downstream task performance.

Thirdly, we investigate the performance decay under the learned invariance. To
this end, we analyze the training dynamics of the invariance error minimization from
the perspective of the gradient flow. We show that minimizing the invariance error
without weight-tying implicitly promotes attaining the invariance to a certain group of
transformations by reducing the sensitivity to any input perturbation. This has an effect
similar to training a network with a large weight decay, which motivates the performance
drop. We conduct experiments and demonstrate that this phenomenon holds for various
transformations and various forms of invariance error minimization.

To sum up, we make the following contributions:

* We demonstrate that data-driven invariance learning fails to learn genuine invari-
ance as in weight-tying networks.

* We show that it is possible to attain genuine invariance through invariance regular-
ization, but at the cost of the downstream task performance.

* We attribute the performance decay under learned invariance to the training dy-
namics of the invariance error minimization, which constrains the sensitivity of a
network to input perturbations in general.
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2.2 RELATED WORK

WEIGHT-TYING INVARIANCE Weight-tying is the approach for invariance in
neural networks that is based on the concept of group equivariant networks [34]. Group
equivariant networks explicitly embed equivariance, or invariance as a special case, for
specific transformation groups into a network architecture. The principle traces back
to convolutional networks [102] which incorporate translation symmetry. The scope
of equivariant networks has since expanded to include other transformations such as
rotations [34, 84,176, 180], permutations [192], and scaling [10, 153-156, 179]. Another
line of work focuses on advancing group equivariant networks by enabling them to
learn symmetries directly from the data [4, 43, 147,200]. This allows the model to
adjust to specific symmetries present in the training dataset, eliminating the need for
prior knowledge of geometrical priors. Yet, these methods still require modifying the
architecture to train invariance.

In this work, we treat the weight-tying methods as oracle invariance learners and
investigate whether networks without specific architectural modifications can learn the
degree and quality of invariance comparable to the weight-tying approaches.

DATA-DRIVEN INVARIANCE LEARNING  Another approach for achieving invari-
ance is to learn it directly from the data. Recent and earlier works [13,57,99, 104, 124]
demonstrate that neural networks can learn invariance without relying on specialized
architectural modifications. Additionally, training with data augmentation has long been
seen as a method to increase invariance of a model for input transformations [38,137,149].
Invariance learning that does not require specialized architectural modification is advan-
tageous as it does not incur additional memory or computational costs. However, the
nature of the learned invariance and its comparability to the genuine invariance obtained
through the weight-tying remains an open question. The properties and reliability of such
learned invariance are not well understood, which motivates the study in this paper.

2.3 LEARNING INVARIANCES FROM DATA

We take a group-symmetry perspective on data-driven invariance learning when the
downstream task is classification. That is to say, we define a set of transformations to
be a symmetry group a network needs to learn to be invariant to when classifying input
signals. We start by briefly introducing group symmetry and invariance.

2.3.1 Group symmetry

GROUP A group (G, o) is a set G with a group binary operation o called the group
product. For convenience, it is common to simplify the notation a o b to ab. The group
product combines two elements from G to a new element so that the following group
axioms are satisfied. Closure: for all a, b € G, the element ab € G. Associativity: for all
a,b,c € G, (ab)c = a(bc). Identity: there is an element e € G such that ea = ae = a
for every element a € G. Inverse: for each a € G there exist a”! € G such that

ala=aa ! =e.
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GROUP ACTIONS & SYMMETRY Group actions are a way of describing symme-
tries of objects using groups. A group action of a group G on a set X maps each element
g € G and each element x € X to an element of X in a way that is compatible with the
group structure. In other words, ex = x and (g1g2)x = g1(g2x) for any x € X and

81,82 €G.

GROUP-INVARIANCE Group-invariance is a property of a function f : X — Y
under a group action from a group G. A function f is said to be group-invariant if
f(gx) = f(x) for g € G. This means that the value of f at x is unchanged by the action
of any group element.

GROUP ORBIT The group orbit of an element x € X under a group action from a
group G is the set of all points in X that can be reached by applying the group action
on x. More formally, the orbit of x is defined as the set O, = {gx|g € G}. This concept
encapsulates the idea that the group action can move the element x around within the set,
and the orbit describes all the possible positions x can be moved to by the group action.

2.3.2 Measuring learned invariance

Next, we explain how to measure group-invariance learned by a neural networks from
the data. We assume we are given a neural network f : X — Y that maps inputs to
logits, a group G and the dataset . We define three types of measures: (i) predictive
distribution invariance to measure the average change of a network’s output distribution
when a symmetry transformation is applied, (ii) logit invariance to measure the change
of raw network’s logits and (iii) saliency invariance similarity to evaluate the consistency
of network’s decisions under group transformations.

PREDICTIVE DISTRIBUTION INVARIANCE Since the downstream task of inter-
est is classification, it is natural to measure the invariance by evaluating the shift of the
predictive distribution when transformations from a group orbit are applied. Practically,
we can utilize Kullback-Leibler divergence between output softmax-distributions of f(x)
and f(gx). With this, we can write the predictive distribution invariance error DI

le(D’g) = Z Z DKL(ux I Cng) (2.1)

x~D g~G

where u, and g, denote the softmax applied to the logits f(x) and f(gx) respectively.

Since DIy operates directly on the level of predictive distributions, it is the most useful
to evaluate the invariance tackled to the downstream classification task.

LOGIT INVARIANCE Next, we define the logit invariance error to measure the shift

of raw logits under group actions. Practically, we utilize average squared L, distance
between the logits f(x) and f(gx):
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LID.6)= Y 3 3llf(x) - F(ex): (2.2)
~Dg~G

Note that the logit invariance error is a more strict invariance measure compared
to DIf(D,G). This is due to a scalar addition invariance of the predictive softmax-
distribution. That means LIf(D,G) = 0 implies DI;(D,G) = 0, but not vice versa.
With this, the logit invariance error is the most useful to characterize the absolute
invariance of a function to group transformations regardless of a particular downstream

task.

SALIENCY INVARIANCE SIMILARITY Lastly, we propose saliency invariance
similarity S/ to measure the consistency of the decision-making process of a neural
network under input transformations. Letmy : X x Y — & be a saliency map function for
the network f [128,157]. We then compute the similarity between m ¢(x) and g~ 'ms(gx),
where g~! is needed to ensure a common orientation of the saliency maps. Practically,
we adopt the cosine similarity and compute the average saliency similarity as:

-8~ 'my(gx)
S1/(D, 2.3
r(D.6) = %gzg i Cx ||2||g my (g0l 2

The saliency invariance similarity S1;(D, G) reflects how much the direction of the
most important features, that a network bases its decisions on, change under transfor-
mations from a group orbit. Saliency invariance similarity differs from the previous
two metrics as it considers the structure of the input data and not just the output of the
network. This makes S I particularly useful to understand how group transformations
alter a network’s internal decision-making process.

2.3.3 Invariance regularization

CONSTRAINED INVARIANCE LEARNING We next consider the task of facilitat-
ing learning invariances from the data. The natural way to do so is to optimize the task
performance subject to a low invariance error. Practically, with the dataset 9 and a group
of interest G, invariance learning boils down to the constrained optimization approach
ming L¢(D) s.t. 1;(D,G) = 0; then, to train a neural network, we can simply optimize
the relaxation:

ming £(D) 4+ vI;(D,G) (2.4)

where 6 denotes the parameters of f, L is a downstream task loss functions, / f(Z), Q)
is an invariance regularizer with respect to the group G and v regulates how much
invariance we want to achieve at the training. Practically, we observed that using the
logit invariance error as a regularizer provides better overall invariance and accuracy than
other forms of the invariance error, see Section 2.4.3.

Adding an invariance-regularizer to the original loss yields a simple approach to
facilitate data-driven invariance learning. We experimentally demonstrate that invariance
regularization significantly improves the quality of learned invariance, closing the gap
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with the genuine invariance of weight-tying methods. However, we also observe that
the improvement in the quality of invariance comes at the cost of downstream task
performance, as we demonstrate in Section 2.4.3.

2.3.4 Invariance-induced spectral decay

In order to analyze the causes of performance decay under the invariance error mini-
mization, we analyze the training dynamics of the learned invariance through the lens of
its gradient flow. We show that a neural network opts for achieving the invariance to a
particular transform group by reducing the sensitivity to any input variations. We use a
maximum singular value oy, of network’s weights as a sensitivity measure [91, 190];
and we analyze the gradient flow for the logit invariance error with a class of linear
neural networks. We firstly show that the logit invariance error minimization implicitly
constrains the maximum singular value of network’s weights, thereby reducing its input
sensitivity. Then, we experimentally demonstrate that this result also holds for more
complex neural networks and the various forms of invariance errors.

Consider a linear neural network /(x) = Wx. Without loss of generality, we analyze
the sensitivity to the action of a single group element g, instead of the full orbit of the
group G. Let G be a linear representation of the group acting on x and consider invariance
error minimization over ¢ steps.

Proposition 1 (Invariance-induced spectral decay). Logit invariance error minimization
implies 0 max(W (1)) < 0max(W(0)) when t — .

Proof. The optimization of the parameter matrix W takes the form of W'*! = W’ —
aVLI', where VLI' = W'(x — Gx)(x — Gx)T is a gradient of the logit invariance error
(Equation 2.2) at the time step ¢.

Let e = x— Gx and X = €€’ . With the infinitesimally small learning rate a, we can
write the gradient flow of W as:

d
—W =-Wx 2.5
7 (2.5)

For a fixed £ we can solve the gradient flow above analytically as:

W(t) = W(0) exp (-X¢) (2.6)
Next, we consider a maximum singular value omax (W) = ||W||2, when the model is
trained, i.e. W(¢) with t — co. Applying Cauchy—Schwarz we can write:
IW(2)ll2 < IW(0)ll2llexp (=21l (2.7)
With a spectral decomposition 2 = UAU T we can write || exp (=21t)|l2 = llexp (—A1)]fz.

Since X is a rank-one matrix, it contains all zero eigenvalues except of the one, which
equates to Amax (Z) = €’ e. Thus, eigenvalues of the matrix exp (—~At) are all ones
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G Model Acc. (%) LI DI SI

WT 94.6 0. 0.00 00 0.0 200 1.00 2000
R2 DA 94.0.5 9864 03.1 0.17 s
IR 87.9 03 0.02 200 0.0 200 0.95 2003

WT 96.6 0.1 0.0 00 0.0:00 1.00 <00
T3 DA 962:: 50.8:s 0.1:0 0.57 so0s
IR 93.1 201 0.01 200 0.0 200 0.95 007

Table 1: Classification accuracy and invariance for the data augmentation [DA], weight-
tying [WT], and the model trained with the logit invariance error as the regularizer [ IR]
on the Transformed-MNIST dataset. LI - logit invariance; DI - predictive distribution
invariance; SI - saliency invariance similarity.

except of the eigenvalue, which equates to A¢(t) = exp(—t- €’ €). Note that 1.(¢) < 1,
hence || exp (—A1r)|l, = 1. Plugging into Equation 2.7 gives [[W(7)|l> < [[W(0)]l» with
t — oo.

]

This reveals the non-increasing spectral norm constraint that invariance error mini-
mization induces. Also, initialization routines for W, e.g. [56,66], yield small ||W(0)]l>
at the beginning of the training, further restricting the sensitivity of a network when
optimizing for the low invariance.

2.4 EXPERIMENTS

In this section, we experimentally investigate the properties of learned group-invariance.
As groups of interest we choose the lRf1 group of 4-fold rotations and the T% group of
3-fold cyclic translations along the x-axis. We examine how well the learned invariance
is aligned with the downstream task performance and the genuine invariance of weight-
tying methods. Then, we analyze the reliability of the learned invariance under the
data distribution drift. Lastly, we investigate the invariance-induced spectral decay
phenomenon for various forms of the invariance error.

Implementation details

DATASETS We construct the Transforming-MNIST and Transforming-FMNIST
datasets. Both dataset consist of MNIST and F-MNIST [185] (28 x 28 black an white
images of clothing categories) with ]Rf1 or T% group transformations applied. We addition-
ally leave out the digit 9 from the Transforming-MNIST dataset to avoid the confusion
with 6, when studying the rotation invariance. We also leave out the last class of the
Transforming-FMNIST to make number of classes equal to the Transforming-MNIST.
We extend the resolution from 28 X 28 to 36 X 36 by zero-padding data samples. We
use 10k /50k/ 2k splits for train / test / validation. The datasets are normalized to zero
mean and unit standard deviation.
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MODELS We employ 5-layer perceptron with ReLU non-linearities and the hidden
dimension of 128, resulting in total of 230k parameters. For the group-invariant model,
we utilize group weight-tying with a pooling over a group to achieve the invariance. We
only utilize group-invariant weight-tying for the first layer of a network.

TRAINING DETAILS We train all models for 300 epochs using Adam optimizer
with the batch size of 512 and the learning rate of 0.0008. For all models, we use data
augmentation with transformations randomly sampled from a group of interest. For
invariance regularization, we employ logit invariance error as a regularizer J ;. We tune
the weighting of the regularizer, such that the resulting saliency invariance similarity
S1y > 0.95. Final models are selected based on the best validation accuracy.

SALIENCY MAP FUNCTION my  The choice of the saliency map function to com-
pute saliency invariance score is a hyper-parameter. We employ the following procedure
to generate saliency maps of a network. First, we accumulate absolute values of inte-
grated gradients [157] with respect to the target class prediction. Second, we threshold
the values that are less than 0.9 of a maximum value of the absolute integrated gradient.
Finally, we apply a Gaussian filter with a kernel size of 3 and a standard deviation of 1 to
smooth the resulting saliency map.

2.4.1 Learning invariance from the data

In this experiment, we compare models that learn invariance with data augmentation [DA]
and invariance regularization [ IR], and models that have the invariant weight-tying built-
in [WT]. We evaluate the models by the classification accuracy, the logit and distribution
invariance errors, and also by the saliency invariance similarity. The results are reported
in Table 1. All results are averaged over 4 common random seeds.

wT  The networks with group-invariant weight tying deliver the highest classification
accuracy in both ]Rf1 and T% scenarios. We thus treat the weight-tying models as a
performance upper-bound and an oracle for the genuine invariance when further analyzing
models with invariance learned.

pa  We observe that the models trained with data augmentation fail to learn genuine
group invariance as indicated by high logit invariance error LI and lower saliency
similarity score S . Interestingly, these models still provide moderately low predictive
distribution invariance error DIy and high classification accuracy under group transfor-
mations. This implies that neural networks can learn to solve an invariant task without
learning a genuinely invariant decision making-process.

To visualize this phenomenon, we depict the T-SNE of the latent space of the model
with learned IR? invariance (Figure 2), and we trace different orientations of a sample
in the latent space. We observe that different orientations of one sample can land far
away from each other in the representation space, but still within the boundaries of its
class. When such configuration fully satisfies the downstream task objective, there is
apparently no reason for a network to learn genuine invariance.
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Latent space of learned invariance

Figure 2: T-SNE of the representations in the pen-ultimate layer of the model with lRf1
learned invariance. Different orientations of a single sample are mapped to distant
points in the latent space. The saliency of the network is highlighted by the red regions
in the images.

1r  The models trained with invariance regularization achieve low logit and distribution
invariance errors on par with the weight-tying models. Also, high saliency invariance sim-
ilarity indicates that invariance regularization guides a model towards learning genuinely
invariance decision-making process. In Figure 3, we visualize examples of saliency
maps of the network with ]Rf1 invariance learned by data augmentation and invariance
regularization. In contrast to the saliency maps of the model trained solely with data
augmentation, saliency maps of the model with invariance regularization are well-aligned
over the group orbit.

2.4.2 Reliability of learned invariance

We next investigate the reliability of the models with the learned invariance when operat-
ing conditions evolve. We simulate changing operating conditions as the data distribution
drift from Transforming-MNIST to Transforming-FMNIST datasets. Practically, we
linearly interpolate between those two dataset as D;2(8) = (1 —B)D; + BD; to ob-
tain the dataset with the drift degree of 5. We compare the models by measuring the
invariance error and the accuracy drop ratio on the drifted dataset. The accuracy drop
ratio on the drifted dataset D;_,(B) is computed as Acc(D1-2(8))/Acc(Dy), where
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1 2 3 1 2 3
e r r r e r r r

Data Augmentation Inv. Regularization

Figure 3: Saliency maps for the models with learned ]Rfl invariance. Rows correspond to
data samples and columns correspond to transformations from the group orbit applied
to the sample. All saliency maps are realigned to a common orientation.

Acc(D) is the model’s accuracy on the dataset 9. The accuracy ratio indicates how
much of the original accuracy is preserved when a model is tested on the drifted dataset.
The results are presented in Figure 4.

We observe that the invariance learned by data augmentation deteriorates rapidly,
even under a slight degree of data drift. This turns into a major flaw if a user anticipates
a certain level of invariance from the model, but then invariance instantly fails upon
encountering unseen data. This also obscures the interpretability of predictions, thereby
complicating the explainability of model decisions, even if accuracy is sustained. This
yields invariance learned by data augmentation unreliable. Conversely, models with
weight-tying and invariance regularization maintain low invariance error even under
substantial distribution drift.

Also, we observe that networks with invariant weight-tying sustain higher classifica-
tion accuracy under the distribution shifts. This also holds for the models trained with
invariance regularization for T2, but interestingly, not for the lRf1 invariance. We hypoth-
esize this can be attributed to the accuracy-on-the-line effect [121], where models with
higher in-domain accuracy tend to also deliver higher accuracy on out-of-distribution
data.
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Rz invariance drift
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Figure 4: Predictive distribution invariance error DIy (left y-axis) and classification
accuracy drop ratio (right y-axis) for the data augmentation, weight-tying and invariance
regularization models over increasing degree of the data distribution drift (x-axis).

2.4.3  Invariance-induced spectral decay

Lastly, we take a closer look at the invariance-induced spectral decay and we verify if it
holds for different forms of invariance regularization. We investigate invariance regular-
ization with (7) distribution invariance error with KL divergence, (ii) logit invariance error
with squared L, distance, and (iii) logit invariance error with the squared L, distance
normalized by the magnitude of the logits, i.e. ||f(x) — f(gx) |I% /f(x) II%. We tune the
weighting of the regularizer for all of the models such that saliency invariance similarity
S1y > 0.95. We then evaluate the sensitivity of a network to input perturbations as a
maximum singular value of its Jacobian o-max (J); and we compare it to the sensitivity of
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RZ invariance spectral decay
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Figure 5: Sensitivity of a network to input perturbations measured by the maximum
singular value of its Jacobian (left y-axis) for various forms of invariance regularization
(x-axis). Models trained with invariance regularization come with overall reduced
sensitivity to input perturbations.

the networks trained solely with data augmentation. The results are presented in Figure
3.

We observe that models trained with invariance regularization come with overall
reduced sensitivity to input perturbations as indicated by considerably smaller opax (J).
This phenomenon holds for both ]Ri and T% groups and various forms of invariance
regularization. Note that all forms of the invariance regularization we examine also
induce an accuracy drop for the model.
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2.5 DISCUSSION

SUMMARY  Our study sheds light on the properties and limitations of data-driven
invariance learning within neural networks. First, we proposed several measures to
evaluate learned invariance: predictive distribution invariance and logit invariance errors,
and saliency invariance similarity. With this, we study networks with learned group
invariance and demonstrate that high performance and low invariance error do not
guarantee a genuine invariant decision-making process. This leads to a notable risk,
when learned invariance immediately fails beyond the training data distribution, making
neural networks with learned invariance less reliable. Then, we showed that it is possible
to promote genuine invariance learning by regularizing invariance during the training.
Yet, such an approach leads to a spectral-decay phenomenon, when a network opts for
reducing input sensitivity to all perturbations to achieve invariance to a specific group
of transformations. These findings bring us a step closer to deciphering the intricate
dynamics of learning inductive biases from the data.

BROADER IMPACT Our work, while primarily considering invariance to group
symmetries, has potential implications for a much broader class of invariances. The
increasing reliance on data-driven models, particularly in the era of large-scale machine
learning, highlights the critical need to comprehend the properties of inductive biases that
these models learn. Thus, understanding learned invariance, as one of the key inductive
biases, becomes paramount for ensuring the fairness and interpretability of network’s
decisions.

LIMITATIONS AND FUTURE WORK While our study provides several key in-
sights, some limitations remain. Firstly, the generalizability of our findings to other types
of neural networks, other data modalities and other training regimes, e.g. self-supervised
learning [28,63, 127], remains an interesting future direction to explore. Secondly, the
way we design invariance regularization assumes a known group of transformations,
which may not always be accessible in practice. Future work could look into meth-
ods for learning genuine invariance to unknown transformations without architectural
modification. Lastly, our results also highlight a trade-off between learning the genuine
invariance and the downstream task performance, opening a direction for future research
into strategies for mitigating this trade-off.
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3.1 INTRODUCTION

Convolutional Neural Networks (CNNs) are efficient, for one because they can convert
the translation symmetry in the data into a built-in translation-equivariance property of
the network without exhausting the data to learn the equivariance. Group-equivariant
networks generalize this property to rotation [34, 84,176, 180], scale [10, 153, 156], and
other symmetries defined by matrix groups [53]. Equipping a neural network with prior
known symmetries has proved to be data-efficient.

Recent works [52,90,200] have demonstrated that hard coding the symmetry into a
neural network does not always lead to a better generalization. Often, soft or learned
equivariance is more advantageous mostly in terms of data efficiency and accuracy [171].
Moreover, architectures with no equivariance built-in, such as transformers [47] and multi-
layer perceptron mixers [162], achieve a remarkable performance on a wide range of
problems. Effectively, they learn their own geometrical priors without explicit symmetry
constraints [37]. This raises the following questions to study in this paper. To what
degree do neural networks learn symmetries? How accurately do learned symmetries
reflect the true symmetries in the data? Can we support the capability of neural networks
for learning symmetries? We present a method to study symmetries learned by neural
networks to address the questions.

In the paper, we depart from Lie group theory and develop a method that can retrieve
symmetries learned from the data by any neural network (Figure 6). Our method
only makes the assumption that a model is differentiable, commonly met in neural
networks. While previous works on analyzing symmetries in neural networks rely on
empirical analysis of network representations [132] or on examination of a given set of
transformations [57, 104, 153], our method outputs a generator of the corresponding Lie-
group and allows to quantitatively evaluate how sensitive the network is in the direction
of the learned symmetry We make the following contributions:

* From the perspective of Lie-groups, we propose the theory to study symmetrical
properties of neural networks.

* We derive an efficient implementation of the method that allows improving the
interpretability of the model by revealing symmetries it learned.

* With our method we conclude that models with more parameters and gradual
fine-tuning learn more precise symmetry groups with a higher degree of invariance
to them.
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data
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Polarization Matrix

Figure 6: We solve the matrix nullspace equation to derive an infinitesimal generator from
a neural network and the training data. Due to Lie algebra - Lie group correspondence,
we can calculate the class of transformations the model is invariant to by exponentiating
the generator.

3.2 RELATED WORK

EQUIVARIANT AND INVARIANT NETWORKS The goal of equivariant and in-
variant networks is to build the symmetries into a neural network architecture as an
inductive bias. Starting from the convolutional networks [102] that contain a translation
symmetry, the concept of the equivariance was generalized to rotations [34, 84,176, 180],
permutations [192], scaling [10, 153-156, 179] and arbitrary matrix groups in [53]. Var-
ious methods have been proposed for learning symmetries directly from the training
data [4,200] among which a popular approach is to learn transformations by estimating
the infinitesimal generators of symmetry groups [36,39,43,140,151]. These papers focus
on building the symmetries into the models by modifying the architecture. In our work,
we focus on the reverse question, i.e. given a network with a fixed architecture, what
symmetries does it learn from the data?

SYMMETRIES IN NEURAL NETWORKS Another line of work is focused on in-
terpreting symmetries in neural networks. In [132] Olah et al. take inspiration from
biological circuit motifs [3] and study equivariant patterns learned by an unconstrained
neural network on the image classification task. The authors demonstrate that the net-
work learns rotation, hue, and scale symmetries when trained on ImageNet. In [57]
Goodfellow et al. propose a number of empirical tests to study invariances to known
transformations in a network, and demonstrate that auto-encoding architectures learn
increasingly invariant features in the deeper layers. In [104] Lenc & Vedaldi quantify
invariances and equivariance in the layers of convolutional networks to a pre-defined set
of transformations. In the concurrent work of Gruver et al. [59], the authors propose
using the Lie derivative to measure the local equivariance error to known symmetry
groups. In contrast to these works, our method does not require knowing the set of
transformations beforehand; and it also provides theoretical guarantees of the invariance
from the perspective of the Lie groups theory.

NETWORK CONFIGURATION: WIDTH, DEPTH, NUMBER OF PARAMETERS

Neural networks of various widths and depths have been studied through the lens of uni-
versal approximation theorem [92,112], functional expressiveness [138] and by empirical

32



3.3 BACKGROUND

analysis of learned representations [130]. These works focus on either characterizing
learning capabilities of neural networks or on interpreting the differences between repre-
sentations that models with various architectures learn. They, however, do not analyze
how the symmetrical properties of a model depend on its width and depth.

Other works focus on analyzing a connection between a number of parameters and
the generalization capability of networks [2, 166, 189, 195]. It is commonly argued
that overparametrized architectures achieve better generalization bounds, i.e. provide
smaller discrepancy between train and test performance and are thus preferred in many
applications [195]. However, it is unclear if the models with more parameters and hence
with a finer generalization capability also learn symmetries better. In our paper, we
investigate this question for a family of feed-forward networks.

ROBUST LEARNING Various methods have been proposed to train more robust
neural networks. While a naive training may lead to overfitting on the training subset,
a well-organized pre-training helps to mitigate this issue [48]. Features extracted by
a model pretrained on a bigger dataset often demonstrate more robust results [70].
While there are many effective techniques for training more robust feature extractors
[12,65,204], the analysis of such methods from the invariance point of view has not
been done before. We demonstrate that our method allows for better understanding
and explaining what training regimes lead to more invariant, and thus more robust
representations.

3.3 BACKGROUND

The focus of this paper is a symmetry group. A symmetry is a transformation of an object
that leaves the object unchanged. The set of all such transformations of an object with
composition as a binary operation forms a group. In this paper, the object of interest is a
dataset and its symmetries. We study what kind of transformations map one data sample
to another and how neural networks learn information about the symmetries.

The theory of Lie groups is a sweet spot of mathematics that helps to formalize
symmetries and provides practical methods for studying them. Formally, a Lie group is a
group that has the structure of a differential manifold. The tangent space in the identity
element of a Lie group forms a vector space called Lie algebra. A Lie algebra determines
a Lie group up to an isomorphism for simply connected Lie groups and, being a vector
space, is a more convenient object to study than a Lie group. Thus, in order to recover a
simply connected symmetry group, it is sufficient to understand its Lie algebra.

In this paper, we assume that the Lie group G is a matrix Lie group, i.e. is a closed
subgroup of the general linear group of the degree n, denoted as GL(n). It is defined as
the set of n X n invertible matrices. The correspondence between the Lie group G and its
Lie algebra g in this case is given by the exponential map:

g={heM@n): P eGVteR), (3.1

where M (n) is the set of all n x n matrices. Each such element [ from equation 3.1 is
called an infinitesimal generator of the Lie group G.
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3.4 METHOD
3.4.1 Lie algebra invariance

We introduce LieGG, a method to compute Lie Group Generators. LieGG extracts the
infinitesimal generators of the Lie algebra for symmetries that a neural network learned
from the data. To find the Lie algebra basis, we use the discriminator of the dataset, i.e.
a function F : R" — R such that F(x) = 0 if and only if x is an element of the dataset
P. The discriminator function is naturally modeled by a neural network fitting the data
subject to a downstream task. With this, we use the following criterion for a symmetry

group:

Theorem 2 (Lie algebra invariance). Let G be a connected Lie group of linear trans-
formations acting on an n-th dimensional manifold X. Let F : X — R, [ < n, define a
system of algebraic equations:

Fy(x)=0,v=1,---,1l

and assume that the system is of maximal rank, meaning that the Jacobian matrix

(gi}:) is of rank [ for every solution X of the system. Then G is a symmetry group of the

system if and only if

i=n,j=n

OF
—— -b;j- xj = 0, whenever F,(x) = 0,
. - 6x,-
i=1,j=1
forv =1,--- I and every infinitesimal generator V) of G, where b;; is an element of

the matrix 1y in the i-th row and j-th column.

Proof. Let G be a connected Lie group of transformations acting on the n-th dimensional
manifold X. Let F : X —» R, I < n. With this, we define a system of algebraic
equations:

FV(X):O, Vv = 1"",1’

and assume that the system is of maximal rank, meaning that the Jacobian matrix (gf Z)

is of rank / for every solution x of the system. Then G is a symmetry group of the system
if and only if:

b[F,(x)] = 0, whenever F,(x) = 0,

for every infinitesimal generator b of G.

In our special case, the infinitesimal generator }) is a matrix, which generates the one

parameter group of transformations equal to exp(} - 7). That means that in the theorem,

dF, (exp(b-t)-x
d

b is an element of the symmetry group if and only if - )|,:0 = 0, whenever

F,(x) = 0. But
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dFy(exp(v-1) - x)  NROF(x) (exp(h-1) -x)
dt =0 Ox; dt

i=1

l|z:0 =

X;

nOOF(x) & RIS o F
v( ) Z X = %

]

EXAMPLE We illustrate the practical significance of the theorem with an example.
Suppose the dataset D lies on a sphere in R":

D={xeR": x%—l—---—kxﬁ:l}.

The discriminator for this example is the function F(x) = x% + -+ x2 = 1. Accord-
ing to the theorem, to find the Lie algebra of the symmetry group, we can find a basis of
the solution of the following linear equations, where a;; are the variables of interest:

in'aij'x]:(),
Lj

Whenx%—i—--wi—x%: 1.

We assert that the solutions are the family of matrices A such that A + AT = 0.

Indeed, for x : x; = 1, x; = 0, j # i, the condition means that a; = 0. For
X: X = %, Xj= % xx = 0, k # i, j, it follows that a;; + a;; = 0. On the other hand,
A= —AT implies Zi;tj (x,--aij-xj—i-xj-aji-xi) = Zi;tj (x,--a,-j-xj—xi-a,-j-xj) =0.

Note that the Lie algebra of the matrices {A : A + AT = 0} corresponds to the Lie group
of matrices {B : B- Bl = E} which is the rotation group. Thus, the symmetry of a sphere
is the rotation group.

3.4.2 Nullspace invariance

To compute a Lie algebra given a discriminator function F : R” — IR we use Theorem 2
and solve the system of linear equations, where each equation corresponds to one element
in the dataset:

6—F -b;j- xj = 0, for each point in the dataset. (3.2)
i=1j=1 2%

This is a system of linear equations with n? variables b; ;j and the number of equations
equal to the number of points in the dataset. We can cast solving such system with
respect to b as a problem of finding a nullspace of the matrix &. The matrix & has the
number of rows equal to the number of points in the dataset and n? columns. Multiplying
& with the vectorized representation of ) yields the system of equations in 3.2. We call
the matrix & the network polarization matrix.
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The problem of finding the nullspace basis of a matrix is a standard problem in the
numerical analysis. It can be efficiently solved using the Singular Value Decomposition
(SVD). Recall that we can write matrix & using the SVD in the following way & = UXVT,
where U, V - are orthogonal matrices and . is a diagonal matrix with decreasing singular
values. Thus, the columns in V corresponding to nearly-zero singular values encode the
nullspace of the system of equations in 3.2 and hence form a Lie algebra basis.

Thereby, in practice, the calculation of LieGG consists of 3 steps: (i) training a neural
network, (ii) calculation of the polarization matrix &, (iii) computing singular vectors
corresponding to almost zero singular values of the polarization matrix &.

3.4.3 Computing a Lie algebra of a group acting on R?

Symmetries play an important role in computer vision problems, and we will describe
LieGG for this case in more details. In various computer vision problems, it is assumed
that the symmetry group G changes images from the dataset by acting on IR?. For
example, convolutional networks [102] and recently proposed equivariant networks for
rotations [176, 180] assume that the group acts as a translation or rotation of an image.
These neural networks perceive each image as a function f with non-zero values on
some compact subset () ¢ IR?, where the elements of the subset correspond to spatial
coordinates. Thus, the space of images 7 is the space of all functions that map spatial
coordinated to pixel values. In other words: 7 = {f, f : (3 - IR}. A vision model
F : T — R is a function on such a space of images.

We view an image is a function on a pixel grid (X, -+ ,X;) of the domain (), i.e. the
image can be identified with the point in IR”, which encodes the pixel values. In this case
the model takes n real values as an input: F(f(x1),--, f(Xn))-

It is important to note that Theorem 2 assumes that the group G acts continuously on
the data manifold. However, this assumption is violated for the image data as an image
is a non-continuous function of coordinates due to the discrete pixel grid. We overcome
the discontinuity issue by preprocessing images with Gaussian smoothing.

To use LieGG for the image data, we explicitly write the condition that the matrix b is
an infinitesimal generator for the image data 7 on the grid (xi, - ,X,). The condition
reads as follows:

P=n,k22,j=2 OF af(xp)
p=Lk=1,j=1 af(xp)  oxh

(3.3)
where 7 € R and x{, corresponds to the projection of x,, onto the j-th coordinate axis.

F(f(e" oxi), -, f(e" oxy)) = 0 &

The resulting condition is the equation in 4 variables by, k = 1,2; j = 1,2. Hence,
the polarization matrix has 4 columns. Thus, in equation 3.3 a space of potential image
symmetries is reduced to a 4-dimensional spatial subgroup. This is to provide a prior
for LieGG to retrieve meaningful symmetries from for images as the full-scale space of
potential symmetries is overwhelming for the image data. This is a strong yet proven to
useful prior for vision models [34, 80, 84,176, 180].
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In practice, the calculation of LieGG for vision models consists of the following steps:
(i) preprocessing images by doing Gaussian smoothing, (ii) training a neural network, (iii)
computing the polarization matrix using equation 3.3, (iv) computing singular vectors
corresponding to almost zero singular values of the polarization matrix.

3.4.4 Symmetry bias and symmetry variance

The scope of LieGG is not limited to retrieving the generator of a learned symmetry
group. With the polarization matrix &, we can also evaluate the degree of the neural
network’s invariance to a learned symmetry. Furthermore, if a true symmetry in the data
is known, we can apply our method to analyze how close is a learned symmetry to the
true one. The former criterion we alias symmetry variance, and the later - symmetry bias.

Firstly, we show how to estimate the degree of the network invariance to the element g
of a Lie group:

Rlg) = E(F(gx) = FX)P ~ o 3 (Flg-x) = F(x))* = R(o).

x;eD

Let I be an element from Lie algebra that corresponds to g, i.e.

l

R(g) |D| Z (exp (b?) - x;) — (Xl))z =

x;eD

LS )y oy =

k
D] xeD & ox;

1 P OF (x;) N2 3
— e — i X))+ Ot
Dl & (; ok ) +olr)

OF (xi)

The matrix with the i-th row equal to r x equates to the polarization matrix &.
Then l

1
IDI

R(g) = —(~-||gR|f; + 0()),

where }) is the vectorized representation of the element of the Lie algebra.
To calculate the value of Ef we use the SVD of the matrix . Let & = ULV, where

U,V - are semi-unitary matrices and . is a diagonal matrix. With this, we can estimate
R(g) in the following way:

~ D ~Jls]; = Dl Z o (VD) (3.4)

l

where o7 is the [-th singular value of the network polarization matrix &.
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In particular, the equation 3.4 reveals that singular values of the network polarization
matrix reflect the degree of invariance to transformations encoded by the corresponding
singular vectors. With this, we use the smallest singular value of the network polarization
matrix to define the symmetry variance as V(&) = o in(E)?/|D]. Symmetry variance
estimates the degree of invariance in the direction of the symmetry, a network learned
to be most invariant to. Moreover, when the true symmetries are known, the difference
between the singular vectors and the generator of the true symmetry group equates to
the symmetry bias, i.e. B;{(E,G) = ||v:(E) — Gl|F, where v;(E) returns the i-th singular
vector reshaped to a matrix, and G is a ground truth symmetry group generator closest to
the 7;(E), e.g. the closest skew-symmetric matrix for the rotation group.

Note that the proposed symmetry variance allows measuring learned invariance without
the knowledge of a symmetry generator beforehand. This is in contrast to Gruver et
al. [59], where the knowledge of a symmetry generator is required to measure learned
equivariance.

3.5 EXPERIMENTS
3.5.1 Retrieving learned symmetries

SYNTHETIC REGRESSION Firstly, we conduct the experiment on the synthetic
problem to test the ability of our method to accurately retrieve a symmetry learned by
a network. To do so, we adopt the invariant regression task from [53] with clean O(5)
symmetry built-in. The regression function f : R?® — R is given by:

X]TXZ

—_— (3.5)
Ix1ll2 lIx2ll2

f(x1,%2) = sin(lIxill2) = 0.5 - Ix2ll3 +
With this, we construct the training dataset to fit the regression function with the
multi-layer perceptron. Here the MLP is the unconstrained feed-forward neural network
with no prior knowledge of symmetries in the data. Once the model is converged, we
apply our method to analyze how close are retrieved symmetries to clean O(5) group
(symmetry bias), and how invariant is the network to the learned symmetries (symmetry
variance). We also study how the ability of the network to learn symmetries depends on
the number of available training samples. We report the results in Figure 7.

Polarization spectrum O(5) symmetry bias Mean symmetry variance
102 1.00

10t 0.75
10°

0.50
10°
0.25
-1 10—1
10 0.00
0 5 10 15 20 25 0 5 10 15 20 25 102 103 104

i-th singular value i-th singular vector Training set size

Figure 7: Singular values of the network polarization matrix and the symmetry biases
per singular vector of the multi-layer perceptron fitted on O(5) invariant regression task.
(right) Comparing the mean symmetry variance for various training set sizes.
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Figure 8: (a) Symmetrical properties of the shallow and deep networks: singular values
of the network polarization matrix and SO(2) symmetry bias. (b) Shaded: the kernel
density of learned 2D rotations on a perfect circle. Non shaded: visualizing learned Lie
algebras for various rotation angles (in columns). Top row: the shallow network. Bottom
row: the deeper network.

As can be seen from Figure 7a, the spectrum of the network polarization matrix is
zeroing, indicating that the model becomes invariant to the transformations encoded
by the corresponding singular vectors. Also, these singular vectors are the generators
of the rotation group as indicated by zero symmetry bias with respect to O(5) group
(Figure 7b). We also observed that the network accurately learns the symmetry group
generators even with a small training set size. However, a larger training set size leads
to a smaller symmetry variance, i.e. a higher degree of invariance. For an additional
validation, we used LieGG to extract symmetries from the randomly initialized O(5)
invariant EMLP [53] model. For this case, LieGG recorded zero symmetry variance and
zero symmetry bias with respect to O(5) group without any model pre-training.

The experiment demonstrates that, on the synthetic regression task, our method can
accurately retrieve symmetries learned or built-in. When symmetries are learned, the
larger training dataset facilitates learning invariances for the model.

ROTATION MNIST In this experiment, we test the ability of our method to retrieve
learned symmetries on the rotation MNIST dataset [101]. We train the feed-forward
network to output the class of a digit invariant to 2D in-plane rotations. The symmetry
group that the model should learn is thus SO(2). We note that different from the
synthetic regression task, the symmetries in the rotation MNIST are much noisier since
the rotations are coarsened by the projection onto a pixel grid. In addition, the network has
a classification error, hence it serves as only an approximate data discriminator function.
In this scenario, we test how well our method can retrieve noisy SO(2) symmetry.

We experiment with two architectures: the shallow 2-layer perceptron and the deeper
6-layer network with 4 times number of parameters. Once the network’s performance
plateaus on the validation split, we terminate the training, and apply our method to
retrieve learned symmetries. We plot the spectrum of the network polarization matrix,
SO(2) symmetry bias and visualize learned symmetries for the shallow and deep models
in Figure 8.

From Figure 8a we observe that for both shallow and deep models, our method
retrieves the rotation symmetry as indicated by the zeroing symmetry bias with respect
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to SO(2) group. Also, we noticed that the symmetry learned by the shallow model is
noisier than the symmetry learned by the deeper network as indicated by the higher
symmetry bias. We visualize this in Figure 8b by sampling learned Lie algebras and
applying them to transform an input image. We see that the symmetry learned by the
shallow model diverges from a clean rotation and also contains scaling and shearing. We
also see, that on the rotation-MNIST, the spectrum of the network polarization matrix is
zeroing not as fast as in the synthetic case. It indicates that the models, although do learn
the rotation symmetry, do not become fully invariant to it.

This experiment demonstrates that our method can retrieve symmetries from the data
even when an imprecise discriminator function is used.

3.5.2 Symmetries in networks with different configurations

Observing the differences in symmetrical properties for different network configurations
for the rotation-MNIST, we further conduct the study on how the symmetry variance
and the symmetry bias depend on width, depth, and a number of parameters in a neural
network. In this experiment, we are interested to know if for some network configurations
it is easier to learn symmetries from the data.

To obtain different configurations, we sample a number of parameters from the range
of [40000, 200000] with the step size of 20000, and vary the depth of a network from 1
to 5 hidden layers. We train all the networks until convergence on the validation split
and apply LieGG to retrieve the symmetries and to record the symmetry variance and
the symmetry bias. We also track the accuracy of the models to correlate it with the
symmetry variance and the symmetry bias.

The results are reported in Figure 9. We summarize the analysis of how the configura-
tions of the network influence its symmetrical properties:

NUMBER OF PARAMETERS: we observe that the networks with more parameters
tend to learn to the higher degree of invariance than their shallow counterparts as indicated
by consistently smaller symmetry variance. Also, we see that the networks with fewer
parameters learn less precise symmetries as indicated by the higher symmetry bias.

DEPTH / WIDTH: our results indicate that sufficiently parameterized deep networks
are more capable to learn invariances than the wide ones with the same number of
parameters. In other words, deeper networks become more invariant in the direction
of learned symmetries. At the same time, the same only partially holds for the quality
of a learned symmetry group as indicated by the fluctuating symmetry bias, when the
depth > 3. Overall, the network with a balanced width and depth achieves the smallest
symmetry bias.

SYMMETRY VS. ACCURACY: we also test how the symmetry variance and the
symmetry bias correlate with the performance of the models. As can be seen from Figure
Ob, the symmetry variance and bias have moderate negative correlation coefficients pyyr =
~0.49 (p-value < le™) and ppias = —0.31 (p-value < le™*) with the classification
accuracy respectively. The trend indicates that more accurate models tend to have lower
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Figure 9: (@) Symmetry variance and SO(2) symmetry bias for the networks with different
width, depth and number of parameters. (b) The correlation plot of the symmetry variance
and the symmetry bias versus the test accuracy of the models. Each point corresponds to
one network. The color indicates the number of parameters.

symmetry variance and lower symmetry bias. However, the correlation is not strict. That
is, it is possible to have neural networks, which learn symmetries differently, but perform
equally well during the test.

3.5.3 Tuning layer-wise symmetries in deep networks

In the previous experiment, we analyzed how the symmetrical properties of the networks
depend on the configuration of the model. Now, we ask if by modifying a training
regime, we can facilitate learning symmetries for the network. In this experiment, we
evaluate two known approaches to robust training: (i) pre-training with fine-tuning, and
(11) layer-wise training [12]. We also evaluate plain end-to-end training as a baseline.
To simulate the pre-training of a part of the network weights, we take randomly
initialized 7 layers perceptron (mother network) and extract the sub-network that consists
of the first 3 layers. We then attach the classification head to the sub-network and train
it independently from the mother network on the rotation-MNIST dataset. After that,
we re-inject the learned weights into the mother network and retrain the model. For the
fine-tuning, we train all of the weights jointly. For the layer-wise training, we freeze the
pre-trained part and only train the remaining layers. We then apply our method to study
the symmetrical properties of the models trained with each of the regimes. We plot the
symmetry variance and the symmetry bias after each layer of the network in Figure 10.

FINAL AND PEN-ULTIMATE LAYER SYMMETRIES: from Figure 10 we ob-
serve that for the different training regimes, the network learns approximately the same
symmetries at the same degree of invariance in the final layer. Surprisingly, we also
noticed that in the pen-ultimate layer, the symmetries for all of the training regimes come
very close as measured by the symmetry variance and bias. Since the last layers are
directly responsible for providing outputs for the downstream task, we hypothesize that
there exist a preferred optimal symmetry level for a neural network that depends on an
architecture and the data, but not from a training regime of a model.

INTERMEDIATE SYMMETRIES: on the other hand, we observed that symmetries
in the intermediate layers of the network do depend on the training regime. Firstly,
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symmetry variance SO(2) symmetry bias
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Figure 10: Symmetry variance and SO(2) symmetry bias measured layer-wise for the
network trained on the rotation-MNIST dataset. Different colors correspond to different
training regimes of the model. Training scenarios are: MLP-7 for the 7-layer perceptron,
sub MLP-3 for the 3-layer sub-network, MLP-7[F] for the joint fine-tuning, MLP-7[L]
for the layer-wise training.

the pre-trained sub-network learns more accurate symmetry with the higher level of
invariance compared to when it is trained as a part of the deeper model. We attribute it
to the fact that symmetries are defined on a level of training labels, hence invariances
learned by the model in the final layer should be kept at a minimum [178]. Secondly,
after the fine-tuning or the layer-wise training, symmetries in the intermediate layers
of the network are both more precise and utilized at the higher degree of invariance as
indicated by the smaller symmetry bias and variance respectively. It indicates that we can
facilitate learning intermediate invariances in a neural network by using a pre-training
followed by the fine-tuning or the layer-wise learning approaches. This can be useful
for a transfer learning when it is important to transfer as much inductive bias as possible
into other models or to other tasks.

3.5.4 Sample complexity

LieGG computation requires finding a nullspace of the network polarization matrix. The
dimensionality of the network polarization matrix depends on the number of samples
in a dataset. Since the dimensionality of a full-scale dataset may be prohibitively large,
we conduct the sample complexity study to investigate if the usage of all samples in a
dataset is necessary to effectively retrieve the symmetries learned by a neural network.
We conduct the empirical sample complexity study for O(5) synthetic regression and
rotation-MNIST classification tasks. For the synthetic regression, we take the trained
model from 3.5.1 and compute the symmetry variance and bias using only a fraction of
the training samples. We then compare the results with the symmetry variance and bias
computed from all available training data. The resulting empirical sample complexity
is presented in Figure 11. For the rotation-MNIST, we follow the same procedure and
study the sample complexity of LieGG applied to retrieve symmetries from the trained
6-layer perceptron from 3.5.1. The resulting empirical sample complexity for the rotation-
MNIST is presented in Figure 12. Note that in both cases, the model is trained using all
available training data. The sample complexity study is only to investigate how many
samples are needed to effectively extract the symmetries from the trained model.
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For the synthetic regression task, it suffices to use only 0.25% of the training samples
to extract the symmetry as precisely as when utilizing all available training data. For the
more challenging rotation-MNIST, we have to use at least 5% of the training samples
to obtain a precise estimation of the symmetry bias. The results suggest that we can
effectively extract the learned symmetry using only a fraction of the data to create the
network polarization matrix.

Symmetry variance vs. #samples Symmetry bias vs. #samples
1.01 -—- [100%]
101_
0.5 1
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% of samples used % of samples used

Figure 11: The sample complexity of LieGG for the O(5) synthetic regression task. The
red line indicates the symmetry variance and the symmetry bias computed using 100% of
available samples.
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Figure 12: The sample complexity of LieGG for the rotation-MNIST classification task.
The red line indicates the symmetry variance and the symmetry bias computed using
100% of available samples.

Implementation details

RETRIEVING SYMMETRIES FROM THE SYNTHETIC REGRESSION To fit
the regression function we employ the multi-layer perceptron that consists of linear
layers followed by Swish [139] activations with the following dimensions: (10 X 32) —
3% (32x32) — (32 % 1). The network takes input coordinates and outputs the predicted
function value. We use a mean squared error loss to supervise the model. We utilize
Adam optimizer [93] with a learning rate of 10> and train the network for a total of
min(9000OO /N, IOOO) epochs, where N is the size of the training dataset. [53] reports
this training schedule is enough for convergence.

To compute the mean symmetry variance per a training set size, we average the last 10
singular values of the network polarization matrix. These singular values correspond to
the O(5) symmetry as indicated by the corresponding symmetry biases.

The algorithm to construct the network polarization matrix for the synthetic regression
experiment is summarized next:
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def polarization_matrix (model, data, dim = 5):
# data: torch.FloatTensor (B, 2x*dim)
B = data.shape[0]
data.requires_grad = True
data.retain_grad()

# compute network grads

model.eval ()

y_pred = model (data)
y_pred.backward(gradient=torch.ones_like (y_pred))

# get grads and data per input dimension
dF_1 = data.grad[...,:dim].view (B, dim, 1)
data_1l = data[..., :dim] .view(B, 1, dim)

dF_2 = data.grad[...,dim:].view(B, dim, 1)
data_2 = data[...,dim:].view(B, 1, dim)

# collect into the network polarization matrix
C = torch.bmm(dF_1, data_1l) + torch.bmm(dF_2, data_2)

return C

RETRIEVING SYMMETRIES FROM THE ROTATION-MNIST We employ two
models: shallow (2-layer) and deep (6-layer) perceptrons with 40000 and 160000 param-
eters respectively. The hidden dimensions for the shallow and deep networks are 47 and
116 respectively. Both models are trained for 300 epochs with Adam optimizer with the
learning rate set to 107>, We use a cross-entropy loss to supervise the model.

Symmetries are extracted from the models with the highest validation accuracy over
300 training epochs. Additionally, to account for a possible difference in the magnitudes
of the network outputs, we normalize the network output logits to be unit L2 norm.

The algorithm to construct the network polarization matrix for the rotation MNIST
experiment is summarized below:

def polarization_matrix_R2 (model, data):
# LieGG implementation with the groups acting on R™2
# data: torch.FloatTensor (B, 28, 28)

B, H, W = data.shape
# compute Iimage grads

data_grad_x = datafl:, 1:, :-1] - datafl:, :-1, :-1]
data_grad_y = datafl:, :-1, 1:] - datafl:, :-1, :-1]
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dI = torch.stack([data_grad_x, data_grad_y], -1)

# compute network grads
data = data.reshape (B, -1)
data.requires_grad = True
data.retain_grad()

output = model (data)
output .backward (torch.ones_like (output))

dF = data.grad.reshape (B, H, W)
dr drf[:, :=1, :—-1]

# coordinate mask

xy = torch.meshgrid(torch.arange (0, H-1), torch.arange (0, H-1))
xy = torch.stack(xy, —-1)

xy = xy / (H// 2) -1

# collect into the network polarization matrix
C = dF[..., None, None] % dI[..., None] » xy[None, :, :, None, :]
C = C.view(B, -1, 2, 2).sum(1l)

return C

SYMMETRIES IN NETWORKS WITH DIFFERENT CONFIGURATIONS Toeval-
uate networks with various configurations (width, depth, number of parameters), we
consider the following family of architectures: (784 X hdim) — p * (hdim X hdim) —
(hdim x 10), where p stands for the number of hidden layers and hdim is the dimension
of a hidden layer. Given the required number of parameters and the number of hidden
layers, we can calculate the hidden dimension of the network. By varying the number of
parameters and the number of hidden layers we create wide and deep networks.

3.6 CONCLUSION

SUMMARY  We present LieGG - the approach to retrieve symmetries learned by
neural networks. Conveniently, our method extracts symmetries directly in the form
of corresponding Lie group generators. This allows to explicitly obtain symmetries
learned by a neural network without specifying any set of transformations of interest
beforehand. We next introduce the symmetry variance and the symmetry bias to evaluate
symmetrical properties of neural networks by analyzing the network polarization matrix
computed by LieGG. We make use of our approach by studying how the quality of the
symmetry learned by the neural network depends on a network’s configuration and a
training regime. By improving the interpretability of symmetry learning, we identify
configurations and training regimes that facilitate training invariances in neural networks.
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STUDYING LEARNED LIE GROUP GENERATORS

LIMITATIONS AND FUTURE WORK The proposed method can facilitate the in-
terpretability of neural networks and help to design efficient ways of incorporating
symmetries into a model. However, some limitations remain. In particular, LieGG is
currently limited to instances of GL(n) connected group, which hinders the analysis of
complex invariances, e.g. where a transformation can not be described as a group action.
It is an intriguing direction for future research to extend a mechanism of retrieving sym-
metries to more complex transformations. Nonetheless, LieGG provides an important
building block on the way to increasing the interpretability of symmetry learning in
neural networks. Also, in our analysis, we focus on the specific family of models, i.e.
feed-forward multi-layer perceptions trained on the datasets with well-controlled factors
of variations. We assume that further large-scale analysis of LieGG in complex scenarios
and with more advanced models can provide a more general understanding of symmetry
learning in neural networks.
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CONTRASTIVE REPRESENTATION LEARNING WITH STRUCTURED AS-
SIGNMENTS

4.1 INTRODUCTION

The common approach to contrastive learning is to maximize the agreement between
individual views of the data [82, 110]. The views are ordered in pairs, such that they
either positive, encoding different views of the same object, or negative, corresponding
to views of different objects. The pairs are compared against one another by a contrastive
loss-objective [28,133,172]. Contrastive learning was successfully applied among others
in metric learning [72], self-supervised classification [28,64], and pre-training for dense
prediction tasks [173]. However, when two views of an object are drastically different,
the view of object A will resemble the same view of object B much more than it resembles
the other view of object A. By comparing individual pairs, the common patterns in the
differences between two views will not be exploited. In this paper, we propose to go
beyond contrasting individual pairs of objects and focus on contrasting sets of objects.

In contrastive learning, the best alignment of objects follows from maximizing the total
similarity over positive pairs, while the negative pairs are needed to encourage diversity.
The diversity in representations is there to avoid collapse [163]. We note that one number,
the total similarity from contrasting individual pairs, cannot both account for the inter-set
similarities of the objects from the same view and the intra-set similarities with objects
from another view. Therefore, considering the total similarity over pairs essentially limits
the information content of the supervisory signal available to the model. We aim to
exploit the information from contrasting sets of objects rather than contrasting objects
pairwise only, further illustrated in Figure 13a. From the perspective of set assignment
theory [23], two sets may expose the same linear pairwise alignment costs, yet have
different internal structures and hence have different set alignment costs, see Figure 13b.
Therefore, contrastive learning from sets provides a richer supervisory signal.

To contrast objects as sets, we turn to combinatorial quadratic assignment theory [23]
designed to evaluate set and graph similarities. Quadratic assignment has advanced from
linear assignment [24], which relies on pairwise similarities between objects. We pose
contrastive learning by structural risk minimization [164] in assignment problems. In
this, pairwise contrastive learning methods emerge from the linear assignment case. We
aim to extend the contrastive objective to the set level by generalizing the underlying
assignment problem from linear to quadratic, as illustrated in Figure 13a. Since directly
computing set similarities from quadratic alignment is computationally expensive, we
derive an efficient approximation. It can be implemented as a regularizer for existing
contrastive learning methods. We provide a theory for the proposed method from the per-
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Figure 13: (a) Contrasting views by similarity over pairs (pairwise linear alignment)
versus similarity over sets with set-alignment (set-wise quadratic alignment). (b) Com-
paring total pairwise similarities versus set similarities for different configurations of
representation graphs. In both configurations, the total similarity over pairs remains the
same, being unable to discriminate between the internal structures of different views as
quadratic alignment can.

spective of assignment problems and dependence maximization. And, we experimentally
demonstrate the advantages of contrasting objects by quadratic alignment.
We make the following contributions:

* Using combinatorial assignment theory, we propose to learn representations by
contrasting objects as sets rather than as pairs of individual instances.

» We propose a computationally efficient implementation, where the set contrastive
part is implemented as a regularizer for existing contrastive learning methods.

* We demonstrate that set-contrastive regularization improves recent contrastive
learning methods for the tasks of metric learning and self-supervised classification.

As a byproduct of viewing representation learning through the lens of combinatorial
assignment theory, we additionally propose SparseCLR contrastive loss, a modification
of the popular InfoNCE [133] objective. Different from InfoNCE, SparseCLR enjoys
sparse support over negative pairs, which permits better use of hard negative examples.
Our experiments demonstrate that such an approach improves the quality of learned
representations for self-supervised classification.

4.2 RELATED WORK
Contrastive learning
In contrastive learning, a model is trained to align representations of the data from

different views (modalities), which dates back to the work of Becker ef al. [9]. Contrastive
learning is made up of a joint embedding architecture like Siamese networks [22] and
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a contrastive objective function. The network maps different views of the data into the
embedding space, where the alignment between embeddings is measured by contrasting
positive and negative pairs. The pairs either from a complete set of observations [28,
29,134,136] or from partially-complete views [78, 109, 187, 188]. And as a contrastive
objective, contrastive loss functions are used [28,64,133,172]. Van den Oord et al. [133]
derived the InfoNCE contrastive loss as a mutual information lower bound between
different views of the signal. In computer vision, Chen et al. apply the InfoNCE to
contrast the images with their distorted version. In PIRL [122], the authors propose
to maintain a memory bank of image representations to improve the generalization of
the model by sampling negative samples better. Along the same lines, MoCO [31,64]
proposes a running queue of negative samples and a momentum-encoder to increase
the contrasting effect of negative pairs. All of these contrastive methods are based on
measuring the alignment between individual pairs of objects. This approach does not
account for patterns in the views of objects beyond contrasting them pairwise. We aim to
extend contrastive learning to include set similarities.

Information maximization methods

In contrastive learning information maximization methods aim to improve contrastive
representations by maximizing the information content of the embeddings [7]. In W-
MSE [49], batch representations are passed through a whitening, Karhunen-Loeve
transformation before computing the contrastive loss. Such transformations help to avoid
collapsing representations when the contrastive objective can be minimized without
learning the discriminative representations. In [193], the authors follow the redundancy-
reduction principle to design a loss function to bring the cross-correlation matrix of
representations from different views close to identity. In the recent work of Zbontar et
al., the authors extend the above formulation of Barlow Twins with an explicit variance
term, which helps to stabilize the training. In this paper, we also seek to maximize
the information content of the embeddings but we aim to do so by computing the rich
representation of set similarities between data views. In contrast to existing methods,
our approach does not require any additional transformations like whitening and can be
easily incorporated into other contrastive learning methods.

Distillation methods

Another branch of self-supervised methods is not based on contrastive learning but rather
based on knowledge distillation [73]. Instead of contrasting positive and negative pairs of
samples, these methods try to predict one positive view from another. We discuss them
here for completeness. BYOL [58] uses a student network that learns to predict the output
of a teacher network. SimSiam [32] simplifies the BYOL by demonstrating that the
stop-gradient operation suffices to learn a generalized representation from distillation. In
SWaV [27], the authors combine online clustering and distillation by predicting swapped
cluster assignments. These self-supervised methods have demonstrated promising results
in the task of learning representations. We prefer to follow a different path of contrastive
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learning, where we do not exclude the possibility that set-based methods may also be
applicable to distillation.

Assignment theory

Generally, optimal assignment problems can be categorized into linear and higher-order
assignments. Linear assignment problems can be viewed as a transportation problem over
a bipartite graph, where the transportation distances are defined on individual pairs of
nodes. Linear assignment problems have many real-world applications such as scheduling
or vehicle routing, we refer to [24]. Higher-order or in particular Quadratic assignment
problems [23, 51] extend the domain of the transportation distances from individual
pairs to sets of objects. Where the linear assignment problem seeks to optimally match
individual instances, its quadratic counterpart matches the inter-connected graphs of
instances, bringing additional structure to the task. In this work, we aim to exploit linear
and quadratic assignment theory to rethink contrastive learning.

Structured predictions

In a structured prediction problem, the goal is to learn a structured object such as a
sequence, a tree, or a permutation matrix [6]. Training a structure is non-trivial as one
has to compute the loss on the manifold defined by the structured output space. In
the seminal work of Tsochantaridis et al. [164], the authors derive a structured loss
for support vector machines and apply it to a sequence labeling task. Later, structured
prediction was applied to learn parameters of constraint optimization problems [20, 62].
In this work, we utilize structured prediction principles to implement set similarities into
contrastive losses.

4.3 BACKGROUND

We start by formally introducing contrastive learning and linear assignment problems.
Then, we argue about the connection between these two problems and demonstrate how
one leads to another. This connection is essential for the derivation of our contrastive
method.

4.3.1 Contrastive representation learning

Consider a dataset D = {d;}?’ | and an encoder function fy : D — RM*E, which
outputs an embedding vector of dimension E for each of the objects in 9. The task is
to learn a such fj that embeddings of objects belonging to the same category are pulled
together, while the embeddings of objects from different categories are pushed apart.

As category labels are not available during training, the common strategy is to maxi-
mize the agreement between different views of the instances, i.e. to maximize the mutual
information between different data modalities. The mutual information between two
latent variables X, Y, can be expressed as:
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MI(X,Y) = H(X) - H(X|Y) (4.1)

where X and Y correspond to representations of two different views of a dataset.
Minimizing the conditional entropy H(X|Y) aims at reducing uncertainty in the repre-
sentations from one view given the representations of another, while H(X) enforces
the diversity in representations and prevents trivial solutions. In practice, sample-based
estimators of the mutual information such as InfoNCE [133] or NT-Xent [28] are used to
maximize the objective in (4.1).

4.3.2 Linear assignment problem

Given two input sets, A = {a;}? | and B = {bj}ll.\’:l,
matrix S € RV between each element in set A and each element in B. This similarity
matrix encodes pairwise distances between the elements of the sets, i.e. [S]; ; = ¢(a;, b;),
where ¢ is a distance metric. The goal of the linear assignment problem is to find a
one-to-one assignment $(S), such that the sum of distances between assigned elements

is optimal. Formally:

we define the inter-set similarity

$(S) = argmin tr(SYT) 4.2)
Yell
where I I corresponds to a set of all N X N permutation matrices.
The linear assignment problem in (4.2) is also known as the bipartite graph matching
problem. It can be efficiently solved by linear programming algorithms [17].

4.3.3 Learning to produce correct assignments

Consider two sets, Dz, and Dz,, which encode two different views of the dataset D
under two different views | and Z». By design, the two sets consist of the same
instances, but the modalities and the order of the objects may differ. With the encoder,
which maximizes the mutual information, objects in both sets can be uniquely associated
with one another by comparing their representations as the uncertainty term in (4.1)
should be minimized. In other words, $(S) = Y, where Y, € ITis a ground truth
assignment between elements of Dz, and Dz,.

Thus, a natural objective to supervise an encoder function is to train it to produce the
correct assignment between the different views of the data. As the assignment emerges as
a result of the optimization problem, we employ a structured prediction framework [164]
to define a structural loss from the linear assignment problem as follows:

L(S,Yg) = tr(SY},) - min tr(SYT) (4.3)
€

where S = ¢(fs(Dz,). fo(Dz,)). Note that L > 0 and L = 0 only when the
similarities produced by an encoder lead to the correct optimal assignment. Intuitively,
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the structured linear! assignment loss in (4.3) encodes the discrepancy between the true
cost of the assignment and the cost induced by an encoder.

By minimizing the objective in (4.3), we train the encoder fy to correctly assign
objects from one view to another. In practice, it is desirable that such assignment is
robust under small perturbations in the input data. The straightforward way to do so
is to enforce a separation margin m in the input similarities as S,, = S + mYy,. Then,
the structured linear assignment loss with separation margin reduces to a known margin
Triplet loss [72].

Proposition 1. The structured linear assignment loss L(S,,, Yg;) with separation margin
m > 0 is equivalent to the margin triplet loss.

Proof. Let Y* = $(S,,) be the solution of the optimal linear assignment problem given
the similarity matrix S,,. With this, we can rewrite L(S,,, Y) as follows:

L(Sm, Y1) = ZZ ~[Y*];)[S qu,,[s (4.4)

Note that the term g;; can only take the values in {-1, 0, 1} as both matrices Y, and
Y" are binary. Consider the case when g;; = 0, which indicates that the objects i and j
are matched correctly and that [S];; + m < [S]; for any k # j. The latter implies that the
distance between the positive pair (i, j) is at least m smaller than the distance with all
other pairs in the batch.

Next, note that the optimal value of the loss function L(S,,, Y,;) = 0 is achieved when
all g;; equate to zero, which implies that at the optimum, distances in all positives pairs
are at least m smaller than the distances in all negative pairs. This optimality condition
reassembles the formulation of margin Triplet loss [72]. [

MINING STRATEGIES. By default, the loss in (4.3) enforces a one-to-one negative
pair mining strategy due to the structural domain constraint Y € Il. By relaxing this
domain constraint to row-stochastic binary matrices, we arrive at the known batch-hard
mining [72]. This is essential to have a computationally tractable implementation of
structured assignment losses.

SMOOTHNESS. Animmediate issue when directly optimizing the structured linear
assignment loss is the non-smoothness of the minimum function in (4.3). It is known
that optimizing smoothed functions can be more efficient than directly optimizing their
non-smooth counterparts [8]. The common way to smooth a minimum is by log-sum-exp
approximation. Thus, we can obtain a smoothed version of structured linear assignment
loss:

Lo(S.Y) = 1r(SY7,) + 7log > exp -ln»(SYT)) @5)

Yell
where 7 is a temperature parameter controlling the degree of smoothness. Practically,
the formulation in (4.5) requires summing N! terms, which makes it computationally
intractable under the default structural constraints Y € I1. Fortunately, similar to the

We emphasize that the term linear here is only used with regard to an underlying assignment problem.
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non-smooth case, we can utilize batch-hard mining, which leads to O(N?) computational
complexity. The smoothed structured linear assignment loss with batch-hard mining
reduces to known normalized-temperature cross entropy [28] also known as the InfoNCE
[133] loss.

Proposition 2. The smoothed structured linear assignment loss L. (S, Y4) with batch-
hard mining is equivalent to the normalized-temperature cross entropy loss.

Proof. Recall that the batch-hard mining emerges from relaxing constraint Y € I1 into
Y € R, where R is a set of binary row-stochastic matrices. We can rewrite Ly (S, Yr)
with batch-hard mining as:

L.Yo) = Y (St los( Y exp(-2I81)

(pk)eYy J (4.6)
= Y s+ Y gl Y expl—Lo.)
(Ph)eY i J

where ¢(p, k) is a distance measure between the samples p and k, and 7 is the parameter
controlling a degree of smoothness. Note that in (4.6) we assume that the distance ¢(p, k)
decreases when the similarity between the samples increases.

The first and the second terms in (4.6) relates to the alignment and distribution terms
[30] and reassemble the formulation of the normalized temperature cross entropy loss
(InfoNCE) [28, 133] up to a normalization constant. O

CONNECTION TO MUTUAL INFORMATION It is known that the InfoNCE ob-
jective is a lower bound on the mutual information between the representations of data
modalities [133]. Thus, Propositions 1 and 2 reveal a connection between mutual infor-
mation maximization and minimization of structured losses for assignmnet problems. In
fact, the assignment cost tr(SYgt) in (4.2) is related to the conditional entropy H (X|Y),
while min ycry#r(SY”) aims to maximize the diversity in representations. This connec-
tion allows for consideration of contrastive representation learning methods based on

InfoNCE as a special case the structured linear assignment loss.

4.4 EXTENDING CONTRASTIVE LOSSES
We next demonstrate how to exploit the connection between contrastive learning and

assignment problems to extend contrastive losses the set level. As a byproduct of this
connection, we also derive the SparseCLR contrastive objective.

4.4.1 Contrastive learning with quadratic assignments on sets

Quadratic assignment problem

As in the linear case, we are given two input sets A, B and the inter-set similarity
matrix S. For the Quadratic Assignment Problem (QAP), we define intra-set similarity
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matrices S and Sg measuring similarities within the sets A and B respectively, i.e.
[Salij = ¢(ai,aj). A goal of the quadratic assignment problem is to find a one-ro-one
assignment $¢(S, S#,Sg) € I that maximizes the set similarity between A, B, where
the set similarity is defined as follows:

Q(S,S4.8g) = min {tr(SY") + tr(SaYSLYT)) (4.7)

Compared to the linear assignment problem, the quadratic term Q(S, S#, Sg) in (4.7)
additionally measures the discrepancy in internal structures between sets S# and Sg.

Learning with quadratic assignments

Following the similar steps as for the linear assignment problem in Section 4.3.3, we
next define the structured quadratic assignment loss by extending the linear assignment
problem in (4.3) with the quadratic term:

LQAP = tl’(SYZ,;

) —Q(S,S4,Sg8) (4.8)

Minimization of the structured quadratic assignment loss in (4.8) encourages the
encoder to learn representations resulting in the same solutions of the linear and quadratic
assignment problems, which is only possible when the inter-set and intra-set similarities
are sufficiently close [23]. Note that we do not use a ground truth quadratic assignment
in Loap, but a ground truth linear assignment objective is used for the supervision. This
is due to a quadratic nature of Q, where minimizing the discrepancy between ground
truth and predicted assignments is a subtle optimization objective, e.g. for an equidistant
set of points the costs of all quadratic assignments are identical.

To compute Loap, we first need to evaluate the quadratic term Q(S, S, Sg), which
requires solving the quadratic assignment. This problem is known to be notoriously hard
to solve exactly even when an input dimensionality is moderate [23]. To alleviate this,
we use a computationally tractable upper-bound:

T . T . TvyT
Loap < 1r(SYy) —min rr(SY") — min 1r(SaYS,Y") 49)
< L(S,Yg) = (Aa, A8)-

where (14, Ag)- corresponds to a minimum dot product between eigenvalues of
matrices S 4 and S p.

The first inequality is derived from Jensen’s inequality for (4.8) and the second in-
equality holds due to the fact that {1z, Ap)_ < tr(FXDTXT) < (Af, Ap) for symmetric
matrices F, D and X € I as shown in Theorem 5 by Burkard [23]. The above derivations
are for the case when the similarity metric is a valid distance function, i.e. minimizing
a distances leads to maximizing a similarity. The derivation for the reverse case can
be done analogously by replacing min with max in the optimal assignment problem
formulation.

Optimizing the upper-bound in (4.9) is computationally tractable compared to optimiz-
ing the exact version of Lpap. Another advantage is that the upper-bound in (4.9) breaks
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down towards minimizing the sum of the structured linear assignment loss L(S, Y,;) and
the regularizing term, which accounts for the set similarity. This allows to easily modify
existing contrastive learning approaches like those in [28, 72,119, 133] that are based
on pairwise similarities and thus stem from the linear assignment problem by simply
plugging in the regularizing term. We provide a simple code example demonstrating
InfoNCE with the quadratic assignment regularization below:

# f: encoder network

# alpha: weighting for the pairwise contrastive part
# beta: weighting for the set contrastive part

# N: batch size

# E: dimensionality of the embeddings

for x in loader: # load a batch with N samples
# two randomly augmented views of x
y_a, y_b = augment (x)

# compute embeddings
z_a = f(y_a) # NxE
z_b = f(y_b) # NxE

# compute inter—-set and intra-set similarities
S_AB = similarity(z_a, z_b) # NxN
S_A = similarity(z_a, z_a) # NxN
S_.B = similarity(z_b, z_b) # NxN

# compute pairwise contrastive InfoNCE loss
pairwise_term = infonce (S_AB)

# compute eigenvalues
eigs_a = eigenvalues (S_A) #N
eigs_b = eigenvalues (S_B) #N

# compute QARe from minimum dot product of eigenvalues
eigs_a_sorted = sort (eigs_a, descending = True) #N
eigs_b_sorted = sort (eigs_b, descending = False) #N
gare = —1x(eigs_a_sorted.Tleigs_b_sorted)

# combine pairwise contrastive loss with QARe
loss = alpha*pairwise_term + betaxgare/ (N"2)

# optimization step

loss.backward/()
optimizer.step ()
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Computational complexity

Computing the upper-bound in (4.9) has a computational complexity of O(N?) as one
needs to compute eigenvalues of the intra-set similarity matrices. This is opposed to
(4.8) that requires directly computing quadratic assignments, for which it is known there
exist no polynomial-time algorithms [23]. The computational complexity can be pushed
further down to O(k*N ) by evaluating the only top-k eigenvalues instead of computing
all eigenvalues.

4.4.2 SparseCLR

In Section 4.3.3 we noted that the smoothness of a loss function is a desirable property
for optimization and that the log-sum-exp smoothing of the structured linear assignment
loss yields the normalized temperature cross-entropy objective as a special case. Such
an approach, however, is known to have limitations. Specifically, the log-sum-exp
smoothing yields dense support over samples, being unable to completely rule out
irrelevant examples [131]. That can be statistically and computationally overwhelming
and can distract the model from fully utilizing information from hard negative examples.

We propose to use sparsemax instead of log-sum-exp approximation to alleviate the
non-smoothness of the structured linear assignment objective, yet keep the sparse support
of the loss function. Here sparsemax is defined as the minimum distance Euclidean
projection to a k-dimensional simplex as in [116, 131].

Let & :c RV be a vector that consists of the realizations of all possible assignment
costs for the similarity matrix S. With this we can define SparseCLR as follows:

Loparse(S, Ygr) = tr(SY?) — % Z (5 -7%(-5)) (4.10)
JjeQ(x)
where Q(X) = {j € X : sparsemax(X); > 0} is the support of sparsemax function,
and 7 denotes the thresholding operator [116]. In practice, to avoid summing over
a factorial number of terms, as well as for other methods, we use batch-hard mining
strategy resulting in O(N?) computational complexity for SparseCLR.

4.4.3 Formulations of contrastive losses with batch-hard mining

So far, the proposed contrastive losses have been formulated in a one-to-one mining
form, which emerges when considering assignment problems. Next, we present the
formulations of the proposed contrastive losses with batch-hard mining strategy. To
this end, we start with the derivation for the case of the structured linear assignment
loss, while the derivations for the smoothed structured linear assignment and SparseCLR
losses can be done analogously.

We start from the original structured linear assignment loss with one-to-one mining:

L(S,Yg) = tr(SYL,) - ‘r}gﬁtr(SYT) (4.11)
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To derive the loss under the batch-hard mining strategy, the structural constraint Y € 11
is relaxed to Y € R, where R is a set of row-stochastic binary matrices, i.e. [Y]; €10, 1}
for V(i, j) and 3 ;[Y];; = 1 for Vi. With this, the structured linear assignment loss with
the batch-hard mining is defined as follows:

L(S,Yy) = tr(SYL,) - gn%tr(SYT)
€

= 1r(SY?,) - min Z(Z[S]ij[ui]j)

r(SYy) = ) mln(Z[S]ij[ui]j)
tr(SY},) me ,]]

(4.12)

where the first inequality follows from the fact that the rows uj...uy of Y € R are
independent of each other, and the last inequality is due to u; is a binary vector containing
a one-hot encoding of the minimum index.

» Smoothed structured linear assignment loss L (S, Yg;) with batch-hard-mining:
L:(S,Yy) = tr(SYL) + TZ 1ogZ exp( ——[s i (4.13)
» SparseCLR contrastive loss Lspa,se(S, Ygt) with batch-hard mining:

Lparse(S. Ygr) = tr(SYL) ——Z Z 2(=h;)) (4.14)

i jeQ(h

where h; € RY correspond to a i-th row of the similarity matrix S, and Q(X) = {j €
X : sparsemax(X); > 0} is the support of sparsemax function [116]. The thresholding
operator 7 is defined as:

(ZjeQ(z) Zj) -1

T(7) = (4.15)
) 1Q(2)]
And the sparsemax function is defined as:
sparsemax(z) = argmin ||p — z|* (4.16)
peAN-1

with A¥~! being N — 1 dimensional simplex.

4.5 EXPERIMENTS

In this section, we evaluate the quality of representations trained with and without our
Quadratic Assignment Regularization (QARe). We also evaluate the performance of
SparseCLR and compare it with other contrastive losses. As we consider the represen-
tation learning from the perspective of the assignment theory, we firstly conduct the
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Method Triplet SparseCLR InfoNCE NTLogistic

pairwise 54.85+0.77 53.03+0.43 57.87+1.19 40.30+0.42
+QARe 58.48+1.67 54.84+1.40 61.96+1.38 43.48+1.41

Table 2: Matching accuracy for instances from different views of CUHK-03 dataset.
The pairwise corresponds to the contrastive losses acting on the level of pairs. + QARe
denotes methods with quadratic assignment regularization. Best results are in bold.

instance matching experiment, where the goal is to learn to predict the correct assignment
between different views of the dataset. Then, we test the proposed method on the task of
self-supervised classification and compare it with other contrastive learning approaches.
Next, we present ablation studies to visualize the role of the weighting term, when
combining QARe with the baseline contrastive learning method.

4.5.1 Matching instances from different views

In this experiment, the goal is to train representations of objects from different views,
such that the learned representations provide a correct matching between identities in
the dataset. This problem is closely related to a metric learning and can be solved by
contrasting views of the data [72].

Data

We adopt the CUHK-03 dataset [107] designed for the RelD [72] task. CUHK-03 consist
of 1467 different identities recorded each from front and back views. To train and test
the models, we randomly divide the dataset into 70/15/15 train/test/validation splits.

Evaluation

We evaluate the quality of representations learned with contrastive losses by computing
the matching accuracy between front and back views. In practice, we first obtain the
embeddings of the views of the instances from the encoder and then compute their inter-
view similarity matrix using the Euclidean distance. Given this, the matching accuracy
is defined as the mean Hamming distance between the optimal assignment from the
inter-view similarity matrix and the ground truth assignment. We report the average
matching accuracy and the standard deviation over 3 runs with the same fixed random
seeds. As a baseline, we chose Triplet with batch-hard mining [72], InfoNCE [133] and
NTLogistic [119] contrastive losses, which we extend with the proposed QARe.

Implementation details

BACKBONE As the encoder, we use ResNet-18 [67] with the top classification layer
replaced by the linear projection head that outputs feature vectors of dimension 64. To
obtain representations, we normalize the feature vectors to be L2 unit-norm.
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4.5 EXPERIMENTS

TRAINING  We train the models for 50 epochs using Adam optimizer with the cosine
annealing without restarts [111]. Initial learning rate is 0.01 and a batch size is set to 128.
During the training, we apply random color jittering and horizontal flip augmentations.
To compute the test matching accuracy, we select the best model over the epochs based
on the validation split. During the training, we apply a simple augmentation strategy:
horizontal flip with a 50% chance and color jittering. For the latter, the brightness,
contrast, saturation, and hue are sampled from a uniform distribution U[0, 0.1].

HYPER-PARAMETERS OF THE LOSS FUNCTIONS We use 4 baseline contrastive
losses: margin Triplet [72], InfoNCE [133], NT-Logistic [119] and the proposed Sparse-
CLR losses, which we extend with the Quadratic Assignment Regularization (QARe).

The margin parameter for Triplet loss is set to 0.5, the temperature parameters for In-
foNCE and NT-Logistic are both set to 0.05. We combine QARe and the backbone

contrastive learning loss by taking their convex combination, where the QARe term is

weighted by the constant 8 > 0. The exact values of 8 are 0.4/0.5/0.2/0.3 for margin

Triplet / InfoNCE / NT-Logistic / SparseCLR.

Results

The results are reported in Table 2. As can be seen, adding QARe regularization to a
baseline contrastive loss leads to a better matching accuracy, which indicates an improved
quality of representations. Notably, QARe delivers 3.6% improvement when combined
with Triplet loss and 4.1% increase in accuracy with the InfoNCE objective. This
demonstrates that the quadratic assignment regularization on sets helps the model to
learn generalized representation space.

4.5.2  Self-supervised classification

Next, we evaluate the quadratic assignments on sets in the task of self-supervised
classification. The goal in this experiment is to learn a representation space from an
unlabeled data that provides a linear separation between classes in a dataset. This is a
common problem to test contrastive learning methods.

Evaluation

We follow the standard linear probing protocol [94]. The evaluation is performed by
retrieving embeddings from a contrastively trained backbone and fitting a linear classifier
on top of the embeddings. Since linear classifiers have a low discriminative power
on their own, they heavily rely on input representations. Thus, a higher classification
accuracy indicates a better quality of learned representations. As the baseline for pairwise
contrastive learning methods, we select popular SimCLR and proposed SparseCLR. We
extend the methods to the set level by adding the quadratic assignment regularization.
We compare the set-level contrastive methods with other self-supervised [26, 54] and
contrastive approaches [27,28].
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CONTRASTIVE LEARNING WITH STRUCTURED ASSIGNMENTS

Conv-4 ResNet-32
Method CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet
Supervised (upper bound) 80.46+0.39  49.29+0.85 36.47+0.36 90.87+0.41  65.32+0.22 50.09+0.32
Random Weights (lower bound) 32.92+1.88  10.79+0.59 6.19+0.13 27.47+0.83  7.65+0.44 3.24+0.43
DeepCluster [26] 42.88+0.21 21.03%1.56 12.60+1.23  43.31+0.62 20.44+0.80 11.64+0.21
RotationNet [54] 56.73+1.71  27.45+0.80 18.40+0.95 62.00+0.79  29.02+0.18 14.73+0.48
Deep InfoMax [74] 44.60+£0.27 22.74+0.21 14.19+0.13 47.13£0.45 24.07£0.05 17.51+0.15
SimCLR* [28] 59.64+0.93  30.75+0.23 21.15+£0.16  76.45+0.10 40.18+0.13 23.44+0.27
SimCLR+QARe (Ours) 61.54+1.17 31.18+0.41 21.33+0.18  76.85+0.39 41.20+0.34 25.05+0.18

Table 3: Self-supervised training and linear probing for a self-supervised classification.
Average classification accuracy (percentage) and standard deviation over 3 runs with
common fixed random seeds are reported. * we report the results from our reimplementa-
tion of SimCLR.

Implementation details

BACKBONES We use two models: Conv-4 and ResNet-32. The Conv-4 model
involves 4 blocks. The first 3 blocks consist of 8, 16, and 32 feature maps respectively.
Each performs a convolution with a kernel size of 3, a stride of 1, and a padding of 1 pixel,
followed by a batch-normalization layer, a ReLU, and an average pooling layer with a
kernel size of 2 and a stride of 2 pixels. The fourth block performs the same operations
but instead of an average pooling, an adaptive average pooling is used. For ResNet-32,
we use off-the-shelf Pytorch implementation as described in [67]. We initialize the model
using standard Xavier initialization [56] and set batch-normalization weights and biases
to 1 and O respectively.

TRAINING  We train the models for 200 epochs using Adam optimizer with a learning
rate of 0.001 and a batch size is set to 128. For contrastive learning methods, we adopt a
set of augmentations from [28] to form different views of the data. For linear probing,
we freeze the encoder weights and train a logistic regression on top of the learned
representation for 100 epochs with Adam optimizer, using a learning rate of 0.001 and a
batch size of 128. We apply the following augmentations to images: horizontal flip with
a 50% chance, random crop-resize, grayscale conversion with a 20% chance, and color
jitter with an 80% chance. Random crop-resize consists of cropping the given image
from 0.08 to 1.0 of the original size, then changing its aspect ratio from 3/4 to 4/3 of
the original, and finally resizing to input shape using a bilinear interpolation. For color
jitter, the brightness, contrast and saturation are sampled from U0, 0.8], and the hue is
sampled from U|0, 0.2].

We perform training and testing on standard CIFAR-10, CIFAR-100, and tiny-ImageNet
datasets. For each dataset, we follow the same training procedure and fine-tune the opti-
mal weighting of the quadratic assignment regularizer.

HYPER-PARAMETERS OF THE LOSS FUNCTIONS We combine quadratic as-
signment regularization and the backbone contrastive learning loss by summing with
weighting the QARe term by a constant 8 > 0. The values of g for each architecture
and dataset are listed in Table 4. The temperature parameter for both SimCLR [29] and
SimCLR+QARe is set to 0.05.
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4.5 EXPERIMENTS

Conv-4 ResNet-32
Method CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet
(B) SimCLR+QARe 0.5 0.375 0.875 1.125 1.125 1.125
(B) SparseCLR+QARe 0.125 1.25 0.5 1 0.875 1.25

Table 4: QARe weighting for the architectures and the datasets for self-supervised
classification experiment.

Cifarl0 Cifarl00 tiny-lmageNet
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Figure 14: Influence of the weighting of the QARe term in the self-supervised classification
for ResNet-32 trained with SimCLR. The accuracy is recorded over 3 runs with common
fixed random seeds.

QARe results

The results for the quadratic assignment regularization are reported in Table 3 for SimCLR
and in Table 5 for proposed SparseCLR. For SimCLR, adding QARe delivers 1.9%
accuracy improvement on CIFAR-10 for the shallow encoder network and up to 1.6 %
improvement for ResNet-32 on tiny-ImageNet. We observed a consistent improvement
in other dataset-architecture setups, except tiny-ImageNet with shallow Conv-4 encoder,
where the performance gain from adding QARe is modest. For this case, we investigated
the training behavior of the models and observed that both SimCLR and SimCLR+QARe
for Conv-4 architecture very quickly saturate to a saddle point, where the quality of
representations stops improving. Since this does not happen with ResNet-32 architecture,
we attribute this phenomenon to the limited discriminative power of the shallow Conv-4
backbone, which can not be extended by regularizing the loss.

For SparseCLR, we observed the same overall pattern. As can be seen from Table
5, extending SparseCLR to set level with QARe delivers 1.6% accuracy improvement
for ResNet-32 on tiny-ImageNet and also steadily improve the performance on other
datasets. This indicates that QARe helps to provide a richer supervisory signal for the
model to train representations.

SparseCLR results

Next, we compare SimCLR against the proposed SparseCLR. As can be seen in Table 5,
SparseCLR consistently improves over the baseline on CIFAR-100 and tiny-ImageNet
datasets, where it delivers 2.4% improvement. Surprisingly, we noticed a significant
drop in performance for ResNet-32 on CIFAR-10. For this case, we investigated the
training behavior of the model and observed that in the case of CIFAR-10, the batch
often includes many false negative examples, which results in uninformative negative
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CONTRASTIVE LEARNING WITH STRUCTURED ASSIGNMENTS

Conv-4 ResNet-32
Method CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet
SimCLR* [28] 59.64+0.93 30.75+0.23 21.15+0.16 76.45+0.10 40.18+0.13 23.44+0.27
SparseCLR (Ours) 59.86+£0.56  32.04+0.26 22.41+0.39 70.37+0.12  41.05+0.20 25.87+0.59

SparseCLR+QARe (Ours) 61.06+0.39  33.05+0.32 22.45+0.30 71.39+£0.30 42.07+0.35 27.03+0.40

Table 5: Self-supervised training on unlabeled data and linear evaluation on labeled data.
Comparing SimCLR [28] with the proposed SparseCLR and SparseCLR with QARe.
Average accuracy and standard deviation over three runs over 3 runs with common fixed
random seeds.

pairs. Since SparseCLR assigns the probability mass only to a few hardest negative
pairs, a lot of false-negative examples in the batch impede obtaining a clear supervisory
signal. We assume the problem can be alleviated by using false-negative cancellation
techniques [79].

Ablation study

Here we illustrate how the weighting of the QARe term influences the quality of rep-
resentations learned with SIimCLR under a linear probing evaluation. We search for
the optimal weighting in the range from O to 1.875 with a step of 0.125. The results
are depicted in Figure 14. In practice, we observed that QARe is not too sensitive to a
weighting and the values in the range 0.75-1.25 provide consistent improvement.

Time and memory complexity

——$— InfoNCE

256 512 1024 2048

Batch size

64 128

Figure 15: A training iteration time complexity of InfoNCE with and without the quadratic
assignment regularization.

In addition to computational complexity, we provide an empirical analysis of how the
proposed regularization influences the time and memory complexity of a baseline method
(InfoNCE). We observe 13% increase in training time for the batch size of 256, and up
to 29% for the batch size of 2048 (Figure 15). The increase in memory consumption is
negligible (4-0.78% for the batch size of 2048).
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4.6 DISCUSSION

4.6 DISCUSSION

In this work, we present set contrastive learning method based on quadratic assignments.
Different from other contrastive learning approaches, our method works on the level
of set similarities as opposed to only pairwise similarities, which allows improving
the information content of the supervisory signal. For derivation, we view contrastive
learning through the lens of combinatorial assignment theory. We show how pairwise
contrastive methods emerge from learning to produce correct optimal assignments and
then extend them to a set level by generalizing an underlying assignment problem,
implemented as a regularization for existing methods. As a byproduct of viewing
representation learning through the lens of assignment theory, we additionally propose
SparceCLR contrastive loss.

Our experiments in instance matching and self-supervised classification suggest that
adding quadratic assignment regularization improves the quality of representations
learned by backbone methods. We suppose, that our approach would be most useful in
the problems where the joint analysis of objects and their groups appears naturally and
labeling is not readily available.
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SCALE EQUIVARIANT REPRESENTATIONS FOR ROBUST
VISUAL OBJECT TRACKING

5.1 INTRODUCTION

Siamese trackers turn tracking into similarity estimation between a template and the
candidate regions in the frame. The Siamese networks are successful because the
similarity function is powerful: it can learn the variances of appearance very effectively,
to such a degree that even the association of the frontside of an unknown object to its
backside is usually successful. And, once the similarity is effective, the location of the
candidate region is reduced to simply selecting the most similar candidate.

Mathematically, one of the key ingredients of the success of the similarity function
is translation equivariance, i.e. a translation in the input image is to result in the
proportional translation in feature space. Non-translation-equivariant architectures will
induce a positional bias during training, so the location of the target will be hard to recover
from the feature space [105, 199]. In real-life scenarios, the target will undergo more
transformations than just translation, and, unless the network has an internal mechanism
to handle them, the similarity may degrade. We start from the position that equivariance
to common transformations should be the guiding principle in designing conceptually
simple yet robust trackers. To that end, we focus on scale equivariance for trackers in
this paper.

Measuring scale precisely is crucial when the camera zooms its lens or when the target
moves into depth. However, scale is also important in distinguishing among objects in
general. In following a marching band or in analyzing a soccer game, or when many
objects in the video have a similar appearance (a crowd, team sports), the similarity
power of Siamese trackers has a hard time locating the right target. In such circumstances,
spatial-scale equivariance will provide a richer and hence more discriminative descriptor,
which is essential to differentiate among several similar candidates in an image. And,
even, as we will demonstrate, when the sequence does not show variation over scale,
proper scale measurement is important to keep the target bounding box stable in size.

The common way to implement scale into a tracker is to train the network on a large
dataset where scale variations occur naturally. However, as was noted in [100], such
training procedures may lead to learning groups of re-scaled duplicates of almost the
same filters. As a consequence, inter-scale similarity estimation becomes unreliable, see
Figure 16 top. Scale-equivariant models have an internal notion of scale and built-in
weight sharing among different filter scales. Thus, scale equivariance aims to produce
the same distinction for all sizes, see Figure Figure 16 bottom.
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SCALE EQUIVARIANT REPRESENTATIONS FOR ROBUST VISUAL OBJECT TRACKING
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Figure 16: The standard version (top) and the scale-equivariant version (bottom) of a
basic tracker. The scale-equivariant tracker has an internal notion of scale which allows
for the distinction between similar objects which only differ in scale. The operator %
denotes convolution, and %y stands for scale-convolution.

In this paper, we aim to equip the Siamese network with spatial and scale equivariance
built-in from the start to capture the natural variations of the target a priori. We aim to
improve a broad class of tracking algorithms by enhancing their capacity of candidate
distinction. We adopt recent advances [156] in convolutional neural networks (CNNs)
which handle scale variations explicitly and efficiently.

While scale-equivariant convolutional models have lead to success in image classi-
fication [156, 180], we focus on their usefulness in object localization. Where scale
estimation has been used in the localization for tracking, it typically relies on brute-force
multi-scale detection with an obvious computational burden [16,42], or on a separate
network to estimate the scale [40, 106]. Both approaches will require attention to avoid
bias and the propagation thereof through the network. Our new method treats scale
and scale equivariance as a desirable fundamental property, which makes the algorithm
conceptually easier. Hence, scale equivariance should be easy to merge into an existing
network for tracking. Then, scale equivariance will enhance the performance of the
tracker without further modification of the network or extensive data augmentation during
the learning phase.

We make the following contributions:

» We propose the theory for scale-equivariant Siamese trackers and provide a simple
recipe of how to make a wide range of existing trackers scale-equivariant.

* We propose building blocks necessary for efficient implementation of scale equiv-
ariance into modern Siamese trackers and implement a scale-equivariant extension
of the recent SiamFC+ [199] tracker.

* We demonstrate the advantage of scale-equivariant Siamese trackers over their
conventional counterparts on popular benchmarks for sequences with and without
apparent scale changes.

66



5.2 RELATED WORK

5.2 RELATED WORK

SIAMESE TRACKING The challenge of learning to track arbitrary objects can be
addressed by deep similarity learning [16]. The common approach is to employ Siamese
networks to compute the embeddings of the original patches. The embeddings are then
fused to obtain a location estimate. Such formulation is general, allowing for a favourable
flexibility in the design of the tracker. In [16] Bertinetto et al. employ off-line trained
CNN s as feature extractors. The authors compare dot-product similarities between the
feature map of the template with the maps coming from the current frame and measure
similarities on multiple scales. Held ez al. [69] suggest a detection-based Siamese tracker,
where the similarity function is modeled as a fully-connected network. Extensive data
augmentation is applied to learn a similarity function, which generalizes for various
object transformations. Li et al. [106] consider tracking as a one-shot detection problem
to design Siamese region-proposal-networks [141] by fusing the features from a fully-
convolutional backbone. The recent ATOM [40] and DIMP [19] trackers employ a
multi-stage tracking framework, where an object is coarsely localized by the online
classification branch, and subsequently refined in its position by the estimation branch.
From a Siamese perspective, in both [19,40] the object embeddings are first fused to
produce an initial location and subsequently processed by the IoU-Net [85] to enhance
the precision of the bounding box.

The aforementioned references have laid the foundation for most of the state-of-
the-art trackers. These methods share an implicit or explicit attention to translation
equivariance for feature extraction. The decisive role of translation equivariance is noted
in [16, 105, 199]. Bertinetto et al. [16] utilize fully-convolutional networks where the
output directly commutes with a shift in the input image as a function of the total stride.
Li et al. [105] suggest a training strategy to eliminate the spatial bias introduced in non-
fully-convolutional backbones. Along the same line, Zhang and Peng [199] demonstrated
that deep state-of-the-art models developed for classification are not directly applicable
for localization. And hence these models are not directly applicable to tracking as
they induce positional bias, which breaks strict translation equivariance. We argue that
transformations, other then translation, such as rotation may be equally important for
certain classes of videos like sports and following objects in the sea or in the sky. And
we argue that scale transformation is common in the majority of sequences due to the
changing distances between objects and the camera. In this paper, we take on the latter
class of transformations for tracking.

EQUIVARIANT CNNS Various works on transformation-equivariant convolutional
networks have been published recently. They extend the built-in property of translation-
equivariance of conventional CNNs to a broader set of transformations. Mostly consid-
ered was roto-translation, as demonstrated on image classification [34,35,75, 145, 146,
176], image segmentation [177] and edge detection [180].

One of the first works on scale-translation-equivariant convolutional networks was by
Marcos et al. [115]. In order to process images on multiple scales, the authors resize
and convolve the input of each layer multiple times, forming a stack of features which
corresponds to variety of scales. The output of such a convolutional layer is a vector
whose length encodes the maximum response in each position among different scales.
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The direction of the vector is derived from the scale, which gave the maximum. The
method has almost no restrictions in the choice of admissible scales. As this approach
relies on rescaling the image, the obtained models are significantly slower compared to
conventional CNNs. Thus, this approach is not suitable for being applied effectively in
visual object tracking.

Worrall & Welling [179] propose Deep Scale-Spaces, an equivariant model which
generalizes the concept of scale-space to deep networks. The approach uses filter dilation
to analyze the images on different scales. It is almost as fast as a conventional CNN
with the same width and depth. As the method is restricted to integer scale factors it is
unsuited to applications in tracking where the scene dictates arbitrary scale factors.

Almost simultaneously, three papers [10, 156,203] were proposed to implement scale-
translation-equivariant networks with arbitrary scales. What they have in common is
that they use a pre-calculated and fixed basis defined on multiple scales. All filters are
then calculated as a linear combination of the basis and trainable weights. As a result,
no rescaling is used. We prefer to use [156], as Sosnovik et al. propose an approach for
building general scale-translation-equivariant networks with an algorithm for the fast
implementation of the scale-convolution.

To date, the application of scale-equivariant networks was mostly demonstrated in
image classification. Almost no attention was paid to tasks that involve object localization,
such as visual object tracking. As we have noted above, it is a fundamentally different
case. To the best of our knowledge, we demonstrate the first application of transformation-
equivariant CNNs to visual object tracking.

5.3 SCALE-EQUIVARIANT TRACKING

In this work, we consider a wide range of modern trackers which can be described by the
following formula:

h(z, x) = ¢x(x) * ¢2(2) (5.1)

where z, x are the template and the input frame, and ¢x, ¢z are the functions which process
them, and * is the convolution operator which implements a connection between two
signals. The resulting value A(z, x) is a heatmap that can be converted into a prediction
by relatively simple calculations. Functions ¢y, ¢z here can be parametrized as feed-
forward neural networks. For our analysis, it is both suitable if the weights of these
networks are fixed or updated during training or inference. This pipeline describes the
majority of Siamese trackers such as [16, 105, 106] and the trackers based on correlation
filters [41,42].

5.3.1 Convolution is all you need

Let us consider some mapping g. It is equivariant under a transformation L if and only if
there exists L’ such that go L = L’ o g. If L’ is the identity mapping, then the function
g is invariant under this transformation. A function of multiple variables is equivariant
when it is equivariant with respect to each of the variables. In our analysis, we consider
only transformations that form a transformation group, in other words, L € G.
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5.3 SCALE-EQUIVARIANT TRACKING

Theorem 3 (Siamese equivariance). A function given by Equation 5.1 is equivariant
under a transformation L from group G if and only if ¢x and ¢z are constructed from
G-equivariant convolutional layers and * is the G-convolution.

Proof. Let us fix z = z9 and introduce a function hx = h(x,z9) = ¢x(x) * ¢z(z0). This
function is a feed-forward neural network. All its layers but the last one are contained
in ¢x and the last layer is a convolution with ¢z (zo). According to [96] a feed-forward
neural network is equivariant under transformations from G if and only if it is constructed
from G-equivariant convolutional layers. Thus, the function sy is equivariant under
transformations from G if and only if

* The function ¢y is constructed from G-equivariant convolutional layers
* The convolution * is the G-convolution

If we then fix x = xo, we can show that a function hz = h(xo,z) = ¢x(x0) * ¢z(z) is
equivariant under transformations from G if and only if

* The function ¢z is constructed from G-equivariant convolutional layers
* The convolution * is the G-convolution

The function £ is equivariant under G if and only if both the function sy and the
function hz are equivariant. [

A simple interpretation of this theorem is that a tracker is equivariant to transforma-
tions from G if and only if it is fully G-convolutional. The necessity of fully-convolutional
trackers is well-known in tracking community and is related to the ability of the tracker
to capture the main variations in the video — the translation. In this paper, we seek to
extend this ability to scale variations as well. Which, due to Theorem 3 boils down to
using scale-convolution and building fully scale-translation convolutional trackers.

5.3.2 Scale Modules

Given a function f : R — IR, a scale transformation is defined as follows:

Li[f](t) = f(s"'t), Vs20 (52)

where cases with s > 1 are referred to as upscale and with s < 1 as downscale. Standard
convolutional layers and convolutional networks are translation equivariant but not
scale-equivariant [156].

PARAMETRIC SCALE-CONVOLUTION In order to build scale-equivariant convo-
lutional networks, we follow the method proposed by Sosnovik et al. [156]. We begin by
choosing a complete basis of functions defined on multiple scales. Choosing the center of
the function to be the point (0,0) in coordinates (u, v), we use functions of the following
form:

| 22
ernm (V) = A;Hn(g)Hm(g)e 02 (5.3)
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SCALE EQUIVARIANT REPRESENTATIONS FOR ROBUST VISUAL OBJECT TRACKING

e | e Bew -
c=V2 Xw = &P - o - e
=2 [o]ElmE  m] ‘@ - o

«X
\o «x“ W e

Kernel Basis Scale-Convolution Scale-Pooling

Figure 17: Left: convolutional kernels use a fixed kernel basis on multiple scales, each
with a set of trainable weights. Middle: a representation of scale-convolution using
Equation 5.6 for the first and all subsequent layers. Right: a scheme of scale-pooling,
which transforms a 3D-signal into a 2D one without losing scale equivariance. As an
example, we use a basis of 4 functions and 3 scales with a step of V2. Only one channel
of each convolutional layer is demonstrated for simplicity.

Here H,, is a Hermite polynomial of the n-th order, and A is a constant used for normal-
ization. In order to build a basis of N functions, we iterate over increasing pairs of n and
m. As the basis is complete, the number of functions N is equal to the number of pixels
in the original filter. We build such a basis for a chosen set of equidistant scales o and fix
it:

Yo = {lﬂaoo, Y01, Yol10, Yoll -- } (5.4)

Kernels of convolutional layers are parametrized by trainable weights w in the follow-
ing way:

ke =) Yo (5.5)
i

As a result, each kernel is defined on multiple scales and no image interpolation is used.
Given a function of scale and translation f(s,¢) and a kernel «, (s, 7), a scale convolution
is defined as:

f *r ko) (5,0) = D [F(5') * koo (57157, )](2) (5.6)

S/

The result of this operation is a stack of features each of which corresponds to a different
scale. We end up with a 3-dimensional representation of the signal — 2-dimensional
translation + scale. We follow [156] and denote scale-convolution as xg in order to
distinguish it with the standard one. Figure 17 demonstrates how a kernel basis is formed
and how scale-convolutional layers work.

FAST 1X1 SCALE-CONVOLUTION An essential building block of many back-
bone deep networks such as ResNets [67] and Wide ResNets [191] is a 1 X 1 convolutional
layer. We follow the interpretation of these layers proposed in [108] — it is a linear
combination of channels. Thus, it has no spatial resolution. In order to build a scale-
equivariant counterpart of 1 X 1 convolution, we do not utilize a kernel basis. As we
pointed out before, the signal is stored as a 3 dimensional tensor for each channel. There-
fore, for a kernel defined on Ny scales, the convolution of the signal with this kernel is
just a 3-dimensional convolution with a kernel of size 1 X 1 in spatial dimension, and
with Ng values in depth. This approach for 1 X 1 scale-convolution is faster than the
special case of the algorithm proposed in [156].
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Figure 18: Left: two samples from the simulated sequence. The input image is a translated
and cropped version of the source image. The output is the heatmap produced by the
proposed model. The red color represents the place where the object is detected. Right:
correspondence between the input and the output shifts.

PADDING Although zero padding is a standard approach in image classification
for saving the spatial resolution of the image, it worsens the localization properties
of convolutional trackers [105, 199]. Nevertheless, a simple replacement of standard
convolutional layers with scale-equivariant ones in very deep models is not possible
without padding. Scale-equivariant convolutional layers have kernels of a bigger spatial
extent because they are defined on multiple scales. For these reasons, we use circular
padding during training and zero padding during testing in our models. We experimentally
validate (Figure 18) that the proposed padding scheme has minimal effect on translation
equivariance.

SCALE-POOLING In order to capture correlations between different scales and to
transform a 3-dimensional signal into a 2-dimensional one, we utilize global max pooling
along the scale axis. This operation does not eliminate the scale-equivariant properties
of the network. We found that it is useful to additionally incorporate this module in the
places where conventional CNNs have spatial max pooling or strides. The mechanism of
scale-pooling is illustrated in Figure 17.

NON-PARAMETRIC SCALE-CONVOLUTION The convolutional operation which
results in the heatmap of a tracker is non-parametric. Both the input and the kernel come
from neural networks. Thus, the approach described in Equation 5.6 is not suitable for
this case. Given two functions fi, f> of scale and translation the non-parametric scale
convolution is defined as follows:

[fi *xu f2](s,1) = Lt [Ls[fi] * 2] (2) (5.7)

Here L; is rescaling implemented as bicubic interpolation. Although it is a relatively slow
operation, it is used only once in the tracker and does not heavily affect the inference
time.
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Proof. A function given by Equation 5.7 is equivariant under scale transformations of fi,
indeed

[Ls[fi] *u f2](s.1) = L [Lss[fi] * f2](2)
= LsL (551 [Lss[i] % 2] (1) (5.8)
= L;[fi *u f>](s8,1)

For a pair of scale and translation s, 7 we have the following property of the joint
transformation L;7T; = T;,Lg from [156], where T} is the translation operator defined as
T;[f](t) = f(t—f). Now we can show the following:

[T3(fi] *u 2] (s,1) = Lo [Ls[T3[ f1]] * f2](2)
= L1 [Ty Ls[fi] * £2](2)
= L1 T [Ls[fi] * o] (7)
= TiL1 [Ls[fi] * f2](2)
= Tilfi xu f2](7)

(5.9)

Therefore, a function given by Equation 5.7 is also equivariant under translations of
f1. The equivariance of the function with respect to a joint transformation follows from
the equivariance to each of the transformations separately [156].

We proved the equivariance with respect to fj. The proof with respect to f; is
analogous. [

5.3.3 Extending a Tracker to Scale Equivariance

We present a recipe to extend a tracker to scale equivariance.

1. The first step is to estimate to what degree objects change in size in this domain,
and then to select a set of scales 01,02, ...0y. This is a domain-specific hyperpa-
rameter. For example, a domain with significant scale variations requires a broader
span of scales, while for more smooth sequences, the set may consist of just 3
scales around 1.

2. For a tracker which can be described by Equation 5.1, derive ¢x and ¢z.

3. For the networks represented by ¢x and ¢z, all convolutional layers need to be
replaced with scale-convolutional layers. The basis for these layers is based on the
chosen scales 01,0, ...0N.

4. (Optional) Scale-pooling can be included to additionally capture inter-scale corre-
lations between all scales.

5. The connection operation * needs to be replaced with a non-parametric scale-
convolution.

6. (Optional) If the tracker only searches over spatial locations, scale-pooling needs
to be included at the very end.
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The obtained tracker produces a heatmap /(z, x) defined on scale and translation.
Therefore, each position is assigned a vector of features that has both the measure of
similarity and the scale relation between the candidate and the template. If additional
scale-pooling is included, then all scale information is just aggregated in the similarity
score.

Note that the overall structure of the tracker, as well as the training and inference
procedures are not changed. Thus, the recipe allows for a simple extension of a tracker
with little cost of modification.

5.4 SCALE-EQUIVARIANT SIAMFC

While the proposed algorithm is applicable to a wide range of trackers, in this work, we
focus on Siamese trackers. As a baseline we choose SiamFC [16]. This model serves
as a starting point for modifications for the many modern high-performance Siamese
trackers.

Architecture

Given the recipe, here we discuss the actual implementation of the scale-equivariant
SiamFC tracker (SE-SiamFC).

In the first step of the recipe, we assess the range of scales in the domain (dataset).
In sequences presented in most of the tracking benchmarks, like OTB or VOT, objects
change their size relatively slowly from one frame to the other. The maximum scale
change usually does not exceed a factor of 1.5 — 2. Therefore, we use 3 scales with a step
of V2 as the basis for the scale-convolutions. The next step in the recipe is to represent
the tracker as it is done in Equation 5.1. SiamFC localizes the object as the coordinate
argmax of the heatmap h(z, x) = ¢z(z) * ¢x(x), where ¢z = ¢x are convolutional
Siamese backbones. Next, in step number 3, we modify the backbones by replacing
standard convolutions by scale-equivariant convolutions. We follow step 4 and utilize
scale-pooling in the backbones in order to capture additional scale correlations between
features of various scales. According to step 5, the connecting correlation is replaced
with non-parametric scale-convolution. SiamFC computes its similarity function as a
2-dimensional map, therefore, we follow step 6 and add extra scale-pooling in order to
transform a 3-dimensional heatmap into a 2-dimensional one. Now, we can use exactly
the same inference algorithm as in the original paper [16]. We use the standard approach
of scale estimation, based on the greedy selection of the best similarity for 3 different
scales.

Weight Initialization

An important ingredient of a successful model training is the initialization of its weights.
A common approach is to use weights from an Imagenet [45] pre-trained model [105, 106,
199]. In our case, however, this requires additional steps, as there are no available scale-
equivariant models pre-trained on the Imagenet. We present a method for initializing a
scale-equivariant model with weights from a pre-trained conventional CNN. The key idea
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n n n - Conventional CNN

Identical kernels |

Scale-Equivariant CNN

Figure 19: The visualization of the weight initialization scheme from a pretrained model.
Dashed connections are initialized with O.

is that a scale-equivariant network built according to Section 5.3.3 contains a sub-network
that is identical to the one of the non-scale-equivariant counterpart. As the kernels of
scale-equivariant models are parameterized with a fixed basis and trainable weights, our
task is to initialize these weights.

We begin by initializing the inter-scale correlations by setting to 0 all weights respon-
sible for these connections. At this moment, up to scale-pooling, the scale-equivariant
model consists of several networks parallel to, yet disconnected from one another, where
the only difference is the size of their filters. For the convolutional layers with a non-
unitary spatial extent, we initialize the weights such that the kernels of the smallest scale
match those of the source model. Given a source kernel «"(u, v) and a basis ¥;(u, v)
with o = 1, weights w; are chosen to satisfy the linear system derived from Equation 5.5:

k1 (u,v) = Z‘Fli(u, viw; =« (u,v), Yu,v (5.10)

As the basis is complete by construction, its matrix form is invertible. The system has a
unique solution with respect to w;:

wi = Z‘I’l_il(u,v)K'(u, V) (5.11)

All 1 X 1 scale-convolutional layers are identical to standard 1 X 1 convolutions after
zeroing out inter-scale correlations. We copy these weights from the source model. We
provide an illustration of the proposed initialization method in Figure 19.

5.5 EXPERIMENTS AND RESULTS
5.5.1 Translation-Scaling MNIST

To test the ability of a tracker to cope with translation and scaling, we conduct an
experiment on a simulated dataset with controlled factors of variation. We construct the
datasets of translating (T-MNIST) and translating-scaling (S-MNIST) digits.

In particular, to form a sequence, we randomly sample up to 8 MNIST digits with
backgrounds from the GOT10k dataset [77]. Then, on each of the digits in the sequence
independently, a smoothed Brownian motion model induces a random translation. Simul-
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s SE-SiamFC —— SiamFC === True

Figure 20: Top: examples of simulated T-MNIST and S-MNIST sequences. Bottom:
scale estimation for equivariant and non-equivariant models. In the S-MNIST example,
SE-SiamF C can estimate the scale more accurately. In the T-MNIST example, our model
better preserves the scale of the target unchanged, while the non-scale-equivariant model
is prone to oscillations in its scale estimate.

Tracker /T T/S S/T S/S #Params

SiamFC 0.64 062 0.64 0.63 999 K
SE-SiamFC 0.76 0.69 0.77 0.70 999 K

Table 6: AUC for models trained on T-MNIST and S-MNIST. T/S indicates that the model
was trained on T-MNIST and tested on S-MNIST datasets. Bold numbers represent the
best result for each of the training/testing scenarios.

taneously, for S-MNIST, a smooth scale change in the range [0.67, 1.5] is induced by the
sine rule: he1
_ . t
si(t) = T[sm(Z +Bi) + )] +1 (5.12)

where s;(¢) is the scale factor of the i-th digit in the z-th frame, A, [ are upper and lower
bounds for scaling, and §; € [0, 100] is a phase, sampled randomly for each of the digits.
In total, we simulate 1000 sequences for training and 100 for validation. Each sequence
has a length of 100 frames.

We compare two configurations of the tracker: (i) SiamFC with a shallow backbone
and (i1) its scale-equivariant version SE-SiamFC. We conduct the experiments according
to 2 X 2 scenarios: the models are trained on either S-MNIST or T-MNIST and are
subsequently tested on either of them. Both models have 4 convolutional layers and
cross-correlation or non-parametric scale-convolution to merge features from two siamese
branches. We use 3 X 3 filter dimension and the stride of 2 in each of the convolutional
layers, besides the last one, where the stride of 1 is used. Channel dimension goes as
3 - 96 — 128 — 256 — 256. We train the models for 50 epochs using SGD with a
mini-batch of 8 images and exponentially decay the learning rate from 1072 to 107>, We
set the momentum to 0.9 and the weight decay to 0.57*. A binary cross-entropy loss as
in [16] 1s used.

The results are reported in Table 6. As can be seen, the equivariant version outperforms
its non-equivariant counterpart in all scenarios. The experiment on S-MNIST, varying
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the scale of an artificial object, shows that the scale-equivariant model has a superior
ability to precisely follow the change in scale compared to the conventional one. The
experiment on T-MNIST shows that (proper) measurement of scale is important even in
the case when the sequence does not show a change in scale, where the observed scale in
SE-SiamFC fluctuates much less than it does in the baseline (see Figure 20).

OTB-2013 OTB-2015 VOT2016 VOT2017

Tracker Year

AUC Prec. AUC Prec. EAO A R EAO A R
SINT [161] 2016 0.64 0.85 - - - - - - - -
SiamFC [16] 2016 0.61 0.81 0.58 0.77 024 0.53 0.46 0.19 0.50 0.59
DSiam [60] 2017 0.64 0.81 - - - - - - - -
StructSiam [198] 2018 0.64 0.88 0.62 0.85 0.26 - - - - -
TriSiam [46] 2018 0.62 0.82 0.59 0.78 0.20

SiamRPN [106] 2018 - - 0.64 0.85 0.34 056 0.26 024 049 046
SiamFC+ [199] 2019 0.67 0.88 0.64 0.85 030 0.54 0.38 0.23 0.50 0.49

SE-SiamFC Ours 0.68 0.90 0.66 0.88 0.36 0.59 0.24 0.27 0.54 0.38

Table 7: Performance comparisons on OTB-2013, OTB-2015, VOT2016, and VOT2017
benchmarks. Bold numbers represent the best result for each of the benchmarks.

5.5.2 Benchmarking

We compare the scale-equivariant tracker against a non-equivariant baseline on popular
tracking benchmarks. We test SE-SiamFC with a backbone from [199] against other
popular Siamese trackers on OTB-2013, OTB-2015, VOT2016, and VOT2017. The
benchmarks are chosen to allow direct comparison with the baseline [199].

IMPLEMENTATION DETAILS The parameters of our model are initialized with
weights pre-trained on Imagenet by a method described in Section 5.4. We use the same
training procedure as in the baseline. Table 8 provides the details on the architecture
used.

The pairs for training are collected from the GOT10k [77] dataset. We adopt the same
prepossessing and augmentation techniques as in [199]. The inference procedure remains
unchanged compared to the baseline.

OTB  We test on the OTB-2013 [182] and OTB-2015 [183] benchmarks. Each of the
sequences in the OTB datasets carries labels from 11 categories of difficulty in tracking
the sequence. Examples of these labels include: occlusion, scale variation, in-pane
rotation, efc. We employ a standard one-pass evaluation (OPE) protocol to compare our
method with other trackers by the area under the success curve (AUC) and precision.

The results are reported in Table 7. Our scale-equivariant tracker outperforms its
non-equivariant counterpart by more than 3% on OTB-2015 in both AUC and precision,
and by 1.4% on OTB-2013. When summarized at each label of difficulty (see Figure 21),
the proposed scale-equivariant tracker is seen to improve all sequence types, not only
those labeled with “scale variation”.
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Stage SiamFC+ SE-SiamFC

Convl [7 X 7,64, s = 2] [7><7,64,s = 2]

max pool [2 X2,8 = 2]

Conv2 [1x 1,64 | 1x1,64,i =2
3x3,64 [x3 3x3,64 X3
[1x1,256] 1x1,256
[1x1,128] 1x1,128,sp

Conv3 3x3,128(x3 3x3,128 |x3
[1x 1,512} 1x1,512

Non-parametric

Connect. | Cross-correlation )
scale-convolution

# Params 1.44 M 145 M

Table 8: Architectures used in OTB/VOT experiments. All convolutions in SE-SiamFC
are scale-convolutions. s refers to stride, sp denotes scale pooling, i — is the size of
the kernel in a scale dimension.

We attribute this to the fact that the “scale variation” tag in the OTB benchmark only
indicates the sequences with a relatively big change in scale factors, while up to a certain
degree, scaling is present in almost any video sequence. Moreover, scaling may be
present implicitly, in the form of the same patterns being observed on multiple scales.
An ability of our model to exploit this leads to better utilization of trainable parameters
and a more discriminative Siamese similarity as a result.

VOT We next evaluate our tracker on VOT2016 and VOT2017 datasets [98]. The
performance is evaluated in terms of average bounding box overlap ratio (A), and the
robustness (R). These two metrics are combined into the Expected Average Overlap
(EAO), which is used to rank the overall performance.

The results are reported in Table 7. On VOT2016 our scale-equivariant model shows
an improvement from 0.30 to 0.36 in terms of EAO, which is a 20% gain compared to
the non-equivariant baseline. On VOT2017, the increase in EAO is 17%.

We qualitatively investigated the sequences with the largest performance gain and
observed that the most challenging factor for our baseline is the rapid scaling of the
object. Even when the target is not completely lost, the imprecise bounding box heavily
influences the overlap with the ground truth and the final EAO. Our scale-equivariant
model better adapts to the fast scaling and delivers tighter bounding boxes.

5.5.3 Ablation Study

We conduct an ablation study on the OTB-2013 benchmark to investigate the impact of
scale step, weight initialization, and fast 1 X 1 scale-convolution. We also test the baseline
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Background
Clutters

Scale

Variation Deformation

Out-of-View Fast Motion

Out-of-Plane In-Plane
Rotation Rotation
[llumination
Occlusion Variation

Motion Blur Low Resolution

Figure 21: Comparison of AUC on OTB-2013 with different factors of variations. The red
polygon corresponds to the baseline SiamFC+ and the green polygon — to SE-SiamFC.

Model Pretrained weigths AUC
SiamFC+ (aug. 5%) v 0.668
SiamFC+ (aug. 20%) v 0.668
SiamFC+ (aug. 50%) v 0.664
SE-SiamFC o = 1.2 v 0.677
SE-SiamFC o = 1.3 v 0.680
SE-SiamFC o = 1.4 v 0.681
SE-SiamFC o = 1.5 v 0.678
SE-SiamFC o = 1.4 X 0.553

Table 9: Ablation study on the OTB-2013 benchmark. The parameter o stands for the
step between scales in scale-equivariant models. Bold numbers represent the best result.

SiamFC+ model with various levels of scale data augmentation during the training. We
follow the same training and testing procedure as in Section 5.5.2 for all experiments. In
the weight initialization experiment, however, we do not use gradual weights unfreezing,
but train the whole model end-to-end from the first epoch.
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SCALE STEP We investigate the impact of scale step o-, which defines a set of scales
our model operates on. We train and test SE-SiamFC with various scale steps. Results
are shown in Table 9. It can be seen that the resulting method outperforms the baseline on
a range of scale steps. We empirically found that o = 1.4 achieves the best performance.

SCALE DATA AUGMENTATION Data augmentation is a common way to improve
model generalization over different variations. Since our method is focused on scale,
we compare SE-SiamFC against a baseline trained with different levels of scale data
augmentation. Our results indicate (Table 9) that scale augmentation does not improve
the performance of the conventional non-equivariant tracker.

WEIGHT INITIALIZATION  We train and test SE-SiamFC model, where weights
initialized randomly [56, 177]. As can be seen from Table 9, random initialization results
in a /9% performance drop compared to the proposed initialization technique.

FAST 1X1 SCALE-CONVOLUTION We compare the speed of 1 x 1 scale-convolution
from [156] and the proposed fast implementation. Implementation from [156] requires
450/ 1650 us, while our implementation requires 67 / 750 us for forward / backward
pass respectively, which is more than 6 times faster. In our experiments, the usage of fast

1 X 1 scale-convolution results in 30 — 40% speedup of a tracker.

5.6 DISCUSSION

In this work, we argue about the usefulness of additional scale equivariance in visual
object tracking for the purpose of enhancing Siamese similarity estimation. We present a
general theory that applies to a wide range of modern Siamese trackers, as well as all the
components to turn an existing tracker into a scale-equivariant version. Moreover, we
prove that the presented components are both necessary and sufficient to achieve built-in
scale-translation equivariance. We sum up the theory by developing a simple recipe for
extending existing trackers to scale equivariance. We apply it to develop SE-SiamFC —
a scale-equivariant modification of the popular SiamFC tracker.

We experimentally demonstrate that our scale-equivariant tracker outperforms its con-
ventional counterpart on OTB and VOT benchmarks and on the synthetically generated
T-MNIST and S-MNIST datasets, where T-MNIST is designed to keep the object at a
constant scale, and S-MNIST varies the scale in a known manner.

The experiments on T-MNIST and S-MNIST show the importance of proper scale
measurement for all sequences, regardless of whether they have scale change or not.
For the standard OTB and VOT benchmarks, our tracker proves the power of scale
equivariance. It is seen to not only improves the tracking in the case of scaling, but also
when other factors of variations are present (see Figure 21). It affects the performance in
two ways: it prevents erroneous jumps to similar objects at a different size and it provides
a better consistent estimate of the scale.
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RELATIONAL PRIOR FOR TRACKING GROUPS OF OBJECTS

6.1 INTRODUCTION

For online multi-object tracking, when objects are part of a group, the frequent mutual
occlusions make individual tracking harder. Rather than rejecting that information,
identifying group membership is interesting by itself, where in principle the group is
easier to identify having more uniquely identifying characteristics than an individual
object would. In this paper we set out to exploit group relations for multi-object tracking.

When tracking pedestrians online in a crowd, following one specifically is generally
harder than following all members of a family, just because their combination offers
good distinction: a mother and a small child holding hands. Occlusion may hamper the
complete view of one of the targets but then the characteristics of related members may
be borrowed to render approximate tracking for the occluded one like parents with a
child in shopping malls and other forms of crowd control.

Online multi-object tracking has recently made great progress with tracking-by-
regression [14, 113,170,175, 186,197,201]. These methods track each object separately
until, at a crossroad of tracks, a mechanism is called upon to determine which object
continues on what track. The current methods demonstrate good speed and good accu-
racy. They do not, however, consider inter-object relations, which may cause tracking to
become unreliable especially when the interaction between bodies becomes dense where
occlusion becomes a major obstacle, as in Figure 22.

We draw inspiration from offline multi-object tracking, where the whole video is
available for the analysis. In [88, 89, 158—160], the trajectories are derived by running a
graph optimization on the object detections. While the structure of the graph encodes the

" #289

Figure 22: Top: multi-object tracking with Tracktor [14], where independent trajectories
are assumed making tracking hard when the targets come close. Bottom: the same
tracker [14] equipped with relation-reasoning is more robust to occlusions.
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inter-object relations in these offline trackers, their capability of finding relations relies
heavily on having all detections in the video at once, combining information before and
after dense interactions. This offline information blocks the methods unsuited for online
multi-object tracking as the detections of the future are not yet available.

In this work, we extend current tracking-by-regression methods with online group
relations. Inspired by offline graph-based video analysis, we learn to encode inter-object
relations from limited data a priori. In our relation encoding module, a message passing
algorithm is running over a dynamic object-graph to produce relation embeddings, which
encode the group structure for each object. The message passing is performed over space
and time to capture the complex dynamics of group behaviour. The relation encoding
module is implemented as a plug-in extension for tracking-by-regression methods.

We make the following contributions:

* We develop a method to encode inter-object relations online in dense scenes by
running spatial-temporal message passing.

* We demonstrate the virtue of relations to improve the tracking of objects in dense
scenes by adding relations on top of current tracking-by-regression methods, even
tracking objects with low visibility.

* We demonstrate that the degree of inter-object relations can be estimated online
during the tracking.

6.2 RELATED WORK

MULTI-OBJECT TRACKING BY GRAPH ASSOCIATION Many the multi-object
trackers first apply an object detector on the whole sequence, then link the detections
across frames on the basis of a best match criterion [88, 89, 158—160]. They follow the
tracking by a graph association paradigm. The matching is usually posed as an offline
graph association problem connecting the detections into trajectories. In [158, 159], the
authors solve association as a multicut problem, where trajectories are derived from a
dense graph of detections by extracting weighted subgraphs. Along the same lines, in [89],
Keuper et al. propose a multicut formulation to decompose a dense detection graph
into a set of trajectories. To better handle occlusions, Tang et al. [160] further extend
multicuts with lifted edges. More recently, Braso and Leal-Taixé [21] proposed a neural
graph formulation to directly predicts the links between targets given the association
graph. Such an approach allows combining feature extraction and association into one
end-to-end tracking framework, which dramatically improves association quality. At
the core of their method is the time-aware message-passing algorithm, which is used to
aggregate the positional information from both past and future frames.

Graph associations are powerful as they reason about groups of detections while
taking inter-object relations into account. However, their offline nature limits the real-life
application of such methods. Also, it is not straightforward to combine these offline
graph association algorithms with online end-to-end tracking-by-regression models. In
this work, we take inspiration from these graph association works and develop a new
method for relation encoding, which learns to encode the dynamics of multiple objects
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for online tracking. Our relation encoding module is fully end-to-end compatible with
modern trackers.

MULTI-OBJECT TRACKING BY REGRESSION ASSOCIATION Recently, a fam-
ily of methods called tracking-by-regression has become the state-of-the-art approach in

multi-object tracking. The key idea is to assess the association of detections to previously

detected objects by utilizing the regression head of the object detector. In the pioneer-
ing work of Bergmann et al. [14], tracking is based on the second stage of the Faster

R-CNN [141] object detector with the previous positions of detected objects as proposals.
Later, more sophisticated object detectors were used [113,175,197,201]. In [201] Zhou

et al. modify CenterNet [202] for multi-object tracking. In [113], authors modify the

lightweight RetinaNet [55] for faster inference. In [175,197], the authors extend the

detector with ReID embeddings, which allows for better identity preservation in case of

occlusion.

In all these works, objects are tracked independently of one another. When scenes
become crowded or filled with similar targets, independent tracking under frequent and
heavy occlusion becomes hard or impossible. Whereas the above methods function well
generally, they tend to break when individual cues are no longer available (Figure 22).
For these hard but frequent circumstances, one has to employ relations in tracking. In
this paper, we propose a simple yet effective extension for regression-based multi-object
trackers to improve tracking robustness in dense interaction.

REASONING ON RELATIONS From the literature on relations in computer vision,
we focus in particular on self-attention [103, 167] and graph neural networks (GNN)
[168, 184]. Their ability to use structural information in the input has motivated Hu
et al. [76] to develop a self-attention relation module to remove duplicates in the task
of object detection. In [25] Cai et al. use graph convolution to propagate relational
information to refine a predicted pose. Narasimhan et al. [129] rely on graph-structured
representations to encode relations for visual question answering. In [118], Materzynska
et al. model interactions in a subject-object graph representation for action recognition.

Another line of work specifically focuses on modeling social behavior to reason
about the relations and interactions between objects. Pioneering work from Helbing and
Molnar [68] presented a pedestrian social dynamics model with attractive and repulsive
forces. The authors used simulated data to demonstrate that modeling social forces is
useful for predicting the dynamics of interacting pedestrians. In [135] Pellegrini et al.
proposed a learnable social behavior mechanism based on crowd simulation to predict the
pedestrian trajectories, which they showed to be useful in the case of occlusions. In [1]
Alahi et al. model the social context by pooling the hidden states of long short-term
memory (LSTM) units. Such a strategy allows combining local and global context for
the task of pedestrian motion forecasting.

These works demonstrate how interactions and relational cues improve the analysis
in complex systems. Inspired by the success of relation reasoning for various tasks, we
expand relation cues to multi-object online tracking as a plug-in extension for state-of-
the-art tracking-by-regression algorithms and with the potential online applicability for
all the above purposes.
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Figure 23: Computing relation embeddings {r }N for N object from time step t — 1 to
t. Input coordinates are passed through an mput Gatmg Recurrent Unit (GRU) cell to
produce node features. Message passing is performed on top of the relational graph to
update internal node representations. Finally, node representations are passed through

another GRU-cell, which emulates message passing along temporal edges.

METRICS OF MULTI-OBJECT TRACKING Classical multi-object tracking eval-
uation methods include CLEAR MOT metrics [15], the percentage of mostly tracked
(MT) and mostly lost (ML) objects [181] and IDF1 score [144]. These metrics assess
various aspects of tracking, while the recently proposed HOTA metric [114] aims to
provide the measure of overall performance. None of these metrics, however, capture, the
dense interaction of objects, which is one of the circumstances which makes multi-object
tracking interesting. To do so, in this work we also consider the decomposition of the
HOTA metric over various localization thresholds.

6.3 ENCODING RELATIONS

To encode inter-object relations, the relation encoding module takes a set of tracked
instances as input and produces relation embeddings by running a message passing
algorithm over the spatial-temporal graph. Figure 23 renders the architecture of the
module.

6.3.1 Graph-attention message passing

Inter-object relations are modulated by running message passing over the relational graph.
The procedure consists of 4 steps: compute input node features, compute messages
between spatial nodes, aggregate messages and compute spatial-temporal updates of
node representations. This procedure is recurrently performed for each time step until
the end of the graph is reached.

NODE FEATURES To construct the input feature we use bounding box coordinates
of the detection and the positional offset with respect to the previous time step. Let
p§ e IR* be the bounding box of the i-th object at time ¢, the input feature vﬁ e RY for the
node is then computed as:
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P = o (Wil pillpt = pi7'] + bin) 6.1)
vl = GRU,, (pi, v 1) (6.2)

where W;,,, b;,, are learnable parameters, o is a non-linearity and || denotes concatena-
tion operator. The initial hidden states of the GRU;, cell are set to zeros.

MESSAGE SENDING A message between two nodes of the graph is designed to
encode their pairwise interaction. We define the message as a function of both the sending
and the receiving nodes i and j, respectively. To make the message aware of the geometry
of the graph, we also include the distance ng between the objects as an additional input

for the message function. The message mj; : RF x RF xR — R¥ is calculated as:

ity = 0 (Wony (0 (Wi, VD] + By )) + i) (6.3)
AGGREGATING MESSAGES When the messages have been computed, they are
gathered in an aggregated message. An aggregation function should be permutation
equivariant with respect to the neighbors’ features. In this work, we follow the graph
attention approach [168], which computes attention between features to weigh them
according to their importance. The attention mechanism affj : RFxRF = R, computes
the attention coefficients as:

exp(LeakyReLU([Wq, v!]" [W,,V]))

a.. =
ij > JEN; exp(LeakyReLU( [Wa] v§ T[W . ))

azj

(6.4)

where N; denotes the set of the nodes spatially adjacent to i-th node in the graph.
Temporal edges are not considered at this stage. The attention coefficients are then used
to compute a linear combination of the corresponding neighbors’ representation into an
aggregated feature.

SPATIAL-TEMPORAL UPDATE In the final step, we update node representations
spatially and temporally. For the spatial update, we concatenate the self-feature of the
node with the aggregated message from its neighbors and pass it through the percep-
tron. The temporal update is performed by passing the features through the GRU-cell.
Formally:

(spatial) ¥, = o (W, [V Z a;mi;] +by) (6.5)
JEN;
(temporal) 1 = GRU, (¥, r"") (6.6)

We call the resulting feature r! € RY relation embedding of the i-th node at time 1.
Relation embeddings at t = 0 are all set to zero vectors.
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Figure 24: The relational graph for the REM is built on top of the tracked objects. The
constructed graph is used to compute relation embeddings, which guide the regression
head of a backbone tracker.

As can be seen in (6.5) and (6.6), in our implementation the temporal updates follow
the spatial update. Early experiments demonstrated that such an approach is slightly
superior to when the temporal update is performed first (data not shown).

6.3.2 Relation-importance

To answer the question to what degree object i relates to object j at time t, we define a
relation-importance function Rﬁj ‘RExRF - Ry:

Ri; = 1[Dj; < d]o(ri,7ip;) (6.7)

where ¢ can be any bounded distance function and rf@. denotes the relation encoding
of i-th object computed by excluding the j-th node from the set of neighbors. In early
experiments, we found ¢(x,y) = 1 — s%(x, y) to work well as a distance function, where
s?(x,y) stands for the squared cosine similarity between vectors x, y.

Higher values for jo indicate a higher degree of relation between these objects. Note
that we can also compute relation-importance by adopting the attention weights from
(6.4). However, we observed that such an approach yields less intuitive relations as it does
not take the information encoded in the messages into account. In addition, it restricts the
relations to be symmetric, while the formulation from (6.7) permits asymmetric relations.

6.3.3 Utilizing relations for tracking

Next, we explore two purposes of using relations in tracking: (i) extending tracking-
by-regression models to reason about the object’s position based both on appearance
and relation cues, (ii) recovering the position of the objects purely from their relation
embeddings, which is useful in the case of occlusions.

RELATION-AWARE TRACKING-BY-REGRESSION To make a tracker aware of
relations, we condition the predicted positions of the objects on their relation embeddings.
To that end, we concatenate the appearance features extracted from proposal regions
with the relation embeddings of the corresponding objects. The positional offset is then
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predicted by passing the combined feature via the regression head of the object detector.
The model can be seen as the REM with the tracker attached to graph nodes. Such a
framework applies to a wide range of trackers [14,113,175,197,201]. It does not require
modification of the tracker other than adjusting the regression head.

We illustrate a pipeline of a tracking-by-regression extended with relation reasoning
in Figure 24. The graph is built dynamically from the tracked instances. When the object
enters or leaves the scene, the corresponding node in the relational graph is updated.

TRACKING-BY-RELATIONS ONLY When the object is heavily occluded, appear-
ance features become unreliable, causing a tracking failure. As relation embeddings
produced by the relation module do not depend on the objects’ appearance, they can be
used to track objects under severe occlusion. To that end, we train an output MLP to
directly regress the coordinates of the occluded objects from their relation embeddings.
Then, we run the relation-aware tracker on the whole sequence and apply tracking-by-
relations only to the occluded objects, when the rest of the objects are tracked both based
on appearance and relational cues. This way, the model can explain hard occluded cases
through easy non-occluded ones.

6.4 EXPERIMENTS

We evaluate our relation-aware tracker on the MOTChallenge benchmarks MOT17 [120]
and MOT?20 [44].

Implementation details

We use Tracktor! as our baseline model as it provides good speed-accuracy balance. We
extend Tracktor to relation-aware RelTracktor by plugging in the REM. To do so, we
modify the regression head of the tracker to take the concatenated relation-appearance
feature instead of just the appearance feature as the input. The rest of the tracker remains
unchanged.

We use Xavier initialization [56] for the relation encoding module. We also initialize
the modified regression head from the backbone tracker. We then jointly train the
modified regression head and the relational module. To do so, we randomly sample
T = 10 consecutive frames from MOT17/MOT?20 datasets, compute relation embeddings
and feed them into the regression head together with appearance features to refine
bounding boxes at time step 7'+ 1. We train for 50 epochs using the Adam optimizer [93]
with a learning rate of 0.0001 while setting d;, = 15 to build relational graphs. We choose
F = 128 for a dimension of the relation embedding vectors. Generalized intersection
over union [142] is used as a loss function. We highlight that only the relational module
and the regression head are trained, while the rest of the model is kept as is.

For the tracking-by relations, we extract the positional information from the relation
embeddings outputted by REM. To that end, we pass the relation embeddings through
an output MLP : RF — IR*, which predicts the coordinates of the object. We set the
dimension of the relation embedding r! € R!?8. Then, the output MLP is a two-layer

1 https://github.com/phil-bergmann/tracking_wo_bnw
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Figure 25: A visualization of relation-importance weights during the tracking on the
MOTI17/MOT20 benchmarks.

feed-forward network 128 — 64 — 4 with LeakyReLLU non-linearities. The output
MLP is jointly trained with the main model by minimizing the generalized intersection
over union [142] with respect to the ground truth bounding boxes.

Datasets and evaluation metrics

The MOT17 benchmark consists of 7 train and 7 test sequences, which contain pedestrians
with annotated full-body bounding boxes. It also specifies the degree of visibility for
each annotated instance in the train split. The MOT20 benchmark contains 4 train and
4 test sequences of moving pedestrians in unconstrained environments with bounding
boxes, covering the visible part of the objects.

Following [14], we evaluate the multi-object tracking quality in a public and private
detection setting. We employ standard the MOT metrics and the HOTA metric [114] as
an indicator of the overall performance. We additionally analyze HOTA over different
localization thresholds. In a scene that contains a lot of dense interactions, a higher HOTA
under low localization thresholds indicates more robust tracking of bodily interacting
objects.

6.4.1 Discovering relations

We start by testing the ability of the relation encoding module to catch inter-object
relations in the scene. As the MOT-benchmark does not provide explicit annotation for
the relations, we conduct a qualitative study. In particular, from the relation-aware tracker
we compute relation-importance weights (Equation 6.7) for the objects in each time-step.
We then visualize the top relations in Figure 25 by the same color.

As can be seen, objects moving in a group tend to have stronger relations. We also
observe that relations often are formed between coherently moving objects, even if
they are not a part of what we would assess as a group (on our social experience).
Such relations are inevitable as we do not employ social rules into the model, but still
these assessed relations are useful as the trajectories of such ad-hoc groups can still be
explained together.
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Method HOTA 7 IDF1 T MOTA T MOTPT MT 1T ML | IDs |
RelTracktor (Ours) 45.8  56.5 57.2 79.0 219 343 2170
Tracktor [14] 448  55.1 56.3 78.8  21.1 353 1987
EdeepMOT[186] 424  53.8 53.7 772 194 36.6 1947
geHAF[148] - 54.7 51.8 - 234 379 1834
FWT [71] - 47.6 51.3 - 214 352 2648
jCC [88] - 54.5 51.2 - 209 37.0 1802
- RelTracktor (Ours) 434 530  54.1 792 36.7 22.6 2196
%'Tracktor[14] 42.1 527 52.6 799 294 26.7 1648
S SORT20 [18] 36.1 45.1 42.7 78.5 16.7 26.2 4470

Table 10: Performance comparison on MOT17 and MOT20 with public evaluation
protocol. The relation-aware RelTracktor model outperforms the baseline model with no
relations. RelTracktor improves the conventional tracker in various aspects as indicated
by a range of metrics, while the HOTA improvement indicates the rise in the overall
tracking quality.

6.4.2 Relation-aware tracking-by-regression

We compare the relation-aware RelTracktor versus the baseline method from [14] and
other trackers. We run the tracker on the test subset of MOT benchmarks and submit
results to the evaluation server. Results are presented in Table 10.

On the MOT17-benchmark, the relation-aware tracker shows an improvement in all
metrics compared to the Tracktor baseline. In particular, a higher IDF1 score indicates
that our model robustly preserves the identities of the objects throughout the sequence,
while also providing more accurate localization as indicated by the MOTP score. Specifi-
cally, we observed that when the baseline model fails for close objects in a group, the
plain tracker drifts to follow the non-occluded member of the group and loses the target.
The relation aware extension of the tracker, on the other hand, is more robust in such
scenarios.

On the MOT?20-benchmark, the relation-aware tracker demonstrates 1.3% increase
in the overall HOTA score. Although the baseline tracker provides slightly higher
localization precision as indicated by MOTP score, its relation-aware extension is much
more robust and is able to track targets longer as indicated by the higher percentage of
mostly tracked objects (MT).

We also evaluate the relation-aware model in a private detection setting. Results in
Table 11 indicate that relations improve the overall performance. The higher percentage
of mostly tracked objects indicates improved robustness of the relation-aware tracker.

In both public and private scenarios, our relation-aware model has a higher number of
ID switches compared to the baseline. We attribute it to the fact that our RelTracktor has
a higher recall compared to the conventional model. On MOT17/MOT20 benchmark,
the baseline tracker has a recall of 58.3 / 54.3 compared to 59.5 /60.0 of RelTracktor in
the public detection setting. And 63.0 /58.1 versus 65.6 /65.8 for the conventional and
relation-aware model in private settings respectively.
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Method HOTA 7 IDF1 T MOTA T MOTPT MT T ML | IDs |
E RelTracktor (Ours) 46.9 57.5 60.0 783 28.8 27.1 3586
% Tracktor [14] 46.4 56.9 58.9 78.0 25.6 28.4 2859
§ RelTracktor (Ours) 43.0 51.3 58.1 79.3 44.0 159 3619
% Tracktor [14] 41.2 49.9 54.3 793 341 21.6 2841

Table 11: Performance comparison on MOT17 and MOT20 with private evaluation
protocol. Relation-aware model outperforms its conventional counterpart as indicated
by the HOTA metric.

Figure 26: Tracking occluded object (red bounding box) by its relations with neighbors.
The position of the object in the shaded region is recovered from its relation embedding.

Figure 27: Tracking occluded object (red bounding box) by its relations with neighbors.
The position of the object in the shaded region is recovered from its relation embedding.

6.4.3 Tracking-by-relations

We next demonstrate that the position of out of sight objects can be recovered based
purely on relation cues. To do so, we select an instance, which undergoes occlusion while
moving in a group of related objects. We then apply the approach described in Section
6.2. Practically, we do not kill the trajectories of non-visible objects, but continue to
track them based only on the relational cues.

Figures 26 and 27 demonstrate qualitative results. As can be seen, the position of the
occluded object can be approximately recovered from the group relations. It indicates
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Figure 28: Association Accuracy (AssA) of the relation-aware and the baseline tracker
over different localization thresholds.

that relation embeddings can be learned to encode the geometric prior about the relative
positions of the objects.

6.4.4 Analyzing higher-order tracking accuracy

To investigate the ability of the relation-aware model to provide robust tracking in the
dense scenes, we decompose and analyze Higher-Order Tracking Accuracy (HOTA) [114]
metrics over various localization thresholds @. From [114]:

HOTA, = +/DetA, - AssA, (6.8)

where DetA,, AssA, stand for detection and association accuracy for a given . Since
the classification part responsible for the quality of detection remains unchanged, we
only analyze the association accuracy. Association accuracy for tracking-by-regression
methods measures the ability of the regression head of the tracker to preserve identities
frame by frame. We plot AssA,, for the baseline and relation-aware trackers at Figure 28.

Low localization thresholds permit the association of loose bounding boxes. It can
deteriorate the association quality when predicted bounding boxes are densely overlapped,
which is a common case in crowded scenarios. Thus, the higher association accuracy of
relation-aware tracker (Figure 28) under low localization thresholds indicates the better
ability to preserve identities of densely interacting objects.

Ablation study

We conduct an ablation study on the MOT17-FRCNN and MOT?20 train splits to inves-
tigate an impact of the distance used to build the relational graph d;;,, with higher d;;,
resulting in a relational graph of a larger spatial extent. Since the relation-aware model is
fine-tuned for the tracking task, we also compare against the fine-tuned baseline method
from [14].

As can be seen in Table 12 and Table 13, the relation-aware tracker outperforms the
baseline method and its fine-tuned version. We observed that using the relational graphs
of a larger spatial extent generally results in higher performance. Intuitively, lower dy;,
restricts to encode relation only in small groups, missing the possible distant connections.
At the same time, a very large d;;, leads to a slight decrease in performance. We attribute
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it to the fact that in very big relational graphs, formed relations are less sharp because of
the attention aggregation mechanism.

Method IDF1 MOTA MOTP Method IDF1 MOTA MOTP
Base 65.0 61.7 89.4 Base 60.7 664 89.1
Base-tuned  66.7  61.8 89.5 Base-tuned 624  66.5 89.2
Reldy, =10 669  61.9 89.5 Reldy, =5 626  66.5 89.2
Reldy, =20 671  62.0 89.5 Reldy, =10 6277  66.7 89.2
Reldy, =30 67.1  62.0 89.5 Reldy, =20 6277  66.7 89.2
Reldy, =40 669  61.9 89.4 Rel dy, = 30 62.5 66.5 89.2
Table 12: Comparing the baseline and Table 13: The baseline and relation-
relation-aware models over different dis- aware models’ results with different dis-
tance threshold used to build relational tance threshold used to build relational
graph on MOT17 dataset. Rel dy, = 20 graph on MOT20 dataset.

stands for the relation-aware tracker
with distance threshold of 20 to build
relational graph.

6.5 DISCUSSION

In this work, we demonstrate that learning inter-object relations is important for robust
multi-object tracking. We develop a plug-in relation encoding module, which encodes
relations by running a message passing over a spatial-temporal graph of tracked instances.

We experimentally demonstrate that extending a backbone multi-object tracker with
REM improves tracking quality. We also investigate the ability of the proposed method to
track heavily occluded objects based on the relational cues, when appearance information
is unreliable. Our experiments suggest that relational information is important and should
not be left out from the analysis.

We suppose that REM would be the most useful in problems, where video analysis of
crowded scenes with regular occlusions is required. For example, multi-object tracking in
crowded streets, underground, airports, and railway stations. Moreover, one can use the
proposed relation encoding module not only for tracking but also for action recognition
or scene anomaly detection. We leave these questions for further research.

92



SUMMARY AND CONCLUSION

SUMMARY

In the thesis, we study the invariance as a key ingredient for efficient representation
learning with neural networks. Specifically, we focus on structured invariance, where the
invariance follows an explicit mathematical structure such as the structure of a symmetry
group. We considered the following research questions:

Do neural networks learn structured invariance from the data?
Chapter 2: Investigating properties and limitations of learned invariance

For the first research question, we compared the invariance of unconstrained neural
networks trained from the data with the oracle invariance in neural networks under
invariant weight-tying constraints. To this end, we proposed several metrics to measure
learned invariance: logit invariance, predictive distribution invariance, and saliency
invariance. Our experiments revealed that the invariance learned by unconstrained neural
networks is strongly conditioned on the input data. This causes learned invariance to
rapidly decay when evaluated out-of-distribution. Then, we tackled the task of aligning
data-driven invariance learning with the genuine invariance of weight-tying models. To do
so, we proposed to regularize the invariance error during the training. We demonstrated
that such a simple strategy significantly improves the quality of learned invariance.
However, improved invariance came at the cost of a downstream task performance due to
the implicit regularization of the invariance error optimization. We further showed that
such implicit regularization is due to the spectral decay phenomenon, where a network
opts for reducing input sensitivity to all perturbations to achieve invariance to a specific
group of transformations.

Can we infer invariance structure from learned representations?
Chapter 3: Extracting learned invariance by analyzing learned Lie group
generators

For this research question, we developed a method to retrieve the group of invariance
learned by a neural network from the data. In particular, we focused on the setting,
where invariance comes in the form of a Lie group. We leveraged Lie group - Lie
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algebra correspondence to develop a method to retrieve learned invariance by solving a
simple nullspace equation, where the solution corresponds to the generator of a learned
symmetry group. With this, we proposed two new metrics to evaluate the invariant
properties of a neural network - symmetry bias and variance, which allows for a more
nuanced analysis of learned invariance.

Can we improve contrastive representation learning with more
structured supervision?
Chapter 4: Contrastive representation learning with structured assignments

For this research question, we considered the task of contrastive representation learn-
ing through the lens of assignment theory. We demonstrated that standard pair-wise
contrastive learning methods stem from linear assignment problems. From here, we
proposed a way to generalize contrastive representation learning beyond pair-wise con-
trast by generalizing an underlying assignment problem from linear to quadratic. This
allows additional structural information, which is missed by standard methods based
on pair-wise contrast. Our experiments suggest that going beyond pair-wise contrast
can significantly improve the quality of learned representations in metric learning and
self-supervised classification setups.

Can we improve object localization with structured representations?
Chapter 5: Scale equivariant representations for robust visual object tracking

For this research question, we tackled the problem of visual object tracking, and we
developed a method to structure objects’ representations with scale equivariance. To
do so, we designed a scale-equivariant siamese network that is adopted for the task
of tracking via a scale-equivariant template matching mechanism. We experimentally
demonstrated that in-built scale-equivariance significantly increases the precision of
object size estimation in a wide range of circumstances. This leads to a more accurate
position estimation and alleviates the accumulation of tracking errors throughout the
sequence. As a result, the tracker with scale-equivariant representations allows for
significantly more robust and precise object localization.

Can we improve object localization with structured invariance
prior?
Chapter 6: Relational prior for tracking groups of objects

Lastly, for this research question, we developed the relation encoding mechanism that
acts as a soft prior to structure tracker’s representations towards invariance in the form of
consistent spatio-temporal relations between objects in a scene. We demonstrated that
our relation prior significantly improves localization accuracy, especially in crowded
scenes with a high degree of visual occlusions. Furthermore, the proposed relation
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encoding allows tracking even fully occluded objects as long as they are in relation to
other non-occluded objects in a scene.

SAMENVATTING

In de scriptie bestuderen we invariantie als een sleutelingrediént voor het leren van
efficiénte representaties met neurale netwerken. Specifiek richten wij ons op gestruc-
tureerde invariantie, waarbij de invariantie een expliciete wiskundige structuur volgt,
zoals de structuur van een symmetriegroep. We hebben de volgende onderzoeksvragen
overwogen:

Leren neurale netwerken gestructureerde invariantie uit data?
Hoofdstuk 2: Het onderzoeken van de eigenschappen en beperkingen van geleerde
invariantie

Voor de eerste onderzoeksvraag vergeleken we de invariantie van neurale netwerken
zonder beperkingen getraind op data met de orakel-invariantie in neurale netwerken
onder invariante gewichtskoppelingsbeperkingen. Hiertoe stelden we verschillende
metrieken op om de geleerde invariantie te meten: logit invariantie, voorspellende dis-
tributie invariantie, en opvallendheids invariantie. Onze experimenten onthulden dat
de door onbeperkte neurale netwerken geleerde invariantie sterk athankelijk is van de
invoergegevens. Dit zorgt ervoor dat geleerde invariantie snel afneemt wanneer deze
buiten de data distributie wordt geévalueerd. Vervolgens pakten we de taak aan om
datagestuurde invariantie-learning af te stemmen op de echte invariantie van gewicht-
skoppelingsmodellen. Hiervoor stelden we voor om de invariantiefout tijdens de training
te regulariseren. We toonden aan dat deze eenvoudige strategie de kwaliteit van geleerde
invariantie aanzienlijk verbetert. Echter, verbeterde invariantie ging ten koste van de
prestaties op de taken die volgden, doordat de impliciete regularisatie van de invari-
antiefoutoptimalisatie. We toonden verder aan dat deze impliciete regularisatie te wijten
is aan het fenomeen van spectrale afname, waarbij een netwerk ervoor kiest om de
gevoeligheid voor alle verstoringen te verminderen om invariantie te bereiken voor een
specifieke groep transformaties.

Kunnen we de invariantiestructuur afleiden uit geleerde
representaties?
Hoofdstuk 3: De geleerde invariantie extraheren door het analyseren van geleerde

Lie-groepgeneratoren

Voor dit onderzoek ontwikkelden we een methode om de groep van invariantie die
door een neuraal netwerk uit de gegevens is geleerd, op te zoeken. Wij richtte ons
specifiek op de situatie, waarbij de invariantie in de vorm van een Lie-groep aanneemt.
We maakten gebruik van de overeenkomst tussen Lie-groepen en Lie-algebra’s om een
methode te ontwikkelen om de geleerde invariantie terug te halen doormiddel van het
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oplossen van een eenvoudige nulruimtevergelijking, waarbij de oplossing overeenkomt
met de generator van een geleerde symmetriegroep. Hiermee stelden we twee nieuwe
metrieken voor om de invariante eigenschappen van een neuraal netwerk te evalueren -
de symmetriebias en de variantie, wat een meer genuanceerde analyse van de geleerde
invariantie mogelijk maakt.

Kunnen we contrastief representatieleren verbeteren met meer
gestructureerd toezicht?
Hoofdstuk 4: Het Contrastief leren van representaties met gestructureerde
foewijzingen

Voor deze onderzoeksvraag beschouwden we de taak van het contrastief representatiel-
eren door de lens van toewijzingstheorie. We toonden aan dat standaard paarsgewijze
contrastieve leermethoden voortkomen uit lineaire toewijzingsproblemen. Vanuit deze
aanname stelden we een manier voor om contrastief representatieleren te generaliseren
voorbij paarsgewijze contrast door een onderliggend toewijzingsprobleem te generalis-
eren van lineair naar kwadratisch. Dit maakt extra structurele informatie mogelijk, die
gemist wordt door standaardmethoden gebaseerd op het paarsgewijze contrast. Onze
experimenten suggereren dat het voorbij gaan van het paarsgewijze contrast de kwaliteit
van de geleerde representaties in metriek leren en zelf-toezichthoudende classificatieop-
stellingen aanzienlijk kan verbeteren.

Kunnen we objectlokalisatie verbeteren met gestructureerde
representaties?
Hoofdstuk 5: Schaal-equivariante representaties voor robuuste visuele
objecttracking

Voor deze onderzoeksvraag pakten we het probleem van visuele objecttracking aan.
We ontwikkelden een methode om objectrepresentaties te structureren met schaale-
quivariantie. Hiertoe ontwierpen we een schaal-equivariante siamees netwerk dat was
aangepast voor de taak van tracking via een schaal-equivariante template matching mech-
anisme. We toonden experimenteel aan dat ingebouwde schaalequivariantie de precisie
van objectgrootte-schatting aanzienlijk verhoogt in een breed scala van omstandigheden.
Dit leidt tot een nauwkeurigere positiebepaling en vermindert de accumulatie van track-
ingfouten gedurende de reeks. Als resultaat maakt de tracker met schaal-equivariante
representaties significant robuustere en nauwkeurigere objectlokalisatie mogelijk.

Kunnen we objectlokalisatie verbeteren met gestructureerde
invariantie als a-prior verdeling?
Hoofdstuk 6: Relationele a-priori verdeling voor het tracken van groepen objecten

Ten slotte hebben we voor deze onderzoeksvraag het relatiecoderingsmechanisme
ontwikkeld dat fungeert als een zachte a-prior verdeling om trackerrepresentaties te
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structureren naar invariantie in de vorm van consistente ruimte- en tijdrelaties tussen
objecten in een scene. We toonden aan dat onze relationele a-prior verdeling de lokaliser-
ingsnauwkeurigheid aanzienlijk verbetert, vooral in drukke scénes met een hoge mate
van visuele occlusies. Bovendien maakt de voorgestelde relatiecodering het tracken
van zelfs volledig geoccludeerde objecten mogelijk zolang ze in relatie staan tot andere
niet-geoccludeerde objecten in een scene.

CONCLUSION

In this thesis, we explored representation learning with a focus on structure and invariance.
First, we analyzed the structure of invariance as learned by neural networks from the data.
We concluded that neural networks learn relevant invariances from the data when they
are integral to the downstream task. Yet, neural networks often struggle to accurately
capture the full range the relevant invariances when no geometric priors are available.
Therefore, we conclude that using geometric prior at the learning stage is crucial to
ensure reliable invariance. Next, we proposed several methods to improve representation
learning in neural networks through more structured supervision and the integration of
invariance priors. We observed that structuring the supervision to promote invariance
as well as incorporating the invariance information a priori considerably improves the
quality of learned representations which indicates the pivotal role of invariance in efficient
representation learning.

While advancing our understanding of structured invariance in neural networks, many
open research questions and challenges remain. One of the open challenges is to model
diverse real-world invariances that do not follow a well-defined group structure. Alter-
native to group-theoretical invariance, category theory offers a more general notion of
naturality to describe transformations that preserve the internal structure of the categories
(domains) involved. This provides a potentially more flexible approach to understanding
the invariance in a wider range of applications. Another open research direction is de-
formable invariance where the network can dynamically adapt to the symmetry structure
in the data. This requires a neural network that can detect various symmetry patterns
across data points and then align its processing mechanism to be consistent with those
patterns.

In the broader context, our work emphasizes the significance of representation learning
not just in terms of encoding relevant data features, but also in terms of learning to
disregard irrelevant ones. These can be seen as two dual approaches to representation
learning with respect to the minimum description length principle. That is, to obtain an
optimal data representation, we can either focus on enhancing the relevant features to
overshadow the irrelevant ones or on suppressing the irrelevant features to highlight the
relevant ones. While both approaches strive for similar endpoints, they do so along very
different routes, and it remains to study which of the ways is more advantageous and in
which scenarios.
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