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Molecular lattice clocks enable the search for new physics, such as fifth forces or temporal variations of
fundamental constants, in a manner complementary to atomic clocks. Blackbody radiation (BBR) is a major
contributor to the systematic error budget of conventional atomic clocks and is notoriously difficult to charac-
terize and control. Here, we combine infrared Stark-shift spectroscopy in a molecular lattice clock and modern
quantum chemistry methods to characterize the polarizabilities of the Sr2 molecule from dc to infrared. Using
this description, we determine the static and dynamic blackbody radiation shifts for all possible vibrational clock
transitions to the 10−16 level. This constitutes an important step towards mHz-level molecular spectroscopy in
Sr2, and provides a framework for evaluating BBR shifts in other homonuclear molecules.

Frequency standards are the cornerstone of precision mea-
surement. Optical atomic clocks set records in both preci-
sion and accuracy, and are poised to redefine the second [1–
7]. There is a growing interest in precision measurements
with molecules [8–12]. The simple structure of homonu-
clear diatoms like Sr2 makes them ideal testbeds to probe
new physics, including searching for corrections to gravity at
short distances [13–16] and temporal variation of fundamen-
tal constants [12, 17–26]. Thus, there is interest in improving
techniques for molecular spectroscopy. Even for ultra-precise
atomic clocks, the blackbody radiation (BBR) shift remains
a primary contribution to the uncertainty of the clock mea-
surement [3, 4, 27–32], and is notoriously difficult to control
and characterize [33–35]. State-of-the-art evaluations of BBR
shift rely on measurements of the differential dc polarizability
of the clock states in conjunction with modeling of dynamic
contributions [36–40].

Previously, we demonstrated record precision and accuracy
for a molecular lattice clock by measuring a 32-THz transi-
tion between two vibrational levels in ultracold Sr2 molecules,
reaching a 4.6 × 10−14 systematic uncertainty [41]. Es-
timates of the BBR contribution to this uncertainty relied
on preliminary theoretical modelling of polarizabilities that
lacked experimental verification. Here, we determine room-
temperature BBR shifts for our molecular clock to the 10−16

level. To do so, we employ modern quantum chemistry meth-
ods to determine the differential polarizabilities for all vibra-
tional clock transitions and verify our theory directly by mea-
suring Stark shifts induced by a mid-infrared laser for a wide
variety of molecular clock transitions (Fig. 1). Given this
combined experimental and theoretical picture, we develop
a complete description of the BBR effect for all vibrational
levels within the ground-state potential of 88Sr2 molecules.

The experimental sequence closely follows that of our pre-
vious works [9, 41–43]. A 2-µK sample of ultracold stron-

tium atoms is trapped in a one-dimensional, horizontal, near-
infrared optical lattice. We form weakly bound molecules
via a photoassociation pulse tuned to the −353-MHz 1u reso-
nance [44]. This bound state predominantly decays to a pair of
rotational J = 0, 2 states of the top vibrational state, v′ = 62,
in the ground-state potential. We then apply a two-photon
Raman pulse to probe selected clock transitions. We detect
the number of remaining v′ = 62 molecules by photodisso-
ciation [45] and counting the recovered atoms. Unless other-
wise specified, we always refer to rotationless J = 0 states
in the electronic ground-state potential, and list the lower en-
ergy state first for a given transition, regardless of where the
molecular population is initialized.

We rely on narrow-linewidth Raman transitions between
the least bound v′ = 62 vibrational state and selected deeply
bound vibrational states v [Fig. 1(a)]. We address each
of these transitions via intermediate states v′′ in the elec-
tronically excited (1) 0+u potential. The vibrational split-
tings are determined by the difference in the pump (v′ →
v′′) and anti-Stokes (v′′ → v) laser frequencies. We se-
lect intermediate states with favorable Franck-Condon fac-
tors for the pump and anti-Stokes transitions for each in-
terrogated pair of clock states (Table I). We address clock
states throughout the potential well using three different in-
termediate states in the excited (1) 0+u potential: v′′ = 11
[at −57 084 156.51(12) MHz from the 1S0+3P1 threshold],
v′′ = 15 [at −48 855 512.13(18) MHz], and v′′ = 16
[at −47 036 433.95(23) MHz]. The selection of intermediate
states is a balancing act between available lasers and transition
strengths, and required several diode lasers in the 727–735 nm
and 760–800 nm wavelength ranges.

We locate the vibrational states v using Autler-Townes
spectroscopy: we first induce molecular loss with the pump
laser, and then scan the anti-Stokes laser until the line is split
into a doublet [43, 46–50]. While high-precision absolute de-
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FIG. 1. Stark-shift spectroscopy in Sr2 on the example 0 ↔ 62 tran-
sition. (a) We rely on narrow two-photon Raman transition via an
intermediate state in the (1) 0+u (red arrows) in a magic lattice that
couples the deeply-bound clock state v to an excited (1) 1u state (blue
arrow). (b) We induce Stark shifts to probe differential polarizabili-
ties of ground ro-vibrational states with 1.95 µm light. (c) Example
light shift measurement. The encircled point corresponds to sub-
plot (b).

terminations of these binding energies are beyond the scope of
this Letter, we list the vibrational splittings fv↔v′ to <100 kHz
(Table I). The uncertainty is fully dominated by light shifts
(Supplemental Material).

By employing several strategies to achieve 1-kHz spectro-
scopic resolution, we can determine ac Stark shifts to ∼150 Hz
using Lorentzian fits (Supplemental Material). After initially
locating the transitions, we switch to a Raman configuration
by detuning +30 MHz from the intermediate resonance to nar-
row down our transition linewidth. We stabilize the pump
laser to a high finesse (>3×105) cavity using a Pound-Drever-
Hall lock [52, 53], which in turn provides a stable reference
for the repetition rate of an optical frequency comb. We then
lock our anti-Stokes clock laser to the frequency comb. This
locking scheme ensures the stability of the frequency differ-
ence between the two Raman lasers. In addition to stabiliz-
ing our clock lasers, we rely on magic trapping to reduce in-
homogenous broadening. Our method utilizes polarizability
crossings generated by the dispersive behavior of the target

state polarizability near transitions to the electronically ex-
cited (1) 1u potential [9]. We select (1) 1u states such that the
line strength S [42] is greater than ∼ 10−5 (ea0)2 (here e is the
electron charge, a0 is the Bohr radius). Large line strengths
correspond to large magic detunings, allowing few-ms molec-
ular lifetimes, and Fourier-limited linewidths of 1 kHz or bet-
ter. Our lattice laser is wavemeter-locked to ∼30 MHz preci-
sion.

To determine differential polarizabilities we induce ac Stark
shifts on these clock transitions using an additional 1.95 µm
laser. We typically observe ac Stark shifts of up to 20 kHz [as
shown for 0↔ 62 in Fig. 1(b)]. We measure ac Stark shifts of
each transition as a function of 1.95 µm laser power relative to
the 27↔ 62 transition [Fig. 1(c)]. We do not observe any sig-
nificant hyperpolarizability [41] and therefore we fit a simple
proportion. To determine the differential polarizability, we
need to adequately characterize the intensity of the 1.95-µm
light at our molecules. To do so, we compare the ac Stark shift
of the 27↔ 62 transition to that of the ∆m = 0 component of
atomic intercombination 1S0→3P1 transition with a differen-
tial polarizability of +326.2(3.6) a.u. [54]. For our maximum
power of 1.7 W, we have an intensity of 6.8 kW/cm2. For most
transitions, this scheme allows us to determine the differential
polarizabilities to 5% as listed in Table I and shown in Fig. 2.
Any thermal shifts stemming from our 5-µK sample [55] are
negligible (Supplemental Material).

To calculate the BBR shifts we need a model of the differ-
ential polarizabilities at all wavelengths from dc to infrared.
The overwhelming majority of the BBR spectrum falls below
2 µm. While we cannot experimentally probe this entire range
of wavelengths, we can leverage close agreement between the-
ory and experiment at 1.95 µm and extend theoretical models
to provide a full description of the BBR shift. We use mod-
ern quantum chemistry methods to calculate the differential
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FIG. 2. Differential polarizability with respect to the least-bound v =
62 state in ground state Sr2. Points denote experimentally measured
ac polarizabilities at λ = 1.95 µm. Lines are ab initio polarizabilities
from dc to λ = 1.25 µm.
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TABLE I. Investigated 88Sr2 molecular states. The initial state is always the rotationless top v′ = 62 level; v denotes the target level in the
1S0+1S0 0+g ground state and λmagic is the magic wavelength. The differential polarizabilities are expressed in atomic units of e2a2

0/Eh, where
e is the electron charge, a0 is the Bohr radius and Eh is the Hartree energy [51]. The error bars on theoretical polarizabilities stem from
comparison to experiment.

Clock transitions Differential polarizability αv↔v′ (ω) (a.u.)
X 0+g v↔ v′ v′′ fv↔v′ (MHz) R̃v (a.u.) λmagic (nm) Exp. (1.95 µm) Th. (1.95 µm) Th. (dc) ∆ fv↔v′ (Hz)

61↔ 62 15 1263.673 58(20) [45] 43.6 – −0.41(0.52) −0.1326(35) −0.1080(28) +9.32(25) × 10−4

55↔ 62 15 108 214.221(10) 21.6 – −3.68(0.38) −2.985(78) −2.429(63) +0.020 99(56)
41↔ 62 11 2 177 876.735(81) 13.6 996.4379(10) −21.67(0.88) −19.10(50) −15.60(41) +0.134 9(37)
27↔ 62 11 8 075 406.280(18) 11.1 1006.5787(10) −40.4(1.8) −39.3(1.0) −31.99(84) +0.276 8(75)
12↔ 62 16 19 176 451.651(35) 9.62 1007.7634(10) −60.1(4.0) −61.3(1.6) −49.7(1.3) +0.430(12)

7↔ 62 15 24 031 492.422(24) 9.27 1007.1334(10) −66.0(2.5) −68.3(1.8) −55.1(1.4) +0.477(13)
1↔ 62 11 30 640 159.753(75) 8.91 1016.9714(10) −75.7(3.3) −76.0(2.0) −61.1(1.6) +0.529(15)
0↔ 62 11 31 825 183.207 5928(51) [41] 8.86 1004.7720(10) −76.4(3.6) −77.2(2.0) −62.1(1.7) +0.538(15)

polarizabilities for all molecular clock transitions thusly: first,
we calculate ab initio electronic polarizabilities of the stron-
tium dimer as a function of internuclear distance R, and sec-
ond, we obtain the polarizability for each vibrational level as
an average of the electronic polarizability over the vibrational
wavefunction.

In homonuclear molecules only electronic transitions con-
tribute to polarizabilities and BBR shifts. To calculate the
electronic polarizability, we employ the approach based on
asymmetric analytical derivative of the coupled-cluster en-
ergy with single and double excitations (CCSD) [58], as

 α
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FIG. 3. Interaction-induced ac polarizability at λ = 1.95 µm. In
addition to the ab initio result we show absolute experimental po-
larizabilities in relation to mean internuclear distances R̃ (Table I).
Horizontal bars indicate the range [R̃v − S Rv , R̃v + S Rv ] of internu-
clear distances probed by the vibrational wavefunctions shown in the
lower panel. Here R̃v and S Rv are the mean and standard deviation
internuclear distances for wavefunction squared treated as a proba-
bility distribution. Re and RLR are the equlibrium distance and the
LeRoy radius [56, 57].

implemented in the Q-Chem 5 package [59]. We use the
ECP28MDF pseudopotential and its dedicated valence basis
set [60].

For any given light frequency ω, we first calculate the
molecular interaction-induced polarizability, αint

i j (ω; R) =
αi j(ω; R) − 2αatom(ω), where αi j(ω) are tensor components of
the total molecular polarizability and αatom(ω) is the atomic
polarizability at frequency ω. Since we only use isotropic
J = 0 states, we take the trace polarizability αint(ω; R) =
[αint

zz (ω; R) + 2αint
xx(ω; R)]/3 [61, 62]. We extend the model for

large R using a fitted long-range form αint(ω; R) ∼ A6(ω)R−6+

A8(ω)R−8 + A10(ω)R−10 [63]. Figure 3 shows the isotropic
component αint(ω; R) at 1.95 µm as a function of R.

Secondly, we calculate the polarizability of each vibrational
level v by averaging the electronic polarizability αint(R) over
the level’s vibrational wavefunction Ψv(R):

αint
v (ω) =

∫ ∞

0
|Ψv(R)|2 αint(ω; R)dR (1)

where the differential polarizability for a transition v↔ v′ is

∆αv↔v′ (ω) = αint
v′ (ω) − αint

v (ω). (2)

We obtain the vibrational wavefunctions by solving the
Schrödinger equation, [−(ℏ2/2µ)(d2/dR2) + V(R)]Ψv(R) =
EvΨv(R), using a matrix method [64, 65]. We use an empirical
molecular potential V(R) [66]; the reduced mass µ equals half
the mass of a Sr atom. The uncertainties of the potential curve
are negligible for our purposes (Supplemental Material). Fig-
ure 2 shows calculated differential dc and ac polarizabilities
for v ↔ 62 transitions. It is noteworthy that this approach is
valid only when the adiabaticity condition is maintained, that
is, that the ground-state potential does not cross any of the
excited-state potentials if shifted upwards by the energy of the
incident photon. In Sr2, this limits the photon wavenumber to
about 8000 cm−1 (1.25 µm). Both our 1.95-µm (5128-cm−1)
laser and room-temperature BBR are well within this margin.

We first validate the ab initio model using polarizabilities
of the ground-state Sr atom. At dc we find a polarizability of
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+197.327 a.u., in excellent agreement with the state-of-the-art
semi-empirical value of +197.14(20) a.u. [40]. Similarly, our
ac polarizability of +207.524 a.u. at 1.95 µm agrees perfectly
with the value of +208.2(1.1) a.u. [54].

The key test of our model is the direct comparison and
strong agreement of measured differential polarizability at
1.95 µm with the calculated values (Figure 2). For example,
the theoretical differential polarizability for the 0 ↔ 62 clock
transition, ∆α0↔62(ω) = −77.2 a.u. compares well to the ex-
perimental −76.4(3.6) a.u. Moving to more weakly bound
target states, the differential polarizabilities decrease mono-
tonically. We elucidate this using the R-centroid approxima-
tion [67] and the concept of a LeRoy radius RLR [56, 57].
Firstly, the R-centroid approximation allows us to estimate
the interaction-induced polarizability at the mean internuclear
distance R̃v of state v using the differential polarizability of a
v↔ 62 transition:

αint(ω; R̃v) ≈ −∆αv↔62(ω), (3)

where R̃v =
∫ ∞

0 |Ψv(R)|2 RdR. We neglect the small
interaction-induced polarizability of the v′ = 62 state. Thus,
different vibrational transitions effectively serve as probes
of polarizabilities, each at a different internuclear separation
(Figure 3).

The range of investigated target levels from the ground
v = 0 to the second-to-least bound v = 61 states spans
internuclear distances from 8.86 a0 (approximately the equi-
librium distance Re) to 43.6 a0. Beyond the LeRoy radius
RLR = 16.6 a0 the interaction-induced polarizability is neg-
ligible: Sr2 becomes a “physicist’s molecule” [48] whose po-
larizability is that of two strontium atoms. At shorter inter-
nuclear separations, it becomes a “chemist’s molecule” and
picks up over 80 a.u. of extra polarizability due to molecular
bonding of the two consituent atoms. The qualitative bound-
ary between the two extremes is set by RLR = 2(rA + rB)
where rA = rB = 4.15 a0 are the RMS charge radii of the
two atoms [68]. By selecting vibrational levels with different
mean internuclear distances, we scan the interaction-induced
polarizabilities at different internuclear separations, interpo-
lating between the two extremes of “chemist’s” and “physi-
cist’s” molecules.

To estimate the relative uncertainty of our theoretical
model, we fit it to the experimental data by simple scaling.
The best least-squares fit is achieved by scaling the model up
by +1.8(2.4)%. This is compatible with zero, showing that
no model scaling is necessary; in fact, the reduced chi-square
χ2/dof = 1.78 for the scaled model (dof = 7) is worse than
χ2/dof = 1.69 (dof = 8) for the original unscaled model.
Thus, our ab initio model for the molecular polarizability con-
tains no free parameters, justifying its use for all photon wave-
lengths. Out of caution, we combine the 2.4% uncertainty
from the scaling factor with an additional 1.8% possible sys-
tematic error to obtain a “Type B” uncertainty [69] of 2.6%.

Finally, we calculate the BBR shift ∆ fv↔v′ by integrating
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solute BBR shift for 0 ↔ v′ clock transitions. (c) Relative BBR
uncertainty in same clock configurations.

the ac Stark shift over the BBR spectrum [37, 39, 70]:

∆ fv↔v′ = − 1
2h

∫ ∞

0

4π
ϵ0c

Bω(T )∆αv↔v′ (ω)dω. (4)

The BBR spectral radiance at temperature T is

Bω(T ) =
ℏω3

4π3c2

1
exp(ℏω/kBT ) − 1

. (5)

Typically, BBR shifts for atomic clocks are determined using
sum-over-states to calculate the static and dynamic terms [37,
38, 40, 70, 71], but we already have computed the dynamic po-
larizabilities. We can directly integrate the BBR shift. Since
practically all of the BBR spectrum falls below any resonance
frequencies in our system, we expand the polarizability using
Cauchy coefficients [71]: ∆αv↔v′ (ω) = ∆α(0)

v↔v′ + ∆α
(2)
v↔v′ω

2 +

∆α(4)
v↔v′ω

4 + . . . that we fit to tenth order to numerical polariz-
abilities [Fig. 4(a)]. This allows expressing the BBR shift as a
series:

∆ fv↔v′ =
∑

n=0,2,...

∆ f (n)
v =

∑

n=0,2,...

−cn∆α
(n)
v↔v′

4π3ϵ0c3

(
kBT
ℏ

)4+n

, (6)

where the Planck integrals cn =
∫ ∞

0 u3+n/(eu − 1)du appear
in Table II (Supplemental Material). The leading term is the
well known static contribution [39, 40], while further terms
constitute a dynamic correction η on the order of 0.5–0.6 %
(Table II). Here, terms beyond the second order are negligible.

Since the molecular clock uniquely provides an array of
available clock states, we calculate the BBR shift for other
clock transitions. In Fig. 4(b), we plot the BBR shift for v ↔
62 transitions, ∆ fv↔62 (red line). For our previously measured
clock transition [41] ∆ f0↔62 = +538(15) mHz, giving a BBR
contribution to fractional uncertainty of u(∆ fv↔v′ )/ fv↔v′ =

4.7 × 10−16. Further, the BBR contribution to fractional un-
certainty of the molecular clock transition can be reduced by
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TABLE II. Contributions to the BBR shift at 300 K for the 0 ↔ 1
and 0↔ 62 transitions.

n cn ∆ f (n)
0↔1 (Hz) ∆ f (n)

0↔1/ f0↔1 ∆ f (n)
0↔62 (Hz) ∆ f (n)

0↔62/ f0↔62

0 π4/15 +0.0081 +6.8 × 10−15 +0.53 +1.7 × 10−14

2 8π6/63 +6.1 × 10−5 +5.1 × 10−17 +0.0033 +1.0 × 10−16

4 8π8/15 +6.5 × 10−7 +5.5 × 10−19 +6.3 × 10−5 +2.0 × 10−18

η (%) 0.54 0.62

handpicking 0 ↔ v′ clock transitions (blue line) between
deeply bound vibrational states [Fig. 4(c)]. This configura-
tion could allow fractional uncertainties as low as 1.8×10−16,
a factor of ∼2.5 lower than the 0↔ 62 transition.

Clock transitions between deeply bound states could al-
low magic wavelengths further detuned from excited molec-
ular resonances due to a smaller polarizability gap to over-
come. That could improve molecular trap lifetimes and Q-
factors. These can also be improved by switching to vertical
lattice geometry. Conversely, this requires the use of STI-
RAP [43, 72, 73] to initialize the molecule population in a
deeply bound state, increasing experimental complexity.

In the future, our technique can be pushed further. The po-
larizability measurement relies on frequency shifts that could
be determined at the full Hz-level clock accuracy. It also de-
pends on semiempirical atomic polarizabilities that currently
contribute about 10% of the error bar. However, with better
measurements, the ab initio model will cease to agree with
experiment. Scaling is an option, but a complementary ap-
proach is possible where polarizabilities are measured at dif-
ferent wavelengths and Cauchy coefficients are instead fitted
to experiment.

In conclusion, we have determined the BBR shift in a stron-
tium molecular lattice clock. We leveraged agreement be-
tween precision spectroscopy and modern quantum chem-
istry to provide a robust description of the polarizabilities
of ground state Sr2 molecules. Specifically, we performed
ac Stark shift spectroscopy of several molecular clock transi-
tions throughout the ground state potential induced by an ad-
ditional mid-infrared laser. These measurements were in ex-
cellent agreement with ab initio calculations of molecular po-
larizability, lending credence to extending this model to other
wavelengths. This determination will allow us to control the
BBR shift systematic to the 10−16 level. Selecting a clock tran-
sition between deeply bound vibrational states (v < 10) could
further suppress the BBR effect. Additional measurements of
ac or dc Stark shifts, such as by direct application of an elec-
tric field [37] or with a CO2 laser [74, 75], could further con-
strain the theoretical model and improve control of the BBR
systematic. A next-generation molecular clock could search
for new interactions beyond the Standard Model or probe the
variations of fundamental constants. This work paves the way
towards mHz-level spectroscopy in Sr2 molecules.
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S1. DETERMINATION OF MAGIC WAVELENGTHS

For each of the investigated molecular clock transitions we
have determined its corresponding magic wavelength. Our
process for finding magic wavelengths consists of several
steps and combines theoretical modelling and experiment.

The polarizability of the initial weakly-bound molecular
state is approximately twice the polarizability of the con-
stituent strontium atoms and only has a very weak dependence
on the wavelength of the lattice laser. On the other hand,
the polarizability for the deeply-bound states has many res-
onances due to strong transitions to the vibrational states sup-
ported by the 1u state correlating to the 1S0+3P1 asymptote.
We exploit this to tune the polarizability of the deeply-bound
state to that of the weakly-bound state to achieve the magic
condition.

We first employ a theoretical interaction model to calcu-
late transition dipole moments for transitions from the deeply
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FIG. S1. Search for the magic wavelength on the example of the
v = 12 ↔ v′ = 62 molecular clock transition. Points denote the
experimental lattice-induced ac Stark shift as a function of lattice
laser wavelength λ. The fitted function is Eq. (S1). The red square
indicates the magic wavelength λmagic = 1007.7634(10) nm, where
the Stark shift ∆Stark is cancelled out.

bound molecular clock state v to vibrational states in the (1) 1u

excited-state potential. We select (1) 1u states such that the
line strength S is greater than ∼10−5 e2a2

0 (here e is the elec-
tron charge, a0 is the Bohr radius) [S1]. Then, we predict the
magic wavelengths by calculating the differential polarizabil-
ity of the clock transition using a sum-over-states approach.
This provides a starting point for the final experimental search.
By varying the power of the lattice beam, we measure the
Stark shift ∆Stark of the molecular clock line at several wave-
lengths spread over ∼10 GHz centered around the predicted
magic wavelength (Figure S1). Then, we fit a simple formula

∆Stark(λ) =
a

λ − λ0
+ b (S1)

to lattice Stark shifts measured as a function of frequency to
find the zero crossing, λmagic = λ0 − a/b. Our lattice wave-
length is stabilized to a wavemeter at ∼30 MHz precision. It
should also be pointed out that the absolute calibration of the
wavemeter is on the order of 0.001 nm as indicated in Table 1
in the main text.

S2. MEASUREMENTS OF LINE POSITIONS

We measure the relative binding energies by scanning the
frequency difference between the two Raman lasers, detuned
by +30 MHz from the intermediate state, a molecular level of
(1) 0+u symmetry. The Raman pump laser is locked to a high
finesse cavity, and the repetition rate of an optical frequency
comb is in turn referenced to this laser. The carrier envelope
offset of the frequency comb, as well as acousto-optical mod-
ulators used on both Raman lasers, are referenced to a com-
mercial rubidium clock at a ∼10−12 precision [S2]. Finally,
the anti-Stokes laser of the Raman pair is phase-locked to the
optical frequency comb.

The line positions are measured through scans of the rel-
ative Raman frequency (Figure S2). We fit the scans with a
Lorentzian lineshape with a background,

n(∆) = n0 − A
2π

γ

(∆ − ∆c)2 + (γ/2)2 , (S2)

where n0 is the background dissociated atom number, A is the
area, γ is the full width at half maximum, and ∆c is the center
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FIG. S2. Example lineshapes seen in our ac Stark shift measure-
ments. To determine the differential ac polarizability, we measure a
lineshape each with the extra ac Stark laser off (dark blue) and on
(light red). To determine the differential polarizabilities ∆α we mea-
sure ratios of ac Stark shift slopes between different transitions. As
an absolute reference we used the narrow 1S0↔3P1 atomic intercom-
bination transition with a known ∆α = +326.2(3.6) a.u. [S3]. The
molecular ac Stark shifts would be compared to a common 27↔ 62
transition which would then be calibrated to the atomic line.

frequency. We typically operate with 1 kHz peak widths and
can measure peak position to ∼100 Hz.

Since precise determination of transition frequencies is not
the main purpose of this paper, we did not characterize the
Stark shifts experimentally. Instead, we calculate a conserva-
tive upper bound on the uncertainty of the binding energy by
combining estimated lattice and Raman laser Stark shifts.

Using the Stark shift measured during magic wavelength
determination, we fit a linear slope to Stark shift vs. lattice
frequency near the operational magic wavelength. We then
use this slope to convert the wavemeter-limited uncertainty of
the lattice wavelength to a Stark shift, and take this Stark shift
as our lattice contribution to the uncertainty of the binding
energy.

Using measured laser power and waist, as well as ab initio
polarizabilities calculated using the sum-over-states approach
[S4], we calculate the Raman Stark shifts,

∆ fclock =
IR

2hϵ0c
[α0 (λR) − α62 (λR)] , (S3)

where Ip is the intensity of each Raman laser, α is polariz-
ability for each vibrational state, and λ is the wavelength. We
note that contributions from the Raman lasers have opposite
signs [S5]. We assign an additional conservative value of 50%
to the ab initio polarizabilities, significantly larger than the
discrepancy observed in comparison with measured polariz-
ability ratios [S2].

After estimating the lattice and Raman Stark shifts individ-
ually, we combine them to get total uncertainty on binding
energy position. We find that the lattice Stark shift is about an
order of magnitude greater than Raman Stark shift.

S3. FINITE SAMPLE TEMPERATURE

Our experiment relies on Stark-induced shifts to molecular
clock lines. Here we estimate the effect of finite sample tem-

perature on the determination of differential polarizabilities
from observed shifts.

In the absence of the Stark laser the molecules, whether
in their initial (v), or target (v′) vibrational states are trapped
in the same magic-wavelength lattice potential. For a single
lattice site this may be approximated by a harmonic trap po-
tential:

V(x, y, z) =
1
2

Mω2
r

(
x2 + y2

)
+

1
2

Mω2
z z2. (S4)

Here M is the mass of the molecule and ωr,z are the radial (r)
and axial (z) trapping frequencies.

We induce an ac Stark shift on the molecular clock v ↔ v′

transition by adding an extra collimated laser coaligned with
the lattice which gives rise to an extra potential,

W(x, y, z) =
1
2

MΩ2
v,v′

(
x2 + y2

)
− Uv,v′ , (S5)

whereΩv,v′ are the state-dependent radial trapping frequencies
and Uv,v′ are the extra trapping depths. Both Ω2

v,v′ and Uv,v′

are directly proportional to the ac polarizabilites αv,v′ that we
aim to measure. The increase in trap depth Uv,v′ leads to a
temperature-independent line shift that is the basis for our ex-
periment. However, the extra trapping frequency leads to a
non-trivial temperature-dependent shift that we will evaluate
here.

The total trapping potential of the combined laser beams is

Vv,v′ +Wv,v′ =
1
2

M
(
ω2

r + Ω
2
v,v′

) (
x2 + y2

)
+

1
2

Mω2
z z2 − Uv,v′ .

(S6)
This is equivalent to a three-dimensional harmonic oscillator
with state-dependent trapping frequencies. As carrier transi-
tions preserve the motional quantum numbers, the total shift
may be evaluated as a difference of the quantum thermal av-
erages of the trapping hamiltonians Hv,v′ = T + V +Wv,v′ :

〈
δE

〉
=

〈
Hv′

〉
−

〈
Hv

〉

= −∆U + ℏ∆ω
[〈

nx

〉
+

〈
ny

〉
+ 1

]
, (S7)

where ∆U = Uv′ − Uv and the change in radial trapping fre-
quency is

∆ω =
√
ω2

r + Ω
2
v′ −

√
ω2

r + Ω
2
v′ − ∆(Ω2

v,v′ ). (S8)

For us the transition-dependent term ∆(Ω2
v,v′ ) = Ω

2
v′ − Ω2

v is
on the whole substantially smaller than either of the trapping
frequencies Ω2

v or ω2
r , hence we can expand ∆ω as

∆ω ≈
√
ω2

r + Ω
2
v′


1
2
∆(Ω2)
ω2

r + Ω
2
v′
− 1

8

(
∆(Ω2)
ω2

r + Ω
2
v′

)2 . (S9)

Importantly, the first term is linear in the measured differential
polarizability as ∆(Ω2

v,v′ ) is directly proportional to ∆αv,v′ .
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The mean vibrational quantum numbers for radial motion
can be evaluated by averaging over the grand canonical en-
semble:

〈
nx,y

〉
=

1
Z

∞∑

n=1

e
−En (x,y)

kBT ≈ kBT
ℏωr
, (S10)

(S11)

where we used the partition function [S6]

Z = Tr(e−Hv′ /kBT ) =
1
2

csch(ℏω/2kBT ). (S12)

Finally, the total thermally averaged shift to the line is

〈
δE

〉
= −∆U + kBT

∆ω

ωr
. (S13)

The first term is the temperature-independent ac Stark shift.
The second term is a temperature-dependent correction.

In our experiment the incoming lattice beam has a power
of Pl = 0.27 W and a waist of wl = 36 µm. For all the
measured transitions the wavelength of the lattice is chosen
to achieve a magic condition. This means that the polarizabil-
ity at the lattice wavelength for both the initial v′ and target
v molecular states is the same and can be modeled as twice
the atomic polarizability. For the magic wavelengths rang-
ing from λmagic = 996.4379 nm to λmagic = 1016.9714 nm
the atomic polarizabilities range from αmagic = 250.2 a.u. to
αmagic = 247.6 a.u., respectively. This corresponds to total
atomic trap depths

Ul = 4αPl/(πw2
l cϵ0) (S14)

between 622 kHz× h and 616 kHz× h (approximately 30 µK).
The factor of four stems from constructive interference be-
tween the incident and reflected lattice beams. Conversely,
the radial trapping frequencies

ωr =
2
wl

√
Ul/M (S15)

of ωr = 2π × 469.9 Hz to 2π × 467.5 Hz. The molecular
sample temperature is estimated at 5 µK. For weakly-bound
molecules the trap depth is twice that for atoms (because the
polarizability is that of two atoms), however, the trapping fre-
quencies are the same for atoms and molecules, as the extra
trap depth cancels out with the twice larger mass M of the
molecule.

The extra Stark shift laser has a wavelength of λ = 1950 nm
and a maximum power of P = 1.7 W at a waist of w =
125.9 µm. This provides an extra trap depth

Uv = αx,vP/(πw2cϵ0) (S16)

between 67.1 kHz × h and 79.4 kHz × h per atom in the
molecule and an extra radial confinement that varies from
Ωv = 2π × 44.1 Hz to Ωv = 2π × 48.0 Hz. The polarizability
per atom varies between αx = 210.1 a.u. for the most weakly

bound state and αx = 248.5 a.u. for the rovibrational ground
state.

The temperature-independent shift ∆U of up to 12.3 kHz×h
by far outweighs the temperature-dependent term. Note that
the total shift for the diatomic molecule is 2∆U and it there-
fore reaches 24.6 kHz × h. The extra temperature-dependent
term stems from the change in the total radial confinement of
the effective trap created by the lattice and ac Stark laser. The
contribution to radial trapping from the ac Stark laser is an
order of magnitude smaller than the baseline provided by the
lattice laser. The figure of merit is the difference in the extra
confinement between different vibrational states as compared
to the lattice radial frequency. We find ∆ω to vary between
2π × 6.4 × 10−4 Hz for a v = 61 ↔ v′ = 62 transition and
2π×0.38 Hz for a v = 0↔ v′ = 62 line. The total temperature-
dependent shift, kBT (∆ω/ωr) is consistently below 0.7% of
the temperature-independent shift, at most 84.3 Hz× h for the
v = 0 ↔ v′ = 62 transition. This is already significantly
smaller than our experimental error bars.

We also point out that most of the thermal shift is, just like
∆U, directly proportional to the differential polarizability we
aim to measure. In fact, the linear term in the Taylor expansion
for ∆ω, Eq. (S9) overestimates the real value by at most 0.4%
making the nonlinear systematic negligible for this work.

Another possible source of systematic error is the variation
in magic wavelength and the corresponding lattice radial con-
finenement between the different molecular lines. We find that
this variation contributes at most a 1.2% relative uncertainty to
the temperature-dependent shift. Again, for us this contribu-
tion is two order of magnitude smaller than our experimental
uncertainty and therefore negligible.

S4. UNCERTAINTY OF THE THEORETICAL
POLARIZABILITIES DUE TO EMPIRICAL POTENTIAL

To calculate the blackbody radiation shifts we needed the
vibrational wavefunctions for all nonrotating vibrational states
of strontium molecules in their electronic ground state. These
were obtained by solving the radial Schrödinger equation us-
ing an accurate potential obtained empirically from Fourier
transform spectroscopy [S7]. The potential was provided in
two versions: one in terms of a piecewise function and as a
Morse/Long-Range (MLR) fit [S8]. We used the latter.

In the paper we estimated the uncertainty of the theoretical
model by comparing theoretical ac polarizabilities to exper-
imental data and concluded that model is accurate to within
2.6%. We expect that most of this error bar is coming from
the combination of the limited accuracy of the ab initio polar-
izabilities and the experimental accuracy. Here, we addition-
ally look at the uncertainty of the theoretical model stemming
from the use of an empirical potential [S7]. To estimate the
sensitivity of the theoretical polarizabilities to the experimen-
tal uncertainty we vary three of the most important param-
eters of the potential – dissociation energy De, equilibrium
distance Re and the leading van der Waals coefficient C6 and
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1FIG. S3. Contributions to the uncertainty of the theoretical polar-
izabilities due to the use of empirical potential from Ref. [S7]. For
all investigated transitions the contributions are all at least one order
(typically more than two) of magnitude smaller than the error bar as-
signed to our theoretical model through comparison with experiment.

rerun our calculation. The parameters Re = 4.6720(1) Å and
De = 1081.64(2) cm−1 [S7] are varied within their stated ex-
perimental uncertaintes whereas C6 was varied such that the
(well known) position of the near-threshold v = 62 bound
state at −137 MHz shifted by at most 1 MHz.

The contributions to due to De, Re and C6 are shown in
Fig. S3. The variation of each parameter influences the pre-
dicted polarizabilities in a distinct manner. As the polariz-
ability depends chiefly on the mean internuclear distance of
a given vibrational level, scaling the potential depth De, for
example, has little influence on the polarizability of deeply
bound states. On the other hand, these states are naturally
more sensitive to varying the equilibrium distance Re. Lastly,
weakly bound states are the most sensitive to the variation
of the long-range van der Waals interaction coefficient, C6.
Nevertheless, we find that all of these error contributions are
at least one order of magnitude smaller than the uncertainty
we assigned to the model via direct measurements of ac Stark
shifts and for our purposes are negligible.

S5. THE PLANCK INTEGRALS

Our calculation of the blackbody radiation shift relies on
expanding the differential polarizability of a transition in
terms of a series of Cauchy coefficients. Averaging each con-
tribution to the polarizability over the Planck distribution in-
volves calculating integrals of the following type:

cn =

∫ ∞

0

u3+n

exp(u) − 1
du = Lin+4(1)Γ(n + 4) (S17)

for even n. Here Lis(z) is the polylogarithm function of or-
der s,

Lis(z) =
∞∑

k=1

zk

ks , (S18)

and Γ(x) is Euler’s gamma function. While for our purposes it
was enough to cut the series off at n = 4, in the future higher
orders might be needed. For future reference, here we list the
first eight integrals:

c0 =
π4

15
≈ 6.49393940226683 . . .

c2 =
8π6

63
≈ 122.081167438134 . . .

c4 =
8π8

15
≈ 5060.54987523764 . . .

c6 =
128π10

33
≈ 363240.911422383 . . .

c8 =
176896π12

4095
≈ 39926622.9877311 . . .

c10 =
2048π14

3
≈ 6227402193.41097 . . .

c12 =
3703808π16

255
≈ 1307694352218.91 . . .

c14 =
1437433856π18

3591
≈ 355688785859224 . (S19)
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