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Combinatorial mechanical metamaterials feature spatially textured soft modes that yield exotic and useful
mechanical properties. While a single soft mode often can be rationally designed by following a set of tiling
rules for the building blocks of the metamaterial, it is an open question what design rules are required to realize
multiple soft modes. Multimodal metamaterials would allow for advanced mechanical functionalities that can
be selected on the fly. Here we introduce a transfer matrix-like framework to design multiple soft modes in
combinatorial metamaterials composed of aperiodic tilings of building blocks. We use this framework to derive
rules for multimodal designs for a specific family of building blocks. We show that such designs require a large
number of degeneracies between constraints, and find precise rules on the real space configuration that allow such
degeneracies. These rules are significantly more complex than the simple tiling rules that emerge for single-mode
metamaterials. For the specific example studied here, they can be expressed as local rules for tiles composed of
pairs of building blocks in combination with a nonlocal rule in the form of a global constraint on the type of tiles
that are allowed to appear together anywhere in the configuration. This nonlocal rule is exclusive to multimodal
metamaterials and exemplifies the complexity of rational design of multimode metamaterials. Our framework is
a first step towards a systematic design strategy of multimodal metamaterials with spatially textured soft modes.

DOI: 10.1103/PhysRevE.108.065002

I. INTRODUCTION

The structure and proliferation of soft modes is paramount
for understanding the mechanical properties of a wide variety
of soft and flexible materials [1–5]. Recently, computational
and rational design of soft modes in designer matter has
given rise to the field of mechanical metamaterials [5–13].
Typically, such materials are structured such that a single soft
mode controls the low energy deformations. Their geometric
design is often based on that of a single zero-energy mode
in a collection of freely hinging rigid elements [14]. Such
metamaterials display a plethora of exotic properties, such
as tunable energy absorption [15], programmability [16–19],
self-folding [20,21], nontrivial topology [22–25], and shape
morphing [26–35]. For shape morphing in particular, a com-
binatorial framework was developed, where a small set of
building blocks are tiled to form a metamaterial [36]. In all
these examples, both the building blocks and the underlying
mechanism exhibit a single zero mode, so that the metamate-
rial’s response is dominated by a single soft mode leading to
a single mechanical functionality. Often, by fixing the overall
amplitude of deformation, the combinatorial design problem
can be mapped to a spin-ice model [24,36,37] or, similarly, to
Wang tilings [21,34,35].

In contrast, multimodal metamaterials can potentially ex-
hibit multiple functionalities [38]. Such metamaterials host
multiple complex soft modes with potentially distinct func-
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tionalities. By controlling which mode is actuated, one can
tune the metamaterial’s response at will. To engineer such
multimodal materials, one requires precise control over the
structure and enumeration of zero modes. However, as op-
posed to metamaterials based on building blocks with a single
zero mode, the kinematics of multimodal metamaterials can
no longer be captured by spin-ice or tiling problems. This
is because linear combinations of zero modes are also valid
zero modes such that the amplitudes of different deforma-
tion modes can take arbitrary values—such a problem can
no longer be trivially mapped to a discrete tiling or spin-ice
model. As a consequence, designing multimodal materials is
hard. Current examples of multimodal metamaterials include
those with tunable elasticity tensor and wave-function pro-
grammability [39], and tunable nonlocal elastic resonances
[40]. In both works, the authors consider periodic lattices that
limit the kinematic constraints between bimodal unit cells
to (appropriate) boundary conditions, thereby allowing for
straightforward optimization. In contrast, we aim to construct
design rules for aperiodic multimode structures that contain
a large number of simpler bimodal building blocks and that
exhibit a large, but controllable number of spatially aperi-
odic zero modes. Such aperiodic modes allow for complex
mechanical functionalities such as a strain-rate selectable aux-
etic response [38] and sequential energy absorption while
retaining the original stiffness [41]. For aperiodic multimode
structures, the number of kinematic constraints grows with
the size of the structure, so that successful designs require a
large number of degeneracies between constraints. A general
framework to design such zero modes is lacking.
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Here we set a first step towards such a general frame-
work for multimodal combinatorial metamaterials. We use
this framework to find emergent combinatorial tiling rules
for a multimodal metamaterial based on symmetries and de-
generate kinematic constraints. Strikingly, we find nonlocal
rules that restrict the type of tiles that are allowed to appear
together anywhere in the configuration. This is distinct from
local tiling rules found in single-modal metamaterials which
consist of only local constraints on pairs of tiles. Our work
thus provides a new avenue for systematic design of spatial
complexity, kinematic compatibility, and multifunctionality in
multimodal mechanical metamaterials.

To develop our framework, we focus on a recently in-
troduced multimodal combinatorial metamaterial [38]. This
metamaterial can host multiple complex zero modes that can
be utilized to engineer functional materials. For example, a
configuration of this metamaterial dressed with viscoelastic
hinges allows for a strain-rate selectable auxetic response
under uniaxial compression [38]. Another recent example uti-
lizes so-called strip modes to efficiently absorb energy through
buckling while retaining the original stiffness under sequential
uniaxial compression [41]. However, the design space remains
relatively unexplored and is sufficiently rich and complex that
further study of this combinatorial metamaterial is warranted.

More concretely, this combinatorial metamaterial is com-
posed of building blocks consisting of rigid bars and hinges
that feature two zero modes: deformations that do not stretch
any of the bars to second order of deformation [38] [Fig. 1(a)].
These degrees of freedom are restricted by kinematic con-
straints between neighboring building blocks, which in turn
depend on how the blocks are tiled together. We stack these
building blocks to form square k × k unit cells, and tile these
periodically to form metamaterials of n × n unit cells. These
metamaterials can be classified in three distinct classes based
on the number of zero modes NZM as function of n: most
random configurations are monomodal, due to the presence
of a trivial global (counter-rotating) single zero mode [38,42].
However, rarer configurations can be oligomodal (constant
number >1 of zero modes) or plurimodal (number of zero
modes proportional to n) [Fig. 1(b)].

The design space of this metamaterial was fully explored
for 2 × 2 and 3 × 3 unit cell tilings of such building blocks.
For larger tilings, a combination of brute-force calculation of
the zero modes and machine learning was used to classify the
design space of larger unit cells up to 8 × 8 [42]. However, it
is an open question how to construct design rules to determine
this classification directly from the unit cell tiling without
requiring costly matrix diagonalizations or machine learning.

In this paper we focus on the specific question of obtaining
tiling rules for plurimodal designs for the aforementioned
building blocks. Such plurimodes drive the mechanism be-
hind the sequential energy-absorption metamaterial [41]. A
crucial role is played by degeneracies of the kinematic con-
straints. These kinematic constraints follow trivially from the
tiling geometry and take the form of constraints between
the deformation amplitudes of adjacent building blocks. For
random tilings, the kinematic constraints rapidly proliferate,
leading to the single trivial mode. Checking for degeneracies
between these constraints is nontrivial, as they are expressed
as relations between the deformation amplitudes of different

FIG. 1. (a) Four differently oriented two-dimensional building
blocks (left) combine into a square k = 5 unit cell (middle) which
is tiled in a n = 3 grid to form a combinatorial metamaterial (right).
The four orientations of the building block each have a unique color
to guide the eye. The black lines represent rigid bars that hinge
freely at intersections with other rigid bars. Colored regions are
rigid polygons. We note that rigid pentagons with a reentrant edge
are kinematically equivalent to rigid diamonds (rotated squares).
(b) The number of zero modes NZM(n) as a function n. We distinguish
between three design classes, exemplified by the three unit cells
designs shown in the legend. Note that the unit cells differ only by
the rotation of a single building block, yet each belongs to another
class. (c) Probability density function (pdf) to find each design class
through Monte Carlo sampling of the design space. Class (ii) (blue
triangles) and (iii) (red circles) become exponentially more rare with
increasing unit cell size k, while class (i) (green squares) becomes
abundant [43]. The rate of exponential decline for class (ii) and (iii)
depends on if k is odd (filled) or even (open).

groups of building blocks. To check for degeneracies, we use
a transfer matrix-like approach to map all these constraints to
constraints on a small, preselected set, of deformation ampli-
tudes. This allows us to establish a set of combinatorial rules.
Strikingly, these combine local tiling constraints on pairs of
building blocks with global constraints on the types of tiles
that are allowed to appear together; hence, local information
is not sufficient to identify a valid plurimodal tiling.

The structure of this paper is as follows. In Sec. II we inves-
tigate the phenomenology of this metamaterial, focusing on
the number of zero modes NZM(n) for unit cell sizes 3 � k �
8. We show that random configurations are exponentially less
likely to be oligomodal or plurimodal with increasing unit cell
size k. Additionally, we define a mathematical representation
of the building blocks’ deformations that allows us to compare
deformations in collections of building blocks. In Sec. III we
derive a set of compatibility constraints on building block de-
formations that capture kinematic constraints between blocks.
In Sec. IV we use these constraints to formulate an exclusion
rule that prohibits the structure of zero modes in collections of

065002-2



EMERGENT NONLOCAL COMBINATORIAL DESIGN … PHYSICAL REVIEW E 108, 065002 (2023)

building blocks. Subsequently, we categorize the “allowed”
mode-structures in three categories. In Sec. V we devise a
mode structure that, if supported in a unit cell, should result
in a linearly growing number of zero modes, i.e., the unit cell
will be plurimodal. We define a set of additional constraints
on deformations localized in a strip in the unit cell that should
be satisfied to support a mode with such a mode structure. We
refer to such modes as “strip” modes. In Sec. VI we define a
transfer matrix-like formalism that maps deformation ampli-
tudes from a column of building blocks to adjacent columns.
In Sec. VII we define a general framework using the transfer
mappings defined in the previous section to determine if a strip
of building blocks supports a strip mode of a given width W .
In Sec. VIII we apply this framework explicitly on strips of
width 1 � W � 3 and derive a set of tiling rules for strips
of each width W . Surprisingly, we find that strips of width
W = 3 require a global constraint on the types of tiles that are
allowed to appear together in the strip. Finally, we conjecture
that there is a set of general design rules for strips of arbitrary
width W , provide numerical proof of their validity and use
them to construct a strip mode of width W = 10.

II. PHENOMENOLOGY

A. Configuration

We consider a family of hierarchically constructed com-
binatorial metamaterials [Fig. 1(a)] [38]. A single building
block consist of three rigid triangles and two rigid bars that
are flexibly linked, and its deformations can be specified by
the five interior angles θA, θB, . . . , θE that characterize the five
hinges [Fig. 1(a)]. Each building blocks features two, linearly
independent, zero energy deformations [38,42]. As the unde-
formed building block has an outer square shape and inner
pentagon shape, each building block can be oriented in four
different orientations: c = {NE, SE, SW, NW} [Fig. 1(a)]. We
stack these building blocks to form square k × k unit cells.
Identical unit cells are then periodically tiled to form metama-
terials consisting of n × n unit cells; we use open boundary
conditions. Each metamaterial is thus specified by the value
of n and the design of the unit cell, given by the k × k set of
orientations C.

B. Three classes

We focus on the number of zero modes NZM(n) (defor-
mations that do not cost energy up to quadratic order) for a
given design. In earlier work, we showed that the number of
zero modes is a linear function of n: NZM = an + b, where
a � 0 and b � 1 [see Fig. 1(b)] [42]. Based on the values
of a and b, we define three design classes: Class (i): a = 0
and b = 1. For these designs, which become overwhelmingly
likely for large k random unit cells [Fig. 1(c)], there is a single
global zero mode, which we will show to be the well known
counter-rotating squares (CRS) mode [5,14,20,26,27,44–48];
Class (ii): a = 0 and b � 2. For these rare designs, the meta-
material hosts additional zero modes that typically span the
full structure, but NZM(n) does not grow with n; Class (iii):
a � 1. For these designs the number of zero modes grows
linearly with system size n, and we will show that these rare
zero modes are organized along strips. Designs in class (ii)

and (iii) become increasingly rare with increasing unit cell
size k [see Fig. 1(c)]. Yet multifunctional behavior of the
metamaterial requires the unit cell design to belong to class
(ii) or (iii). Hence we aim to find design rules that allow
to establish the class of a unit cell based on its real space
configuration C and that do not require costly diagonalizations
to determine NZM(n). Such rules will also play a role for the
designs of the rare configurations in classes (ii) and (iii).

As we will show, deriving such rules requires a different
analytical approach than previously used to derive design
rules in mechanical metamaterials [21,24,36,37]. The reason
is for this is that each building block has two degrees of free-
dom yet potentially more than two nondegenerate constraints
to satisfy. The problem can therefore not be mapped to a
tiling problem [21,29]. In what follows, we will define an
analytic framework based on transfer mappings and constraint
counting and use this framework to derive design rules for unit
cells of class (iii).

C. Zero modes of building blocks

To understand the spatial structure of zero modes, we
first consider the zero energy deformations of an individual
building block, irrespective of its orientation [Fig. 2(a)]. We
can specify a zero mode mz of a single building block in terms
of the infinitesimal deformations of the angles θA, θB, . . . , θE ,
which we denote as dθA, dθB, . . . , dθE , with respect to the
undeformed, square configuration [Fig. 2(a)]. As the unit
cell can be seen as a dressed five-bar linkage, it has two
independent zero modes [38,42]. We choose a basis where
one of the basis vectors correspond to the counter-rotating
squares (CRS) mode, where (dθA, dθB, dθC, dθD, dθE ) ∝
(1,−1, 1, 0,−1), and the other basis vector cor-
responds to what we call a “diagonal” (D) mode,
where (dθA, dθB, dθC, dθD, dθE ) ∝ (−1,−1, 3,−4, 3)
[Fig. 2(a)]. A general deformation can then be written as
(dθA, dθB, dθC, dθD, dθE ) = α(1,−1, 1, 0,−1) + β(−1,

−1, 3,−4, 3), where α and β are the amplitudes of the CRS
mode and D mode, respectively.

D. Zero modes of unit cells

We now consider the deformations of a single building
block in a fixed orientation. Hence, we can express
a zero mode of an individual building block mz as
mz(αz, βz, cz ) = αzmCRS + βzmD(cz ). The deformation of
each building block is completely determined by three
degrees of freedom: the orientation cz and the amplitudes
αz and βz of the CRS and D mode. To compare these
deformations for groups of building blocks, we now define
additional notation. We use a vertex representation [38]
where we map the changes in angles of the faces of the
building block, dθA, dθB, dθC and dθE to values on horizontal
(l, r) and vertical (u, v) edges, and the change in angle of
the corner of the building block, dθD, to the value dc on
a diagonal edge—note that the location of the diagonal
edge represents the orientation, c, of each building block
[Fig. 2(b)]. Irrespective of the orientation, we then find that a
CRS mode corresponds to (u, v, l, r, dNE, dSE, dSW, dNW) ∝
(−1,−1, 1, 1, 0, 0, 0, 0) = mCRS [Fig. 2(b)]. For a D
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FIG. 2. (a) Zero modes of the building block in orientation NE
are infinitesimal deformations of the undeformed building block
(left) expressed in the two basis zero modes CRS (middle) and D
(right). These deformations are characterized by changes in the four
angles on the faces of the block (cyan circles) and the four angles on
the corners of the block (pink squares). (b) The five interior angles of
the building block in orientation NE are represented by edges in the
bond representation (left). We express deformations of the building
block as values on these edges, which we represented as arrows. The
number of arrows corresponds to the magnitude of deformation, and
the direction of the arrows (incoming, outgoing) to the sign. Note
that the CRS mode (middle) deforms only the angles on the faces
of the building block and thus does not depend on the orientation
of the building block. However, the D mode (right) does deform a
diagonal edge, and the mode thus depends on the orientation of the
building block. (c) Building blocks are tiled together on a grid to
form unit cells (left, for a 2×2 example), where the row index j
increases from top to bottom and the column index i from left to right.
The bond representation (right) forms the static background. (d) The
static background is dressed with arrows on its bonds that represent
deformations of the unit cell (left) in the vertex representation (right).

mode, the deformation depends on the orientation; for
a NE block we have (u, v, l, r, dNE, dSE, dSW, dNW) ∝
(3,−1,−1, 3,−4, 0, 0, 0) = mD(NE) [Fig. 2(b)]. We note
that for a D mode in a building block with orientation c, only
a single diagonal edge is nonzero. For ease of notation, we
express the deformation of a building block with orientation
c in shorthand (u, v, l, r, dc), where the excluded diagonals
are implied to be zero. In this notation, the D mode for a
SE block is (u, v, l, r, dSE) ∝ (−1, 3,−1, 3,−4) = mD(SE),
for a SW block it is (u, v, l, r, dSW) ∝ (−1, 3, 3,−1,−4) =
mD(SW), and for a NW block it is (u, v, l, r, dNW) ∝
(3,−1, 3,−1,−4) = mD(NW). In addition, throughout this
paper we will occasionally switch to a more convenient mode
basis for calculation, where the degrees of freedom of mz are
the orientation cz and the deformations uz and vz.

To describe the spatial structure of zero mode deformations
in a k × k unit cell, we place the building blocks on a grid
and label their location as (i, j), where the column index i

increases from left to right and the row index j increases
from top to bottom [Fig. 2(c)]. We label collections of the
building block zero modes mi, j (αi, j, βi, j, ci, j ) as M(A, B,C),
where A, B, and C are the collections of αi, j , βi, j and ci, j .
Such a collection M(A, B,C) describes a valid zero mode of
the collection of building blocks C if M’s elements, building
block zero modes mi, j , deform compatibly with its neighbors.

III. COMPATIBILITY CONSTRAINTS

Here we aim to derive compatibility constraints on the
deformations of individual building blocks in a collection of
building block C to yield a valid zero mode M (Sec. II). We
find three local constraints that restrict the spatial structure
of such valid zero modes. First, we require compatible de-
formations along the faces between adjacent building blocks,
and thus consider horizontal pairs [e.g., a building block at
site (i, j) with neighboring building block to its right at site
(i + 1, j)] and vertical pairs [e.g., a building block at site
(i, j) with neighboring building block below at site (i, j + 1)]
[Fig. 2(c)]. To be geometrically compatible, the deformations
of the joint face needs to be equal, yielding

ri, j = −li+1, j and vi, j = −ui, j+1 (1)

for the “horizontal” and “vertical” compatibility constraints,
respectively. Due to the periodic tiling of the unit cells, we
need to take appropriate periodic boundary conditions into ac-
count; the deformations at faces located on the open boundary
of the metamaterial are unconstrained.

Second, we require the deformations at the shared corners
of four building blocks to be compatible. This yields the
diagonal compatibility constraint [Fig. 2(c)]:

dSE
i, j + dNE

i, j+1 + dSW
i+1, j + dNW

i+1, j+1 = 0. (2)

We note that we again need to take appropriate periodic
boundary conditions into account, and note that the defor-
mations at corners located on the open boundary of the
metamaterial are unconstrained (see Appendix A). For com-
patible collective deformations in a configuration of building
blocks, we require these constraints to be satisfied for all sites,
with appropriate boundary conditions: either periodic or open.

IV. MODE STRUCTURE

In this section we determine an important constraint on
the spatial structure of the zero modes that follows from
the compatibility constraints [Eqs. (1) and (2)]. We use the
compatibility constraints to derive a constraint on the mode
structure of 2 × 2 configurations, which in turn restricts the
“allowed” spatial structures of valid zero modes M in any
configuration C. To derive this constraint, we label the defor-
mations of each building block as either CRS or D, depending
on the magnitude of the D mode, βi, j . We refer to building
blocks with βi, j = 0 as CRS blocks that deform as mi, j ∝
mCRS, and to building blocks with βi, j �= 0 as D blocks. We
will find that the compatibility constraints restrict the location
of D and CRS blocks in zero modes.

Regardless of the unit cell configuration C, there is always
a global CRS mode where all building blocks are of type
CRS [38,42]. To see this from our constraints, note that CRS
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blocks trivially satisfy the diagonal compatibility constraint
[Eq. (2)], and when we take αi, j = (−1)i+ jα, also the horizon-
tal and vertical compatibility constraints [Eq. (1)]. We refer to
a deformation of CRS blocks that satisfies these constraints
as an area of CRS with amplitude α. Any configuration of
building blocks with open boundaries supports a global area
of CRS with arbitrary amplitude. Another way to see this is to
note that locally, the CRS mode mCRS does not depend on the
building block’s orientation c.

To find additional modes in a given configuration, at least
one of the building blocks has to deform as type D. We now
show that any valid zero mode in a 2 × 2 plaquette cannot
contain a single D block. Consider a 2 × 2 configuration of
building blocks with an open boundary and assume that three
of the building blocks deform as CRS blocks (β1,2 = β2,1 =
β2,2 = 0) [Fig. 3(a)]. These three blocks deform such that

u2,1 = −l1,2. (3)

However, this is incompatible with a D block at site (1,1)—
irrespective of its orientation, for a D block v1,1 �= −r1,1, so
a D block is not compatible with three of such CRS blocks.
Clearly, this argument does not depend on the specific location
of the D blocks, since we are free to rotate the 2 × 2 configura-
tion and did not make any assumptions about the orientations
of any of the building blocks. Hence, valid zero modes in
any 2 × 2 plaquette cannot feature a single D building block
[Fig. 3(b)].

This implies that, first, in tilings that are at least of size
2 × 2, D blocks cannot occur in isolation. Second, this implies
that areas of CRS must always form a rectangular shape. To
see this, consider zero modes with arbitrarily shaped CRS
areas and consider 2 × 2 plaquettes near its edge [Fig. 3(c)].
Any concave corner would locally feature a 2 × 2 plaquette
with a single D block, and is thus forbidden; only straight
edges and convex corners are allowed. Hence, each area of
CRS must be rectangular. In general, this means that in a valid
zero mode the D and CRS blocks form a pattern of rectangular
patches of CRS in a background of D [Fig. 3(d)].

Note that our considerations above only indicate which
mode structures are forbidden. However, we have found that
modes can take most “allowed” shapes, including “edge”
modes where the D blocks form a strip near the boundary,
“stripe” modes where the D blocks form system spanning
strips, and “Swiss cheese” modes, where a background of D
blocks is speckled with rectangular areas of CRS [Fig. 3(d)].

We associate such modes with class (ii) or (iii) mode
scaling in unit cells. We observe that most edge modes in a
unit cell persist upon tiling of the unit cell by extending in
the direction of the edge, resulting in a single larger edge
mode [Fig. 3(e), left]. Swiss cheese modes can also persist
upon tiling of the unit cell by deforming compatibly with
itself or another Swiss cheese mode, creating a single larger
Swiss cheese mode [Fig. 3(e), right]. Thus, unit cells that
support only edge modes and Swiss cheese modes have class
(ii) mode scaling. Moreover, we will show that a special type
of stripe mode, “strip” modes, extend only along a single tiling
direction, and allow for more strip modes by a translation
symmetry [Fig. 3(e), middle]. Here we have found a rule on
the deformations of 2 × 2 plaquettes of building blocks that
restricts the structure of valid zero modes in larger tilings.

FIG. 3. (a) 2 × 2 configuration of building blocks with open
boundaries. Three building blocks deform compatibly as CRS blocks
(cyan solid squares) with amplitude α = 1, while the top left building
block is undetermined (gray dash-dotted square). (b) Left: Example
of an invalid zero mode. The top-left building block deforms in-
compatibly as a D block (pink dashed square) with its CRS block
neighbors (frustrated deformation is circled by thick red square).
Right: We describe the structure of a mode M in CRS blocks (cyan
and solid) and D blocks (pink and striped). In general, a valid zero
mode cannot contain any 2 × 2 configurations that deform with a sin-
gle D block surrounded by CRS blocks. Thus, 2 × 2 configurations
with a single D block are forbidden, which we label by a thick red
square. (c) Forbidden zero mode structures for a 6 × 6 configuration
with open boundaries. (d) Allowed zero mode structures for a 6 × 6
configuration with open boundaries. In Appendix B we show specific
realizations of “edge” modes (left), “stripe” modes (middle), and
“Swiss cheese” modes (right). (e) Zero mode structures for a 2 × 2
tiling of a 6 × 6 unit cell (thick black squares). Note that the strip of
D blocks in the stripe mode (middle) can be located in both the top
and bottom row of the tiling, and therefore leads to two valid zero
modes in the tiling.

V. STRIP MODES

We now focus on unit cells that are specifically of class
(iii). We argue that a unit cell that can deform with the
structure of a “strip” mode is a sufficient condition for the
number of modes NZM(n) to grow linearly with a � 1 for
increasingly large n × n tilings. Here we distinguish between
stripe modes and strip modes. We consider any zero mode
that contains a deformation of non-CRS sites located in a strip
enclosed by two areas of CRS a stripe mode [Fig. 3(d)]. Strip
modes are a special case of stripe-modes: in addition to the
aforementioned mode structure, we require the strip mode
to deform compatibly (anti-)periodically across its lateral
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FIG. 4. (a) Mode structure of a strip mode in a 6 × 6 unit cell.
The strip of width W deforms with strip deformation MSM (pink and
striped blocks) enclosed by two areas of CRS (cyan and solid blocks)
above and below the strip with CRS amplitudes αu and αv . (b) Unit
cells above and below the central unit cell deform compatibly with
the strip mode as global areas of CRS. The sign of the CRS am-
plitudes depends on the parity of k and the size of the area of CRS
above and below the strip. Unit cells to the left and right of the central
unit cell deform compatibly with the strip mode as strip modes. (c) A
6 × 6 unit cell with a W = 3 strip that supports a strip mode is tiled to
form a 3 × 3 metamaterial. This metamaterial supports a strip mode
in the bottom (left), middle (middle), and top (right) rows.

boundaries [Fig. 4(a)]. As we will show, this requirement
ensures that the strip mode persists in the metamaterial upon
tiling of the unit cell and in turn leads to a growing number of
zero modes with n. To find rules for unit cell configuration
C to support strip modes, we first in detail determine the
required properties of strip modes for class (iii) mode scaling.
We then use these properties to impose additional conditions
on the zero mode inside the strip of the configuration, strip
conditions, and introduce a transfer matrix-based framework
to find requirements on the configuration to support a strip
mode.

We now consider the required properties of a strip mode
for a k × k unit cell. We consider a unit cell in the center
of a larger metamaterial that features a horizontal strip mode
of width W [Fig. 4(a)]. In the strip mode, we take the areas
outside the strip to deform as areas of CRS with amplitudes
α = αu and α = αv for the areas above and below the strip,
respectively. We denote the deformation of the area inside
the strip as MSM and require the strip to contain at least one
D block. Compatibility between our central unit cell and its
neighbors requires neighboring areas of CRS to be compati-
ble. This is easy to do, as every unit cell is free to deform with
a unit cell-spanning area of CRS. Thus, the unit cells above
and below the central unit cell deform compatibly with the
strip mode if they deform completely as areas of CRS with
equal or staggered CRS amplitude αu and αv [Fig. 4(b)]. In
addition, we require compatibility between the central unit
cell and its left and right neighbors. Because the deformation
in the strip MSM deforms compatibly with (anti-)periodic strip

conditions across its lateral boundaries, unit cells to the right
and left of the central unit cell deform compatibly with
the strip mode if they deform as strip modes themselves
[Fig. 4(b)]. In an n × n tiling, all unit cells in any of the n
rows deforming as strip modes is a valid zero mode in the
larger metamaterial [Fig. 4(c)]. Therefore, we find a linearly
increasing number of zero modes NZM(n) for unit cells that
support a strip mode.

To find conditions on unit cell configurations C to support
a strip mode, we derive strip conditions from the structure of
the strip mode on the strip deformation MSM. Because areas
of CRS are independent of the orientations of the building
blocks in the area, we need only to find conditions on the
configuration of building blocks in the strip CSM. Without loss
of generality, we focus on horizontal strip modes only. We
consider a strip of building blocks CSM of length k and width
W and relabel the indices of our lattice such that (i, j) = (1, 1)
corresponds to the upper-left building block in the strip: the
row index is constrained to 1 � i � k and the column index
is constrained to 1 � j � W . For building blocks at the top
of the strip to deform compatibly with an upper CRS area we
require

ui,1 = −ui+1,1, (4)

to hold along the entire strip. We refer to this constraint as
the upper strip condition. Without loss of generality we can
set ui,1 = 0 everywhere along the strip to ease computation,
because we are free to add the global CRS mode with am-
plitude −αu to the full strip mode so as to ensure that the
upper deformation ui,1 = 0 for all i. Similarly, we require the
building blocks at the bottom of the strip to satisfy

vi,W = −vi+1,W (5)

along the entire strip. This constraint is referred to as the lower
strip condition. Finally, we require the strip deformation to
deform (anti-)periodically:

v1 =
{

(−1)kvk+1, if v1,W �= 0

|vk+1|, if v1,W = 0
, (6)

where the vector vi = (vi,1, vi,2, . . . , vi,W ) fully describes the
deformation of the building blocks in column i, if all de-
formations in the column satisfy the vertical compatibility
constraints [Eq. (1)]. We refer to this condition as the periodic
strip condition (PSC). We note that if the building blocks at the
bottom of the strip deform as vi,W = 0, both antiperiodic and
periodic strip conditions result in a valid strip deformation.

Together with the horizontal and vertical compatibility
constraints [Eq. (1)] and diagonal compatibility constraints
[Eq. (2)], the strip conditions [Eq. (4) and Eq. (5)] allow us
to check if a configuration of building blocks in strip SM can
satisfy all constraints and thus allow for a strip mode.

VI. TRANSFER MAPPING FORMALISM

Now, we aim to derive necessary and sufficient require-
ments for configurations of building blocks in a strip of width
W , CSM, such that they allow for a valid strip deformation
MSM. To find such conditions, we introduce here transfer
mappings that relate deformations in a column of building
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FIG. 5. (a)–(f) Stepwise schematic illustration of our transfer
mapping of deformations in a column of building blocks in the
strip (white squares) to the next column in the strip; see main text.
Yellow circles (light gray) indicate known deformations of the build-
ing blocks, the upper white half-circles represent the upper strip
condition [Eq. (4)]. (g)–(i) Schematic illustration of the constraints
and conditions on the strip deformation; see main text. Red squares
(dark gray) indicate known diagonal deformation dz of the building
blocks, the lower white half-circles represent the lower strip condi-
tion [Eq. (5)], and the lower numbers enumerate the columns for a
strip of length k.

blocks to deformations in its neighboring columns. We will
show later that these transfer mappings allow us to relate
constraints and conditions on zero modes to requirements on
the strip configuration.

To derive such transfer mappings, we first derive linear
mappings between the pairs of degrees of freedom that char-
acterize the zero mode mz: the amplitudes of the CRS and D
mode (αz, βz ), the vertical edges (uz, vz ) and horizontal edges
(lz, rz ). Subsequently, we derive a framework to construct strip
modes: we fix the orientations cz throughout the strip (CSM).
We first fix the (uz, vz ) deformations for the left-most blocks
in the strip [Fig. 5(a)]. Then, using our linear maps, we de-
termine (lz, rz ) for these blocks [Fig. 5(b)]. We use the upper
strip condition [Eq. (4)] to determine uz of the top block in
the second column, and the horizontal compatibility constraint
[Eq. (1)] to determine lz of the second column [Fig. 5(c)].
Then we use a linear map to determine (vz ) of the first block
in the second column, and use vertical compatibility constraint
[Eq. (1)] to determine (uz ) of the second block in the second
column [Fig. 5(d)]. Repeating this last step, we obtain (uz, vz )
of the second column [Figs. 5(e) and 5(f)], after which we
can iterate this process to obtain (uz, vz, lz, rz ) throughout the
strip. While above we have worked with upper and lower ver-
tical edges (uz, vz ), we note that the deformations in a column
follow from only the lower vertical edges vz in a column of
building blocks vi, where uz follows from applying the vertical
compatibility constraint [Eq. (1)]. Thus, the deformation of
building blocks in column i + 1 is fully determined by the de-
formation in column i by satisfying the vertical and horizontal
compatibility constraints and the upper strip condition.

TABLE I. Values for the coefficients Lu, Lv, Ru, Rv for the
(uz, vz ) to (lz, rz ) mapping [Eq. (9)] and the coefficient Do for the
(uz, vz ) mapping to do

z for a building block of orientation cz =
{NE, SE, SW, NW} [Eq. (10)].

NE SE SW NW

Lu −1/2 −1/2 −3/2 1/2
Lv −1/2 −1/2 1/2 −3/2
Ru 1/2 −3/2 −1/2 −1/2
Rv −3/2 1/2 −1/2 −1/2
DNE 1 0 0 0
DSE 0 −1 0 0
DSW 0 0 −1 0
DNW 0 0 0 1

We refer to the linear mappings relating the deformations
of column i, vi, to the deformations in adjacent column i + 1,
vi+1, as a linear transfer mapping T (ci, ci+1) which depends
on the orientations of the building blocks in the two columns.
Thus, by iterating this relation, the strip deformation is deter-
mined entirely by the deformations v1 of the leftmost column.

A. Linear degree of freedom transformations

To derive these transfer mappings, we require linear
mappings between the pairs of degrees of freedom that char-
acterize the zero mode mz. For given set of orientations {cz},
we derive linear mappings from the mode amplitudes (αz, βz )
to vertical edges (uz, vz ) to horizontal edges (lz, rz ) and find
that they all are nonsingular—this implies that any of these
pairs fully characterizes the local soft mode mz.

First, we define � as(
uz

vz

)
= �(cz )

(
αz

βz

)
. (7)

Subsequently, we express (lz, rz ) in terms of (uz, vz ) as(
lz
rz

)
= �(cz )

(
αz

βz

)
= �(cz )�−1(cz )

(
uz

vz

)
. (8)

Explicit expressions for the 2 × 2 matrices � and � are given
in the Appendix C. Finally, we rewrite this equation as (see
Table I): (

lz
rz

)
=

(
Lu(cz ) Lv (cz )

Ru(cz ) Rv (cz )

)(
uz

vz

)
. (9)

Similarly, we can express the diagonal edge do
z at orientation

o in terms of (uz, vz ) as (see Appendix C)

do
z = Do(cz )(−uz + vz ), (10)

where the coefficients Do(cz ) are given in Table I for all orien-
tations o = {NE, SE, SW, NW}. We note that for CRS blocks
where uz = vz this equation immediately gives do

z = 0 for all
orientations o. Together, Eqs. (9) and (10) allow to express
all building block deformations as linear combinations of the
vertical deformations (uz, vz ).
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(a)

W

(b)

FIG. 6. (a) A seemingly valid strip deformation of width W = 4
(thick black solid line) can be decomposed into two strips of smaller
widths (thick, red dashed and yellow dash-dotted lines) if it does not
satisfy the CC and NT conditions. (b) Realization of a W = 4 strip
deformation (thick black solid line) that does not satisfy the CC and
NT conditions: it can be decomposed into W ′ = 2 (enclosed in thick
red dashed line) and W ′ = 1 (thick yellow dash-dotted line) strips
that individually satisfy the NT and CC conditions.

VII. CONSTRAINTS AND SYMMETRIES

Here we define a general framework based on transfer map-
pings and constraint counting to determine if a given (strip)
configuration CSM supports a valid strip mode MSM. The strip
deformation v1 describes a valid strip mode only if it leads
to a deformation which satisfies the diagonal compatibility
constraints [Eq. (2)] [Fig. 5(g)], the lower strip conditions
[Eq. (5)] [Fig. 5(h)] and the periodic strip condition [Eq. (6)]
[Fig. 5(i)] everywhere along the strip. To determine if these
constraints are satisfied by the deformation v1, we use the
transfer mapping to map all the constraints throughout the
strip to constraints on v1. Since each additional column yields
additional constraints, we obtain a large set of constraints on
v1, and without symmetries and degeneracies, one does not
expect to find nontrivial deformations which satisfy all these
constraints. However, for appropriately chosen orientations of
the building blocks, many constraints are degenerate, due to
the underlying symmetries. Hence, we can now formulate two
conditions for obtaining a nontrivial strip mode of width W .

First, after mapping all the constraints in the strip to con-
straints on v1, and after removing redundant constraints, the
number of nondegenerate constraints should equal W − 1 so
that the strip configuration contains a single non-CRS floppy
mode. We refer to this condition as the constraint counting
(CC) condition. Second, we focus on irreducible strip modes
of width W , and exclude strip deformations composed of strip
modes of smaller width or rows of CRS blocks [Fig. 6(a)].
Such reducible strip deformations not only satisfy all con-
straints in a strip of width W , but also in an encompassing
strip of width W ′ < W [Fig. 6(b)]. Irreducible strip modes of
width W do not satisfy all constraints for any encompassing
strips of width W ′ < W . We refer to this condition as the
nontrivial (NT) condition as it excludes rows of CRS from
the strip mode, which are trivial solutions to the imposed
constraints. Valid strip modes are those that satisfy both CC
and NT conditions.

To map all constraints to v1, we use the linear mapping
between the diagonal edge dz and (uz, vz ) [Eq. (10)] such
that the diagonal compatibility constraints [Eq. (2)] can be
expressed in vz. The diagonal compatibility constraints, lower

strip conditions [Eq. (5)] and periodic strip condition [Eq. (6)]
can all be expressed in vz and then be mapped to v1 by
iteratively applying the set of transfer mappings {T (ci, ci+1)}.

This constraint mapping method allows us to systemati-
cally determine if a given strip configuration CSM supports a
valid strip mode MSM:

(1) Determine the set of transfer matrices {T (ci, ci+1)}.
(2) Express the diagonal compatibility constraints

[Eq. (2)], lower strip conditions [Eq. (5)], and periodic
strip condition [Eq. (6)] in terms of {vi}.

(3) Map the set of all constraints to constraints on v1 using
the transfer matrices.

(4) Check if the CC and NT conditions are satisfied on v1.
In what follows, we consider the transfer mappings and

constraints explicitly for strips of widths up to W = 3 and
derive geometric necessary and sufficient rules for the ori-
entations cz of the building blocks to satisfy the CC and NT
conditions. Finally, we consider strips of even larger width W
and construct sufficient requirements on strip configurations.

VIII. DERIVING RULES FOR STRIP MODES

Here we aim to derive design rules for strip modes. We
first derive necessary and sufficient conditions on strip con-
figurations CSM of widths up to W = 3. Then we use those
requirements to conjecture a set of general rules for strips of
arbitrary widths. We provide numerical proof that these rules
are correct and use them to generate a W = 10 example that
we would not have been able to find through Monte Carlo
sampling of the design space.

A. Case 1: W = 1

We now derive necessary and sufficient conditions on the
orientations of the building blocks for strip modes of width
W = 1 to appear [Fig. 7(a)]. We show that a simple pairing
rule for the orientations of neighboring building blocks gives
necessary and sufficient conditions for such a configuration
to support a valid strip mode, i.e., a strip deformation that
satisfies the horizontal compatibility constraints [Eq. (1)], the
diagonal compatibility constraints [Eq. (2)], the upper strip
conditions [Eq. (4)], the lower strip conditions [Eq. (5)], and
the periodic strip condition [Eq. (6)] [see Fig. 7(a)] in addition
to the constraint counting (CC) and nontrivial (NT) condi-
tions.

First, we derive the transfer mapping that maps the defor-
mations of building block (i, 1) to block (i + 1, 1) for general
orientations (ci,1, ci+1,1). Without loss of generality, we set
the amplitude αu = 0 such that ui,1 = 0 everywhere along the
strip—this trivially satisfies the upper strip condition [Eq. (4)]
(recall that we can always do this by adding a global CRS
deformation of appropriate amplitude to a given mode). The
deformations of each building block are now completely de-
termined by choosing vi,1. However, these cannot be chosen
independently due to the various constraints. Implementing
the horizontal compatibility constraints and upper strip condi-
tion, we find that the vi,1 in adjacent blocks are related via a
linear mapping (see Appendix D):

vi+1,1 = − Rv (ci,1)

Lv (ci+1,1)
vi,1, (11)
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FIG. 7. (a) Schematic representation of the degrees of freedom,
constraints, and mapping for a W = 1 strip mode of length k = 4 in
the vertex representation. The building blocks in the strip and lower
CRS area are highlighted with pink (dashed) and blue (solid) boxes;
the upper CRS area has amplitude zero. Applying the horizontal
compatibility constraint and upper strip condition leads to a map-
ping from vi,1 to vi+1,1. We show the deformation of each building
block in the strip for such a mapping with v1,1 = 2. The diagonal
compatibility constraints are indicated by

∑ = 0 in thick red dashed
boxes and are all satisfied by the mapping. The lower strip condition
(vi,1 = −vi+1,1, arrows) and periodic strip condition (v1,1 = v5,1, long
arrow) are also satisfied by the mapping. The strip therefore deforms
compatibly with the lower CRS area with amplitude two. (b) The
six h-pairs of horizontally adjacent building blocks (ci,1, ci+1,1) that
satisfy Eq. (12) and examples of their deformations in vertex rep-
resentation obtained from the map [Eq. (11)] with vi,1 = 2. Note
that dNE

i,1 = −dNW
i+1,1 and dSE

i,1 = −dSW
i+1,1 are satisfied either trivially

or by the transfer mapping [Eq. (11)] (corner nodes highlighted
with thick red squares) for all h-pairs. (c) Example of a k = 4 strip
configuration (top) deformed as a valid strip mode MSM (bottom,
vertex representation) that satisfies all compatibility constraints and
strip conditions. (d) Example of a k = 4 strip configuration (top) that
can only satisfy all compatibility constraints and strip conditions by
not deforming (bottom, vertex representation).

where the values of Rv (c) and Lv (c) are given in Table I. We
interpret this mapping as a simple (scalar) version of a transfer
mapping [see Fig. 7(a)]. The idea is then that, by choosing
v1,1 and iterating the map [Eq. (11)], we determine a strip de-
formation which satisfies both the upper strip conditions and
horizontal compatibility constraints. The goal is to find values
for the orientations ci,1 that produce a valid strip mode, i.e.,
a deformation which also satisfies the diagonal compatibility
constraints [Eq. (2), red dashed boxes in Fig. 7(a)], lower strip
conditions [Eq. (5), black arrows in Fig. 7(a)], periodic strip
condition [Eq. (6), long black arrow in Fig. 7(a)], and CC and
NT conditions—note that if we take v1,1 = 0, all deformations
throughout the unit cell are zero, and we have simply obtained
a zero amplitude CRS mode, which is not a valid strip mode
[see example in Fig. 7(d)].

To construct configurations that produce a valid strip mode,
we first consider an example. In this example, we consider
only orientations (ci,1, ci+1,1) that satisfy

Rv (ci,1) = Lv (ci+1,1), (12)

and show that this is a sufficient condition to produce a valid
strip mode. We refer to the six pairs (ci,1, ci+1,1) that satisfy
condition Eq. (12) as h-pairs (for horizontal) [Fig. 7(b)].

We find that configurations consisting only of h-pairs sat-
isfy the lower and periodic strip conditions and diagonal
compatibility constraints. Specifically, we find the following
for h-pairs:

(1) The map Eq. (11) simplifies to vi+1,1 = −vi,1 and
thus directly satisfies the lower strip condition [Eq. (5)] and
periodic strip condition [Eq. (6)] by iterating the map, see
deformations in Fig. 7(b).

(2) The diagonal compatibility constraints are either triv-
ially satisfied or the same as the map Eq. (11) and thus impose
no constraints on vi,1. To see this, note that the diagonal com-
patibility constraint [Eq. (2)] is required to be satisfied at all
corner nodes in the strip [pink squares in Fig. 7(a)]. Note that
away from the strip, all diagonals are zero (recall that a CRS
block always has dc = 0). Thus, the diagonal compatibility
constraint at the corner nodes shared between two building
blocks in a pair simplifies to dNE

i,1 = dNW
i+1,1 and dSE

i,1 = dSW
i+1,1

[see Fig. 7(a)]. For the six h-pairs, there are four pairs where
all diagonals in the constraints are zero, i.e., trivially satisfied,
and two pairs where the diagonals are nonzero [highlighted in
red in Fig. 7(b)]. For the latter case, the diagonal compatibil-
ity constraint implies that vi,1 = −vi+1,1—this follows from
ui,1 = 0 and the mapping [Eq. (10)]—which is the same as
the map [Eq. (11)].

Thus, all conditions and constraints are trivially satisfied
for strip configurations consisting only of h-pairs; see Fig. 7(c)
for an example.

Such strip configurations thus impose no constraints on
v1, thereby satisfying the constraint counting (CC) condition.
Additionally, such configurations satisfy the nontrivial (NT)
condition as well so long as v1,1 �= 0. Hence, the pairing rule

(i) Every pair of horizontally adjacent building blocks in
the strip must be an h-pair.
is a sufficient condition to obtain valid W = 1 strip modes, and
thus class (iii) mode scaling. It is also a necessary condition,
because any pair that does not satisfy condition Eq. (12) does
not trivially satisfy the lower strip condition [Eq. (5)], break-
ing the CC condition, and thus only satisfies all compatibility
constraints and strip conditions of a strip mode for v1,1 = 0,
breaking the NT condition; see Fig. 7(d) for an example.
Concretely, when u1,1 and v1,1 are both zero, the whole de-
formation is zero, which is not a valid strip mode but rather a
zero amplitude CRS mode. Hence, the pairing rule (i) is a nec-
essary and sufficient condition to obtain W = 1 strip modes.

B. Case 2: W = 2

Now, we consider strips of width W = 2. Strip deforma-
tions in such strips have an additional degree of freedom, vi,2,
compared to strips of width W = 1. To result in a valid strip
mode there must be one constraint on the strip deformation
v1 to satisfy the constraint counting (CC) condition. We show
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FIG. 8. (a) The transfer matrix T (ci, ci+1) maps the displacements vi = (vi,1, vi,2) of the building blocks in column i, ci, to the displace-
ments vi+1 of the building blocks in column i + 1, ci+1, indicated by →. (b) Three constraints on the strip deformation vi that break the
nontrivial (NT) condition in any 2 × 2 strip configuration. The strip deformation can only satisfy the constraint by deforming rows of the
strip as blocks of CRS (solid cyan); either both rows (i), the top row (ii), or the bottom row (iii). (c) The 16 possible pairs of horizontally
adjacent building blocks can be divided in four categories: horizontal (h, green), down (d, blue), up (u, orange), and vertical (s or s, red).
(d) A strip configuration (top) consisting solely of (d, u)-pairs can deform as a valid W = 2 strip mode. A realization of valid strip mode with
v1 = (−2, 0) is shown in vertex representation (middle) and schematic representation (bottom). (e) A strip configuration (top) consisting solely
of (h, h)-pairs supports two W = 1 strip modes (middle: vertex representation, bottom: schematic representation), as (h, h)-pairs impose no
constraint on the strip deformation thereby breaking the constraint counting (CC) condition. Note that only part of the strip is shown; a strip
consisting only of (h, h)-pairs must always have an even strip length k. (f) A strip configuration (top) consisting of a (d, u)-pair and (h, h)-pair.
The (d, u)-pair imposes the constraint v1,2 = 0 on the strip deformation v1. A realization of a valid strip mode with v1 = (−2, 0) is shown in
vertex representation (middle) and schematic representation (bottom). (g) An invalid strip configuration (top), consisting of a (d, h)- and (h,
u)-pair. The constraints imposed on the strip deformation, v1,1 = 0 and v2,1 = −v2,2, result in the strip being unable to deform, i.e., v1 = (0, 0)
(middle: vertex representation, bottom: schematic representation).

that a simple adjustment and addition to the pairing rule re-
sults in a sufficient and necessary condition to obtain W = 2
strip modes.

First, we extend our transfer mapping to account for the
extra row of building blocks in the strip. We again set the
amplitude αu = 0, so that the deformations of column i
are completely determined by fixing vector vi = (vi,1, vi,2)
(Fig. 5). We now aim to obtain a complete map from vi to vi+1.
Note that the map for vi+1,1 does not depend on the extra row
of building blocks and therefore follows the map [Eq. (11)]
derived for W = 1 strip modes. To obtain a map for vi+1,2, we
note that for the building blocks in column i + 1 to deform
compatibly, we require the vertical compatibility constraint
[Eq. (1)] to be satisfied (Fig. 5). Then, by implementing the
horizontal and vertical compatibility constraints, we find a
linear mapping for vi+1,2 which depends on both vi,1 and vi,2

(see Appendix D):

vi+1,2 = Lu(ci+1,2)

Lv (ci+1,2)

(
Ru(ci,2)

Lu(ci+1,2)
− Rv (ci,1)

Lv (ci+1,1)

)
vi,1

− Rv (ci,2)

Lv (ci+1,2)
vi,2. (13)

Together, Eq. (11) and Eq. (13) form the transfer mapping
from vi to vi+1, which we capture compactly as vi+1 =
T (ci, ci+1)vi [see Fig. 8(a) for a schematic representation],
where

T (ci, ci+1) =
⎛
⎝ − Rv (ci,1 )

Lv (ci+1,1 ) 0
Lu(ci+1,2 )
Lv (ci+1,2 )

[ Ru(ci,2 )
Lu(ci+1,2 ) − Rv (ci,1 )

Lv (ci+1,1 )

] − Rv (ci,2 )
Lv (ci+1,2 )

⎞
⎠.

(14)
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Note that T (ci, ci+1) is a lower-triangular transfer matrix
which depends on only the orientations ci = (ci,1, ci,2) of col-
umn i and column i + 1.

Now, we want to find values for the orientations ci that
produce a valid strip mode, i.e., a deformation which sat-
isfies all constraints: the diagonal compatibility constraints
[Eq. (2)], the lower strip condition [Eq. (5)], and periodic
strip condition [Eq. (6)]. Additionally, the strip deformation
v1 should satisfy the CC and NT conditions. We note that
v1 = 0 corresponds to the strip deforming as an area of CRS
[Fig. 8(b)–8(i)]. Additionally, v1,1 = 0 while v1,2 �= 0 corre-
sponds to the top row deforming as an area of CRS with zero
amplitude [Fig. 8(b)–8(ii)] and v1,1 = −v1,2 corresponds to
the bottom row deforming as an area of CRS with arbitrary
amplitude [Fig. 8(b)–8(iii); see Appendix E]. All these cases
break the nontrivial (NT) condition as they describe strip
deformations completely or in part composed of rows of CRS
blocks and thus do not represent valid W = 2 strip modes. We
exclude these configurations.

To construct valid strip configurations, we consider 2×2
configurations of building blocks (ci, ci+1). We compose such
2 × 2 configurations by vertically stacking pairs of horizon-
tally adjacent building blocks (ci,1, ci+1,1) and (ci,2, ci+1,2) for
the top row and bottom row. There are 16 different pairs, and
we note these can be grouped in four categories, depending on
the corresponding values of Ru, Rv, Lu, and Lv (Table I):

h-pairs :
Ru(ci, j )

Lu(ci+1, j )
= Rv (ci, j )

Lv (ci+1, j )
= 1, (15)

u-pairs :
Ru(ci, j )

Lu(ci+1, j )
= −1, (16)

d-pairs :
Rv (ci, j )

Lv (ci+1, j )
= −1, (17)

s-pairs :
Ru(ci, j )

Lv (ci+1, j )
= Rv (ci, j )

Lu(ci+1, j )
= 1. (18)

Each of the 16 possible pairs satisfy only one of these condi-
tions [Fig. 8(c)]. We denote groups of 2 × 2 configurations as
vertical stacks of such pairs, e.g., a (d, u)-pair obeys the con-
dition for d-pairs [Eq. (17)] for (ci,1, ci+1,1) and the condition
for u-pairs [Eq. (16)] for (ci,2, ci+1,2); see Figs. 8(d) and 8(f)
for examples of (d, u)-pairs.

By stacking pairs, there are 162 possible 2 × 2 configura-
tions. We now show that (d, u)-pairs and (h, h)-pairs are the
only 2 × 2 configurations that make up strip configurations
that support valid W = 2 strip modes. First, we will show
that a strip composed only of (d, u)-pairs results in a valid
strip mode. Second, we show that a strip composed only of (h,
h)-pairs does not result in a single W = 2 strip mode, but in
two W = 1 strip modes, breaking the CC condition. Finally,
we show that combining (h, h)-pairs and (d, u)-pairs in a strip
configuration results in a valid W = 2 strip mode.

First, we consider (d, u)-pairs and show that these satisfy
all conditions for a valid strip mode, provided that a single
constraint on vi is satisfied. First, from Eq. (16) and Eq. (17)
we see that such pairs satisfy the condition

Ru(ci,2)

Lu(ci+1,2)
= Rv (ci,1)

Lv (ci+1,1)
, (19)

which implies that the transfer matrix T ((d, u)) [Eq. (14)]
is purely diagonal. The map [Eq. (13)] from vi,2 to vi+1,2 is
thus independent of vi,1. We now show that the choice v1 =
(v1,1, 0), which satisfies the constraint v1,2 = 0, produces a
valid strip mode for v1,1 �= 0; see Fig. 8(d) for an example
strip deformation. This choice clearly satisfies the lower strip
condition [Eq. (5)]. Moreover, the diagonal compatibility con-
straints [Eq. (2)] on corner nodes between the two columns
i and i + 1 are also satisfied by the constraint vi,2 = 0, re-
gardless of the precise orientations of the building blocks as
can be shown (see Appendix F 1). Finally, by iterating the
transfer map [Eq. (14)] for a strip that consists only of (d,
u)-pairs, we find that v1,1 = vk+1,1 and v1,2 = vk+1,2 = 0, i.e.,
the periodic strip condition [Eq. (6)] is satisfied. Thus, a strip
consisting only of (d, u)-pairs satisfies all constraints in the
strip by imposing a single constraint on v1, satisfying the CC
condition, and satisfies the NT condition so long as v1,1 �= 0.
The resulting strip deformation is characterized by the choices
of ci, j and v1 = (v1,1, 0).

Second, we consider (h, h)-pairs and show that, while
satisfying the diagonal compatibility constraints [Eq. (2)],
lower strip conditions [Eq. (5)], and periodic strip conditions
[Eq. (6)], they in fact lead to two adjacent W = 1 strip modes,
breaking the CC condition. Using Eq. (15) and the definition
of the transfer matrix, we find that T ((h, h)) = −I , where I
is the identity matrix. Thus, (h, h)-pairs trivially satisfy the
lower strip condition and diagonal compatibility constraints
[see Appendix G; see Fig. 8(e) for examples of strip deforma-
tions]. Additionally, a strip that consists only of (h, h)-pairs
maps v1, j = (−1)kvk+1, j by iterating the transfer mapping
[Eq. (14)] and thus satisfies the periodic strip condition. How-
ever, a strip which consists only of (h, h)-pairs does not place
any constraints on v1 and retains the two degrees of freedom
that each can describe valid W = 1 strip modes [Fig. 8(e)],
breaking the CC condition. Thus, a strip composed only of
(h, h)-pairs does not support one W = 2 strip mode, but two
W = 1 strip modes.

We now consider combining (h, h)-pairs and (d, u)-pairs
in a single strip and show that such a strip supports a valid
W = 2 strip mode. We note that for both pairs, the transfer
matrix [Eq. (14)] is diagonal. Thus, the constraint from a (d,
u)-pair anywhere in the strip, vi,2 = 0, to satisfy the diagonal
compatibility constraints [Eq. (2)] and lower strip condition
[Eq. (5)] locally maps to the constraint v1,2 = 0 on v1. Both
(h, h)-pairs and (d, u)-pairs satisfy the diagonal compati-
bility constraints and lower strip condition locally with this
constraint; see Fig. 8(f) for an example strip deformation.
To result in valid strip mode, we also require the periodic
strip condition [Eq. (6)] to be satisfied. We find that v1,2 =
vk+1,2 = 0 and v1,1 = (−1)No.(h,h)vk+1,1, where No.(h, h) is
the number of (h, h)-pairs in the strip with periodic bound-
ary conditions, thereby satisfying the periodic strip condition
[Eq. (6)].

Thus, a strip that consists of any number of (h, h)-pairs and
at least one (d, u)-pair satisfies all constraints as well as the CC
and NT conditions when v1 = (v1,1, 0) with v1,1 �= 0, thereby
resulting in a valid W = 2 strip mode. Hence, the pairing rules
for configurations that support valid W = 2 strip modes are
the following:
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(i) Every 2 × 2 configuration of building blocks in the
strip must be an (h, h)-pair or (d, u)-pair.

(ii) There must be at least a single (d, u)-pair in the strip.
These are sufficient conditions to obtain W = 2 strip

modes. They can also be shown to be necessary conditions,
because any pair that is not a (h, h)-pair or (d, u)-pair con-
strains the strip deformation v1 to v1,1 = 0, or v1,1 = −v1,2, or
both (see Appendix F 1), thereby breaking the nontrivial (NT)
condition and therefore does not result in a valid W = 2 strip
mode [Fig. 8(g)]. Hence, these pairing rules are necessary
and sufficient conditions on the strip configuration to obtain
W = 2 strip modes.

C. Case 3: W = 3

Finally, we consider strips of width W = 3. We show that
in addition to simple adjustments to the pairing rules, we
require an additional rule restricting the ordering of pairs in
the strip configuration. This ordering rule highlights that the
problem of constructing configurations that support valid strip
modes is not reducible to a tiling problem which relies on
nearest-neighbor interactions, but rather requires information
of the entire strip configuration. This is surprising, as these
rules emerge from local compatibility constraints. The new set
of rules that we obtain are necessary and sufficient conditions
to obtain W = 3 strip modes.

First, we extend our transfer mapping to account for the ex-
tra row of building blocks in the strip. As in the previous two
cases, we set the amplitude αu = 0 such that the deformations
of column i are completely determined by fixing vector vi =
(vi,1, vi,2, vi,3). We again want to obtain a complete map from
vi to vi+1. The maps for vi+1,1 and vi+1,2 do not depend on the
extra row of building blocks and therefore follow Eq. (11) and
Eq. (13), respectively. To obtain a map for vi,3, we implement
the horizontal and vertical compatibility constraints [Eq. (1)]
and find a linear mapping for vi+1,3 (see Appendix D):

vi+1,3 = Lu(ci+1,2)

Lv (ci+1,2)

Lu(ci+1,3)

Lv (ci+1,3)

[
Ru(ci,2)

Lu(ci+1,2)
− Rv (ci,1)

Lv (ci+1,1)

]
vi,1

+ Lu(ci+1,3)

Lv (ci+1,3)

[
Ru(ci,3)

Lu(ci+1,3)
− Rv (ci,2)

Lv (ci+1,2)

]
vi,2

− Rv (ci,3)

Lv (ci+1,3)
vi,3. (20)

Together, Eq. (11), Eq. (13), and Eq. (20) form the transfer
mapping from vi to vi+1, which we capture compactly as
vi+1 = T (ci, ci+1)vi. Note that the transfer matrix T (ci, ci+1)
is now a 3 × 3 lower-triangular matrix that depends on the ori-
entations ci = (ci,1, ci,2, ci,3) of the building blocks in column
i and column i + 1.

Now, we want to find values for the orientations ci that
produce a valid strip mode, i.e., a deformation v1 which sat-
isfies all constraints: the diagonal compatibility constraints
[Eq. (2)], lower strip condition [Eq. (5)], and periodic strip
condition [Eq. (6)]. Additionally, the strip deformation v1

should satisfy the CC and NT conditions. We note that v1 = 0
corresponds to the strip deforming as an area of CRS with zero
amplitude, i.e., not deforming at all. Additionally, v1,1 = 0
with v1,2 �= 0 and v1,3 �= 0 corresponds to the top row not
deforming at all and v1,2 = −v1,3 with v1,1 �= 0 corresponds

to the bottom row deforming as an area of CRS with arbitrary
amplitude. All these cases break the nontrivial (NT) condi-
tion as they describe strip deformations completely or in part
composed of rows of CRS blocks and thus do not describe
valid W = 3 strip modes. We exclude these configurations.

To construct valid strip configurations, we consider 2×3
configurations of building blocks (ci, ci+1). Again, we com-
pose such configurations by vertically stacking pairs of
horizontally adjacent building blocks (ci, j, ci+1, j ) for the top
row j = 1, middle row j = 2 and bottom row j = 3, e.g.,
a triplet of d-, u-, and h-pairs, which we denote as a (d, u,
h)-pair, satisfies condition [Eq. (17)] for (ci,1, ci+1,1), satisfies
condition [Eq. (16)] for (ci,2, ci+1,2) and satisfies condition
[Eq. (15)] for (ci,3, ci+1,3); see Fig. 9(a) for an example of
a (d, u, h)-pair. Additionally, we now distinguish between the
s-pair (ci, j, ci+1, j ) = (NE, SW) and the s-pair (ci, j, ci+1, j ) =
(SE, NW) [Fig. 8(b)] despite both pairs satisfying condition
[Eq. (18)] as configurations composed of such pairs impose
distinct constraints on the local strip deformation vi.

In what follows, we will show that a valid strip configura-
tion consists only of (h, h, h), (d, u, h), (h, d, u), (d, s, u) and (d,
s, u)-pairs. Specifically, we will show the following for strip

configurations composed of such pairs:
(1) Each of these configurations except (h, h, h)-pairs

imposes one or two constraints out of a set of four possi-
ble constraints on the deformation vi to satisfy the diagonal
compatibility constraints [Eq. (2)] and lower strip condition
[Eq. (5)] locally.

(2) Upon applying the transfer mapping T (ci−1, ci ), each
of the four possible constraints on vi map to constraints on
vi−1 that are degenerate to the four possible constraints that
can be imposed by the (ci−1, ci )-pair locally on vi−1 for most
valid 2 × 3 configurations. For the other valid configurations,
the mapped constraints and local constraints imposed by the
(ci−1, ci )-pair on vi−1 together break the CC or NT conditions
and do not result in a valid W = 3 strip mode. We exclude
such combinations.

(3) Constraints on the configurational ordering of
(ci, ci+1)-pairs are captured with a simple additional rule.

We now consider these points one by one.
First, we find that for (d,u,h)-pairs, (h, d, u)-pairs, (d, s, u)-

pairs, and (d, s, u)-pairs the diagonal compatibility constraints
[Eq. (2)] and lower strip condition [Eq. (5)] are satisfied
locally by satisfying one or two of four different constraints
on vi. These four different constraints are (see Appendix F 2):

vi,2 = 0, (21)

2vi,1 = −vi,2, (22)

vi,1 = vi,3, and (23)

vi,1 = −vi,3. (24)

We find that a (d, u, h)-pair imposes constraint [Eq. (21)], a
(h, d, u)-pair imposes constraint [Eq. (23)], a (d, s, u)-pair
imposes constraints [Eq. (21)] and [Eq. (24)], and a (d, s,
u)-pair imposes constraints [Eq. (22)] and [Eq. (23)] on vi

[Fig. 9(a)]. An (h, h, h)-pair trivially satisfies the diagonal
compatibility constraints and lower strip condition and does
not place any constraints on vi.

065002-12



EMERGENT NONLOCAL COMBINATORIAL DESIGN … PHYSICAL REVIEW E 108, 065002 (2023)

FIG. 9. (a) 2 × 3 configurations (ci, ci+1) consisting of triplets of (d, u, h)-pairs, (d, s, u)-pairs, (d, s, u)-pairs, and (h, d, u)-pairs, impose one
or two of four constraints [Eqs. (21)–(24), labeled 1 to 4, respectively] on the local strip deformation vi. We indicate this by black solid arrows.
Note that the shown configurations are examples of the indicated pair type; other configurations that belong to the same type are possible. (b) A
tiling of a (h, d, u)-pair and (d, u, h)-pair. Both pairs impose a constraint on their local strip deformation, vi−1 and vi, respectively, indicated
by solid black arrows pointing to squares with numbers corresponding to the constraints as indicated in (a). Additionally, the constraint on vi

can be mapped using the transfer matrix T ((h, d, u)) to a constraint on vi−1. This imposes constraint 2 with i �→ i − 1 on vi−1, the transfer
mapping is indicated by the dashed arrow. (c) The constraints map from a constraint on strip deformation vi to a constraint on vi−1 under
application of the transfer mapping T (ci−1, ci ) (dashed arrows) for the configurations (ci−1, ci ) as indicated next to the arrows. Note that here
we only consider (h, h, h)-pairs, (d, u, h)-pairs, (h, d, u)-pairs, (d, s, u)-pairs and (d, s, u)-pairs. A constraint maps to the indicated constraint
with i �→ i − 1. Constraints are labeled by number as indicated in (a). Every constraint can map to a constraint that breaks the NT condition.
(d) Example of a valid k = 4 strip configuration supporting a W = 3 strip mode. Notice that we take periodic boundary conditions. There
are two mapped and local constraints on v1, thereby satisfying the CC condition, and both results do not break the NT condition, resulting in
a valid W = 3 strip mode. (e) Example of an invalid strip configuration that does not support a valid W = 3 strip mode. There is only one
mapped and local constraint on v1, breaking the CC condition. The strip deformation can be decomposed into a W = 1 strip mode and W = 2
strip mode. (f) Example of an invalid strip configuration that does not support a valid W = 3 strip mode. Some constraints map to a constraint
that breaks the NT condition, resulting in an invalid strip deformation.

Now we combine the valid 2 × 3 configurations (h, h,
h)-pairs, (h, d, u)-pairs, (d, u, h)-pairs, (d, s, u)-pairs and
(d, s, u)-pairs in a strip configuration; see Fig. 9(b) for an
example. We find that most combinations of these configu-
rations result in a valid strip mode, but there are exceptions
for which we devise a rule. First, we consider each of the
four constraints [Eqs. (21)–(24)] on vi and use the transfer
mapping T (ci−1, ci ) to transform each constraint to a con-
straint on vi−1 for each valid 2 × 3 configuration (ci, ci+1) (see
Appendix H). The total set of constraints on vi−1 then consists
of the mapped constraint(s) and local constraints imposed by
the configuration (ci−1, ci ) [Fig. 9(b)]. To have a valid strip
mode, the total number of constraints must equal two to satisfy
the CC condition. Additionally, none of the constraints may
result in a strip deformation that does not satisfy the NT
condition.

We find that the four constraints on vi [Eqs. (21)–(24)]
map within the set of these same four constraints with in-
dex i �→ i − 1 on vi−1 for most configurations (ci−1, ci ) [see
Appendix I; Fig. 9(c)]. However, for some configurations,
the mapped constraints, when taken together with the local

constraints imposed by the configuration on vi, result in a
strip deformation vi that breaks the NT condition [Fig. 9(f)].
To construct strip configurations that result in a valid W = 3
strip mode we exclude combinations of valid configurations
that result in such constraints.

We now aim to find what combinations of valid configura-
tions do not result in a valid W = 3 strip mode. The constraint
mapping [Fig. 9(c)] prohibits certain combinations of valid
configurations. In general, for a given strip configuration CSM

each (ci, ci+1)-pair imposes one or two constraints [Eqs. (21)–
(24)] on the local deformation vi. These constraints then need
to be iteratively mapped to v1, starting from vk [Figs. 9(d)–
9(f)]. If at any point in the strip configuration the CC or NT
conditions on vi are not satisfied, the strip configuration does
not support a valid W = 3 strip mode [Fig. 9(f)]. To find
which sets of pairs result in invalid strip modes, we look for
combinations of pairs that lead to a constraint on vi+1 that will
get mapped to a constraint that breaks the NT condition on vi

using the constraint map [Fig. 9(c)]. We find that there are
sets of pairs in either the top two rows or bottom two rows
of the strip that are not allowed to occur in order anywhere
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FIG. 10. (a) Linked pairs of building blocks are marked by a
white circle in the center of each building block and a red solid
line that connects the circles. Linked building blocks are labeled by
orientation. (b) k = 6 strip configurations are represented as collec-
tions of linked building blocks. The invalid configuration (top) breaks
rule (2) as it contains both vertically and diagonally linked building
blocks in both pairs of adjacent rows (thick red solid lines). The valid
configuration (bottom) describes a strip configuration that supports a
W = 3 strip mode.

in the strip (see Appendix J). Moreover, this set of pairs can
be freely padded with (h, h, h)-pairs as such pairs do not add
any constraints of their own and act as an identity mapping
for the constraints [Fig. 9(c)]. Thus, to determine if a strip
configuration supports a valid strip mode requires knowledge
of the entire strip configuration.

We observe that the combinations of valid configurations
that result in an invalid strip mode all follow a simple configu-
rational rule. To formulate this rule, we note that the nontrivial
diagonal edge dc of each building block in a strip composed
of valid configurations meets at a vertex with a single other
nontrivial diagonal edge of a building block in the strip. We
refer to such pairs of building blocks as linked. Linked build-
ing blocks can be oriented either horizontally, vertically, or
diagonally with respect to each other [Fig. 10(a)]. We observe
that sequences of valid configurations that result in an invalid
strip mode always contain both vertically linked and diago-
nally linked building blocks. Thus, we can formulate a simple
rule to exclude invalid sequences: all building blocks linked
together in two adjacent rows can only be linked vertically or
diagonally, never both.

We capture these necessary requirements in a compact set
of design rules:

(i) Every 2 × 3 configuration of building blocks in the
strip must be a (h, h, h)-pair, (d, u, h)-pair, (h, d, u)-pair, (d, s,
u)-pair or (d, s, u)-pair.

(ii) There must be at least a single d-pair in the top row
and at least a single u-pair in the bottom row.

(iii) All linked building blocks in two adjacent rows can
only be linked vertically and horizontally or diagonally and
horizontally.

Rule (ii) is required to satisfy the constraint counting (CC)
condition and result in a single W = 3 strip mode, rather than
multiple smaller strip modes [Fig. 9(e)]. Rule (iii) is added
to exclude invalid sequences of configurations that do not
result in a valid W = 3 strip mode [Fig. 9(f)]. Note that this
rule is global—checking it requires knowledge of the entire

strip. This is because the CC condition now permits two con-
straints, both of which can potentially map to a constraint that
breaks the nontrivial (NT) condition. A constraint introduced
at the very end of the strip can be mapped throughout the
entire strip and only encounter an incompatible configuration
at the beginning of the strip. These are sufficient conditions
to obtain W = 3 strip modes. They can also be shown to
be necessary conditions, because other 2 × 3 configurations
constrain the strip deformation to v1,1 = 0, v1,1 = −v1,2 or
v1,2 = −vi,3 or combinations, thereby breaking the NT con-
dition and therefore do not result in a valid W = 3 strip mode
(see Appendix F 2). Hence, these pairing rules are necessary
and sufficient conditions on the strip configuration to support
a W = 3 strip mode.

D. Towards general design rules

Now we discuss how these design rules generalize to larger
width W strip configurations. We have proven that the rules
we found for strip modes of width W = 1, W = 2, and W = 3
are necessary and sufficient requirements on a strip config-
uration to support a valid strip mode. Based on these rules,
we formulate a general set of rules that we conjecture are, at
the least, also sufficient requirements for larger width W strip
modes. We formulate these rules completely in terms of linked
building blocks [Fig. 10(a)]:

(i) Every building block in the strip must be linked with a
single other building block in the strip

(ii) All linked building blocks in two adjacent rows must
only be linked vertically and horizontally or diagonally and
horizontally, never vertically and diagonally.

The smallest width W and irreducible strip in the unit cell
for which these rules hold supports a strip mode of width W .
Rule (ii) is a global rule; checking it requires knowledge of
the entire strip [Fig. 10(b)]. We find a perfect agreement of
our rules for ∼106 randomly generated k × k unit cell designs
to be of class (iii) or not (see Appendix K). We therefore
have strong numerical evidence that our rules are not only
necessary to have a strip mode, but also that strip modes are
the only type of zero mode that result in class (iii) mode
scaling. As a final indication that these rules are sufficient for
a strip configuration to support a strip mode, we use the rules
to design a strip mode of width W = 10 (Fig. 11).

IX. DISCUSSION

The rational design of multiple soft modes in ape-
riodic metamaterials is intrinsically different from tiling-
or spin-ice-based design strategies for a single soft mode
[21,24,34,36,38,42]. The key challenge is to precisely control
the balance between the kinematic degrees of freedom with
the kinematic constraints. For increasing sizes, these con-
straints proliferate though the sample, and to obtain multiple
soft modes, the spatial design must be such that many of these
constraints are degenerate. What is particularly vexing is that
these constraints act on a growing set of local kinematic de-
grees of freedom, so that checking for degenerate constraints
is cumbersome. As a consequence, current design strategies
for multimodal metamaterials rely on computational methods,
in either continuous systems [49–51] or discrete systems [52].
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FIG. 11. Realization of a 12 × 12 unit cell that supports a W = 10 strip mode. To better illustrate the kinematics of the strip mode, we
have restrained the top and bottom layers of building blocks to deform solely with the CRS mode. (a) Schematic representation of the unit
cell. (b) Linked pairs of the configuration. Note that the horizontal strip between rows 2 and 11 satisfies the general design rules. (c) Vertex
representation of the strip mode. The number of arrows on horizontal and vertical edges connecting two building blocks is reduced by half for
clearer visualization. (d) Schematic representation of the unit cell deforming as the strip mode.

Here we introduced a general transfer matrix-like frame-
work for mapping the local constraints to a small, predefined
subset of kinematic degrees of freedom, and use this
framework to obtain effective tiling rules for a combinatorial
multimodal metamaterial. Strikingly, beside the usual local
rules which express constraints on pairs of adjacent building
blocks, we find nonlocal rules that restrict the types of tiles
that are allowed to appear together anywhere in the metama-
terial. These kind of nonlocal rules are unique to multimodal
metamaterials.

More broadly, our work is a first example where metama-
terial design leads to complex combinatorial tiling problems
that are beyond the limitations of Wang tilings. It is com-
plementary to combinatorial computational methods used in
design of irregular architectured materials [53] or computer
graphics [54] that use local tiling rules to fabricate compli-
cated spatial patterns.

Conversely, instead of clear-cut local rules that state which
tiles fit together, our method requires careful bookkeeping of
local constraints imposed by placed tiles and propagation of
these constraints through all previously placed tiles to a single
set of degrees of freedom. As a result, knowledge of a tile’s
neighbors is no longer sufficient information to determine
if that tile can be placed. Instead, one requires knowledge
of most, if not all, previously placed tiles. We believe our
method is well suited to tackle tiling problems beyond Wang
tiles. Several open questions remain: are nonlocal rule generi-
cally emerging in multimodal metamaterials? How does our
method relate to other emergent nonlocal tiling constraints
that arise, for example, in the fields of computer graphics
[55–57] and chip design [58,59]? Additionally, our method is
limited to design of zero modes and thus may be insufficient
when designing for larger deformations. How to adjust our
method to include nonlinear kinematic constraints is an open
question.

Our framework opens up a new route for rational design
of spatially textured soft modes in multimodal metamaterials,
which we demonstrate by designing metamaterials with strip
modes of targeted width and location. Such strip modes can
be utilized to control buckling and energy absorption under
uniaxial compression perpendicular to the orientation of the
strip [41]. Our method can readily be extended to edge-modes,

by considering, e.g., horizontal edge strips, imposing the up-
per strip condition and periodic strip condition and taking into
account open boundary conditions at the bottom of the strip.
Similarly, Swiss cheese modes can be modeled by imposing
upper and lower strip conditions horizontally and vertically
at appropriate locations in the metamaterial. Additionally,
our method can be extended to design three dimensional
metamaterials by constructing an additional transfer matrix
that propagates local degrees of freedom (dof) along the
newly added spatial dimension. To ensure kinematic compat-
ibility, additional constraints may need to be introduced to
ensure different dof propagation paths result in the same final
deformation. We hope our work will push the interest in mul-
timodal metamaterials whose mechanical functionality is se-
lectable through actuation, with potential applications in pro-
grammable materials, soft robotics, and computing in materia.

The code supporting the findings reported in this paper is
publicly available on GitLab [60] for code to calculate zero
modes and numerically check design rules. and the data on
Zenodo [61].
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APPENDIX A: OPEN BOUNDARY CONDITIONS

Here we show that angles located at an open boundary can
deform unconstrained, both at the faces of the building blocks
(u, v, l, r) and corners (dc). First, we consider angles at the
face of each building block. If the face of the building block
is located at an open boundary, the angle can deform freely as
there is no competing adjacent angle. For example, if the top
face of a building block z is located at an open boundary, there
are no constraints placed upon deformation uz.

Second, we consider the nontrivial corner angle dc of a
building block with orientation c where the corner is located
at an open boundary. Here there can be an adjacent diag-
onal angle of a neighboring building block. However, the
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FIG. 12. Vertex (top) and schematic (bottom) representations of
an edge mode (a), strip mode (b), and Swiss cheese mode (c). Note
that we replaced rigid pentagons with a reentrant edge with rigid
diamonds (rotated squares) that are kinematically equivalent in the
schematic representation for ease of interpretation.

diagonal angle is still unconstrained in its deformation at
the open boundary, regardless if it is adjacent to a diagonal
angle of another building block. To see this, note that for
the two neighboring building blocks at an open boundary to
be kinematically compatible, only the angles at the shared
face between the two building blocks are constrained with the
horizontal or vertical compatibility constraint. For example,
two horizontally neighboring building blocks at locations z
and z + 1 with their top face at the open boundary deform
compatibly only if the right and left angles satisfy rz = −lz+1.
More formally, this can be shown by composing the compat-
ibility matrix for these two building blocks in all possible
orientations and determining the dimension of the matrix’s
null space [62,63]. This dimension is always equal to six,
which corresponds to three floppy modes and three trivial
modes: rotation and translation. As each building block has
two zero modes, there must only be one constraint placed on
their deformations: the horizontal compatibility constraint. As
there are no states of self-stress in this structure, the number
of floppy modes also follows from a simple Maxwell counting
argument [64]. Thus, nontrivial diagonal corners dc located at
the open boundary can deform unconstrained.

APPENDIX B: REALIZATION MODE STRUCTURE

Here we show explicit realizations of unit cells that support
an edge mode [Fig. 12(a)], a strip mode [Fig. 12(b)], and a
Swiss cheese mode [Fig. 12(c)] as described in Sec. IV and
Fig. 3.

APPENDIX C: LINEAR COORDINATE
TRANSFORMATIONS

To find conditions on the strip configuration CSM, we
change to a more convenient basis where instead of mode
amplitudes αz and βz, deformations uz and vz are the two

degrees of freedom for each building block. We find(
uz

vz

)
=

[
1 uD(cz )

1 vD(cz )

](
αz

βz

)
= �(cz )

(
αz

βz

)
, (C1)

where uD(cz ) and vD(cz ) are the u- and v-components of the
basis zero mode mD(cz ). Subsequently, we invert �(cz ) to find
the change of basis matrix

�−1(cz ) = 1

vD(cz ) − uD(cz )

[
vD(cz ) −uD(cz )

−1 1

]
, (C2)

which is well defined since uD(cz ) �= vD(cz ) for all orienta-
tions cz. We can express deformations lz, rz, and do

z in terms
of (uz, vz ) using the change of basis matrix:(

lz
rz

)
= �(cz )�−1(cz )

(
uz

vz

)
(C3)

and

do
z = ζ o(cz )�−1(cz ) ·

(
uz

vz

)
, (C4)

where

�(cz ) =
(−1 lD(cz )

−1 rD(cz )

)
and (C5)

ζ o(cz ) = (
0, do

D(cz )
)

(C6)

depend on the orientation cz of the building block. Note that
o denotes the orientation of diagonal deformation do

z , which
is independent from the building block orientation cz. The
equation for lz, rz, and do

z further simplify to

lz = Lu(cz ) uz + Lv (cz ) vz, (C7)

rz = Ru(cz ) uz + Rv (cz ) vz, (C8)

and

do
z = Do(cz )(−uz + vz ). (C9)

Values of the coefficients Lu, Lv, Ru, Rv, Do for the four orien-
tations cz are given in Table I.

APPENDIX D: DERIVING THE TRANSFER MAPPING

Here we derive the linear transfer mapping that maps
the vertical deformations vi = (vi,1, vi,2, . . . , vi,W ) of row i
in a strip configuration of width W to the vertical defor-
mations vi+1 of the neighboring row i + 1 such that vi+1 =
T (ci, ci+1)vi. We consider a 2 × W strip configuration of un-
specified orientations (ci, ci+1). To derive this transfer matrix,
we solve the horizontal and vertical compatibility constraints
[Eq. (1)] and upper boundary condition [Eq. (4)] iteratively
for the vertical deformations vi [Figs. 5(a)–5(f)]. We first
consider the first row in the strip such that j = 1. From the
upper boundary conditions and setting ui,1 = 0 without loss of
generality, we find ui,1 = −ui+1,1 = 0 such that the horizontal
compatibility constraint reduces to

vi+1,1 = − Rv (ci,1)

Lv (ci+1,1)
vi,1. (D1)
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We now consider a general row j and find that the horizontal
compatibility condition reduces to

vi+1, j = Ru(ci, j )

Lv (ci+1, j )
vi, j−1 − Rv (ci, j )

Lv (ci+1, j )
vi, j

+ Lu(ci+1, j )

Lv (ci+1, j )
vi+1, j−1. (D2)

Thus, we can solve for vi+1, j in terms of vi by recursively
applying this equation. We find

vi+1, j =
j−1∑
a=1

[
Ru(ci,a+1)

Lu(ci+1,a+1)
− Rv (ci,a)

Lv (ci+1,a)

]

×
j∏

b=a+1

Lu(ci+1,b)

Lv (ci+1,b)
vi,a − Rv (ci, j )

Lv (ci+1, j )
vi, j, (D3)

for j � 2. The linear map from vi to vi+1 is captured in the
transfer matrix T (ci, ci+1), which we can now define explic-
itly:

T (ci, ci+1)a,b

=

⎧⎪⎪⎨
⎪⎪⎩

[ Ru(ci,b+1 )
Lu(ci+1,b+1 ) − Rv (ci,b)

Lv (ci+1,b)

] ∏a
j=b+1

Lu(ci+1, j )
Lv (ci+1, j )

, if b < a

− Rv (ci,b)
Lv (ci+1,b) , if b = a

0, if b > a.

(D4)

APPENDIX E: NONTRIVIAL CONDITIONS

Here we show that a CRS site, which has deformations
ui, j = vi, j , in the top row of the strip SM or bottom row of
the strip leads to that entire strip deforming with the CRS
mode, breaking the nontrivial (NT) condition. This already
follows from the restriction on the mode structure described
in Sec. IV, but for completeness we derive it here using the
transfer-matrix formalism. Moreover, we show that a CRS
block in the second row of the strip in a W = 3 strip breaks the
NT condition. We first consider a CRS site in the top row, such
that j = 1, and use the upper boundary conditions [Eq. (4)]
and transfer matrix [Eq. (D4)] to show that the leftmost ver-
tical deformation v1,1 = 0. Second, we consider a CRS site
in the bottom row, such that j = W , and use lower boundary
conditions [Eq. (5)] and transfer matrix [Eq. (D4)] to show
that the leftmost vertical deformations vi,W −1 = −vi,W . Fi-
nally, we consider a CRS site in the second row, such that
j = 2, and use the transfer matrix [Eq. (D4)] to show that such
a block results in a constraint on v1 that is incompatible with
the four W = 3 constraints [Eqs. (21)–(24)] and breaks the
NT condition.

First, we consider a general strip configuration CSM. Sup-
pose the building block at site (i, 1) can only deform with the
CRS mode, such that deformations ui,1 = vi,1. Without loss
of generality, we set the leftmost upper deformation u1,1 = 0.
From the upper boundary condition [Eq. (4)] we find that
upper deformation ui,1 = 0, such that the vertical deformation
becomes vi,1 = 0. The transfer matrix [Eq. (D4)] is lower
triangular, thus vi,1 only depends on the upper leftmost ver-
tical deformation v1,1 by a factor consisting of the product
of the diagonal transfer matrix components T (ci, ci+1)1,1 of

the building block pairs between (1, 1) and (i, 1). Therefore,
if vi, j = 0, v1,1 = 0 must be true as well. Moreover, va,1 = 0
for all columns a in the strip. Thus, all building blocks in the
strip are CRS sites and deform with ui,1 = vi,1 = 0, resulting
in the entire top row of the strip deforming as a CRS mode
compatibly with area of CRS with amplitude αu = 0.

Second, we consider a general strip configuration CSM

where the building block at site (i,W ) deforms with the CRS
mode, such that ui,W = vi,W . From the vertical compatibility
constraint [Eq. (1)] we know that ui,W = −vi,W −1, such that
vi,W −1 = −vi,W . To find the deformations of the left neighbor
at site (i + 1,W ), we plug the map [Eq. (D3)] into the lower
boundary condition [Eq. (5)] to find

vi+1,W
Lv (ci+1,W ) − Ru(ci,W ) − Rv (ci,W )

Lu(ci+1,W )
= −vi+1,W −1.

(E1)

The fraction reduces to 1 for all possible configuration pairs
(ci,W , ci+1,W ) (see Table I), such that the vertical deforma-
tions of the neighboring building block deform as vi+1,W =
−vi+1,W −1 and the block is a CRS site. Similarly, we can do
the same calculation for the right neighbor at site (i − 1,W )
to find

vi−1,W −1 = vi−1,W
Rv (ci−1,W ) − Lu(ci,W ) − Lv (ci,W )

Ru(ci−1,W )
, (E2)

which also reduces to vi−1,W −1 = −vi−1,W for all possible
configuration pairs (ci−1,W , ci,W ). Thus, we find that a CRS
site in the bottom of the strip results in CRS sites to its left and
right neighbor upon requiring the lower boundary condition
[Eq. (5)] to be satisfied. In conclusion, we find that a single
CRS site in the top or bottom row of the strip SM results in
that entire row deforming as an area of CRS, breaking the NT
condition.

Next, we consider how a CRS site in row j = 2, where
vi,1 = −vi,2, maps to a constraint on vi−1. This mapping de-
pends on the configuration of columns (ci, ci+1). In general,
we find it maps to

vi−1,1 = − T2,2

T1,1 + T2,1
vi−1,2, (E3)

where Ta,b is the (a, b)-th component of the transfer matrix
T (ci, ci+1). This mapping depends only on the first two rows
of the 2 × W configuration. If the first two rows are (h, h)-
pairs, the constraint maps to itself. If the column configuration
has any other type, the constraint maps to a new constraint.
For W = 3 configurations, this new constraint is not one of
the four constraints [Eqs. (21)–(24)] we find in the main text.
When this mapped constraint is taken together with one of the
four constraints, the mapped constraint results in either the top
two rows, or bottom two rows to deform as an area of CRS,
breaking the NT condition. This is not a valid W = 3 strip
mode. Thus, the constraint vi,1 = −vi,2 is incompatible with a
valid strip deformation for W = 3 strip modes.

APPENDIX F: DIAGONAL COMPATIBILITY
CONSTRAINTS

Here we derive the diagonal compatibility constraint
[Eq. (2)] for all 2 × 2 configurations (ci, j, ci, j+1,
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ci+1, j, ci+1, j+1). We consider all configurations one by one.
We first consider the configurations for which every diagonal
edge d in the diagonal compatibility constraint [Eq. (2)] is
trivially zero. The diagonal compatibility constraint is then
trivially satisfied and imposes no condition on vi.

Subsequently, we consider the case where dSE
i, j is the

only nontrivial diagonal edge in the diagonal compatibility
constraint. To satisfy this constraint, we require dSE

i, j = 0 to
hold. From Eq. (10) we find that this constraint only holds if
(i, j) is a CRS site, such that ui, j = vi, j . Similarly, if dSW

i+1, j
is the only nontrivial diagonal edge, we find ui+1, j = vi+1, j ,
if dNE

i, j+1 is the only nontrivial diagonal edge, we find ui, j+1 =
vi, j+1, and if dNW

i+1, j+1 is the only nontrivial diagonal edge, we
find ui+1, j+1 = vi+1, j+1. Thus, a 2 × 2 configuration where a
single building block is oriented such that its nontrivial diag-
onal edge dc is part of the diagonal compatibility constraint
[Eq. (2)] must deform that single building block as a CRS site
to satisfy the diagonal compatibility constraint.

Now we consider configurations that contain horizontally
paired building blocks which have nontrivial diagonal edges
dc that are both part of the diagonal compatibility constraint
[Eq. (2)]. The two other building blocks’ diagonal edges in the
diagonal compatibility constraint are trivial. We first consider
configurations where such a pair of building blocks is in
the top row, such that (ci, j, ci+1, j ) = (SE, SW). The diagonal
compatibility constraint reduces to

dSE
i, j + dSW

i+1, j = 0,

ui, j − vi, j + ui+1, j − vi+1, j = 0, (F1)

where we used Eq. (10) to replace dc. We can simplify this
further by replacing vi+1, j using the map Eq. (D3):[

1 + Ru(ci, j )

Lv (ci+1, j )

]
vi, j−1 +

[
1 − Rv (ci, j )

Lv (ci+1, j )

]
vi, j

+
[

1 + Lu(ci+1, j )

Lv (ci+1, j )

]
vi+1, j−1 = 0, (F2)

where we have also used the horizontal compatibility con-
straint to replace u with v. Replacing the components
Ru, Lu, Lv by their explicit values for (ci, j, ci+1, j ) = (SE, SW)
(Table I) we finally find the constraint

vi, j−1 = −vi+1, j−1. (F3)

Similarly, we can derive the constraint for when the horizon-
tally paired building are located in the bottom row, such that
(ci, j+1, ci+1, j+1) = (NE, NW). We find the constraint

vi, j = −vi+1, j . (F4)

Thus, we find that such horizontally paired building blocks
must deform their upper edges antisymmetrically to satisfy the
diagonal compatibility constraint. We can write Eq. (F4) as a
constraint on vi, j−1 by replacing vi+1, j using map [Eq. (D3)]
and find

vi, j−1 + vi+1, j−1 = 0, (F5)

2vi, j + vi, j−1 − vi+1, j−1 = 0, (F6)

2
3vi, j − vi, j−1 + vi+1, j−1 = 0 (F7)

for (h, h)-pairs and (u, h)-pairs with ci+1, j = NW or ci, j =
NE, respectively.

Now we consider configurations which contain vertically
paired building blocks which have nontrivial diagonal edges
that both are part of the same diagonal compatibility constraint
[Eq. (2)]. The other two building blocks’ diagonal edges in the
diagonal compatibility constraint are trivial. We first consider
configurations where this vertical pair of building blocks is
located on the left, such that (ci, j, ci, j+1) = (SE, NE). The
diagonal compatibility constraint reduces to

dSE
i, j + dNE

i, j+1 = 0,

ui, j − vi, j − ui, j+1 + vi, j+1 = 0, (F8)

−vi, j−1 + vi, j+1 = 0,

where we used the horizontal compatibility constraint
[Eq. (1)] to replace u with v. Now we consider configura-
tions where this vertical pair is located on the right, such
that (ci+1, j, ci+1, j+1) = (SW, NW). The diagonal compatibil-
ity constraint reduces to

−vi+1, j−1 + vi+1, j+1 = 0. (F9)

We now try to map this constraint on vi+1 to a constraint on vi

using map [Eq. (D3)]. We find that the constraint maps to[
Lu(ci+1, j+1)Lu(ci+1, j )

Lv (ci+1, j+1)Lv (ci+1, j )
− 1

]
vi+1, j−1

+
[

Ru(ci, j+1)

Lv (ci+1, j+1)
− Lu(ci+1, j+1)Rv (ci, j )

Lv (ci+1, j+1)Lv (ci+1, j )

]
vi, j

− Rv (ci, j+1)

Lv (ci+1, j+1)
vi, j+1 + Lu(ci+1, j+1)Ru(ci, j )

Lv (ci+1, j+1)Lv (ci+1, j )
vi, j−1 = 0.

(F10)

Depending on the precise orientations of the building blocks
in the 2 × 2 configuration, this constraint reduces to two dif-
ferent constraints (Table I)

vi, j+1 − vi, j−1 = 0, (F11)

2
3vi, j + 1

3vi, j+1 + 1
3vi, j−1 = 0. (F12)

The first constraint [Eq. (F11)] must hold to satisfy the diago-
nal compatibility constraint for (d, u)-pairs and (s, s)-pairs.
The second constraint [Eq. (F12)] must hold to satisfy the
diagonal compatibility constraint for (d, s)-pairs and (s, u)-
pairs.

Next we consider configurations which contain diagonally
paired building blocks which have nontrivial diagonal edges
that are part of the same diagonal compatibility constraint.
The other two building block’s diagonal edges in the diagonal
compatibility constraint are trivial. We first consider the case
where (ci, j, ci+1, j+1) = (SE, NW). The diagonal compatibil-
ity constraint [Eq. (2)] reduces to

dSE
i, j + dNW

i+1, j+1 = 0, (F13)

−vi, j−1 + vi, j + vi+1, j + vi+1, j+1 = 0, (F14)

where we used Eq. (10) and the horizontal compatibility con-
straint to simplify the constraint. We use the map [Eq. (D3)]
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to replace vi+1 by vi. We find four different constraints de-
pending on the orientations of the building blocks in the 2 × 2
configuration:

vi, j−1 − 1
3vi, j+1 + 2

3vi+1, j−1 = 0, (F15)

1
3vi, j−1 + 4

9vi, j + 1
3vi, j+1 + 2

9vi+1, j−1 = 0, (F16)

vi, j−1 + 2
3vi, j + 1

3vi, j+1 + 2
3vi+1, j−1 = 0, (F17)

− 1
3vi, j−1 + 2

9vi, j + 1
3vi, j+1 − 2

9vi+1, j−1 = 0, (F18)

for (d, u)-pairs, ( s, u)-pairs, (d, s)-pairs, and ( s, s)-
pairs, respectively. Second, we consider the case where
(ci+1, j, ci, j+1) = (SW, NE ). The diagonal compatibility con-
straint reduces to[

1 + Rv (ci, j )

Lv (ci+1, j )

]
vi, j + vi, j+1 − Ru(ci, j )

Lv (ci+1, j )
vi, j−1

−
[

1 + Lu(ci+1, j )

Lv (ci+1, j )

]
vi+1, j−1 = 0. (F19)

Depending on the orientations of the 2 × 2 configuration, we
find two different constraints:

vi, j+1 + vi, j−1 + 2vi+1, j−1 = 0, (F20)

−2vi, j + vi, j+1 − vi, j−1 + 2vi+1, j−1 = 0 (F21)

for (d, u)-pairs and (d, s)-pairs, and (s, u)-pairs and (s, s)-pairs,
respectively.

Next, we consider configurations where three building
blocks have a nontrivial diagonal edge that is part of the
diagonal compatibility constraint [Eq. (2)]. We first consider
(ci, j, ci+1, j, ci, j+1) = (SE, SW, NE). The diagonal compati-
bility constraint reduces to

vi, j−1 − vi, j+1 + vi+1, j−1 + vi+1, j = 0. (F22)

We replace vi+1, j using map [Eq. (D3)] for (ci, j, ci+1, j ) =
(SE, SW) to find the constraint

−2vi, j−1 − vi, j+1 − vi, j − 2vi+1, j−1 = 0, (F23)

regardless of the orientation ci+1, j+1. Next we consider
(ci, j, ci+1, j, ci+1, j+1) = (SE, SW, NW). The diagonal com-
patibility constraint reduces to

vi, j−1 + vi, j + vi+1, j−1 − vi+1, j+1 = 0. (F24)

We replace vi+1, j+1 using the map [Eq. (D3)] and find

vi, j−1 +
[

1 − Ru(ci, j+1)

Lv (ci+1, j+1)

]
vi, j + Rv (ci, j+1)

Lv (ci+1, j+1)
vi, j+1

+vi+1, j−1 + Lu(ci+1, j+1)

Lv (ci+1, j+1)
vi+1, j = 0. (F25)

We again apply map [Eq. (D3)] to replace vi+1, j and find the
same constraint regardless of the orientation ci, j+1:

vi, j + vi, j+1 = 0. (F26)

This constraint requires the building block at site (i, j + 1)
to deform as a CRS block to satisfy the diagonal compat-
ibility constraint. Next we consider (ci, j, ci, j+1, ci+1, j+1) =

(SE, NE, NW). The diagonal compatibility constraint reduces
to

vi, j−1 − vi,k j+1 − vi+1, j − vi+1, j+1 = 0. (F27)

We replace vi+1 using the map [Eq. (D3)] and find one of two
constraints

−vi, j−1 + 1
3vi, j − 2

3vi+1, j−1 = 0, (F28)

vi, j−1 + 1
3vi, j + 2

3vi+1, j−1 = 0, (F29)

for a (d, h)-pair or ( s, h)-pair, respectively. Finally, we con-
sider the configuration (ci+1, j, ci, j+1, ci+1, j+1) = (SW, NE,

NW). The diagonal compatibility constraint reduces to

−vi, j − vi, j+1 + vi+1, j−1 − vi+1, j+1 = 0. (F30)

We replace vi+1 using map [Eq. (D3)] and find the constraint

vi, j−1 + vi, j = 0 (F31)

regardless of the orientation of ci, j . This constraint corre-
sponds to site (i, j) deforming as a CRS site to satisfy the
diagonal compatibility constraint.

Finally, we consider the last 2 × 2 configuration:
(ci, j, ci+1, j, ci, j+1, ci+1, j+1) = (SE, SW, NE, NW). The diag-
onal compatibility constraint reduces to

vi, j−1 − vi, j+1 + vi+1, j−1 − vi+1, j+1 = 0. (F32)

We replace vi+1 using map [Eq. (D3)] to find

vi, j−1 + vi+1, j−1 − vi, j−1 − vi+1, j−1 = 0, (F33)

which is trivially true. Thus, this 2 × 2 configuration does not
impose any additional constraints on vi to satisfy the diagonal
compatibility constraint.

1. Diagonal constraints for W = 2 configurations

These equations simplify further for specific cases. We first
consider W = 2 valid configurations and then W = 3 valid
configurations. For W = 2 strip configurations, 1 � j � 2
and vi,0 = −vi+1,0 = 0. Moreover, the lower boundary condi-
tion dictates vi,2 = −vi+1,2. We further simplify the diagonal
compatibility constraint [Eq. (2)] by assuming the lower and
upper boundary conditions are satisfied.

We find for (h, h)-pairs that constraint [Eq. (F4)] is trivially
satisfied by the top boundary condition. Thus, (h, h)-pairs
do not impose any additional constraints on the strip defor-
mation. Additionally, (d, u)-pairs can impose the constraints
[Eqs. (F11), (F15), and (F20)], which simplify to

vi,2 = 0 (F34)

for all cases.
Now, we consider (h, u)-pairs and (d, h)-pairs. The con-

straints [Eqs. (F23), (F26), (F28), and (F31)] reduce to

vi,1 + vi,2 = 0 or (F35)

vi,1 = 0 (F36)

for (h, u)-pairs and (d, h)-pairs respectively. Both of these
constraints are not compatible with a strip deformation as they
break the nontrivial (NT) condition.
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2. Diagonal constraints for W = 3 configurations

Here we consider the diagonal constraints for W = 3 con-
figurations. Valid 3 × 2 configurations are (h, h, h)-pairs, (d, u,
h)-pairs, (h, d, u)-pairs, (h, s, u)-pairs, and (h, s, u)-pairs. The
upper boundary condition implies vi,0 = −vi+1,0 = 0 and the
bottom boundary condition implies vi,3 = −vi+1,3 = 0. We
consider each configuration one-by-one.

We first consider (h, h, h)-pairs, which can only impose
constraint [Eq. (F3)] for all j. It is straightforward to check
that the map [Eq. (D3)] for (h, h, h)-pairs trivially satisfies all
possible diagonal compatibility constraints.

Second, we consider (d, u, h)-pairs, which can impose the
constraints [Eqs. (F7), (F6), (F20), and (F15)]. Combining
the possible constraints together with the upper and bottom
boundary conditions and map [Eq. (D3)] impose the con-
straint

vi,2 = 0. (F37)

Thus, (d, u, h)-pairs impose constraint [Eq. (21)] on vi to
satisfy the diagonal compatibility constraints.

Third, we consider (h, d, u)-pairs. Such pairs can impose
the constraints [Eqs. (F3), (F20), and (F15)], which simplify
to

vi,1 = vi,3 (F38)

using the upper and lower boundary conditions. Thus, (h, d,
u)-pairs impose constraint [Eq. (23)] to satisfy the diagonal
compatibility constraints.

Fourth, we consider (d, s, u)-pairs. Such pairs impose the
constraints [Eqs. (F12), (F20), and (F21)], which simplify to
the constraints

vi,2 = 0 and (F39)

vi,1 = −vi,3. (F40)

Thus, (d, s, u)-pairs impose constraints [Eqs. (21) and (24)] to
satisfy the diagonal compatibility constraints.

Finally, we consider (d, s, u)-pairs. Such pairs impose the
constraints [Eqs. (F12), (F17), and (F16)], which simplify to
the constraints

2vi,1 = −vi,2 and (F41)

vi,1 = vi,3. (F42)

Thus, (d, s, u)-pairs impose constraints [Eqs. (22) and (23)] to
satisfy the diagonal compatibility constraints.

In summary, we find that (h, h, h)-pairs do not impose
any constraints on the strip deformation vi, (d, u, h)-pairs
impose constraint [Eq. (21)], (h, d, u)-pairs impose constraint
[Eq. (23)], (d, s, u)-pairs impose constraints [Eqs. (21) and
(24)], and (s, s, u)-pairs impose constraints [Eqs. (22) and
(23)].

Now we consider invalid configurations that contain diag-
onal compatibility constraints with three nontrivial diagonal
edges. First, we consider (h, u, h)-pairs. Such pairs impose
the constraints [Eqs. (F26) and (F23)], which simplify to

vi,1 = −vi,2. (F43)

This corresponds to the block at site (i, 1) deforming as a CRS
block, which is incompatible with a W = 3 strip deformation.
Second, we consider (d, h, h)-pairs. Such pairs impose the
constraints [Eqs. (F31) and (F28)], which simplify to

vi,1 = 0, (F44)

which is incompatible with a valid strip deformation. Third
we consider (h, s, h)-pairs. Such pairs impose the constraints
[Eqs. (F23) and (F31)], which simplify to

vi,2 = −vi,1, (F45)

which is incompatible with a valid strip deformation. Fourth,
we consider (h, s, h)-pairs. Such pairs impose the constraints
[Eqs. (F26) and (F29)], which simplify to

vi,1 = −vi,2, (F46)

which is incompatible with a valid strip deformation. (h, s,
u)-pairs, (h, s, u)-pairs, (d, s, h)-pairs and (d, s, h)-pairs all
impose the same constraint on the strip deformation. Finally,
we consider (h, h, u)-pairs. Such pairs impose the constraints
[Eqs. (F26) and (F23)], which simplify to

vi,2 = −vi,3. (F47)

This is incompatible with a valid strip deformation.

APPENDIX G: LOWER STRIP CONDITION

In this Appendix we find constraints that need to be satis-
fied in order to satisfy the lower boundary condition [Eq. (5)].
We first consider W = 2 configurations and then W = 3 con-
figurations. We find that for valid configurations the lower
boundary condition is satisfied by the same constraints that
arise from the diagonal compatibility constraints [Eq. (2)].

First, we consider W = 2 configurations. In general, the
map [Eq. (13)] does not satisfy the lower boundary condition
vi+1,2 = −vi,2. We first consider (h, h)-pairs. Here the map
[Eq. (13)] reduces to vi+1,2 = −vi,2, and the lower boundary
condition is trivially satisfied. Next, we consider (d, u)-pairs.
The map [Eq. (13)] together with the lower boundary condi-
tion reduces to the constraint[

1 − Rv (ci,2)

Lv (ci+1,2)

]
vi,2 = 0. (G1)

For (d, u)-pairs, Rv (ci,2)/Lv (ci+1,2) is either equal to 3 or 1/3.
This constraint is thus satisfied if vi,2 = 0, which is the same
as the constraint [Eq. (F34)] needed to satisfy the diagonal
compatibility constraint. Thus, the lower boundary condition
and diagonal compatibility constraint for (d, u)-pairs both are
satisfied if constraint vi,2 = 0 is satisfied.

Now, we consider W = 3 configurations. First, we con-
sider (h, h, h)-pairs. The map [Eq. (20)] reduces to vi+1,3 =
−vi,3, thus trivially satisfying the lower boundary condi-
tion [Eq. (2)]. Second, we consider (d, u, h)-pairs. The
map [Eq. (20)] together with the lower boundary condition
[Eq. (2)] reduces to the constraint

Lu(ci+1,3)

Lv (ci+1,3)

[
1 − Rv (ci,2)

Lv (ci+1,2)

]
vi,2 = 0, (G2)

which is satisfied by the constraint [Eq. (21)], just like the
diagonal compatibility constraint for (d, u, h)-pairs. Third, we
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consider (h, d, u)-pairs. The map [Eq. (20)] together with the
lower boundary condition reduces to the constraint

Lu(ci+1,2)Lu(ci+1,3)

Lv (ci+1,2)Lv (ci+1,3)

[
Ru(ci,2)

Lv (ci+1,2)
− 1

]
vi,1

+
[

1 − Rv (ci,3)

Lv (ci+1,3)
vi,3

]
vi,3 = 0. (G3)

This constraint reduces to vi,1 = vi,3 by filling in the possi-
ble explicit values of (ci,2, ci+1,2, ci,3, ci+1,3). Thus, the lower
boundary condition and diagonal compatibility constraint are
satisfied by satisfying constraint [Eq. (23)] for (h, d, u)-pairs.

Now, we consider (d, s, u)-pairs. The map [Eq. (20)] to-
gether with the lower boundary condition [Eq. (5)] reduces to

−vi,1 + vi,2 − vi,3 = 0. (G4)

This equation is satisfied by constraints [Eqs. (21) and (24)],
just like the diagonal compatibility constraints [Eq. (2)] for (d,
s, u)-pairs.

Finally, we consider (d, s, u)-pairs. The map [Eq. (20)]
together with the lower boundary condition [Eq. (5)] reduces
to the constraint

vi,1 − vi,2 − 3vi,3 = 0. (G5)

This constraint is satisfied by constraints [Eqs. (22) and (23)].
Thus, the lower boundary condition and diagonal compatibil-
ity constraints for (d, s, u)-pairs are satisfied by constraints
[Eqs. (22) and (23)]. In conclusion, we find that satisfying
the lower boundary constraints does not require any additional
constraints than required to satisfy the diagonal compatibility
constraints for valid W = 3 configurations: (h, h, h)-pairs, (d,
u, h)-pairs, (h, d, u)-pairs, (d, s, u)-pairs and (d, s, u)-pairs.

APPENDIX H: CONSTRAINT MAPPING

In general, a linear constraint f (vi, vi+1) = g(vi ) +
h(vi+1) = 0 depends on the deformations of two adjacent
columns: vi and vi+1. To map this constraint to a constraint
on v1, we iteratively apply the transfer matrix to obtain a
constraint on v1:

i−1∏
a=1

T (ci−a, ci+1−a)g(v1) +
i∏

a=1

T (ci+1−a, ci+2−a)h(v1) = 0.

(H1)

APPENDIX I: W = 3 CONSTRAINT MAPPING

To find which combinations of valid 2 × 3 configurations
lead to W = 3 strip modes, we consider how the four con-
straints [Eqs. (21)–(24)] on vi map to vi+1 upon application
of the transfer matrix T (ci−1, ci ) for all possible valid 2 × 3
configurations (ci−1, ci ). We first derive the transfer matrices
for each valid configuration, which we subsequently apply tot
the four constraints to see how they map.

First, we consider the transfer matrix for (h, h, h)-pairs:
T ((h, h, h)). We find that T ((h, h, h)) = −I , where I is the
3 × 3 identity matrix. Thus, the four constraints on vi map to
the same constraints on vi−1.

Second, we consider the transfer matrix for (d, u, h)-pairs.
We find

T ((d, u, h)) =

⎛
⎜⎜⎝

1 0 0

0 −Rv (ci−1,2 )
Lv (ci,2 ) 0

0 Lu(ci,3 )
Lv (ci,3 )

[
1 − Rv (ci−1,2 )

Lv (ci,2 )

] −1

⎞
⎟⎟⎠, (I1)

where the precise orientations of (ci−1,2, ci,2) determine the
explicit form of the matrix. Now we apply this transfer matrix
on the four constraints and rewrite the constraints together
with constraint [Eq. (21)] on vi−1 imposed by the (d, u, h)-pair
itself. We find that constraint [Eq. (21)] maps to itself with
i �→ i − 1. Constraint [Eq. (22)] maps to vi−1,1 = 0, which
is incompatible with a W = 3 strip deformation as it breaks
the nontrivial (NT) condition. Finally, constraint [Eq. (23)]
maps to constraint [Eq. (24)] with i �→ i − 1 and similarly
constraint [Eq. (23)] maps to constraint [Eq. (24)] with i �→
i − 1.

Third, we consider the transfer matrix for (h, d, u)-pairs:

T ((h, d, u)) =

⎛
⎜⎜⎝

−1 0 0

2 1 0
Lu(ci,3 )
Lv (ci,3 ) 2 0 −Rv (ci−1,3 )

Lv (ci,3 )

⎞
⎟⎟⎠, (I2)

which depends on the precise orientations of (ci−1,3, ci,3). If
we apply this transfer matrix on the four constraints and take
the mapped constraint together with the constraint [Eq. (23)]
imposed by the (h, d, u)-pair on vi−1 we find that constraint
[Eq. (21)] maps to constraint [Eq. (22)] with i �→ i − 1. Con-
straint [Eq. (22)] maps to constraint [Eq. (21)] with i �→ i − 1.
Constraint [Eq. (23)] maps to itself with i �→ i − 1. Constraint
[Eq. (24)] maps to vi−1,1 = vi−1,3 = 0 when taken together
with constraint [Eq. (23)] with i �→ i − 1 imposed by the (h, d,
u)-pair, which is incompatible with a W = 3 strip deformation
as it breaks the NT condition.

Fourth, we consider the transfer matrix for (d, s, u)-pairs:

T ((d, s, u)) =

⎛
⎜⎜⎝

1 0 0

−2 3 0

−2 Lu (ci,3 )
Lv (ci,3 ) 2 Lu (ci,3 )

Lv (ci,3 ) −Rv (ci−1,3 )
Lv (ci,3 )

⎞
⎟⎟⎠, (I3)

which depends on the orientations of (ci−1,3, ci,3). We find
that constraint [Eq. (21)] maps to the constraint vi−1,1 = 0
when taken together with constraint [Eq. (21)] with i �→ i − 1
imposed by the (d, s, u)-pair itself. This constraint vi−1,1 = 0
is incompatible with a valid strip deformation. Constraint
[Eq. (22)] maps to constraint [Eq. (22)] with i �→ i − 1. Con-
straint [Eq. (23)] maps to constraint [Eq. (24)] with i �→ i − 1
when considered together with constraint [Eq. (21)] with
i �→ i − 1 imposed by the (d, s, u)-pair. Finally, constraint
[Eq. (24)] maps to vi−1,1 = vi−1,3 = 0 when taken together
with constraints [Eqs. (21) and (24)] with i �→ i − 1 imposed
by the (d, s, u)-pair. This mapped constraint is not compatible
with a valid strip deformation.

Finally, we consider the transfer matrix for (d, s, u)-pairs:

T ((d, s, u)) =

⎛
⎜⎜⎝

1 0 0
2
3

1
3 0

2
3

Lu(ci,3 )
Lv (ci,3 ) − 2

3
Lu(ci+1,3 )
Lv (ci+1,3 ) −Rv (ci−1,3 )

Lv (ci,3 )

⎞
⎟⎟⎠, (I4)
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which depends on the orientations of (ci−1,3, ci,3). We find that
constraint [Eq. (21)] maps to constraint [Eq. (22)] with i �→
i − 1. Constraint [Eq. (22)] maps to vi−1,1 = 0 when taken
together with constraint [Eq. (22)] with i �→ i − 1 imposed
by the (d, s, u)-pair itself. This mapped constraint is incom-
patible with a valid strip deformation. Constraint [Eq. (23)]
maps to vi−1,1 = vi−1,3 = 0 when taken together with con-
straints [Eqs. (22) and (23)] with i �→ i − 1 imposed by the
(d, s, u)-pair. This mapped constraint is incompatible with a
valid strip deformation. Finally, constraint [Eq. (24)] maps to
constraint [Eq. (23)] with i �→ i − 1 using constraint
[Eq. (22)] with i �→ i − 1.

APPENDIX J: INVALID W = 3 SEQUENCES

We now explicitly state the combinations of valid (ci, ci+1)
configurations that do not result in a valid W = 3 strip
mode. The constraint mapping [Fig. 9(c)] and constraints
imposed by the valid configurations prohibit certain com-
binations of valid configurations. In particular, we find
for the top two rows in the strip that (d, u)-pairs or
(d, s)-pairs cannot be preceded by a (d, s)-pair. Simi-
larly, (d, s)-pairs cannot be preceded by a (d, s)-pair or
(d, u)-pair. Additionally, a (d, u)-pair or (d, s)-pair preceded
by a (h, d)-pair cannot be preceded by a (d, s)-pair. Finally, a
(d, s)-pair preceded by a (h, d)-pair cannot be preceded by a
(d, s)-pair. In the bottom two rows similar rules apply. There,

we find that a (d, u)-pair or ( s, u)-pair cannot be preceded by a
( s, u)-pair. Similarly, a (s, u)-pair cannot be preceded by a (d,
u)-pair or (s, u)-pair. Additionally, a (d, u)-pair or (d, s)-pair
preceded by a (u, h)-pair cannot be preceded by a (d, u)-pair
or (s, u)-pair. Finally, a (s, u)-pair preceded by a (u, h)-pair
cannot be preceded by a ( s, u)-pair. Sequences of such pairs
in either the top or bottom two rows of the strip will not result
in a valid strip mode. Note that such invalid sequences can be
freely padded with (h, h)-pairs, as these map all the constraints
to themselves and do not place any additional constraints on
the strip deformation themselves.

We now translate the invalid sequences of pairs to con-
ditions on sequences of linked building blocks [Fig. 10(a)].
First, we consider all invalid sequences of pairs in the top
two rows. We note that all realizations of invalid sequences
must feature a vertical and diagonal linked pair in the top
two rows. To see this, note that (d, u)-pairs have one building
block unlinked in the top row and one building block unlinked
in the middle row, where these blocks are either both left
or right if the two linked building blocks are linked verti-
cally or the blocks are left and right or right and left if the
two linked building blocks are linked diagonally. Similarly,
(d, s)-pairs or (d, s)-pairs have one building block unlinked
within the two top rows: either to the left or right in the
top row depending on if the two linked building blocks are
diagonally or vertically linked ((d, s)-pairs), or vertically or
diagonally linked ((d, s)-pairs) respectively. Additionally, (h,

FIG. 13. Confusion matrices comparing the slope a based on mode-scaling NZM(n) to the number of strips that obey the strip-mode rules
arule as formulated in Sec. VIII D. The k × k unit cell size is indicated on top of each matrix.
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d)-pairs have one unlinked building block in the top two rows
have one unlinked building block depending on the orientation
of the d-pair. To satisfy the strip rules, every building block
needs to be linked. To construct a linked representation that
features vertical and diagonal linked building blocks neces-
sarily requires an invalid sequence of pairs. Inversely, every
realization of an invalid sequence of pairs necessarily requires
vertical and diagonal linked building blocks. The same holds
for the invalid sequences in the bottom two rows. Thus, we
capture the exclusion of invalid sequences of pairs in a simple
rule on linked building blocks in rule (iii).

APPENDIX K: NUMERICAL PROOF STRIP MODE RULES

Here we show numerical proof that to have class (iii) mode-
scaling, a unit cell should support at least one strip mode. To
show this, we use publicly available [65] randomly generated

k × k unit cell designs ranging from size k = 2 to k = 8
generated in earlier work [42]. We check for each generated
unit cell if it obeys the strip-mode rules as formulated in
Sec. VIII D using simple matrix operations and checks [66]
for code to check the strip-mode rules. We denote the number
of strips in a unit cell that satisfy the strip-mode rules as arule

and compare this to the slope a we find from the scaling of
NZM = an + b. We do this for all possible k = 3 unit cells and
approximately one million k = 4, 5, 6 unit cells, two million
k = 7 unit cells and 1.52 million k = 8 unit cells.

We find that the true slope a and the number of strip modes
supported by the unit cell according to the strip-mode rules
arule have perfect agreement (Fig. 13). The numerical results
thus strongly suggest that supporting a strip mode is a neces-
sary requirement for a unit cell to have class (iii) mode scaling
and that the conjectured general strip-mode rules dictate when
a unit cell supports such a strip mode.
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