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We study plastic strain during individual avalanches in overdamped particle-scale molecular dynamics (MD)
and mesoscale elastoplastic models (EPM) for amorphous solids sheared in the athermal quasistatic limit. We
show that the spatial correlations in plastic activity exhibit a short length scale that grows as t3/4 in MD and
ballistically in EPM, which is generated by mechanical excitation of nearby sites not necessarily close to their
stability thresholds, and a longer lengthscale that grows diffusively for both models and is associated with remote
marginally stable sites. These similarities in spatial correlations explain why simple EPMs accurately capture the
size distribution of avalanches observed in MD, though the temporal profiles and dynamical critical exponents
are quite different.

DOI: 10.1103/PhysRevE.107.034902

I. INTRODUCTION

Many driven disordered solids, ranging from glasses to
granular matter to magnetic systems, respond via complex
avalanches that are difficult to predict [1–3]. A better under-
standing of these dynamics, even in simple model systems,
would aid in avalanche detection and material design.

We focus here on amorphous solids subject to slowly
imposed shear that fail via a broad spectrum of avalanches
of plastic deformation caused by redistribution of stress
after local yielding events [4–7]. The highly anisotropic
and long-range nature of the stress redistribution leads to
a characteristic structure of the avalanches, where correla-
tions are strongest along the directions of maximum imposed
shear. Most previous work has focused on the distribution
of avalanche sizes [7–13] and the spatial correlations of
plastic strain, which develops over the course of successive
avalanches [14–18]. More recently, the dissipation rate as a
function of time during individual avalanches was studied in
experiments on bulk metallic glass (BMG) pillars [19] and in a
computer model [11]. The temporal response was observed to
be similar to that in previously explored dynamically critical
systems [4] and explained using a mean-field theory [19].
However, surprisingly, no work, in either experiment or sim-
ulation has yet characterized how the individual avalanches
proceed in time and space.

To address this question we turn to computational mod-
els, including particle-based simulations such as molecular
dynamics (MD) and related energy minimization techniques,
which have been the workhorse for modeling sheared amor-
phous solids for decades, as well as elastoplastic models

*These authors contributed equally to this work.

(EPMs). EPMs assume an amorphous solid is composed of
mesoscale regions that will yield when the local stress reaches
a specified threshold. There are many different versions of
EPMs [20] that differ in how they introduce disorder, evolve
propagating stress fields, etc. In perhaps the simplest class of
EPM [7,8,21–23], the system is evolved quasistatically and,
after any instability, the stresses are fully equilibrated over
all space—effectively instantaneously—before allowing for
any subsequent yielding. This is in contrast to MD simula-
tions where, after a local rearrangement, the stress change
propagates continuously in time and space—diffusively for
overdamped systems [24] and ballistically for underdamped
systems—away from the plastic instability.

Despite the fact that the quasistatic EPMs are completely
devoid of any realistic description of the dynamics of stress
redistribution, they capture the critical scaling exponents ob-
served in overdamped MD simulations [9,25,26]. They are
therefore, in some sense, unreasonably good, and the reason
for their fidelity demands an explanation.

As a first step to elucidate this issue, in this paper we
propose to compare avalanche dynamics in two very different
systems that, despite their differences, share the same static
exponents: (i) a realistic particle based simulation (falling into
the overdamped universality class) and (ii) a simple deter-
ministic EPM, with instantaneous stress redistribution devoid
of any realistic temporal stress redistribution or mechanical
nonlinearities present in the particle model. We show that
while the temporal profile of the avalanches is quite different
in the two models—the EPM agrees with previously known
mean-field results while the MD does not—the spatial struc-
ture of the correlations that develop is strikingly similar.

The spatial correlation functions of plastic strain within
a single avalanche are anisotropic, with strong correlations
along the directions of maximum stress, as previously seen
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in the plastic strain accumulated over many successive
avalanches [14,15,17]. The structure of the correlation func-
tion and its evolution in time is similar in both MD and
EPM. During the course of a single avalanche, the corre-
lation function remains strongest along the principal shear
axes in a strip which does not widen appreciably in time
but does lengthen. At any given time, the correlations along
the strip initially decay with distance as e−r/ξexcite and cross
through zero at a finite distance, ξmarginal. We show that ξexcite

grows ballistically in time for the EPM, and we argue that
the reason for this ballistic propagation is the “mechanical
excitation” mechanism suggested by Idema and Liu [27]: one
event generates a stress redistribution that causes nearby sites
to exceed their threshold for stability, triggering new events. If
the timescale over which an unstable site transforms is short
compared to the propagation of the stress, then the resulting
dynamics are reminiscent of toppling dominos, with a ballistic
wave speed equal to the spacing of the dominos divided by
the “toppling time”—the time it takes one, once destabilized,
to fall onto its neighbor. ξexcite grows less quickly in time for
the MD, but it is still strongly superdiffusive, suggesting that
a similar mechanism is at play and hinting that the “toppling
time” in MD is more complicated than in EPM. In contrast,
ξmarginal grows diffusively in time for both models, and it has a
pronounced system-size dependence. At long distance the low
positive and negative contributions of the quadrupolar stress
interactions add up as a mechanical noise and are expected to
drive local zones close to marginality [28–32]. The observed
size dependence suggests that ξmarginal is the length scale at
which the weakest sites in the system are close enough to the
triggering event to be destabilized.

II. METHODS

A. Atomistic simulations

Our MD glass former consists of a standard two-
dimensional 50:50 binary mixture of “large” and “small”
particles of equal mass interacting via a short-range, nonad-
ditive potential [33]. Pairs of particles i, j at distance ri j from
each other interact via a modified inverse-power-law pairwise
potential,

ϕIPL(ri j ) =

⎧⎪⎨
⎪⎩

ε

[(
σi j

ri j

)β

+
q∑

l=0
c2l

(
ri j

σi j

)2l
]

,
ri j

σi j
� xc

0 ,
ri j

σi j
> xc

,

(1)

where ε is a microscopic energy scale. Distances in this model
are measured in terms of the interaction length scale σ be-
tween two “small” particles, and the rest are chosen to be σi j =
1.18σ for one “small” and one “large” particle, and σi j =1.4σ

for two “large” particles. The coefficients c2l are determined
by demanding that ϕIPL(ri j ) vanishes continuously up to q
derivatives [33]. In order to create poorly annealed glasses
without permanent localization, we minimize liquids that are
equilibrated at a high temperature T = 2, much higher than
the computer glass transition Tg � 0.5. A detailed discussion
on how the parent temperature of the equilibrium liquid af-
fects the elastic heterogeneities and mechanical response of
the system can be found in Refs. [34,35].

We have considered different system sizes L =
80, 160, 320, and 640, respectively, with number density
ρ = N/V = 0.86. Glasses are athermal and quasistatically
sheared (AQS) up to 50% of strain (with strain step
�γ = 10−4), and data reported here correspond to strains
ranging from 20% to 50%. Our protocol is a simple shear
deformation along the x axis; see Supplemental Material
(SM) [36] for typical stress-strain curves.

Variations in strain step are discussed in the SM. At the
onset of each instability, we trigger the avalanche by affinely
deforming the system and subsequently letting the system
relax via gradient descent dynamics according to ṙ = −D∇U ,
with coordinate positions r and potential energy U . During
the minimization process, we monitor the plastic deformation
(i.e., the incremental nonaffine displacement) in the standard
way by computing the D2

min field [37] between snapshots
separated by 2τMD, where the microscopic time is defined
as τMD = σ 2/D, with σ a typical particle diameter and D
the bare translational diffusion coefficient. We have collected
20k and 1.2k avalanche dynamics for the smallest (L = 80)
and largest (L = 640) system, respectively. The avalanche size
S is defined as the total energy drop. The beginning of the
avalanche at tstart is defined when the energy dissipation rate
−dU/dt > 0.1, and the end of the avalanche at tend is located
from the latest time at which −dU/dt > 0.1. From this pro-
cedure we compute the avalanche duration as T = tend − tstart .
This procedure, chosen for its simplicity, is similar to the one
described in Ref. [32], which focused on the time needed to
destabilize the first site and time to reach the final mechani-
cally equilibrated state.

B. Persistent homology

In order to break up a large avalanche into a sequence of
individual plastic events that can be compared with EPM,
we are inspired by a recently proposed persistent homology
method [38]. Throughout the paper we refer to the location
of each individual event as a “site.” During each avalanche
we record the incremental D2

min plastic field which generates a
representation of the activity on a grid of space-time regions,
see Fig. 1(a). The spatial grid size is set to two particle diam-
eters and the temporal grid size to 2 MD time units. The D2

min
of a cell corresponds to the sum over all D2

min particle values
within the cell. Our goal is to agnostically break up high local
maxima of this space-time field. Here we first sort all D2

min
values from the largest to the lowest up to 10−3 (below which
no actual plastic rearrangements occur). We then prune this
sorted list and create a new cluster for each local maximum
that does not belong to an existing cluster, where the clustering
distance criterion is set to the first neighbors on the space-time
grid. When a new cluster is born we record its D2

min value as
its birth. Birth values are only achieved when the maxima
is not adjacent to any existing clusters. When two existing
clusters merge, we record their D2

min value as their death. No
additional cluster is created after merging. Surviving clusters
die when reaching the lowest D2

min value. We can then place
each cluster in a birth-death diagram [Fig. 1(b)] and com-
pute their persistence p as the distance of the cluster to the
line y(death) = x(birth). Events that correspond to short space-
time fluctuations will be close to this line. When looking at
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FIG. 1. Persistent homology clustering. (a) Space-time map of
the plastic activity monitored by the D2

min field for a typical avalanche
in a glass with N = 160 × 160. (b) Birth-death phase diagram of
individual local maxima of our D2

min grid. The persistent p of a
given event is given as the distance to the line y(death) = x(birth).
(c) Probability distribution of the persistent averaged over an ensem-
ble of avalanches. The red area indicates our threshold p > 0.1 for
persistent events. (d) Superposition of the actual dissipation −dU/dt
and birth time of individual events with p > 0.1.

the probability distribution of persistence P(p) averaged over
many avalanches [Fig. 1(c)], we observe a bimodal distri-
bution that indicates two different populations of individual
events. Selecting events that have a large persistence p > 0.1
and superimposing their birth time on the avalanche activity
time profile (energy dissipation −dU/dt), we find that the
identified persistent clusters perfectly match the time location
of large dissipation [Fig. 1(d)]. For each persistent cluster,
we have access to its spatial position in addition to its birth
time. This allows us to construct the same spatiotemporal
map of plastic activity as in our EPM, with individual events
occurring at “sites” corresponding to these persistent peaks.

C. Mesoscale model

For the EPM, we use the same shear transformation based
model in [39] with the same initialization and evolution
rules but with different loading—forward shearing instead of
cyclic. The dynamical update rules under an applied global
shear strain are (i) for a given stress field, synchronously allow
all sites over threshold to yield and recompute the stress field
everywhere; (ii) repeat (i) until all sites are below threshold;
and (iii) advance the globally applied total strain until pre-
cisely one site is at its stability threshold. The synchronous
update of unstable sites defined in step (i) sets the time unit of
the model.

In our elastoplastic model [39], the two-dimensional (2D)
plane is discretized into sites. Each site has an elastic strain
εe and a plastic strain εp, with the total strain defined as the
sum of the two: εt = εe + εp. The stress σ is proportional to

FIG. 2. Spatiotemporal plastic evolution. Typical spatiotemporal
map of an avalanche in molecular dynamics (MD) with gradient
descent dynamics (left) and in the elastoplastic model (EPM) with
synchronous dynamics (right). Each plastic event is colored accord-
ing to its normalized birth time t/T , with T the avalanche duration.
Insets show the particle resolved plastic field (left) and EPM local
stress redistribution (right). System sizes are L = 320 and L = 256
for MD and EPM, respectively. For visibility only a subset of the
system is shown for the EPM.

εe : σ = 2μεe, where σ is defined in terms of the Cartesian
components of the stress: σ = (σxx − σyy)/2, and similarly,
εe = (εxx

e − ε
yy
e )/2. We set μ = 1 throughout this study, so

σ and εe are numerically equal. When the magnitude of the
stress at a site exceeds the plastic threshold, set to 1 here, we
increment the plastic strain at the site in the same direction
as σ (+2 for σ � 1, –2 for σ � −1) and update the stress
at the remaining sites according to the rules of linear elas-
ticity analogous to Eshelby’s classical solution for a plastic
inclusion in an elastic matrix. Throughout this paper, we use
the terms “yield stress” and “threshold” interchangeably. The
increment value 2 is chosen to ensure a single-valued strain
energy function. The total number of avalanches collected is
90k, obtained from shearing 50 different systems (L = 256).
The avalanche size S is defined as the total stress drop which
is proportional to the total number of plastic transformations.
The duration T is defined as the total number of sweeps in
the avalanche. As time in the EPM is discrete and defined by
the number of sweeps accumulated during the course of the
event, the energy dissipation rate is simply defined as the total
energy drop in a given sweep.

III. RESULTS

A. Spatiotemporal plastic evolution

We first qualitatively describe a typical avalanche in both
models. Figure 2 highlights individual sites that have yielded,
colored according to the time at which the site toppled. The
pattern which emerges is a set of clusters where all sites within
a cluster are nearly the same color, extend along a direction of
maximum shear, and almost continuously fill space; additional
MD avalanches are shown in the SM [36].

In contrast, these larger clusters are typically separated
from one another by gaps of material. Nearby clusters are
not necessarily triggered sequentially in time, suggesting that
gaps between clusters correspond to regions of material that
are stable enough to survive the increased local stresses at the
edges of the growing cluster. The same intermittent activity
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FIG. 3. Plastic activity profile. (a) Typical dissipation rate
−dU/dt in MD plotted as a function of the reduced time t/T for du-
ration 1500 < T < 3000 and L = 320. (b) Scatter plot of avalanche
size vs duration. The blue and black empty symbols are running
means 〈S〉 ∼ T and 〈T 〉 ∼ S, respectively. Solid and dashed lines
indicate the scaling 〈S〉 ∼ T δ , with exponent δ = 0.65 and δ = 4/3,
respectively. (c) Average normalized activity for 400 < T < 600
[orange region in (b)]. (d) Average duration 〈T 〉 at a fixed avalanche
size S for different system sizes. Insets show the same data collapsed
using 〈T 〉L−ν , with ν � 0.8. Panels (e), (f), (g), and (h) show the
same results as in (a), (b), (c), and (d) but for the EPM where −dU/dt
is measured as the energy dissipation per sweep and L = 256.

is found in depinning avalanches with long-range interactions
[40,41].

B. Plastic activity profile

Given this qualitative similarity in the spatiotemporal
structure and the utility of mean-field models in predicting
temporal dynamics in depinning and other disordered criti-
cal phenomena, we next quantitatively analyze the temporal
activity profiles in MD and EPM. In Figs. 3(a) and 3(e),
we plot the dissipation rate −dU/dt as a function of the
normalized duration t/T for a few typical avalanches. In MD
we find intermittent bursts of activity followed by long quies-
cent periods, so that the energy dissipation magnitude spans

six decades. Waiting times are associated with marginally
unstable sites with �σ+ = σi − σ th

i > 0, with σi and σ th
i the

local stress and local yield stress of the unstable site i. For
a typical saddle-node bifurcation, we expect that the wait-
ing time �tw before departure will scale as �tw ∼ �σ

−1/2
+

[42]. In contrast, unstable sites in our EPM transform in-
stantaneously regardless of how far they are over threshold,
termed a uniform activation rate. As a consequence, activity
fluctuations in EPM [Fig. 3(e)] vary by less than an order
of magnitude.

Another difference between the MD and EPM can be seen
by plotting the avalanche size S versus duration T , Figs. 3(b)
for MD and 3(f) for EPM. We find that MD data scatter
much more than our EPM. This is similar to previous results
comparing an EPM with a uniform activation rate to one with
a so-called progressive rate model, where the activation rate is
a function of the overshoot σi − σ th

i [32,43]. In both MD and
EPM, the average size for a fixed duration shows a power law
〈S〉 ∝ T δ , where the dynamical exponent δ = d f /z, with d f

and z the static and dynamical fractal exponent, respectively.
Independent estimation of d f and z are reported in the Supple-
mental Material [36] and are consistent with previous works
[11,13]. The EPM gives a larger δ than MD, as the dynamical
exponent z � 0.6 is lower than MD (z � 1.55), although it is
consistent with previous EPM-type models [11] which used
continuous-in-time dynamics rather than the automaton rules
we apply here.

More surprisingly, in MD we find a discrepancy between
average avalanche size for a fixed duration 〈S〉T and the aver-
age duration for a fixed size 〈T 〉S . We find that the average
duration 〈T 〉S is system-size dependent and grows with L
as Lν , see Fig. 3(d). We can understand this size effect as
follows. During avalanches the system visits configurations
with unstable sites with �σ+ > 0. We expect the average
stability of the least unstable site to decrease with system size
as 〈�σ+〉 ∼ L−η. This scaling of the characteristic overshoot
for unstable sites is different from the previously reported
scaling for thresholds associated with marginally stable sites
[26,44–46]. In our EPM model, the marginally unstable sites
immediately yield and generate new stress fields. The situa-
tion is different in our MD under gradient descent dynamics.
As discussed above, a waiting time �tw associated with the
departure from a saddle node emerges. The average waiting
time caused by this marginal triggering will thus be size de-
pendent and follow 〈�tw〉 ∼ Lν . We find a good collapse of
MD data for ν � 0.8. A similar finite-size effect, though with
a different exponent, was previously noticed in progressive
rate EPMs [32,43].

In Figs. 3(c) and 3(g), we show the normalized aver-
age activity profile 〈A〉/〈A〉max (with A = −dU/dt) plotted
against the reduced time t/T in the MD and EPM, respec-
tively. For the EPM and avalanches within the scaling regime,
we find that profiles are symmetrical and well modelled by
f (u) = [u(1 − u)]δ−1, with u = t/T , consistent with previous
works and mean-field theories [11,47]. For large avalanches
in EPM, with long duration beyond the scaling regime where
system-size effects become relevant, one finds a profile which
departs from that scaling and is skewed with more activity at
early times. A similar transition to skewed profiles for large
evens was recently observed in granular flows [48]. In MD
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the profile deviates strongly from the f (u) = [u(1 − u)]δ−1

form. This is due to inactive periods with almost zero dissipa-
tion. The average activity at the midpoint of the avalanche is
systematically lower than at its beginning, the latter being by
definition always active. We speculate that one would recover
a symmetrical activity profile by introducing inertia in the
dynamics, which would facilitate barrier crossing in weakly
unstable regions.

C. Spatiotemporal plastic correlation

We next analyze the spatial correlations that build
up during the avalanche. To do this we define a two-
points two-times correlation function C( �r0, �r0 + �r, t0, t0 +
�t ) = 〈�P( �r0, t0)�P( �r0 + �r, t0 + �t )〉, with �P = P − P
and where ... and 〈...〉 represent a spatial and ensemble aver-
age, respectively. Here, P(�r, t ) corresponds to the incremental
plastic field measured at a given time t . For both MD and EPM
avalanches, P(�r, t ) corresponds to a binary field of 0 and 1 for
inactive or active sites, respectively.

Figure 4(a) shows the MD normalized correlation
C(x, y)/Cmax for delay times �t = 4 (left) and 40 (right).
There are positive correlations along the directions of imposed
shear (the x and y axes). The spatial extent of the region of
positive correlation grows with �t [49]. The same data are
shown for the EPM in Fig. 4(e) for �t = 2 and 6, where we
observe the same qualitative behavior.

In Figs. 4(b) and 4(f) we plot C(x) along the x axis at
various �t . C(x) decays exponentially at small x, and we use
the exponential decay rate to define a short-range length scale
ξexcite. In practice, fits only include data with C(x)/Cmax >

0.05. Despite the initial exponential decay, C(x) stops be-
having exponentially and crosses through zero at a finite x,
which corresponds to the length scale at which the plastic-
ity starts to become anticorrelated, see Figs. 4(c) and 4(g).
We use this zero crossing to define a second, larger length
scale, ξmarginal. Note that for large system sizes and large �t
where our statistics are poor, several negative crossings can
occur. In such a case we evaluate an estimate of the error
on ξmarginal as the spread between the first negative cross-
ing and the median over all negative crossings. Importantly,
we observe that ξmarginal is size dependent and grow with L.
We also look at correlation in the transverse direction, C(y)
at a small, fixed x (xMD = 50 and xEPM = 40). Results are
shown for various �t in Figs. 4(d) and 4(h). We find that
C(y) is well modeled by a Gaussian, C(y) ∼ e−(y/w)2/2, which
allows us to quantify the width w associated with plastic
propagation.

In order to improve the statistics of the particle-based
correlations, we assume time-translational invariance and av-
erage over t0. Data examining the validity of this assumption
is shown for both MD and EPM in Figs. 5(a) and 5(b). Here
we plot the correlation along the principal shear axis (x axis)
and check to what extent C(t0 = 0, x) = C(t0 > 0, x) is valid.
We find that time translation invariance holds relatively well
in the early decay. We find a slightly larger likelihood to find
more plasticity further in space for t0 > 0 than for t0 = 0. This
trend can be explained by the progressive accumulation of
stress redistribution across the system, which makes it more
likely for marginal sites with �σ− < 0 to yield away from the

FIG. 4. Spatiotemporal plastic propagation. (a) Particle-based
(MD) two-points two-times normalized correlation function
C(x, y)/Cmax in log10 for �t = 4 and 40. White regions correspond
to a negative correlation. The system size is L = 320. (b) Correlation
function along the main stress redistribution for different delay
times �t = 4, 10, 20, 40, 60, and 100. Inset shows the correlation in
semilog scale. Solid lines are fits of the form C(x)/Cmax ∼ e−x/ξexcite ,
with ξexcite a short-length-scale decay. (c) Change of C(x)/Cmax for
different system size at a fixed �t = 6. Inset shows the negative
crossing in linear scale. (d) Transverse normalized correlation
function C(y)/Cmax at a fixed xMD = 50 for different �t . Solid lines
are fits with C(y) ∼ e−(y/w)2/2, where w is the width of the plastic
localization. (e), (f), (g), and (h) The same results as in (a), (b), (c),
and (d) but for our mesoscale model (EPM) with �t = 1, 2, 4, 6, 8,
and 12 and L = 256. C(x)/Cmax in (g) is for �t = 3. C(y)/Cmax in
(h) is evaluated at xEPM = 40. The meanings of ξexcite, ξmarginal, and w

are illustrated in (a) and (e).

original source. We fix t0 = 0 to extract the negative crossing
below in Fig. 6, but we average over t0 to study the initial
decay of C(x).
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FIG. 5. Time translational invariance. (a) Comparison of the
MD incremental correlation C = 〈� f (�r0, t0)� f (�r0 + �r, t0 + �t )〉
for t0 = 0 (green) and t0 � 0 (black). (b) Same data as in (a) for our
EPM but with t0 = 0 (green) and t0/T = 1/5 (black). System sizes
are L = 320 and L = 256 for MD and EPM, respectively.

D. Spatiotemporal plastic propagation

We now discuss how the short correlation decay ξexcite, the
long-range marginal length ξmarginal, and the plastic width w

vary with �t as well as with the system size L. We remind the
reader that the length associated with an EPM site corresponds

FIG. 6. Plastic length scales. (a) MD data for ξexcite (orange) and
ξmarginal (purple) plotted against �t with L = 320. The purple line
corresponds to the diffusive response associated with the stress field
generated by a single event at �t = 0. The orange line indicates a
superdiffusive regime with ∼t3/4. Gray data are the plastic width w

extracted from fitting C(y). The gray line indicates a subdiffusive
regime with ∼t1/10. (b) ξexcite and ξmarginal for �t = tSTZ = 6 plotted
as a function of the system size L. ξmarginal (L) scales as ∼L1/3. (c) and
(d) are the same results as in (a), (b), but for our mesoscale model
(EPM) with L = 256. The solid orange line in (g) indicates v0t , with
v0 = 3. Results in (d) are for �t = 1, where ξmarginal (L) scales as
∼L2/3. ξexcite(L) is fairly constant for both MD and EPM. The mean
and error bar for ξmarginal are estimated as the arithmetic mean and
the spread between the first negative crossing and the median over
all negative crossings (if any), respectively.

to a few particle diameters in MD. In Figs. 6(a) and 6(c) we
show that these three lengths exhibit a power-law evolution
with �t . The trends are similar in both MD and EPM. ξexcite

has the strongest �t dependence: it scales like �t3/4 in the
MD and is nearly ballistic in the EPM. ξmarginal scales dif-
fusively as �t1/2 in both the MD and EPM. w has a very
weak dependence on �t , which indicates that for any given
avalanche, the correlations get more and more constrained to
lie along the axes of shear as time goes during the course of
the avalanche. We speculate that the weak growth in time of
plastic width is due to the negative interference of the stress
redistribution that promotes unidirectional plastic propaga-
tion. Finally, in Figs. 6(b) and 6(d) we show how ξmarginal

and ξexcite depend on system size for a fixed, small �t . In
both MD and EPM, ξexcite has relatively little dependence on
system size, while ξmarginal has a more pronounced system-
size dependence, scaling approximately like L1/3 and L2/3 in
the MD and EPM, respectively. The present size effect can
be explained by the presence of marginally stable sites with
�σ− = σi − σ th

i < 0 (to be contrasted with the marginally
unstable sites discussed above) and the long-range nature of
the stress generated from the initial source. We know from
previous works that 〈�σ−〉 ∼ L−1.21 [46] and 〈�σ−〉 ∼ L−1.35

[26] for MD and EPM, respectively. Moreover, the Eshelby
stress kernel decays as ∼r−d . Thus we expect a characteristic
scale ξmarginal to emerge where the Eshelby kernel will decay
to the level of �σ− for a given system size. Beyond that
length scale no marginal triggering will be possible. From
the scaling of �σ−, we expect ξmarginal ∼ L0.6 (for MD) and
ξmarginal ∼ L0.725 (for EPM). Our data for ξmarginal show less
sensitive system-size dependence than that for both the MD
and EPM.

IV. DISCUSSION AND OUTLOOK

In this paper we demonstrate that the spatiotemporal evo-
lution of avalanches in particle-based simulations in the
overdamped limit share important similarities and differences
with an elastoplastic model governed by synchronous dynam-
ics. We show that in both models avalanches are driven by
localized clusters of activity and that the spatial correlation
function of activity remains largely confined to a strip which
does not appreciably widen in time and exhibits two length
scales that grow differently in time and with system size.

One length scale, ξexcite, corresponds to high-likelihood
nearby events which are mechanically excited. In the EPM
models this leads to standard ballistic propagation as seen
in other excitable media [27], while in MD simulations we
find the front propagates as t3/4. In both cases our data sug-
gests this scale is independent of system size. An interesting
question for future work is what generates this nonstandard
exponent in MD simulations.

A second, longer length scale, ξmarginal, corresponding
to low-likelihood remote events, propagates diffusively and
scales with system size. This suggests that it is governed by
the weakest spots in the disordered solid, as far-field stress
fluctuations anywhere in the system are sufficient to trig-
ger events, and the stress magnitude required to trigger the
weakest spot scales as a power law with system size. Given
the low probability of these marginally triggered events, it is
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statistically more demanding to quantify ξmarginal than ξexcite.
Although it is comforting that the size dependence we mea-
sure for ξmarginal is consistent with the known size scaling of
the weakest site [26,32,45,46], we nevertheless admit that the
dynamics is dominated by the excited toppling mechanism
[27] and that ξmarginal may be less important for the avalanche
evolution.

Another difference between the two types of simulations
is the statistics of their temporal dynamics. In MD sim-
ulations the stress overshoot—the difference between the
triggering stress field and the stress threshold of an excitable
site–governs how fast the system departs a saddle and the
waiting times between localized bursts of deformation in an
avalanche. These effects generate dynamical exponents that
depart significantly with mean-field predictions and cause
duration-size curves to vary with system size. In contrast, our
simple EPM has no such mechanism; the dynamical exponent
is much closer to mean field, and the duration-size curves do
not depend on system size. Recent progressive-rate EP models
[32,43] include a proxy for this waiting time and qualitatively
reproduce this physics but do not quantitatively match the ex-
ponents we find in the MD. A nice feature of EPMs is that it is
possible to disambiguate the consequences of various choices
for the stress propagation, waiting times, and disorder. Future
work could focus on adjusting properties of EPMs to improve
quantitative agreement with MD. Another important avenue
is understanding how these models behave in the presence of
inertia [9,25,50]. In practice, one will have to introduce

in EPM realistic stress propagation such as proposed in
Refs. [51,52] using finite element methods.

We speculate that our results should translate well to
three-dimensional (3D) solids. In particular, the long-range
elastic kernel will give rise to the “domino effect” and the
corresponding fast growth in time of ξexcite. Moreover, as
the statistics of marginally stable sites have been shown to
follow a similar scaling as found in 2D, we also expect a
size-dependent ξmarginal.

We have focused here on MD and EPM simulations for a
relatively ductile material, where the stress required for each
site to be triggered is relatively small. It will be very interest-
ing to revisit similarities and differences in brittle systems that
undergo shear banding instabilities, which provide an even
stricter test of models of the spatiotemporal evolution of disor-
dered solids. More broadly, the tools developed here could be
used to characterize spatiotemporal dynamics of avalanches in
materials with complicated interactions (irregular shapes, fric-
tion, realistic molecular potentials) and boundary conditions.

ACKNOWLEDGMENTS

We acknowledge support of the Simons Foundation for
“Cracking the Glass Problem Collaboration” Awards No.
348126 (D.R.) and No. 454947 (A.E. and M.L.M.). M.L.M.
acknowledges support from NSF-DMR-1951921. D.R. ac-
knowledges support by the H2020-MSCA-IF-2020 project
ToughMG (No. 101024057).

[1] G. Durin and S. Zapperi, Scaling Exponents for Barkhausen
Avalanches in Polycrystalline and Amorphous Ferromagnets,
Phys. Rev. Lett. 84, 4705 (2000).

[2] F. Dalton and D. Corcoran, Self-organized criticality in a
sheared granular stick-slip system, Phys. Rev. E 63, 061312
(2001).

[3] K. J. Måløy, S. Santucci, J. Schmittbuhl, and R. Toussaint,
Local Waiting Time Fluctuations along a Randomly Pinned
Crack Front, Phys. Rev. Lett. 96, 045501 (2006).

[4] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Crackling noise,
Nature (London) 410, 242 (2001).

[5] B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao,
and W. H. Wang, Plasticity of Ductile Metallic Glasses: A
Self-Organized Critical State, Phys. Rev. Lett. 105, 035501
(2010).

[6] J. Lin, T. Gueudré, A. Rosso, and M. Wyart, Criticality in the
Approach to Failure in Amorphous Solids, Phys. Rev. Lett. 115,
168001 (2015).

[7] Z. Budrikis, D. F. Castellanos, S. Sandfeld, M. Zaiser, and
S. Zapperi, Universal features of amorphous plasticity, Nat.
Commun. 8, 15928 (2017).

[8] M. Talamali, V. Petäjä, D. Vandembroucq, and S. Roux,
Avalanches, precursors and finite size fluctuations in a meso-
scopic model of amorphous plasticity, Phys. Rev. E 84, 016115
(2011).

[9] K. M. Salerno, C. E. Maloney, and M. O. Robbins, Avalanches
in Strained Amorphous Solids: Does Inertia Destroy Critical
Behavior? Phys. Rev. Lett. 109, 105703 (2012).

[10] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Scaling description
of the yielding transition in soft amorphous solids at zero tem-
perature, Proc. Natl. Acad. Sci. USA 111, 14382 (2014).

[11] C. Liu, E. E. Ferrero, F. Puosi, J.-L. Barrat, and K. Martens,
Driving Rate Dependence of Avalanche Statistics and Shapes
at the Yielding Transition, Phys. Rev. Lett. 116, 065501
(2016).

[12] J. T. Clemmer, K. M. Salerno, and M. O. Robbins, Criticality in
sheared, disordered solids, I. Rate effects in stress and diffusion,
Phys. Rev. E 103, 042605 (2021).

[13] J. T. Clemmer, K. M. Salerno, and M. O. Robbins, Criticality
in sheared, disordered solids, II. Correlations in avalanche dy-
namics, Phys. Rev. E 103, 042606 (2021).

[14] C. E. Maloney and M. O. Robbins, Anisotropic Power Law
Strain Correlations in Sheared Amorphous 2D Solids, Phys.
Rev. Lett. 102, 225502 (2009).

[15] M. Talamali, V. Petäjä, D. Vandembroucq, and S. Roux, Strain
localization and anisotropic correlations in a mesoscopic model
of amorphous plasticity, C. R. Mec. 340, 275 (2012).

[16] J. Chattoraj and A. Lemaître, Elastic Signature of Flow Events
in Supercooled Liquids Under Shear, Phys. Rev. Lett. 111,
066001 (2013).

[17] A. Nicolas, J. Rottler, and J.-L. Barrat, Spatiotemporal corre-
lations between plastic events in the shear flow of athermal
amorphous solids, Eur. Phys. J. E 37, 50 (2014).

[18] F. Puosi, J. Rottler, and J.-L. Barrat, Plastic response and cor-
relations in athermally sheared amorphous solids, Phys. Rev. E
94, 032604 (2016).

034902-7

https://doi.org/10.1103/PhysRevLett.84.4705
https://doi.org/10.1103/PhysRevE.63.061312
https://doi.org/10.1103/PhysRevLett.96.045501
https://doi.org/10.1038/35065675
https://doi.org/10.1103/PhysRevLett.105.035501
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1038/ncomms15928
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevE.103.042605
https://doi.org/10.1103/PhysRevE.103.042606
https://doi.org/10.1103/PhysRevLett.102.225502
https://doi.org/10.1016/j.crme.2012.02.010
https://doi.org/10.1103/PhysRevLett.111.066001
https://doi.org/10.1140/epje/i2014-14050-1
https://doi.org/10.1103/PhysRevE.94.032604


D. RICHARD et al. PHYSICAL REVIEW E 107, 034902 (2023)

[19] J. Antonaglia, W. J. Wright, X. Gu, R. R. Byer, T. C. Hufnagel,
M. LeBlanc, J. T. Uhl, and K. A. Dahmen, Bulk Metallic
Glasses Deform via Slip Avalanches, Phys. Rev. Lett. 112,
155501 (2014).

[20] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat,
Deformation and flow of amorphous solids: Insights
from elastoplastic models, Rev. Mod. Phys. 90, 045006
(2018).

[21] J.-C. Baret, D. Vandembroucq, and S. Roux, An Extremal
Model of Amorphous Plasticity, Phys. Rev. Lett. 89, 195506
(2002).

[22] Z. Budrikis and S. Zapperi, Avalanche localization and
crossover scaling in amorphous plasticity, Phys. Rev. E 88,
062403 (2013).

[23] B. Tyukodi, D. Vandembroucq, and C. E. Maloney, Diffusion
in Mesoscopic Lattice Models of Amorphous Plasticity, Phys.
Rev. Lett. 121, 145501 (2018).

[24] F. Puosi, J. Rottler, and J.-L. Barrat, Time-dependent elastic
response to a local shear transformation in amorphous solids,
Phys. Rev. E 89, 042302 (2014).

[25] K. M. Salerno and M. O. Robbins, Effect of inertia on sheared
disordered solids: Critical scaling of avalanches in two and three
dimensions, Phys. Rev. E 88, 062206 (2013).

[26] B. Tyukodi, D. Vandembroucq, and C. E. Maloney, Avalanches,
thresholds, and diffusion in mesoscale amorphous plasticity,
Phys. Rev. E 100, 043003 (2019).

[27] T. Idema and A. J. Liu, Mechanical signaling via nonlinear
wavefront propagation in a mechanically excitable medium,
Phys. Rev. E 89, 062709 (2014).

[28] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Rhe-
ology of Soft Glassy Materials, Phys. Rev. Lett. 78, 2020
(1997).

[29] A. Lemaître and C. Caroli, Plastic response of a two-
dimensional amorphous solid to quasistatic shear: Transverse
particle diffusion and phenomenology of dissipative events,
Phys. Rev. E 76, 036104 (2007).

[30] E. Agoritsas, E. Bertin, K. Martens, and J.-L. Barrat, On the
relevance of disorder in athermal amorphous materials under
shear, Eur. Phys. J. E 38, 71 (2015).

[31] J. Lin and M. Wyart, Mean-Field Description of Plastic Flow in
Amorphous Solids, Phys. Rev. X 6, 011005 (2016).

[32] E. E. Ferrero and E. A. Jagla, Criticality in elastoplastic models
of amorphous solids with stress-dependent yielding rates, Soft
Matter 15, 9041 (2019).

[33] E. Lerner, Mechanical properties of simple computer glasses,
J. Non-Cryst. Solids 522, 119570 (2019).

[34] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus,
Random critical point separates brittle and ductile yielding tran-
sitions in amorphous materials, Proc. Natl. Acad. Sci. USA 115,
6656 (2018).

[35] D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang,
S. A. Ridout, B. Xu, G. Zhang, P. K. Morse, J.-L. Barrat, L.
Berthier, M. L. Falk, P. Guan, A. J. Liu, K. Martens, S. Sastry,
D. Vandembroucq, E. Lerner, and M. L. Manning, Predicting

plasticity in disordered solids from structural indicators, Phys.
Rev. Mater. 4, 113609 (2020).

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.107.034902 for technical details about the
simulations, along with some additional supporting results.

[37] M. L. Falk and J. S. Langer, Dynamics of viscoplastic deforma-
tion in amorphous solids, Phys. Rev. E 57, 7192 (1998).

[38] E. Stanifer and M. L. Manning, Avalanche dynamics in sheared
athermal particle packings occurs via localized bursts predicted
by unstable linear response, Soft Matter 18, 2394 (2022).

[39] K. Khirallah, B. Tyukodi, D. Vandembroucq, and C. E.
Maloney, Yielding in an Integer Automaton Model for Amor-
phous Solids under Cyclic Shear, Phys. Rev. Lett. 126, 218005
(2021).

[40] L. Laurson, S. Santucci, and S. Zapperi, Avalanches and clusters
in planar crack front propagation, Phys. Rev. E 81, 046116
(2010).

[41] C. Le Priol, P. Le Doussal, and A. Rosso, Spatial Clustering of
Depinning Avalanches in Presence of Long-Range Interactions,
Phys. Rev. Lett. 126, 025702 (2021).

[42] S. H. Strogatz, Nonlinear Dynamics and Chaos with Student
Solutions Manual: With Applications to Physics, Biology, Chem-
istry, and Engineering (CRC Press, Boaca Raton, FL, 2018).

[43] I. Fernandez Aguirre and E. A. Jagla, Critical exponents of
the yielding transition of amorphous solids, Phys. Rev. E 98,
013002 (2018).

[44] S. Karmakar, E. Lerner, and I. Procaccia, Statistical physics of
the yielding transition in amorphous solids, Phys. Rev. E 82,
055103(R) (2010).

[45] J. Lin, A. Saade, E. Lerner, A. Rosso, and M. Wyart, On
the density of shear transformations in amorphous solids,
Europhys. Lett. 105, 26003 (2014).

[46] C. Ruscher and J. Rottler, Residual stress distributions in amor-
phous solids from atomistic simulations, Soft Matter 16, 8940
(2020).

[47] L. Laurson, X. Illa, S. Santucci, K. T. Tallakstad, K. J. Måløy,
and M. J. Alava, Evolution of the average avalanche shape with
the universality class, Nat. Commun. 4, 2927 (2013).

[48] A. Baldassarri, M. Annunziata, A. Gnoli, G. Pontuale, and A.
Petri, Breakdown of scaling and friction weakening in intermit-
tent granular flow, Sci. Rep. 9, 16962 (2019).

[49] Note that small deviations from an ideal x ↔ y symmetry stem
from the use of Lees-Edwards periodic boundary conditions.

[50] K. Karimi, E. E. Ferrero, and J.-L. Barrat, Inertia and uni-
versality of avalanche statistics: The case of slowly deformed
amorphous solids, Phys. Rev. E 95, 013003 (2017).

[51] A. Nicolas, F. Puosi, H. Mizuno, and J.-L. Barrat, Elastic con-
sequences of a single plastic event: Towards a realistic account
of structural disorder and shear wave propagation in models
of flowing amorphous solids, J. Mech. Phys. Solids 78, 333
(2015).

[52] K. Karimi and J.-L. Barrat, Role of inertia in the rheology
of amorphous systems: A finite-element-based elastoplastic
model, Phys. Rev. E 93, 022904 (2016).

034902-8

https://doi.org/10.1103/PhysRevLett.112.155501
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevE.88.062403
https://doi.org/10.1103/PhysRevLett.121.145501
https://doi.org/10.1103/PhysRevE.89.042302
https://doi.org/10.1103/PhysRevE.88.062206
https://doi.org/10.1103/PhysRevE.100.043003
https://doi.org/10.1103/PhysRevE.89.062709
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevE.76.036104
https://doi.org/10.1140/epje/i2015-15071-x
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1039/C9SM01073D
https://doi.org/10.1016/j.jnoncrysol.2019.119570
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1103/PhysRevMaterials.4.113609
http://link.aps.org/supplemental/10.1103/PhysRevE.107.034902
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1039/D1SM01451J
https://doi.org/10.1103/PhysRevLett.126.218005
https://doi.org/10.1103/PhysRevE.81.046116
https://doi.org/10.1103/PhysRevLett.126.025702
https://doi.org/10.1103/PhysRevE.98.013002
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1039/D0SM01155J
https://doi.org/10.1038/ncomms3927
https://doi.org/10.1038/s41598-019-53178-2
https://doi.org/10.1103/PhysRevE.95.013003
https://doi.org/10.1016/j.jmps.2015.02.017
https://doi.org/10.1103/PhysRevE.93.022904

