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Abstract
We introduce a new hybrid modal logic HSML for reasoning about sabotage-style graph games with edge deletions and
provide a complete Hilbert-style axiomatization. We extend the completeness analysis to protocol models with restrictions on
available edge deletions and clarify the connections between HSML-style logics of edge deletions and recent modal logics
for stepwise point deletion from graphs.

Keywords: Modal logic, graph change, sabotage game, link deletion

1 Introduction

Sabotage games were introduced in [17] as a model for algorithmic behaviour under disturbance,
a topic of increasing interest when analysing abuses of and threats to computational systems such
as the Internet. The idea is that in a task involving stepwise traversal of a graph by a player called
‘Traveler’, the disturbing inf luence becomes a counter-player called ‘Demon’ who starts each round
by cutting some available link in the graph. The resulting sabotage game is determined, and winning
conditions and winning invariants can be defined in a natural associated modal logic SML, which has
a standard modality for accessible nodes from the current point as well as a new ‘deletion modality’
describing what is true at the current point after some link has been deleted from the graph.

There is a strand of literature exploring applications and technical properties of sabotage
games and their modal logic. Löding and Rohde [13] proved that model checking for SML is
Pspace-complete, while satisfiability is undecidable. Aucher et al. [4] gave a bisimulation-style
characterization of SML under translation as a fragment of first-order logic, as well as a complete
tableau system for validity, and similar results were obtained independently in [2] in a more general
study of modal logics of graph change. More recent results include [12] on sabotage modal logics
with definable link deletions and a Zero-One Law for SML [14], showing that in the long run as
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Hybrid sabotage modal logic 1217

finite graph size increases, the sabotage game is massively in favour of Traveler, who wins at any
position with probability 1. In terms of applications of the game, one interesting proposal using
sabotage games for learning scenarios is found in [8]. The background to these publications is a
more general investigation of the connections between modal logics and existing or newly designed
graph games, advocated in the programmatic paper [21], with concrete case studies in [9, 26] on
‘poison games’ and [15] on modal logics of fact change.

A natural and straightforward issue left open in this literature is a Hilbert-style axiomatization of
SML, which would be useful for actual standard reasoning about sabotage games or related dynamic
scenarios. Such an axiomatization must exist by the known effective translation of SML into first-
order logic, but finding a concrete workable proof system has turned out surprisingly difficult. The
present paper fills this gap, at least for a mild hybrid modal extension of the original SML language
called HSML, and explores some broader implications of this result. The technique used for our
completeness theorem stems from a recent axiomatization of a basic modal logic MLSR for stepwise
object deletion (or alternatively, of ‘quantification without replacement’) in [22], which we adapt to
the sabotage setting and simplify considerably.

Once we have the connection between the standard semantics of SML and the proof system in
our completeness proof, a natural follow-up question arises. Can one modulate this relationship
between semantics and proof system so as to get completeness for other natural semantics for modal
logics of graph change? We show how this can be done for a new ‘protocol version’, [11], of SML
that restricts the available deletions for the Demon. Next, we turn to the general issue of relating
modal logics for deleting edges and for deleting vertices from graphs. We embed the sabotage logic
HSML faithfully into MLSR by encoding edge deletion as vertex deletion and also provide a partial
converse. We end with identifying a few further topics that seem amenable to our style of analysis,
including interpolation for HSML and axiomatizing its schematic validities.
Relation to DEL For readers familiar with dynamic-epistemic logic (DEL) [5, 18, 23], an analogy
may be helpful. A system like ‘public announcement logic’ (PAL) has modalities for actions ! ϕ of
deleting all points that satisfy ¬ϕ from a given graph model. PAL is decidable thanks to ‘recursion
axioms’ that push dynamic modalities through complex postconditions. However, if we perform
deletions step by step, we get the above logic MLSR, which is undecidable [22], since arbitrary
sequences of deletions require storage in an unbounded memory, a device allowing for encoding of
undecidable computational problems. The situation is similar with link deletions. There are complete
and decidable dynamic-epistemic logics for uniform definable link cutting (an example of such a
system occurs in the Appendices to this paper), but in contrast, SML and HSML maintain sequences
of arbitrary stepwise link deletions that require memory, and thus incur higher complexity. Even so,
research questions about SML show many similarities with those for PAL and MLSR. One might
even think that the link deletion case is essentially the same subject as the point deletion case, but
more precise information on the true connections will be found in Section 5 below.
Relation to hybrid modal logic In this paper, we employ devices from hybrid logic [3] to boost
the expressive power of the original sabotage modal logic just enough to allow for a Hilbert-
style axiomatization. However, this choice of a surplus is not unique. We focus on nominals plus
the @-operator as a convenient syntax, but a version of SML extended with nominals and global
existential and universal modalities would also be worth investigating. Moreover, we just determine
the most general logic of the above games. Sabotage logics for specific classes of graphs may well
be axiomatizable using further proof-theoretic techniques from hybrid logic, such as those presented
in [7]. Finally, one could also turn the tables, and in the spirit of [2], view our results from a hybrid
perspective as exploring fragments of the full first-order language that arise as hybrid languages are
enriched with modalities for various forms of graph change.
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1218 Hybrid sabotage modal logic

2 Hybrid Sabotage Modal Logic

2.1 Language and semantics

We start by introducing the basic notions of the system HSML. For details of modal logic that we do
not explain, we refer to [6].

DEFINITION 1 (Language).
Let Prop = {p, q, r, . . .} be a nonempty countable set of propositional variables disjoint from a
nonempty countable set of nominals Nom = {a, b, c, d, . . .}. The hybrid modal sabotage language
HSML is defined over the set of atoms Prop ∪ Nom by the following grammar:

ϕ ::= a | p | ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | @aϕ

DEFINITION 2 (Model).
A model M = (W , R, V) for HSML is a standard modal relational model with worlds W ,
accessibility relation R and valuation function V , subject to the condition that V assigns singleton
subsets of W to nominals.

DEFINITION 3 (Truth conditions).
The semantics of HSML is as follows:

M, w |� a iff w ∈ V(a)

M, w |� p iff w ∈ V(p)

M, w |� @aϕ iff M, v |� ϕ where V(a) = {v}
M, w |� ¬ϕ iff not M, w |� ϕ

M, w |� ϕ ∧ φ iff M, w |� ϕ and M, w |� φ

M, w |� ♦ϕ iff M, v |� ϕ for some v with Rwv
M = (W , R, V), w |� �ϕ iff there is a pair (u, v) ∈ R such that (W , R \ (u, v), V), w |� ϕ

The deletion diamond modality of SML and its universal dual � = ¬�¬ describes effects of
cutting arbitrary links, one at a time, allowing one to express, e.g. winning patterns for Traveler
in sabotage games by modal combinations �♦. For more on the expressive power of this device,
cf. [4].

However, using nominals, we can define still more, in particular, the following useful operator
describing the effect of cutting a specific named link:

〈a|b〉ϕ := (@a♦b ∧ �(@a¬♦b ∧ ϕ)) ∨ (@a¬♦b ∧ ϕ).

Informally, this formula says that after cutting a possibly existent link between the world named
‘a’ and the world named ‘b’, ϕ will hold. The first disjunct describes the effects of actually cutting
such a link, and the second disjunct takes care of the case that no link connected a and b. Formally,
let M = (W , R, V),M(a|b) = (W , R(a|b), V), where R(a|b) = R \ {(u, v) |M, u |� a and M, v |� b}.
Unpacking the above truth conditions, it is easy to see that the following holds:

FACT 1. M, w |� 〈a|b〉ϕ iff M(a|b), w |� ϕ.
In what follows, we will often need finite sequences of link cuts, and accordingly, we will

use the notation M(a|b)n for the model (((M(a1|b1))(a2|b2))...)(an|bn) and 〈a|b〉nϕ for the formula
〈a1|b1〉 . . . 〈an|bn〉ϕ when n ≥ 1. Moreover, in the special case of n = 0 we let M(a|b)n denote
M while 〈a|b〉nϕ denotes ϕ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/6/1216/6545981 by U
niversiteit van Am

sterdam
 user on 15 M

arch 2024



Hybrid sabotage modal logic 1219

TABLE 1 The Hilbert-style proof system HSML

Axioms and rules for basic hybrid modal logic

All tautologies of classical propositional logic, plus Modus Ponens (CPL)
All axioms of the minimal modal logic for �, plus the Necessitation Rule
Axioms and rules of hybrid logic for @a:
@a(ϕ → ψ) → (@aϕ → @aψ), a ∧ @aϕ → ϕ

@aϕ ↔ ¬@a¬ϕ, a ∧ ϕ → @aϕ, @aa, @ab ↔ @ba

@ab ∧ @bϕ → @aϕ, @b@aϕ ↔ @aϕ, ♦@aϕ → @aϕ

(Name) : c→ϕ
ϕ

(c /∈ ϕ), (Nec) : ϕ
@aϕ

(Paste): @a♦b∧@bϕ→δ
@a♦ϕ→δ

(b /∈ ϕ, δ and a are distinct from b)

Distribution Axiom for � �(φ → ψ) → (�φ → �ψ)

Necessitation Rule for � ϕ

�ϕ
Recursion axioms for 〈a|b〉
〈a|b〉c ↔ c 〈a|b〉p ↔ p 〈a|b〉¬ϕ ↔ ¬〈a|b〉ϕ 〈a|b〉(ϕ ∧ ψ) ↔ (〈a|b〉ϕ ∧ 〈a|b〉ψ)

〈a|b〉@cϕ ↔ @c〈a|b〉ϕ 〈a|b〉♦ϕ ↔ ((a ∧ ♦(¬b ∧ 〈a|b〉ϕ)) ∨ (¬a ∧ ♦〈a|b〉ϕ))

Inference rule for �, 〈a|b〉
(B-Mix) :

@c〈a|b〉n(@an+1♦bn+1∧〈an+1|bn+1〉ϕ)→θ

@c〈a|b〉n�ϕ→θ

where n ≥ 0; the new nominals an+1, bn+1 are distinct from c and other nominals in 〈a|b〉n
and do not occur in ϕ or θ .

2.2 A proof system for HSML

Using our named link-cutting device, we now present the proof system HSML in Table 1. Its first
module consists of standard axioms and derivation rules from the minimal modal logic with hybrid
additions [3]; the second module is the usual minimal modal logic for the sabotage modality; the
third module contains dynamic-epistemic style recursion axioms for definable link cutting, because
of which the logic is not closed under uniform substitution; and the fourth module contains the
crucial derivation rule connecting the deletion modality and the named link cutting modality.1

The first two modules drive standard modal completeness arguments, and the third and fourth
capture the arbitrary deletion modality �. In particular, the finite prefixes of deletions in the rule
schema (B-Mix) allow for reasoning about models arising from an initial one after finite histories of
link cutting.2

For an illustration of how one can work with this calculus, we derive a few inference rules and
theorems in the above proof system. Some of these principles will be useful in our proof for the
strong completeness of HSML in Section 3.

1We will often make tacit appeals to a proof rule of Replacement of Equivalents in what follows, but this is derivable in
the system HSML as presented here.

2In the logic PAL, finite sequences of announcements can be compressed to one by the Composition Axiom. However, it
is easy to show that no such compression is possible in HSML, unless we define complex modalities for simultaneous link
cuts.
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1220 Hybrid sabotage modal logic

FACT 2. Replacement of Equivalents:
ϕ ↔ ψ

〈a|b〉ϕ ↔ 〈a|b〉ψ can be derived in HSML.

PROOF. First note that the monotonicity rule for � :
ϕ → ψ

�ϕ → �ψ
is a derivable rule since � is a K

operator. Next, we derive 〈a|b〉ϕ → 〈a|b〉ψ from  ϕ → ψ .

1.  ϕ → ψ (assumption)
2.  (@a¬♦b ∧ ϕ) → (@a¬♦b ∧ ψ) (from 1 by the propositional logic CPL)
3.  �(@a¬♦b ∧ ϕ) → �(@a¬♦b ∧ ψ) (from 2 and the distribution rule for �)
4.  (@a♦b ∧ �(@a¬♦b ∧ ϕ)) → (@a♦b ∧ �(@a¬♦b ∧ ψ)) (from 3 and CPL)
5.  (@a♦b ∧�(@a¬♦b ∧ ϕ)) ∨ (@a¬♦b ∧ ϕ) → (@a♦b ∧�(@a¬♦b ∧ ϕ)) ∨ (@a¬♦b ∧ ψ)

(from 4 and CPL)
6.  〈a|b〉ϕ → 〈a|b〉ψ (from 5 and the definitions of 〈a|b〉ϕ and 〈a|b〉ψ)

The derivation of the other direction of the equivalence, namely  〈a|b〉ψ → 〈a|b〉ϕ from  ψ →
ϕ, proceeds analogously. Putting all this together, it follows that

ϕ ↔ ψ

〈a|b〉ϕ ↔ 〈a|b〉ψ is an admissible

inference rule in HSML.
�

FACT 3. The formula: 〈a|b〉n(ϕ ∧ ψ) ↔ (〈a|b〉nϕ ∧ 〈a|b〉nψ) is provable in HSML.

PROOF. This formula generalizes the distribution of 〈a|b〉 over conjunction, which is a recursion
axiom for 〈a|b〉 ref lecting the fact that link cutting between named points is an operation that is a
partial function on models. The proof of the Fact involves an iterated appeal to the recursion axiom
for the conjunction, with successive substitutions licensed by Replacement of Equivalents. �

Another simple useful fact is this.
FACT 4. The formula: @a♦b ∧ 〈a|b〉ψ → �ψ is provable in HSML.

PROOF. This formula specifies the effect of cutting the link between a and b in terms of �. It follows
easily from the above definition of the link-cutting modality 〈a|b〉ϕ plus an appeal to CPL and the
minimal modal logic for �. �

Next come two facts whose proofs are more complex than the preceding ones.
FACT 5. 〈a|b〉n♦ψ ↔ ∨

S⊆[n]
(
∧

m∈S
am ∧ ∧

m∈[n]−S
¬am ∧♦(

∧
m∈S

¬bm ∧ 〈a|b〉nψ)) is provable in HSML

for any natural number n ∈ N, where [n] with n ≥ 1 denotes the set {1, . . . n} while [0] denotes the
empty set ∅.

PROOF. For the case that n = 0, the formula reduces to ♦ψ ↔ ♦ψ , which is a tautology. For the case
that n = 1, the formula reduces to 〈a1|b1〉♦ϕ ↔ ((a1 ∧ ♦(¬b1 ∧ 〈a1|b1〉ϕ)) ∨ (¬a1 ∧ ♦〈a1|b1〉ϕ)),
which is a recursion axiom for 〈a1|b1〉.

Next, we prove the general case, where each subset S of [n] specifies a possible case. In each
possible case, the left side specifies what happens to those worlds to which the current world has
access to after the sequence of link cuttings.

Suppose that for all 0 ≤ n ≤ k and for all formulas ψ , we have already shown:
 〈a|b〉n♦ψ ↔ ∨

S⊆ [n]
(
∧

m∈S
am ∧ ∧

m∈[n]−S
¬am ∧ ♦(

∧
m∈S

¬bm ∧ 〈a|b〉nψ)) (I .H .) We are going to to

prove the assertion for n = k + 1.
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Hybrid sabotage modal logic 1221

For the sake of simplifying notation, let 〈ck〉 denote 〈ak |bk〉, 〈c〉k denote 〈a|b〉k for k ∈ N and
ΘS

n ψ denote
∨

S⊆ [n]
(
∧

m∈S
am ∧ ∧

m∈[n]−S
¬am ∧ ♦(

∧
m∈S

¬bm ∧ 〈a|b〉nψ)).

By the definition of 〈c〉k+1, we have
 〈c〉k+1♦ψ ↔ 〈c〉k〈ck+1〉♦ψ .

Applying the Replacement of Equivalents rule k times to the recursion axiom  〈ck+1〉♦ψ ↔
(ak+1 ∧ ♦(¬bk+1 ∧ 〈ck+1〉ψ)) ∨ (¬ak+1 ∧ ♦〈ck+1〉ψ), we obtain

 〈c〉k〈ck+1〉♦ψ ↔ 〈c〉k((ak+1 ∧ ♦(¬bk+1 ∧ 〈ck+1〉ψ)) ∨ (¬ak+1 ∧ ♦〈ck+1〉ψ)).

It follows that
 〈c〉k+1♦ψ ↔ 〈c〉k((ak+1 ∧ ♦(¬bk+1 ∧ 〈ck+1〉ψ)) ∨ (¬ak+1 ∧ ♦〈ck+1〉ψ)).

Next, after applying the recursion axioms several times to the latter part of the above formula, it
follows that
 〈c〉k+1♦ψ ↔ ((ak+1 ∧ 〈c〉k♦(¬bk+1 ∧ 〈ck+1〉ψ)) ∨ (¬ak+1 ∧ 〈c〉k♦〈ck+1〉ψ)) (∗).

Let α and β denote 〈c〉k♦(¬bk+1 ∧ 〈ck+1〉ψ) and 〈c〉k♦〈ck+1〉ψ respectively. Then, by applying
the inductive hypothesis to α, β, we obtain the two facts
 α ↔ ΘS

k (¬bk+1 ∧ 〈ck+1〉ψ)

 β ↔ ΘS
k (〈ck+1〉ψ)

Now replacing α, β by equivalent formulas in the formula (∗), we get
 〈c〉k+1♦ψ ↔ ((ak+1 ∧ ΘS

k (¬bk+1 ∧ 〈ck+1〉ψ)) ∨ (¬ak+1 ∧ ΘS
k (〈ck+1〉ψ))).

Focusing on the right part of this formula, we get the following equivalence:
 ak+1∧ΘS

k (¬bk+1∧〈ck+1〉ψ) ↔ ∨
S⊆ [k]

(
∧

m∈S∪{k+1}
am∧ ∧

m∈[k]−S
¬am∧♦(

∧
m∈S∪{k+1}

¬bm∧〈c〉k+1ψ))

 ¬ak+1 ∧ ΘS
k ♦〈ck+1〉ψ ↔ ∨

S⊆ [k]
(
∧

m∈S
am ∧ ∧

m∈[k+1]−S
¬am ∧ ♦(

∧
m∈S

¬bm ∧ 〈c〉k+1ψ)).

Notice how ak+1 and ¬ak+1 distribute over the big disjunctions and how the ¬bk+1 gets out of
〈c〉k by the recursion axiom for norminals and merged into the big conjunction. Furthermore, by
some combinatoric inference, we have 2[k+1] = 2[k] ∪ {S ∪ {k + 1} | S ∈ 2[k]}. It thus follows that
 (ak+1 ∧ ΘS

k (¬bk+1 ∧ 〈ck+1〉ψ)) ∧ (¬ak+1 ∧ ΘS
k (〈ck+1〉ψ)) ↔ ΘS

k+1ψ .
That is,

 〈c〉k+1♦ψ ↔ ∨
S⊆[k+1]

(
∧

m∈S
am ∧ ∧

m∈[k+1]−S
¬am ∧♦(

∧
m∈S

¬bm ∧〈c〉k+1ψ)), which is what we needed

to prove. �
Finally, we show how the B-Mix rule can be used to prove a basic principle about the interaction

between ♦ and �.
FACT 6. HSML �♦ϕ → ♦�ϕ.

PROOF.

1.  〈a|b〉ϕ ↔ (@a♦b ∧ �(@a¬♦b ∧ ϕ)) ∨ (@a¬♦b ∧ ϕ) (by definition)
2.  @a♦b ∧ 〈a|b〉ϕ → �ϕ (from 1)
3.  ♦(@a♦b ∧ 〈a|b〉ϕ) → ♦�ϕ (from 2 in the minimal modal logic K)
4.  �@a♦b ∧ ♦〈a|b〉ϕ → ♦(@a♦b ∧ 〈a|b〉ϕ) (theorem of the logic K)
5.  �@a♦b ∧ ♦〈a|b〉ϕ → ♦�ϕ (from 3 and 4)
6.  〈a|b〉♦ϕ ↔ ((a ∧ ♦(¬b ∧ 〈a|b〉ϕ)) ∨ (¬a ∧ ♦〈a|b〉ϕ)) (axiom for 〈a|b〉)
7.  〈a|b〉♦ϕ → ♦〈a|b〉ϕ (from 6)
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1222 Hybrid sabotage modal logic

8.  �@a♦b ∧ 〈a|b〉♦ϕ → ♦�ϕ (from 5 and 7)
9.  @a♦b → �@a♦b (theorem of hybrid logic)

10.  @a♦b ∧ 〈a|b〉♦ϕ → ♦�ϕ (from 8 and 9)
11.  @c(@a♦b ∧ 〈a|b〉♦ϕ → ♦�ϕ), for c not occurring in ϕ (Nec rule for @c)
12.  @c(@a♦b ∧ 〈a|b〉♦ϕ) → @c♦�ϕ (from 11)
13.  @c�♦ϕ → @c♦�ϕ (from 12 using the B-Mix rule)
14.  @c(�♦ϕ → ♦�ϕ) (from 13 in hybrid logic)
15.  c → (�♦ϕ → ♦�ϕ) (from 14 in hybrid logic)
16.  �♦ϕ → ♦�ϕ (from 15 by the Name rule). �
It may be of interest to note that the converse implication ♦�ϕ → �♦ϕ is not valid in HSML, as

can be seen by giving a simple countermodel.
Readers who want to get still more familiar with the proof system HSML may find the implication

〈a|b〉〈c|d〉ϕ → 〈c|d〉〈a|b〉ϕ a useful further exercise.

3 Soundness and Strong Completeness for HSML

We now turn to the meta-properties of the proof system HSML.

THEOREM 1 (Soundness).
All provable formulas HSML are valid.

The soundness of most principles in the above proof system is immediate, we only concentrate on
those that deserve special attention.
FACT 7. The axiom 〈a|b〉♦ϕ ↔ ((a ∧ ♦(¬b ∧ 〈a|b〉ϕ)) ∨ (¬a ∧ ♦〈a|b〉ϕ)) is valid.

PROOF. Let M = (W , R, V) and M′ = (W , R′, V), where R′ = R \ {(u, v) |M, u |� a and M, v |�
b}, i.e., the pair named by (a, b) has been deleted. From left to right, if M, w |� 〈a|b〉♦ϕ, then
M′, w |� ♦ϕ, so M′, v |� ϕ for some v with R′wv, and M, v |� 〈a|b〉ϕ. Case 1: M, w |� a. Then
M′, w |� a, and so M′, v |� ¬b, hence M, v |� ¬b, and taking together, M, v |� ¬b ∧ 〈a|b〉ϕ
and M, w |� (a ∧ ♦(¬b ∧ 〈a|b〉ϕ): the first disjunct on the right. Case 2: M, w |� ¬a. Then,
since M, v |� 〈a|b〉ϕ, we get the second disjunct: M, w |� ¬a ∧ ♦〈a|b〉ϕ. From right to left, a
similar semantic argument will work, essentially reversing the preceding steps, including the case
distinction. �

FACT 8. The B-Mix rule is sound.

PROOF. Assume that @c〈a|b〉n(@an+1♦bn ∧ 〈an+1|bn+1〉ϕ) → θ is valid, where the nominals an+1
and bn+1 are different from c and any nominals in the sequence (a|b)n and do not occur in ϕ and θ .
Consider any HSML model M and point w such that M, w |� @c〈a|b〉n�ϕ. According to the truth
conditions for the link deletion modalities, there must be a still available link deletion (d|d′) after
the links defined in the sequence 〈a|b〉n have been cut such that ϕ is true after the deletion. Now
take two fresh nominals an+1 and bn+1 not occurring in the formulas so far, such that V(an+1) =
V(d) and V(bn+1) = V(d′). Then the antecedent of the assumed validity is satisfied, and we get
M, w |� θ . �
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Hybrid sabotage modal logic 1223

We have seen how the B-Mix rule is used in the proof system to prove significant theorems. In
the following completeness proof, we will see it is also essential for constructing a special type of
maximally consistent sets.

THEOREM 2
The proof system HSML is strongly complete.

The proof to follow uses the technique introduced for the modal logic MLSR in [22]. In the
present setting, this involves combining basic modal logic, hybrid logic, the key HSML modality �
for arbitrary link deletion in a graph and its interaction with the above-defined modality for deletion
of named links. A noteworthy difference with the cited reference is our simplification in defining
the latter modality, cf. Fact 1 in Section 2.1, so we can do without DEL-style link cutting modalities
as additional primitives.

As is standard in completeness proofs, it suffices to show that any HSML-consistent set of
formulas is satisfiable in a HSML model.

The first step is to prove that any HSML-consistent set can be extended to a maximally consistent
set (‘HSML-MCS’) satisfying the following properties.

DEFINITION 4 (Named, pasted, mixed, B-mixed).
A set of formulas Γ is (a) named if it contains a nominal, (b) pasted if @a♦ϕ ∈ Γ implies that there
is some nominal b such that the formula @a♦b ∧ @bϕ ∈ Γ , (c) mixed if 〈a|b〉n�ϕ ∈ Γ implies
that 〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ) ∈ Γ for some nominals an+1, bn+1 and, finally, (d) Γ is
B-mixed if @c〈a|b〉n�ϕ ∈ Γ implies that @c〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ) ∈ Γ for some
nominals an+1, bn+1.

The properties named and pasted are needed to deal with the hybrid component of the logic while
mixed and B-mixed are for the link-cutting part. The property mixed will become relevant later in
Lemma 2.

LEMMA 1 (Lindenbaum Lemma).
Let Nom′ be a countably infinite set of nominals disjoint from Nom, and let L′ be the language
obtained by adding these new nominals to L. Every HSML-consistent set of formulas in language
L can be extended to a named, pasted and B-mixed HSML-MCS in the language L′.

PROOF. Given a consistent set of L-formulas Σ , let Σd to be Σ ∪ {d}, where d is an arbitrary new
nominal in Nom′. Σd is consistent. For suppose not. Then for some conjunction of formulas θ from
Σ ,  d → ¬θ . But the new nominal d does not occur in θ , and so, by the Name rule,  ¬θ . This
contradicts the consistency of Σ : so Σd must be consistent.

Next, enumerate all the formulas of L′ (this includes the nominals in Nom′). We define a sequence
of consistent sets as follows. Let Σ0 be the set Σd just constructed. Now, working inductively,
suppose we have defined Σm, where m ≥ 0. Let ϕm+1 be the m + 1-th formula in our enumeration
of L′. We define Σm+1 as follows. If Σm+1 ∪ {ϕm+1} is inconsistent, then Σm+1 = Σm. Otherwise,

– Σm+1 = Σm ∪ {ϕm+1} ∪ {@a♦b ∧ @bϕ}, if ϕm+1 is of the form @a♦ϕ. Here b is the first
nominal in the enumeration not occurring in Σm or @a♦ϕ.
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1224 Hybrid sabotage modal logic

– Σm+1 = Σm ∪ {ϕm+1} ∪ {@c〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ)}, if ϕm+1 is of the form
@c〈a|b〉n�ϕ ∈ Γ . Here an+1, bn+1 are the first two nominals in the enumeration that do not
occur in Σm or @c〈a|b〉n�ϕ.

– Σm+1 = Σm ∪ {ϕm+1} if ϕm+1 is not of the form @a♦ϕ or @c〈a|b〉n�ϕ.

Let Σ+ = ⋃
n≥0 Σn. Clearly, this set is named, maximal, pasted and B-mixed. It is also consistent.

For expansions of the first kind, consistency preservation is guaranteed by the Paste rule. For
expansions of the second kind, if the set obtained is not consistent, then for some conjunction of
formulas θ from the set Σm ∪ {ϕm+1},

 @c〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ → ¬θ .

By the B-mix rule,  ϕm+1 → ¬θ , contradicting the consistency of Σm ∪ {ϕm+1}. �
Next, each HSML-MCS Γ induces a family of maximally consistent sets.

DEFINITION 5
The named set Δa yielded by Γ is {ϕ | @aϕ ∈ Γ }.

Now we can define the modal model that will satisfy our given consistent set.

DEFINITION 6 (Named model).
The named model generated by Γ is the tuple MΓ = (WΓ , RΓ , VΓ ) where (a) WΓ consists of all
named sets yielded by Γ , (b) RΓ uv iff for all formulas ϕ with ϕ ∈ v, we have ♦ϕ ∈ u, and finally
(c) VΓ (o) = {w ∈ WΓ | o ∈ w, o ∈ Prop ∪ Nom}.

This model has the following basic properties that can be shown just as in standard completeness
proofs for hybrid logic [3].

LEMMA 2 (Existence Lemma).
Let Γ be a named, pasted and B-mixed HSML-MCS and let MΓ = (WΓ , RΓ , VΓ ) be the named
model yielded by Γ .

(a) All named sets Δa yielded by Γ are HSML-MCSs.
(b) If u ∈ WΓ and ♦ϕ ∈ u, then there is some v ∈ WΓ with RΓ uv and ϕ ∈ v.
(c) All named sets Δa yielded by Γ are mixed.

PROOF. We only prove the least standard third item. Assume that 〈a|b〉n�ϕ ∈ Δc, i.e. @c〈a|b〉n�ϕ ∈
Γ . Since the set Γ is B-mixed, we have @c〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ) ∈ Γ for some
nominals an+1, bn+1, and so we have immediately that 〈a|b〉n(@an+1♦bn+1 ∧ 〈an+1|bn+1〉ϕ) ∈ Δc.
This means that Δc is mixed. �

Now comes the part of the proof where we need to consider models arising after link deletions,
in order to deal with the modality �. In addition to the preceding named model, we introduce the
following new models.
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Hybrid sabotage modal logic 1225

DEFINITION 7 (Derived Henkin model).
Let 〈a|b〉n = 〈a1|b1〉 . . . 〈an|bn〉. The derived Henkin model from a named model MΓ generated by
Γ is the tuple

MΓ : 〈a|b〉n = (W 〈a|b〉n , R〈a|b〉n , V 〈a|b〉n)

with worlds, accessibility and valuations defined as follows:

– W 〈a|b〉n = {(w, 〈a|b〉n) | w ∈ WΓ }
– R〈a|b〉n((u, 〈a|b〉n), (v, 〈a|b〉n)) if
– (a) RΓ uv and (b) ai /∈ u or bi /∈ v for all i ≤ n
– V 〈a|b〉n(o) = {(w, 〈a|b〉n) | w ∈ VΓ (o), o ∈ Prop ∪ Nom}.

We stipulate that MΓ : 〈a|b〉0 = MΓ .

Each point in the derived Henkin Model induces the following set of formulas:

Φ(M, 〈a|b〉n, w) = {ϕ | 〈a|b〉nϕ ∈ w}

We now prove the crucial Truth Lemma: for derived Henkin models, membership in these induced
sets and truth in the corresponding worlds coincide.

LEMMA 3 (Truth Lemma).
For all formulas ϕ, finite sequences 〈a|b〉n and points w in a named model M yielded by Γ , we have
that, for any n ≥ 0:

M : 〈a|b〉n, (w, 〈a|b〉n) |� ϕ iff ϕ ∈ Φ(M, 〈a|b〉n, w).

PROOF. The proof is by induction on the formulas ϕ. For brevity, we will write M : 〈a|b〉n, w |� ϕ,
leaving out the sequence notation 〈a|b〉n.

(a) Atomic formulas. We only prove the case for p, the one for nominals is similar. M : 〈a|b〉n, w |�
p iff w ∈ V(p) iff p ∈ w (by the definition of V in derived Henkin models) iff 〈a|b〉np ∈ w (by the
recursion axiom for p) iff p ∈ Φ(M, 〈a|b〉n, w).

(b) Negations. M : 〈a|b〉n, w |� ¬ψ if M : 〈a|b〉n, w �|� ψ iff (by the inductive hypothesis)
ψ /∈ Φ(M, 〈a|b〉n, w) iff 〈a|b〉nψ /∈ w iff ¬〈a|b〉nψ ∈ w iff (by the recursion axiom for ¬ψ)
〈a|b〉n¬ψ ∈ w iff ¬ψ ∈ Φ(M, 〈a|b〉n, w).

(c) Conjunction. The proof is like the preceding one, using the inductive hypothesis and the
recursion axiom for conjunctions under link cutting modalities.
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1226 Hybrid sabotage modal logic

(d) @ Operators. M : 〈a|b〉n, w |� @cψ iff M : 〈a|b〉n, Δc |� ψ iff (by the inductive hypothesis)
ψ ∈ Φ(M, 〈a|b〉n, Δc) iff (by definition) 〈a|b〉nψ ∈ Δc iff (noting that α ∈ Δc iff @cα ∈ Δa for
any nominal a) @c〈a|b〉nψ ∈ w iff (by the recursion axiom for @c) 〈a|b〉n@cψ ∈ w iff @cψ ∈
Φ(M, 〈a|b〉n, w).

(e) ♦ modality. In the case of n = 0, the assertion reduces to the standard modal case, whose proof
is well-known [6]. So let us focus on the case n �= 0. From left to right, let M : 〈a|b〉n, w |� ♦ψ .
Then there is a v with R〈a|b〉n((w, 〈a|b〉n), (v, 〈a|b〉n)) and M : 〈a|b〉n, v |� ψ . By the inductive
hypothesis, ψ ∈ Φ(M, 〈a|b〉n, v), i.e. 〈a|b〉nψ ∈ v. Since R〈a|b〉n(w, 〈a|b〉n)(v, 〈a|b〉n), it follows that
Rwv. Thus by the definition of R in a named model, ♦〈a|b〉nψ ∈ w. Now, by the definition of the
relations R〈a|b〉n , ax /∈ w or bx /∈ v for any x ∈ [1, ..., n]. In particular, for any x ∈ [1, ..., n], if ax ∈ w,
bx /∈ v. Starting from a1, either a1 ∧ ♦(¬b1 ∧ 〈a|b〉nψ) ∈ w or ¬a1 ∧ ♦〈a|b〉nψ ∈ w. By the
recursion axiom for ♦, we then get that 〈a1|b1〉♦〈a2|b2〉 . . . 〈an|bn〉ψ ∈ w. Repeating this argument,
we can push ♦ to the innermost position, which gives us the desired result 〈a|b〉n♦ψ ∈ w. That is,
♦ψ ∈ ϕ(M, 〈a|b〉n, w).

From right to left: let ♦ψ ∈ Φ(M, 〈a|b〉n, w), i.e., 〈a|b〉n♦ψ ∈ w. By Fact 5, we have the set
S = {x ∈ [1, ..., n] | ax ∈ w} such that ♦(

∧
x∈S ¬bx ∧ 〈a|b〉nψ) ∈ w. By the Existence Lemma

for ♦, there is a v with
∧

x∈S ¬bx ∧ 〈a|b〉nψ ∈ v, which implies that ψ ∈ Φ(M, 〈a|b〉n, v). By
the inductive hypothesis, M : 〈a|b〉n, v |� ψ . Also, by the definition of S and

∧
x∈S ¬bx ∈ v,

we have for any x ∈ [1, ..., n], ax /∈ w or bx /∈ v. By the definition of R〈a|b〉n and Rwv, then
R〈a|b〉n((w, 〈a|b〉n), (v, 〈a|b〉n)). Therefore, M : 〈a|b〉n, w |� ♦ψ .

(f) The deletion modality �. From left to right, let M : 〈a|b〉n, w |� �ψ . Then there is a
link in M : 〈a|b〉n, say ((Δan+1 , 〈a|b〉n), (Δbn+1 , 〈a|b〉n)) (the naming of the link is guaranteed
by our model construction) such that M : 〈a|b〉n+1, w |� ψ . Then by the inductive hypothesis
ψ ∈ Φ(M, 〈a|b〉n+1, w), i.e., 〈a|b〉n+1ψ ∈ w. Moreover, our model construction even yields that
M : 〈a|b〉n, w |� @an+1♦bn+1. But then, by cases already proved, it follows that @an+1♦bn+1 ∈
Φ(M, 〈a|b〉n, w), i.e., 〈a|b〉n@an+1♦bn+1 ∈ w. Now recall the definition of named link cutting
〈an+1|bn+1〉ψ in the language of HSML. We noted earlier that @an+1♦bn+1 ∧ 〈an+1|bn+1〉ψ → �ψ

is a theorem of HSML, and using the principles of the minimal logic K for 〈a|b〉, we get
〈a|b〉n�ψ ∈ w. Thus, �ψ ∈ Φ(M, 〈a|b〉n, w).

Finally, from right to left, let �ψ ∈ Φ(M, 〈a|b〉n, w). By the Existence Lemma, w is mixed, and so
ψ ∈ Φ(M, 〈a|b〉n+1, w) and @an+1♦bn+1 ∈ Φ(M, 〈a|b〉n, w) for new nominals an+1 and bn+1 that
do not occur in ψ . Thus, by the inductive hypothesis, M : 〈a|b〉n+1, w |� ψ . Also, by inductive cases

already proved, M : 〈a|b〉n, w |� @an+1♦bn+1, and hence ((Δan+1 , 〈a|b〉n), (Δbn+1 , 〈a|b〉n)) ∈ R〈a|b〉n .

Now R〈a|b〉n+1 equals the relation R〈a|b〉n \ ((Δan+1 , 〈a|b〉n), (Δbn+1 , 〈a|b〉n)) while the valuation
functions in all derived Henkin models are the same modulo the indexical sequences, we have
M : 〈a|b〉n, w |� �ψ .

As usual, this finalizes the proof of the completeness theorem, since all formulas in the initially
given set Γ will be true at the initial world of the named model induced by some arbitrary maximally
consistent extension of Γ . �

4 Protocol HSML

Having analysed HSML on standard models, we now consider a natural generalization, also known
from dynamic-epistemic logic [11]. Suppose that not all link deletions are available, for instance,
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Hybrid sabotage modal logic 1227

to the Demon in a sabotage game. This gives more general ‘protocol models’ for scenarios where
agents operate under various constraints. There are several types of protocols, less or more general,
cf. [19], but we will only analyse one particular case here.

DEFINITION 8 (Protocols).
Let Σ = {(a|b) | a, b ∈ NOM}. Members of the set Σ∗ of all finite sequences of elements in Σ

are called histories. A subset S of Σ∗ is closed under initial segments if for any h ∈ S, its initial
segments h′ � h are also in S. A protocol is a set of histories closed under taking initial segments.
Any HSML model M = (W , R, V) has an associated set Prtcl(M) of feasible protocols f satisfying
the following condition: if (a1|b1) . . . (ai|bi) ∈ f , then (a) (V(ai), V(bi)) ∈ R, and (b) for each
j < i, V(ai) �= V(aj) or V(bi) �= V(bj).

Here a history represents a sequence of successive link deletions in the given model and a
protocol defines which such sequences are allowed, for various reasons that may depend on the
precise application. Condition (a) on protocols states that all links to be deleted actually exist,
and condition (b) states that no link is deleted twice, clearly minimal conditions on executable
protocols.

DEFINITION 9 (Protocol model).
Given a HSML model M = (W , R0, V0) and one of its feasible protocols f , the protocol model
F = Forest(M, f ) = (H , R, V) is defined from initial worlds and link cut histories as follows:

(a) H = {wσ | w ∈ W , σ ∈ f }.
(b) Rhh′ iff h = wσ and h′ = vσ for some σ ∈ f and w, v ∈ W satisfying R0wv while V0(a) �= w

or V0(b) �= v for any (a|b) ∈ σ .
(c) V(o) = {wσ ∈ H | V0(a) = w} where o ∈ Prop ∪ Nom.

The semantics of HSML is easily lifted to protocol models:

DEFINITION 10 (Truth conditions).
Given a protocol model F = 〈H , R, U〉 and a world h = wσ ∈ H , truth is defined by the following
conditions:

F, wσ |� o iff wσ ∈ V(o)where o ∈ Prop ∪ Nom
F, h |� ¬ϕ iff not F, h |� ϕ

F, h |� ϕ1 ∧ ϕ2 iff F, h |� ϕ1 and F, h |� ϕ2
F, wσ |� @aϕ iff there is vσ ∈ V(a) such that F, vσ |� ϕ

M, w |� ϕ ∧ φ iff there is h′ ∈ H such that Rhh′and F, h |� ϕ

F, wσ |� �ϕ iff there is σ ′ = σ(a|b) ∈ f s.t. F, wσ ′ |� ϕ

The syntactic definition of 〈a|b〉 is the same as that in HSML:

〈a|b〉ϕ := (@a♦b ∧ �(@a¬♦b ∧ ϕ)) ∨ (@a¬♦b ∧ ϕ).

The following proposition describing its effect can easily be verified.
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1228 Hybrid sabotage modal logic

TABLE 2 The Hilbert-style proof system for protocol HSML

Axioms and rules for basic hybrid modal logic
See Table 1
K axiom for � & Necessitation Rule for �
See Table 1
Invariance axiom for 〈a|b〉
@c〈a|b〉� ↔ 〈a|b〉�
Recursion axioms for 〈a|b〉
〈a|b〉c ↔ 〈a|b〉� ∧ c 〈a|b〉p ↔ 〈a|b〉� ∧ p 〈a|b〉¬ϕ ↔ ¬〈a|b〉ϕ
〈a|b〉¬φ ↔ 〈a|b〉� ∧ ¬〈a|b〉φ 〈a|b〉@cϕ ↔ @c〈a|b〉ϕ
〈a|b〉♦ϕ ↔ ((a ∧ ♦(¬b ∧ 〈a|b〉ϕ)) ∨ (¬a ∧ ♦〈a|b〉ϕ))

Inference rule for �
(B-Mix) :

@c〈a|b〉n(@an+1♦bn+1∧〈an+1|bn+1〉ϕ)→θ

@c〈a|b〉n�ϕ→θ

where n ≥ 0; the new nominals an+1, bn+1 are distinct from c and other nominals
in 〈a|b〉n and do not occur in ϕ or θ .

FACT 9. F, wσ |� 〈a|b〉ϕ iff
(a) σ(a|b) ∈ f and F, wσ(a|b) |� ϕ, or (b) F, wσ |� @a¬♦b ∧ ϕ

A Hilbert-style proof system for Protocol HSML is presented in Table 2. The difference with the
axiom system HSML is that deletions are no longer freely available, so we need to modify some of
the recursion axioms for named link cuts. For instance, the earlier axiom 〈a|b〉p ↔ p now becomes

〈a|b〉p ↔ 〈a|b〉� ∧ p,

which also contains irreducible protocol information about available deletions.3 In addition, the
system contains a new principle expressing that the protocol is ‘uniform’: the available deletions are
the same at each world:

@c〈a|b〉� ↔ 〈a|b〉�.

THEOREM 3
Protocol HSML is strongly complete.

PROOF. The completeness proof follows the same pattern as our earlier one for HSML. We merely
sketch some salient steps that require attention.

For a start, the Lindenbaum Lemma can be proved just as before. With a little more care, we can
also still have the earlier named models:

DEFINITION 11 We say that Δa = {ϕ | @aϕ ∈ Γ } is the protocol named set yielded by Γ . A named
model is a tuple (MΓ , f Γ ) = ((WΓ , RΓ , VΓ ), f Γ ) where

3The modified recursion axioms allow new situations, e.g. ¬〈a|b〉p∧¬〈a|b〉¬p is not satisfiable in HSML, but in Protocol
HSML it is true in a model where (a, b) /∈ f .
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Hybrid sabotage modal logic 1229

(a) WΓ is the set of all named set yielded by Γ

(b) RΓ uv iff for all formulas ϕ, ϕ ∈ v implies ♦ϕ ∈ u
(c) VΓ (o) = {w ∈ WΓ | o ∈ w, o ∈ Prop ∪ Nom}
(d) f Γ = {(a|b)n : 〈a|b〉n� ∧ ∧n−1

i=0 〈a|b〉i@ai+1♦bi+1 ∈ Γ }.
�

Here the condition
∧n−1

i=0 〈a|b〉i@ai+1♦bi+1 ∈ Δc picks out all those sequences of link cuts
admissible according to Γ , which do not include any vacuous cuts.

LEMMA 4 If 〈a|b〉n� ∈ Γ , then there is σ = (c|d)m ∈ f Γ s.t. for all ϕ, m ≤ n:
(a) 〈c|d〉mϕ ∈ Γ iff 〈a|b〉nϕ ∈ Γ , (b) F, w |� 〈c|d〉mϕ iff F, w |� 〈a|b〉nϕ

PROOF. We can get the sequence (c|d)m from (a|b)n by deleting all those pairs (ai|bi) for which
〈a|b〉i@ai+1♦bi+1 /∈ Γ . �

Next comes a slightly different route from the completeness proof for HSML.

LEMMA 5
For all formulas ϕ, finite sequences σ = (a|b)n ∈ f Γ and points w in the generated protocol named
model F = Forest(M, f ) yielded by Γ ,

F, wσ |� ϕ iff 〈a|b〉nϕ ∈ w

PROOF. The proof is by induction on the formulas ϕ.
(a) Atomic propositions and nominals. Given that σ ∈ f , which implies that 〈a|b〉n� ∈ w, we have

F, wσ |� p iff wσ ∈ V(p) iff p ∈ w iff 〈a|b〉np ∈ w.
The case of nominals is similar.
(b) Negations. Since 〈a|b〉n� ∈ w, we can use the modified recursion axiom to get F, wσ |� ¬ψ

iff F, w � ψ iff 〈a|b〉nψ /∈ w iff ¬〈a|b〉nψ ∈ w iff 〈a|b〉n¬ψ ∈ w.
As for further inductive steps, the cases for the operators ∧, @c, ♦ and � are similar to those in

the proof of the Truth Lemma for HSML in Section 3, using the derived Henkin Model, since the
recursion axioms for these operators have not changed. Here we treat @ and � as examples.

(c) We have the following equivalences: F, wσ |� @cψ iff F, Δcσ |� ψ iff 〈a|b〉nψ ∈ Δc iff
@c〈a|b〉nψ ∈ w iff 〈a|b〉n@cψ ∈ w.

(d) First, assume that F, wσ |� �ψ . Then there is σ ′ = σ(a|b)n+1 ∈ f such that F, wσ ′ |� ψ .
Thus by the inductive hypothesis 〈a|b〉n+1ψ ∈ w. Since F, wσ |� @an+1♦bn+1, by the cases we have
proved, it follows that 〈a|b〉n@an+1♦bn+1 ∈ w. Therefore, 〈a|b〉n�ψ ∈ w.

Next, assume that 〈a|b〉n�ψ ∈ w. By the Existence Lemma, w is mixed, and so we have
〈a|b〉n+1ψ ∈ w for some an+1 and bn+1. By definition of f , σ ′ = σ(a|b)n+1 ∈ f . By the inductive
hypothesis, F, wσ ′ |� ψ . Therefore, F, wσ |� �ψ . �

The key Truth Lemma follows immediately from Lemmas 4 and 5.

LEMMA 6 (Truth Lemma).
For all formulas ϕ, finite sequences σ = (a|b)n and points w in the named protocol model F =
Forest(M, f ) yielded by Γ ,

F, w |� 〈a|b〉nϕ iff 〈a|b〉nϕ ∈ w.
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1230 Hybrid sabotage modal logic

This finalizes the proof of the completeness theorem for Protocol HSML.

Remark: Comparing the two completeness proofs. The ‘full protocol’ full(M) for a model M consists
of all possible histories of link cuts. The derived Henkin model of Definition 7 in the completeness
proof for HSML is in essence the full protocol model of the named model of Definition 6. The
difference is only notational: a history wσ in the full protocol model of M is attached to the model,
becoming one of its pointed derived Henkin models M : σ , w. Also, the truth conditions of ♦, � in
the full protocol model Forest(M, full(M)), wσ are as in the derived Henkin model M : σ , w. Thus,
one could also start with a completeness proof in the format that we have given here for protocol
models, and then derive one for standard models as a special case.
Discussion: Reducing HSML and Protocol HSML. Given the analogy in completeness proofs, it is a
natural question how HSML and Protocol HSML are related. For instance, can one find a formula
ϕ′ for every formula ϕ such that ϕ is satisfiable in HSML iff ϕ′ is satisfiable in protocol HSML?
One might think of such a formula ϕ′ as a conjunction of the form

∧
a,b∈Q

〈a|b〉n� ∧ ϕ.

The first conjunct says that all link cuts explicitly involved in ϕ are admissible, where Q is the set
of all nominals that occur in ϕ, possibly plus some new ones. The problem, however, is that not
all relevant link cuts need be explicitly stated in a given formula ϕ, as illustrated in the following
example:

ϕ := ♦� ∧ ¬�p ∧ ¬�¬p

is not satisfiable in HSML. Since there are no nominals in the formula ϕ, ϕ′ would equal ϕ by the
above method. However, ϕ′ is satisfiable in protocol HSML.

Are there better reductions? And what about the opposite direction, from Protocol HSML to
HSML? While we believe that mutual reductions indeed exist for dynamic-epistemic PAL and
Protocol PAL, we are not sure that they extend to sabotage logics, and hence leave these matters
as open problems.

5 Comparing Link Deletion and Point Deletion

A natural companion to link or edge deletion in graphs is deletion of vertices or points. The modal
logic MLSR for stepwise point deletion of [22], mentioned in the introduction as the inspiration
for our completeness proof, adds a modality 〈−ϕ〉ψ for stepwise world removal to the basic hybrid
modal logic:

ϕ ::= a | p | ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | @aϕ | 〈−ϕ〉ϕ.

Formulas 〈−ϕ〉ψ have the following truth condition in models M = (W , R, V):
M, s |� 〈−ϕ〉ψ iff there is a t �= s with M, t |� ϕ and M − {t}, s |� ψ

In MLSR, the universal modality is definable as follows: Uϕ := ϕ ∧ ¬〈−¬ϕ〉�, so it is freely
available in our later proofs. It follows that the hybrid notion @aϕ is also definable, although this
notation is used as primitive in MLSR for greater perspicuity of its proof system.
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Hybrid sabotage modal logic 1231

5.1 From link deletion to point deletion

Intuitively, deleting links can be simulated by deleting points in models of the right kind. We will
make this precise by embedding the logic HMSL into MLSR.

Consider the following fragment of the language of MLSR, with atomic propositions from Prop∪
{i} including a distinguished proposition letter i, and Nom4:

ϕ ::= a | p | i | ¬ϕ | ϕ ∧ ϕ | ♦(i ∧ ♦ϕ) | @aϕ | 〈−(i ∧ ♦¬i)〉ϕ.

We can translate the language of HSML into this fragment of MLSR.

DEFINITION 12 (Translation I).
Here is the HSML-to-MLSR translation:

(a) Tr(a) = a, Tr(p) = p, Tr(¬ϕ) = ¬Tr(ϕ), Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ)

(b) Tr(@aϕ) = @aTr(ϕ), Tr(♦ϕ) = ♦(i ∧ ♦Tr(ϕ)), Tr(�ϕ) = 〈−(i ∧ ♦¬i)〉Tr(ϕ).

Next, we define models for MLSR where this translation makes sense.

DEFINITION 13 (Transformed models I).
Given a model M0 = (W0, R0, V0) for HSML, the model F(M0) = (W , R, V) for MLSR is defined
as follows:

(a) W = W0 ∪ Wi where Wi = {(w, v, i) | (w, v) ∈ R0 and w, v ∈ W0}
(b) R = {(w, (w, v, i)), ((w, v, i), v) | (w, v) ∈ R0}
(c) V : Nom ∪ Prop ∪ {i} → W is a valuation function such that V(o) = V0(o) for o ∈

Prop ∪ Nom and V(i) = Wi.

EXAMPLE 1
In the graph depicted below, F(M0) is the transformed model of M0. The link (1, 3) is represented
by i1 in the transformed model. The sentence ‘I can travel from 1 to 3’ can be faithfully translated
as 1I can first travel from 1 to i1, and then to 3’, while deleting the link (1, 3) can be faithfully
represented as deleting a point in the model F(M0), namely, the node i1.

4For the purpose of this section, we can use 〈−i〉ϕ rather than 〈−(i ∧ ♦¬i)〉ϕ in the language. But the result in Appendix
B needs the latter form, which can specify more information about the models.
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1232 Hybrid sabotage modal logic

TABLE 3 Defining F(C) in MLSR+

a. i → (♦¬i ∧ 〈−�〉¬♦�)

1. an i point has exactly one successor, which is a ¬i point
b. i → (♦−1¬i ∧ 〈−�〉¬♦−1�)

2. an i point has exactly one predecessor, which is a ¬i point
c. ¬i → � i
3. if a ¬i point has successors, then they are i points
d. ¬i ∧ ♦� → [−¬i]〈−�〉�♦�
4. if a ¬i point has two or more different i successors,
then these cannot have the same successor.

Now we have the following result connecting the two languages.
FACT 10. For any formula ϕ in the language of HSML and any model M0,

M0, w |� ϕ iff F(M0), w |� Tr(ϕ),

where w ∈ W0 and F(M0) is constructed from M0 as in the preceding definition.
A result on equivalence of validities in the two logics follows immediately.

COROLLARY 1
We have the following equivalence:

|�C ϕ iff |�F(C) ¬i → Tr(ϕ),

where C denotes the class of all models for HMSL, while F(C) denotes the class of all MLSR models
constructed from these.

However, this result does not tell us that we can embed HMSL into the logic MLSR as it stands
over arbitrary models: for that, we need to define the special class F(C) in the language of MLSR.

This can be done, with the caveat that we need extend the language of MLSR by adding the reverse
operator ♦−1 as in temporal logic:
M, s |� ♦−1ψ iff M, t |� ψ for some t with Rts.
In this extended language for MLSR, that we will denote by MLSR+, we can define the special

class F(C) using the formulas listed in Table 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/6/1216/6545981 by U
niversiteit van Am

sterdam
 user on 15 M

arch 2024



Hybrid sabotage modal logic 1233

PROPOSITION 1

M ∈ F(C) iff M |�MLSR+ A,

where A is the conjunction of the four MLSR formulas in Table 3.

PROOF. For a start, note that all the listed properties a, b, c and d in Table 3 hold for all models in
F(C). Next, it is easy to see that, for any model M, M |� a iff it satisfies property 1, and likewise
for b and 2, and c and 3. Given this, it suffices to focus on establishing the following claim:

If M satisfies properties 1, 2 and 3, M ∈ F(C) iff M |� d.
From left to right, assume that M ∈ F(C). Given any point w in M with M, w |� ¬i ∧ ♦�, we

prove that M, w |� [−¬i]〈−�〉�♦�. When deleting any ¬i point v �= w, there are two cases. Case
1: The deleted ¬i point v �= w is the successor of some i successor of w. In this case, by deleting this
i-predecessor of v, since M ∈ F(C), all other i-successors of w must have a ¬i successor. Case 2:
Otherwise, deleting any i point suffices to keep �♦� true at w.

From right to left, given a model M which satisfies properties 1, 2 and 3, but lacks 4, assume that
some ¬i world w has two i successors, s and t, that share the same successor v. By the assumption
then M, w |� ¬i∧♦�. Moreover, v is a ¬i world and the unique successor of both s and t because M
has properties 1, 2. Next we prove that M, w |� 〈−¬i〉[−�]♦�⊥. After deleting the world v, w has
two successors s and t without a successor. Thus, no matter which world we choose to delete([−�]),
♦�⊥ is satisfied at w. It follows that M, w �|� d. �

Now we have the following result connecting the two languages.

COROLLARY 2
For every formula ϕ in the language of HSML,

|�HSML ϕ iff |�MLSR+ UA → (¬i → Tr(ϕ)).

Note that here we add the universal operator U in front of A, because UA rather than A can make
sure the model of MLSR+, which refutes UA → (¬i → Tr(ϕ)) at a certain world, according to
Proposition 1, is a model in F(C).

In Appendix B, we present a slightly more complex method for obtaining an analogue to
Corollary 2, which needs no extension of the language of MLSR.

Digression: sabotage games. The above model transformation also implies the equivalence of the
multi-link version of the sabotage game with single-point destinations [17] and the single-link
version with multiple destinations. This result first appeared in Lemma 1 of [13]. We flesh out
the details of its proof to show how it relates to the above embedding result.

FACT 11. Let Ind be an arbitrary set of individuals, and let the map of a multi-link version sabotage
game be M0 = (W0, Ri

0, V0). Then the Traveler has a winning strategy starting at w ∈ W0 in M0
iff the Traveler has a winning strategy on w in F(M0) = (W , R, V) where W = {g} ∪ W0 ∪⋃

i∈Ind{(w, v, i) | (w, v) ∈ Ri
0 and w, v ∈ W0}, R = {(w, (w, v, i)), ((w, v, i), v), ((w, v, i), g) | (w, v) ∈

Ri
0} and the valuation function V is the same as the old V0 except that it makes the new node g one

of the goals.
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1234 Hybrid sabotage modal logic

Before giving the proof, we first illustrate the definition of F(M0) in the fact and how it works in
the proof by the following example.

EXAMPLE 2
In the graph below, the Traveler has a winning strategy on a node in M0 iff the Traveler has a winning
strategy on the corresponding node in F(M0). The added goal point g1 plays a crucial role here. The
upper (1, 2) link is represented by the three links, (1, i3), (i3, 2) and (i3, g), in the transformed model
in the sense that the Traveler can still move from 1 to 2 as long as the three links all remain untouched,
while such a travel is no longer possible once at least one of the three links has been deleted.

PROOF. To start our proof, for (a, b) ∈ R, we define this mapping f into
⋃

i Ri
0:

f ((a, b)) =

⎧⎪⎪⎨
⎪⎪⎩

(u, v)i if (a, b) = (u, (u, v, i))

(u, v)i if (a, b) = ((u, v, i), v)

(u, v)i if (a, b) = ((u, v, i), g)

We show that deleting a link (a, b) in F(M0) is equivalent to deleting f ((a, b)) in M, while
deleting (u, v)i in M is equivalent to deleting any (a, b) such that f ((a, b)) = (u, v)i in F(M0). More
precisely, Traveler can go from u to v through Ri in M iff Traveler can go from u to v via (u, v, i)
in F(M0). Based on the mapping f defined above, both Traveler and Demon can derive winning
strategies in one model from winning strategies in the other. We have two cases.

Case 1. If Traveler can move from u to v by Ri in M0, then (u, v)i was not deleted. So in F(M0),
(u, (u, v, i)), ((u, v, i), v), ((u, v, i), g) are all not deleted. On u, Traveler first goes to (u, v, i) through
the link (u, (u, v, i)). Then Demon has to delete the link ((u, v, i), g), or Traveler will win immediately.
Traveler now moves to v through the link ((u, v, i), v).

Case 2. If Traveler cannot go from u to v by Ri in M, then (u, v)i was deleted. So in F(M0),
at least one of (u, (u, v, i)), ((u, v, i), v), ((u, v, i), g) was deleted. If (u, (u, v, i)) or ((u, v, i), v) was
deleted, then there is no path from u to (u, v, i) to v. If ((u, v, i), g) was deleted, then Demon can cut
((u, v, i), v) when Traveler reaches (u, v, i). Therefore, Traveler can no longer go to v through (u, v, i).

�
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Hybrid sabotage modal logic 1235

5.2 From point deletion to link deletion

At this point, it is natural to seek a converse system embedding, adding a converse modality ♦−1 to
HSML to match the extension we made for MLSR. However, there is a mismatch here, since point
removal in MLSR refers to a formula, while link deletion is arbitrary in HSML. Still, an embedding
may be obtained by generalizing the link deletion operator � of HSML to a conditional version.

More precisely, we embed MLSR+ into an extended logic HSML+, whose language is as follows
with a ∈ Nom, p ∈ Prop and e a special nominal:

ϕ ::= a | e | p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ♦−1ϕ | �ϕ
ϕϕ.

The truth condition for �ϕ
ψχ reads:5

M = (W , R, V), w |� �ϕ
ψχ iff there is a pair (s, t) ∈ R

such that M, s |� ϕ, M, t |� ψ and (W , R \ (s, t), V), w |� χ .
Note that this covers the original sabotage modality as the special case ���χ . However, even using its
named deletions, HSML+ cannot define the universal modality Uϕ. But we do have the following
restricted version

∀ϕ := ¬�¬ϕ
� � ∧ ¬��¬ϕ�.

This says that no links can be cut to or from ¬ϕ-worlds (such worlds will be called isolated) or, in
other words, all worlds that are in a R-relation with some world satisfy ϕ. This notion will suffice
for our later purposes.

Next, the special nominal e is key to making point deletions in an MLSR+ model become link
deletions in a matching HSML+ model.

DEFINITION 14 (Transformed models II).
Given a model M0 = (W0, R0, V0) for MLSR+, the model G(M0) = (W , R, V) for HSML+ is
defined as follows:

(a) W = W0 ∪ {we}
(b) R = R0 ∪ {(w, we)) | w ∈ W0}
(c) V : Nom ∪ Prop ∪ {e} → W is a valuation function such that V(o) = V0(o) for

o ∈ Prop ∪ Nom and V(e) = {we}.
The following translation makes the effect of deleting a point v in M0 equivalent to the effect of

deleting the corresponding link (v, we) in F(M0).

DEFINITION 15 (Translation II).
The MLSR+-to-HSML+ translation is this:

(a) Tr(o) = o, Tr(¬ϕ) = ¬Tr(ϕ), Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ),
(b) Tr(♦ϕ) = ♦(♦e ∧ Tr(ϕ)), Tr(♦−1ϕ) = ♦−1(♦e ∧ Tr(ϕ)),

5�ϕ
φψ cannot be defined in the language of HSML. Let M1 = (W1, R1, V1) with W1 = {w1, w2}, R1 =

{(w1, w1), (w2, w2)}, V(p) = {w2}, V(a) = {w1} for any a ∈ Nom. M2 = (W2, R2, V2) with W2 = {v1, v2}, R2 =
{(v1, v1), (v2, v2)}, V(p) = ∅, V(a) = {v1} for any a ∈ Nom. It is easy to see that there is an HSML-style bisimulation
(cf. Appendix A) between (M1, w1) and (M2, v1), and so each formula α is true at w1 iff α is true at v1. However,
M1, w1 � �a��p

�a, M2, v1 � �a��p
�a.
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1236 Hybrid sabotage modal logic

(c) Tr(@aϕ) = @a(♦e ∧ Tr(ϕ)), Tr(〈−ϕ〉ψ) = �Tr(ϕ)∧♦e
e (♦e ∧ Tr(ψ))

This translation relativizes the operators in MLSR+-formulas ϕ syntactically to refer only to those
worlds in G(M0) that satisfy either ♦e or e. An easy induction on formulas implies the following
semantic invariance property:

PROPOSITION 2
For all HSML-models N, and all worlds w satisfying ♦e, we have that N, w |� Tr(ϕ) iff N |
(♦e ∨ e), w |� Tr(ϕ), where N | (♦e ∨ e) is the submodel of N consisting of all worlds that satisfy
♦e ∨ e.

In particular, once a link R from a world v to we has been deleted in a model G(M0), v falls outside
of the relativized model G(M0) | (♦e ∨ e) and plays no role any more in the evaluation of translated
formulas. Thus, the effect on such formulas is the same as if the world v had been deleted.

These observations are the key to the following result.
FACT 12. For any formula ϕ of MLSR+, any model M0 and world w ∈ W0,

M0, w |� ϕ iff G(M0), w |� Tr(ϕ),

where G(M0) is constructed from M0 as in Definition 14.

PROOF. The proof is by induction, and we only sketch the crucial case of the point-deletion modality.
Recall that M0, s |� 〈−ϕ〉ψ iff there exists a world t �= s such that M0, t |� ϕ and M0 − {t}, s |� ψ ,
where M0 − {t} is the submodel of M0 in which the world t has been deleted. By the inductive
hypothesis, we have that (a) G(M0), t |� Tr(ϕ), and (b) G(M0 − {t}), s |� Tr(ψ). To see that the
formula Tr(〈−ϕ〉ψ) as defined above is true at s in G(M0), we cut the link from t to e, and need to
have Tr(ψ) true at s. However, this follows from (b) above plus Proposition 2, since G(M0 − {t})
equals the relativization of the model G(M0) after the link cut from t to e to only those worlds that
satisfy ♦e ∨ e. �

Our remaining task is to suitably define the class of models G(C) = {G(M0) | M0 ∈ C}, where
C is the class of all models for MLSR+. We start with two simple auxiliary observations about the
defining HSML+-formula (where we recall that our special universal modality ∀ ranges only over
non-isolated points).

PROPOSITION 3
For any HMSL+ model N:

(a) If N ∈ G(C), then N, w |� ∀((¬e → ♦e) ∧ (e → �⊥)).
(b) Let N − ISO be the model obtained by removing all isolated worlds in N.
(b) If, for some world w, N, w |� ∀((¬e → ♦e) ∧ (e → �⊥)), then N − ISO ∈ G(C).

We now obtain the following reduction from MLSR+ to HMSL+.
FACT 13. For each formula ϕ in the language of MLSR+,

|�MLSR+ ϕ iff |�HSML+ ∀((¬e → ♦e) ∧ (e → �⊥)) → (¬e ∧ ♦e → Tr(ϕ))

PROOF. From right to left, this is straightforward. Suppose that the stated formula is valid in HSML+,
and let M, s be any pointed model for MLSR+. By Proposition 3.(a), we have that the HSML+-model
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Hybrid sabotage modal logic 1237

G(M) |� ∀((¬e → ♦e) ∧ (e → �⊥)). By the definition of the mapping G, we have that s satisfies
¬e ∧ ♦e. It follows from the assumption that G(M) |� Tr(ϕ), and so by Fact 12, M, s |� ϕ.

From left to right, we argue by contraposition. Suppose that some HSML+-model N and world s
make the following formulas true: (a) ∀((¬e → ♦e) ∧ (e → �⊥)), (b) ¬e, (c) ♦e, and (d) ¬Tr(ϕ).
Now remove all isolated points from N to obtain the model N-ISO. It is easy to verify that, in this
model, (a), (b) and (c) above still hold at s. [In particular, given the assumptions, neither s nor e
are isolated points, so they stay in.] But (d) remains true as well, by an appeal to Proposition 2.
The reason is that, given the truth of (a), N-ISO equals the relativized model N | (♦e ∨ e). But
then, finally, Proposition 3.(b) gives us an MLSR+-model M with G(M) = N-ISO where ϕ is
false at s. �

Finally, we close the circle of our two system embeddings so far by showing that the extended
language HSML+ can also be embedded into MLSR+. One just extends the translation function in
Definition 12 by adding the two clauses

Tr(♦−1ϕ) = ♦−1(i ∧ ♦−1Tr(ϕ))

Tr(�ϕ
ψχ) = 〈−(i ∧ ♦−1(¬i ∧ Tr(ϕ)) ∧ ♦(¬i ∧ Tr(ψ))〉Tr(χ)

It is not hard to verify that we have the following new result:

PROPOSITION 4
For any formula ϕ in the language of HSML+,

|�HSML+ ϕ iff |�MLSR+ UA → (¬i → Tr(ϕ))

Thus, we can embed slight extensions of HSML into matching extensions of MLSR and vice
versa. This gives substance to the intuition that point deletion and link deletion are closely related
in a logical perspective.6 We leave obtaining sharper and more parsimonious reductions as an open
problem.7

6 Conclusion

We have axiomatized the logic HSML of arbitrary link deletion in a Hilbert-style format using
modest hybrid additions to the original language of sabotage modal logic which allow for defining an
auxiliary companion modality of named link deletion simplifying the proof system. In addition, we
have used our setting to provide mutual reductions between existing modal logics of point deletion
and link deletion that suggest more unity to logics of graph-changing games than might have been
apparent at first sight.

We believe that the technique of axiomatization via a companion modality definable in the logic,
which simplifies the one in [22] to which our general treatment remains indebted, can be applied to

6Point deletion and arrow deletion are also close in Arrow Logic [16, 24], which treats arrows as objects representing
transitions, but we have not been able to establish a precise connection between this research line and our logics of graph
change.

7We have encountered quite a few forms of deletion by now. PAL deletes all points satisfying a certain property, and the
counterpart for this is the DEL-style logic of uniform definable link cutting in Appendix A. One can also delete definable
objects or definable links stepwise, as we have analysed here. As a specialization of this, there is deletion of arbitrary points
or links, or just individual named objects or links. We leave a comparison of the latter variants to further study.
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1238 Hybrid sabotage modal logic

many further logics of graph change in the literature, and also to further kinds of semantics beyond
the protocol models whose logic we have axiomatized.

In our view, two major open problems remain for judging the virtues of working with HSML. A
first concern are the schematically valid formulas of HSML that remain valid under substitution of
arbitrary formulas for atomic formulas. Most, but not all of the principles in our axiomatizations
were schematically valid: in particular, the recursion axiom for proposition letters was not. [10]
axiomatizes the schematically valid formulas of public announcement logic using an abstract
poly-modal semantics with modal and dynamic accessibility relations which can be seen as a
generalization of our protocol models, cf. also [25]. We believe that our approach lifts to such a
setting, but this needs to be verified.

Another major question concerning HSML (also open for its parent logic SML) is an interpolation
theorem. It is not hard to see that the proof techniques for hybrid logic in [1] extend to HSML, but
they require adding downarrow binders to our language which lack motivation in the setting of graph
games. Whether we can do without them is an open problem at the present stage.

Finally, as already suggested in the Introduction, our results for HSML can also be seen as a
case study for broader issues in dynamic-epistemic and hybrid logics. We leave these to further
investigation.
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A Appendix: HSML with general link cutting

The nominal link cutting operator 〈a|b〉 in HSML sufficed for proving completeness. But dynamic-
epistemic logic has complete systems for general link cutting modalities 〈ϕ|ψ〉 that describe the new
model after cutting all the links {(w, v) |M, w |� ϕ and M, v |� ψ} simultaneously from a current
model, [20].
FACT 14. General definable link cutting is not definable in HSML.

PROOF. We first extend the SML-bisimulations of [4] as follows.

DEFINITION 16 (HS-bisimulation). Let M1 = (W1, R1, V1), M2 = (W2, R2, V2) be models for the
language L. A relation Z ⊆ W1 × W2 is a HS-bisimulation between M1 and M2 if the following
conditions are satisfied:

(a) for atoms: if w1Zw2, then w1 ∈ V1(a) iff w2 ∈ V2(a) for a ∈ Prop ∪ Nom.
(b) forth and back conditions for ♦ are as usual.
(c) forth condition for �: if w1Zw2, M′

1 is a new model obtained from M1 by cutting a link, then
there exists a new model M′

2 obtained from M2 by cutting a link such that w1Zw2, where Z is
an HS-bisimulation between M′

1 and M′
2. The back condition for � is the obvious converse.

(d) All points named by the same nominal are related by Z.

�
The following is easy to prove by induction on formulas.

FACT. HSML-formulas are invariant for HS-bisimulations.
Now we can give a concrete example to prove that 〈ϕ|ψ〉 cannot be defined in HSML. Let M1 =

(W1, R1, V1) with W1 = {w1, w2, w3}, R1 = {(w2, w3)}, V(p) = {w2}, V(a) = {w1} for any a ∈ Nom.
M2 = (W2, R2, V2) with W2 = {v1, v2, v3},
R2 = {(v2, v3)}, V(p) = ∅, V(a) = {v1} for any a ∈ Nom. It is easy to see that (M1, w1)Z(M2, v1),
which means that any formula α is true at w1 iff α is true at v1. However, M1, w1 � 〈p|�〉��,
M2, v1 � 〈p|�〉��, which leads to a contradiction.

Adding a general link cutting operator 〈ϕ|ψ〉 to HSML yields a logic GHSML whose syntax is
given by

ϕ ::= a | p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | @iϕ | 〈ϕ|ψ〉α

with p ∈ Prop, a ∈ Nom. Dual modal operators �,�, [ϕ|ψ] are defined as usual. The truth
condition for 〈ϕ|ψ〉 is as follows:

(W , R, V), w � 〈ϕ1|ϕ2〉ψ iff (W , R′, V), w � ψ , where
R′ = R\{(w1, w2) | (W , R, V), wi � ϕi for i = 1, 2}
The logic GHSML can be axiomatized in the same style as HSML, with the one difference that

the link cutting modality is now a primitive of the system, for which we have recursion axioms in
standard dynamic-epistemic style:

(a) 〈ϕ|ψ〉a ↔ a
(b) 〈ϕ|ψ〉p ↔ p
(c) 〈ϕ|ψ〉¬α ↔ ¬〈ϕ|ψ〉α
(d) 〈ϕ|ψ〉(α ∧ β) ↔ 〈ϕ|ψ〉α ∧ 〈ϕ|ψ〉β
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(e) 〈ϕ|ψ〉@aα ↔ @a〈ϕ|ψ〉α
(f) 〈ϕ|ψ〉♦α ↔ ((ϕ ∧ ♦(¬ψ ∧ 〈ϕ|ψ〉α)) ∨ (¬ϕ ∧ ♦〈ϕ|ψ〉α))

A completeness proof can be given for this extended proof system in the same style as the one we
gave for HSML, though its details will now be closer to the completeness proof for MLSR in [22].

B Another approach to embedding HSML into MLSR

We assume the setting of Section 5, but now introduce the following notions in order to tighten up
the translation provided there.

DEFINITION 17 (Named Pseudo Transformed models).
A named pseudo transformed model MP is a named MLSR model in which for any a, b ∈ Nom,
the following formulas are true globally: i → (♦a → �(a ∧ ¬i)), ¬i → �i, ♦(b ∧ i ∧ ♦a) →
¬♦(¬b ∧ i ∧ ♦a) and b ∧ ♦(i ∧ a) → @b¬i ∧ (¬b → ¬♦a).

A named pseudo transformed model (‘nptm’, for short) is close to a transformed model, but there
are some differences. In an nptm, i-worlds may have neither successors nor predecessors. But in a
transformed model, an i-world must have both a ¬i-successor and a ¬i-predecessor. However, in an
nptm, if an i-world has a successor or a predecessor, it must be a ¬i-world and unique.

Let S denote the class of all named pseudo transformed models.

PROPOSITION 5
¬i ∧ Tr(ϕ) is satisfiable in a transformed model iff ¬i ∧ Tr(ϕ) is satisfiable in a named pseudo
transformed model.

PROOF. First, given a transformed model F(M0) and a translated formula Tr(ϕ) true at a ¬i-point
w in it, by adding norminals to the language and naming all points in F(M0), we get an nptm with
Tr(ϕ) still true at w.

Next, given an nptm MP, we delete all i-points without successors and then add for each i-point
without predecessors a ¬i-point linking to it (with no restriction on how atomic propositions except
for i are assigned to these new points). Let M′

P be the resulting transformed model. Then we prove
by formula induction that, for any formula ¬i∧Tr(ϕ) and ¬i-point in both MP and M′

P, the formula
is true at w in MP − B iff it is true at w in M′

P − B, where B is a finite subset of i-points which are
in both MP and M′

P.8 �

COROLLARY 3

|�C ϕ iff |�S ¬i → Tr(ϕ)

8Here are the key cases. (a) For ♦(i ∧ ♦ϕ), note that neither adding ¬i-points to initial i-points nor deleting dead end
i-points affects the links that make ♦(i ∧ ♦ϕ) true at w in MP. Therefore, by the inductive hypothesis, ♦(i ∧ ♦ϕ) is also true
at w in M′

P. From M′
P to MP, the same argument applies. (b) For 〈−i ∧ ♦¬i〉ϕ, note that neither the deleted points nor the

added points satisfy i ∧ ♦¬i, so when evaluating the formula 〈−i ∧ ♦¬i〉ϕ, we can always delete the same points in MP and
M′

P that satisfy i ∧ ♦¬i. The equivalence follows by the inductive hypothesis.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/6/1216/6545981 by U
niversiteit van Am

sterdam
 user on 15 M

arch 2024



1242 Hybrid sabotage modal logic

Adding the four formulas in Definition 17 as axioms to obtain a proof system MLSR(C),
soundness and completeness go through – noting that deleting points from an nptm still yields a
named pseudo transformed model. Putting things together, one then obtains the desired

COROLLARY 4

HSML ϕ iff MLSR(C) ¬i → Tr(ϕ)

Received 16 January 2021
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