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ABSTRACT

We prove that any suitable generalization of Laver forcing to the space κκ,

for uncountable regular κ, necessarily adds a Cohen κ-real. We also study

a dichotomy and an ideal naturally related to generalized Laver forcing.

Using this dichotomy, we prove the following stronger result: if κ<κ = κ,

then every <κ-distributive tree forcing on κκ adding a dominating κ-

real which is the image of the generic under a continuous function in the

ground model, adds a Cohen κ-real. This is a contribution to the study

of generalized Baire spaces and answers a question from [1].

1. Introduction

In set theory of the reals, a basic question is whether a forcing adds Cohen

reals or dominating reals. It is well-known that Cohen forcing adds Cohen but

not dominating reals while Laver forcing does the opposite. In the language

of cardinal characteristics of the continuum, this means that an appropriate

iteration of Cohen forcing starting from CH yields a model where b < cov(M),

while an appropriate iteration of Laver forcing starting from CH yields a model

where cov(M) < b.

In recent years, the study of “generalized Baire spaces” has caught the atten-

tion of an increasing number of set theorists. For a regular, uncountable cardinal

κ one considers elements of κκ as “κ-reals” and looks at the corresponding space

with the bounded topology, i.e., the topology generated by basic open sets of

the form [σ] := {x ∈ κκ : σ ⊆ x} for σ ∈ κ<κ (analogously for 2κ).

It is straightforward to generalize the above notions from the classical to the

generalized Baire spaces. Thus, we have the concepts dominating κ-real and the

cardinal characteristic bκ (see Definition 2.1). Likewise, we can define Mκ as

the ideal of κ-meager sets, i.e., those obtained by κ-unions of nowhere dense,

giving rise to the cardinal characteristic cov(Mκ) defined in the usual way.

κ-Cohen forcing is the partial order of basic open sets ordered by inclusion.
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It is not hard to see that κ-Cohen forcing does not add dominating κ-

reals, so an appropriate iteration of κ-Cohen forcing, starting from a model

of GCH, yields a model in which bκ < cov(Mκ), mirroring the classical situa-

tion. A natural method for the converse direction, i.e., proving the consistency

of cov(Mκ) < bκ, would be to iterate a forcing which adds dominating κ-reals

but not Cohen κ-reals. The authors of [1, p. 1003] asked whether a forcing with

such a property existed, and in particular, whether some generalization of Laver

forcing had this property.

In this paper, we show that any generalization of Laver forcing necessarily

adds a Cohen κ-real (Theorem 3.5). If we assume κ<κ = κ, then this holds for

an even wider class of trees (Theorem 3.7). Later, we use a dichotomy result and

similar techniques to show that if κ<κ = κ and P is any <κ-distributive forcing

whose conditions are limit-closed trees on κ<κ, and which adds a dominating

κ-real obtained as the image of the generic under a continuous function in the

ground model, then P necessarily adds a Cohen κ-real (Theorem 5.10). It is an

open question whether there exists some other<κ-distributive and/or<κ-closed

forcing which adds dominating κ-reals but not Cohen κ-reals (Question 5.1).1

We should note that a model for cov(Mκ) < bκ could also be constructed by

a different method. One could start from a model in which

cov(Mκ) = bκ = 2κ > κ+

and add a witness to cov(Mκ) = κ+ by a short forcing iteration.

When working in generalized Baire spaces, a common assumption is κ<κ = κ,

which is sufficient to prove many pleasant properties of generalized Baire spaces,

e.g., that the topology has a base of size κ. Nevertheless, our first main theorem

(Theorem 3.5) is proved in generality and does not depend on this assumption,

whereas the other main results (Theorem 3.7 and Theorem 5.10) do.

The first main result is proved in Section 3. Motivated by the methods used

there, in Section 4 we look at the ideal related to generalized Laver forcing and

prove a somewhat surprising result concerning a generalization of the dichotomy

for Laver forcing from [5]. This dichotomy is used in Section 5 to extend our

first main result to arbitrary <κ-distributive tree forcings.

1 In an earlier version of this paper, we claimed that every <κ-closed forcing adding dom-

inating κ-reals adds Cohen κ-reals, but the proof contained a gap, so, to our knowledge,

the question is still open.
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2. Preliminaries and definitions

We work in the setting where κ is an uncountable, regular cardinal, and consider

the generalized Baire space κκ with the bounded topology generated by basic

open sets of the form [σ] := {x ∈ κκ : σ ⊆ x} for σ ∈ κ<κ. The generalized

Cantor space 2κ is defined analogously.

We refer the reader to [3] for a good introduction to generalized Baire spaces,

and to [10] for an overview of the current state of the field and a list of open

problems.

Definition 2.1: Let f, g ∈ κκ. We say that g dominates f , denoted by f ≤∗ g,

if ∃α0 ∀α > α0 (f(α) ≤ g(α)). The generalized bounding number bκ is defined

as the least size of a family F ⊆ κκ such that for all g ∈ κκ there is f ∈ F such

that f �≤∗ g. If M is a model of set theory, then d is a dominating κ-real

over M if d dominates every f ∈ κκ ∩M .

A tree in κ<κ is a subset closed under initial segments. If T is a tree, we

use [T ] to denote the set of branches (of length κ) through T , that is,

[T ] := {x ∈ κκ : ∀α < κ(x�α ∈ T )}.
The same holds for trees in 2<κ. For σ ∈ T we use the notation

T ↑σ := {τ ∈ T : σ ⊆ τ ∨ τ ⊆ σ}.
A tree T ⊆ κ<κ is called limit-closed2 if for any limit ordinal λ < κ and

any ⊆-increasing sequence 〈σα : α < λ〉 from T , the limit of the sequence

σ :=
⋃

α<λ σα is itself an element of T . We call a set C superclosed if C = [T ]

for a limit-closed tree T .

Every closed subset of κκ is the set of branches through a tree but not neces-

sarily a limit-closed tree, so one could say that being superclosed is a topolog-

ically stronger property than being closed. We will also need to consider sets

of branches of length shorter than κ. For any limit ordinal λ < κ we use the

notation [T ]λ := {σ ∈ κλ : ∀α < λ(σ�α ∈ T )}. Notice that T is limit-closed

iff [T ]λ ⊆ T for all limit ordinals λ < κ.

For a tree T (on the classical or generalized Baire space) we call the stem

of T , denoted by stem(T ), the maximal node σ ∈ T (if it exists) such that for

all τ ∈ T either τ ⊆ σ or σ ⊆ τ . The notation SuccT (σ) denotes the set of

2 Other terminology used in the literature is “<κ-closed” and “sequentially closed”.
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immediate successors of σ in T , i.e., the collection

{τ ∈ T : τ = σ�〈α〉 for some α}.
Definition 2.2: A Laver tree is a tree T ⊆ ω<ω with the property that for

every σ ∈ T extending stem(T ), |SuccT (σ)| = ω. Laver forcing L is the

partial order of Laver trees ordered by inclusion.

Laver forcing adds dominating reals while satisfying the so-called Laver

property, a well-known iterable property implying that no Cohen reals are

added. There have been several attempts in the literature to generalize Laver

forcing to κκ.

Definition 2.3: A κ-Laver tree is a tree T ⊆ κ<κ which is limit-closed and

such that for every σ ∈ T extending stem(T ), |SuccT (σ)| = κ. Let Lκ denote

the partial order of all κ-Laver trees ordered by inclusion.

This partial order itself is probably not well-suited as a forcing on κκ and

has not been proposed as an option.3 But there have been other attempts at

generalizations of Laver forcing, usually by putting stronger requirements on

“splitting” in the tree. For example, club Laver forcing (see [4]) consists of

trees satisfying the additional condition “SuccT (σ) contains a club on κ” for

all σ beyond the stem. This forcing is <κ-closed and adds a dominating κ-real,

but it is easy to see that it also adds a Cohen κ-real: if S is a stationary, co-

stationary subset of κ and ϕ : κκ → 2κ is given by ϕ(x)(α) = 1 ⇔ x(α) ∈ S,

then ϕ(xgen) is a Cohen κ-real.

Yet another attempt is measure-one Laver forcing, where the requirement

is strengthened to “SuccT (σ) ∈ U” for some <κ-complete ultrafilter on a mea-

surable cardinal κ. This forcing is also <κ-closed and adds a dominating κ-real,

and until now it was not known whether it adds a Cohen κ-real. Of course, one

could think of further clever requirements on Laver trees in order to ensure that

no Cohen κ-reals are added.

However, by the results of this paper, none of these approaches can work.

3 It is not hard to see that Lκ is not <κ-closed, and in fact not even ω-distributive; this

followos from [7, Lemma 30.23]. In fact, we conjecture that Lκ collapses the generalized

continuum 2κ. Compare this to a recent result of Mildenberger and Shelah [13] showing

that, if κ<κ = κ, then a similarly “plain” version of κ-Miller forcing collapses 2κ.
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3. The supremum game

In this section we will prove our first main result. The main ingredient of our

proofs in this and subsequent sections is the following game.

Definition 3.1: Let S ⊆ κ. The supremum game Gsup(S) is played by two

players, for ω moves, as follows:

I A0 A1 . . .

II β0 β1 . . .

where An ⊆ κ, |An| = κ and βn ∈ An for all n < ω. Player II wins iff

sup{βn : n < ω} ∈ S.

Lemma 3.2: Let S be a stationary subset of Cofω(κ) = {α < κ : cf(α) = ω}.
Then Player I does not have a winning strategy in Gsup(S).

Proof. Let σ be a strategy for Player I in Gsup(S). We will show that σ is not a

winning strategy. Let θ be sufficiently large and let M ≺ Hθ be an elementary

submodel such that σ ∈ M , |M | < κ, and δ := sup(M ∩ κ) ∈ S. Note that we

can always do that, because the set

{sup(M ∩ κ) : M ≺ Hθ, σ ∈ M, |M | < κ}
contains a club.

Fix a sequence 〈γn : n < ω〉, cofinal in δ, such that every γn ∈ M (but the

sequence itself is not). Inductively, we will construct a run of the game in which

Player I played according to strategy σ.

At each step n, inductively assume Ak and βk for k < n have been fixed

according to the rules of the game and the strategy σ, and assume they are all

in M . Let An := σ(A0, β0, . . . , An−1, βn−1). Since the finite sequence was in M

and the strategy σ is in M , An is also in M . Furthermore, since |An| = κ, the

following statement is true:

∃β > γn(β ∈ An).

This statement holds in Hθ, so by elementarity, it also holds in M . Thus, there

exists βn ∈ M with βn > γn and βn ∈ An. This completes the construction.

We have produced a sequence 〈βn : n < ω〉 with βn ∈ M for all n. But

clearly supn βn = supn γn = δ ∈ S, so Player II wins this game, proving that

the strategy was not winning for Player I.
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Definition 3.3: A short κ-Laver tree is a tree L ⊆ κ<ω (i.e., height ω) such

that for all σ ∈ L extending stem(L) we have |SuccL(σ)| = κ.

Corollary 3.4: Let S ⊆ κ be a stationary subset of Cofω(κ). For every short

κ-Laver tree L there exists a branch η ∈ [L]ω such that supn η(n) ∈ S.

Proof. The short κ-Laver tree L induces a strategy σL for Player I in the supre-

mum game:

σL(A0, β0, . . . , An, βn) := SuccL(stem(L)�〈β0, . . . , βn〉).
Whenever 〈A0, β0, A1, β1, . . . 〉 is a run of the game in which Player I follows σL,

stem(L)�〈β0, β1, . . . 〉 is an element of [L]ω.

However, by Lemma 3.2, there exists a run where Player I follows σL but

Player II wins. This yields a branch η ∈ [L]ω such that supn η(n) ∈ S.

With this, we immediately obtain our main result.

Theorem 3.5 (Main Theorem 1): Let P be any subforcing of Lκ, i.e., any

forcing whose conditions are κ-Laver trees ordered by inclusion, and which is

closed under the following condition: if T ∈ P and σ ∈ T , then T ↑σ ∈ P. Then P

adds a Cohen κ-real.

Proof. We will use the following notation: if T ∈ κ<κ is a tree and σ ∈ T , then

T �ωσ := {τ ∈ κ<ω : σ�τ ∈ T }.
Note that if T is a κ-Laver tree, then for every σ ∈ T extending stem(T ), T �ωσ
is a short κ-Laver tree (with empty stem).

Let S0 ∪ S1 be a stationary/co-stationary partition of Cofω(κ) and consider

the mapping ϕ : κκ → 2κ defined by

ϕ(x)(α) = 1 :⇔ sup{x(ω·α+ n) : n < ω} ∈ S1.

In other words, partition x into κ-many blocks of length ω, and map each piece

to 0 or 1 depending on whether its supremum lies in S0 or S1. We claim that

if xgen is P-generic then ϕ(xgen) is κ-Cohen-generic.

We use ϕ̃ : κ<κ → 2<κ to denote the function as above but defined only on

initial segments (i.e., ϕ(x) =
⋃

α<κ ϕ̃(x�α)). Let T ∈ P be given and let D

be open dense in κ-Cohen forcing. Let σ := stem(T ), w.l.o.g. len(σ) is a limit

ordinal. Let t ∈ D extend ϕ̃(σ). Suppose ϕ̃(σ)�〈0〉 ⊆ t. By Corollary 3.4 there

is η ∈ [T �ωσ]ω such that supn η(n) ∈ S0. If, instead, we have ϕ̃(σ)�〈1〉 ⊆ t, we
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can apply Corollary 3.4 and find a branch μ ∈ [T �ωσ]ω such that supn μ(n) ∈ S1.

Note that, since T is limit-closed, σ�η resp. σ�μ are elements of T . Now pro-

ceed analogously until reaching τ , such that ϕ̃(τ) = t. By assumption T ↑τ ∈ P,

and now clearly T ↑τ � τ ⊆ ẋgen and therefore T ↑τ � t ⊆ ϕ(ẋgen). Thus ϕ(xgen)

is a Cohen κ-real.

Another way of looking at the above proof is as follows: the sets

{η ∈ κω : supn η(n) ∈ S0} and {η ∈ κω : supn η(n) ∈ S1}
form Bernstein sets with respect to short κ-Laver trees in κ<ω. Note that due

to cardinality reasons, we cannot use standard diagonalization arguments to

produce such sets.

If we additionally assume κ<κ = κ, we can obtain an even stronger theorem.

Definition 3.6: A tree T ⊆ κ<κ is called a pseudo-κ-Laver tree if it is limit-

closed and has the following property: every σ ∈ T has an extension τ ∈ T such

that T �ωτ is a short κ-Laver tree. We use PLκ to denote the partial order of

pseudo-κ-Laver trees ordered by inclusion.

Theorem 3.7 (Main Theorem 2): Assume κ<κ = κ. Let P be any forcing

whose conditions are pseudo-κ-Laver trees (i.e., P ⊆ PLκ) and which is closed

under the following condition: if T ∈ P and σ ∈ T , then T ↑σ ∈ P. Then P adds

a Cohen κ-real.

Proof. The method is similar, except that now we let {St : t ∈ 2<κ \ {∅}}
be a partition of Cofω(κ) into κ-many disjoint stationary sets, which we index

by 2<κ \ {∅}. This is possible due to the assumption κ<κ = κ. Define the

mapping π : κκ → 2κ by

π(x) := t0
�t1

�t2
� · · · ,

where for all α < κ, tα is such that sup{x(ω ·α+n) : n < ω} ∈ Stα and tα = 〈0〉
in case it is not of cofinality ω. We also use π̃ to denote the same operation but

from κ<κ to 2<κ.

Let xgen be the P-generic κ-real; we show that π(xgen) is κ-Cohen. Let D

be open dense in κ-Cohen forcing, and let T ∈ P. Find σ ∈ T such that

T �ωσ is a short κ-Laver tree. Let t ∈ D be such that π̃(σ) ⊆ t. Let u �= ∅

be such that π̃(σ)�u ⊇ t. By Corollary 3.4 there is η ∈ [T �ωσ]ω such that

supn η(n) ∈ Su. It follows that π̃(σ
�η) = π̃(σ)�u ⊇ t. Therefore

T ↑(σ�η) � t ⊆ π(ẋgen).
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4. The generalized Laver dichotomy

The supremum game and the arguments from Theorem 3.5 naturally lead us

to consider a question in generalized descriptive set theory (this connection is

explained in Remark 4.6).

We need the following strengthening of the concept of a dominating real,

which has been studied in the classical context in [5, 11, 2, 9].

Definition 4.1: For f : κ<κ → κ and x ∈ κκ, we say that x strongly domi-

nates f if

∃α0∀α > α0 (x(α) ≥ f(x�α)).

If M is a model of set theory with the same κ<κ, then x is called strongly

dominating over M if for all f : κ<κ → κ with f ∈ M , x strongly dominates f .

Clearly, if x is strongly dominating, then it is also dominating. The converse

is false in general, e.g., let d be dominating over M and let x be defined by

x(α) := d(α) for odd α and x(α) := d(α + 1) for even and limit α. Then x is

dominating but not strongly dominating. However, the following is true:

Lemma 4.2: Assume κ<κ = κ. Let M be a model of set theory such that

κ<κ ∩ M = κ<κ. Then, if there is a dominating κ-real over M there is also a

strongly dominating κ-real over M .

Proof. Let d be the dominating κ-real, and fix a bijection between κ<κ and κ

in M . Use this to define a new dominating function d∗ : κ<κ → κ such that

for every f : κ<κ → κ in M , f(σ) ≤ d∗(σ) holds for all but <κ-many σ ∈ κ<κ.

Now define inductively

e(α) := d∗(e�α).

Then e is strongly dominating.

Definition 4.3: A collection X ⊆ κκ is a strongly dominating family if for

every f : κ<κ → κ there exists x ∈ X which strongly dominates f . Dκ denotes

the ideal of all X ⊆ κκ which are not strongly dominating families.

For κ = ω, the ideal Dω = D is the well-known non-strongly-dominating

ideal, introduced in [5] and independently in [15], and studied among others

in [2]. The main interest in it stems from a perfect-set-like dichotomy theorem

for Laver trees.
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Theorem 4.4 (Goldstern et al. [5]): If T ⊆ ω<ω is a Laver tree then [T ] /∈ D.

Every analytic set A ⊆ ωω is either in D or contains [T ] for some Laver tree T .

In particular, there is a dense embedding from the order of Laver trees into the

algebra of Borel subsets of ωω modulo D.

Dichotomies such as this one are common in classical descriptive set theory,

the most notable example being the perfect set property and the closely re-

lated Kσ-dichotomy ([8]), which are false for arbitrary sets of reals but true for

analytic sets. Interest in generalizing such dichotomies to the κκ-context was

recently spurred by a result of Schlicht [14] showing that the generalized perfect

set property for generalized projective sets is consistent, and Lücke–Motto Ros–

Schlicht [12] showing that the generalized Hurewicz dichotomy for generalized

projective sets is consistent. Thus, it might initially come as a surprise that the

generalized Laver dichotomy fails for closed sets, provably in ZFC.

Theorem 4.5: There is a closed subset of κκ which is neither inDκ nor contains

the branches of a generalized Laver tree.

Proof. Let ϕ be as in the proof of Theorem 3.5. Let z be the constant 0 function

(or any other fixed element of 2κ). We show that

C := ϕ−1[{z}]

is a counterexample to the dichotomy. Given any T ∈ Lκ, we can easily

find x ∈ [T ] such that ϕ(x) �= z, therefore [T ] �⊆ C. We claim that C is

strongly dominating. Let f : κ<κ → κ be given. Let

Tf := {σ ∈ κ<κ : ∀β < len(σ)(σ(β) ≥ f(σ�β))}.

Clearly Tf is a generalized Laver tree and stem(Tf ) = ∅. As in the proof of

Theorem 3.5, we can find x ∈ [Tf ] such that ϕ(x) = z. But then x strongly

dominates f and x ∈ C, completing the argument.

Remark 4.6: The relevance of this theorem is that it explains why Theorem 3.5

does not (as one might initially assume) yield a ZFC-proof of bκ ≤ cov(Mκ).

Indeed, it is not hard to verify that cov(Dκ) = bκ and that if X ∈ Mκ then

ϕ−1[X ] does not contain a κ-Laver tree. Thus, if the dichotomy would hold for

generalized Borel (or just Fσ) sets then one could have concluded

bκ = cov(Dκ) ≤ cov(Mκ).
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One could wonder whether there is any dichotomy for the ideal Dκ, i.e.,

whether there is any collection P of limit-closed trees such that for every T ∈ P,

[T ] /∈ Dκ, and every analytic (or at least closed) set not in Dκ contains [T ] for

some T ∈ P. In fact, this is not the case either.

Lemma 4.7: Let T ⊆ κ<κ be a tree such that [T ] is strongly dominating. Then

there exists s ∈ T such that T �ωs contains a short κ-Laver tree.

Proof. We use a slightly modified version of the game from [5]. Given A ⊆ κω

let G	(A) be the game defined by:

I α0 α1 . . .

II β0 β1 . . .

where αn, βn < κ, αn ≤ βn for all n, and Player II wins iff

〈βn : n < ω〉 ∈ A.

It is easy to see that if Player II has a winning strategy in G	(A) then there

exists a short κ-Laver tree L (with empty stem) such that [L]ω ⊆ A. Also

it is well-known and easy to see that if A is closed (in the topology on κω)

then G	(A) is determined.4

Suppose, towards contradiction, that there is no s ∈ T such that T �ωs con-

tains a short κ-Laver tree. Then Player II does not have a winning strategy

in G	([T �ωs]ω) for any s ∈ T , and therefore Player I has a winning strat-

egy, call it σs. Define f : κ<κ → κ as follows: for every t ∈ T , let s ⊆ t

be the maximal node of limit length, let u be such that t = s�u, and de-

fine f(t) := σs(u). Since [T ] is strongly dominating there is x ∈ [T ] and α such

that x(β) ≥ f(x�β) for all β > α. In particular, there is s ⊆ x, of limit length,

such that x(|s| + n) ≥ f(x�(|s| + n)) for all n < ω. Letting z ∈ κω be such

that s�z = x�(|s|+ ω), we see that

z(n) ≥ f(s�z�n) = σs(z�n),

for every n. Also z ∈ [T �ωs]ω, therefore z satisfies the winning conditions for

Player II in the game G	([T �ωs]ω), contradicting the assumption that σs was a

winning strategy for Player I.

4 Here, the topology on κω is the finite-support product topology, i.e., the one generated

by basic open sets of the form [s] for s ∈ κ<ω . The fact that G�(A) is determined follows

by the standard Gale–Stewart argument (see, e.g., [7, Proposition 27.1]).
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Corollary 4.8: There exists a closed strongly dominating set without a super-

closed strongly dominating subset.

Proof. Consider again the closed set C := ϕ−1[{z}] from the proof of The-

orem 4.5. Towards contradiction suppose there is a limit-closed tree T such

that [T ] ⊆ C and [T ] is strongly dominating. Without loss of generality, we

may assume that T is pruned, in the sense that for every s ∈ T there is a

proper extension t ∈ T .

By Lemma 4.7 there is s ∈ T such that T �ωs contains a short κ-Laver tree L.

By Corollary 3.4 there is η ∈ [L]ω such that supn η(n) ∈ S1, and by limit-

closure, s�η ∈ T . Moreover, since T is limit-closed and pruned, there is x ∈ [T ]

such that s�η ⊆ x. But then ϕ(x) contains a “1” and thus is not equal to z,

the constant 0-function, contradicting the assumption.

Lemma 4.7, whose proof is based on the game argument from [5], will be an

important ingredient in the following section.

5. <κ-distributive tree forcings

We would like to generalize the results from Section 3 about Laver trees to a

wider class of forcing notions. Recall that a forcing P is <κ-closed if for every

decreasing sequence of conditions of length <κ, there is a condition below all

of them. A forcing P is <κ-distributive if the intersection of <κ-many open

dense sets is open dense. Since <κ-distributive forcings do not add new ele-

ments of κ<κ, it is a natural class to consider in the context of generalized Baire

spaces (after all, forcing in the ordinary Baire space does not add new finite

sequences). If a forcing is <κ-closed, then it is <κ-distributive, although the

converse does not hold. One interesting difference between the two, in the con-

text of generalized descriptive set theory, is that generalized Π1
1-absoluteness

holds between <κ-closed forcing extensions (see [4, Lemma 2.7]), while it may

fail for <κ-distributive forcing extensions. In this sense, the most natural ques-

tion is the following:

Question 5.1: Is it true that every <κ-distributive forcing adding a dominating

κ-real adds a Cohen κ-real? Is it at least true for every <κ-closed forcing?
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Although we cannot answer this question in generality, we can answer the

question for<κ-distributive forcings whose conditions are limit-closed trees, and

such that a dominating κ-real can be defined from the generic by a ground-model

continuous function. More generally, this holds whenever the interpretation tree

of the dominating κ-real is limit-closed.

In this section, we will always assume that

κ<κ = κ.

Definition 5.2: Let P be any forcing notion, let ẋ be a name, and let p ∈ P be

such that p � ẋ ∈ κκ. Then the interpretation tree of ẋ below p is defined by:

Tẋ,p = {σ ∈ κ<κ : ∃q ≤ p(q � σ ⊆ ẋ)}.
It is clear that Tẋ,p is always a tree in the ground model, but in general it

need not be a limit-closed tree.

Lemma 5.3: Suppose P is a <κ-distributive forcing, and suppose p � “ḋ is a

strongly dominating κ-real”. Additionally, assume that for every q ≤ p, the

interpretation tree Tḋ,q is limit-closed. Then p � “there is a Cohen κ-real”.

Proof. Let π be the function defined in Theorem 3.7. We will show that

p �“π(ḋ) is κ-Cohen”. Let D be κ-Cohen dense and q ≤ p arbitrary.

Claim: [Tḋ,q] is a strongly dominating set.

Proof. Let f : κ<κ → κ. Since q forces that ḋ is strongly dominating, in

particular q � ∃β ∀α > β (ḋ(α) ≥ f̌(ḋ�α)). By <κ-distributivity, there is a β0

and q0 ≤ q which decides ḋ�β0 =: σ0 and forces the following:

(∗) ∀α > β0 (ḋ(α) ≥ f̌(ḋ�α)).

Consider the interpretation tree Tḋ,q0
. Let x be any branch in [Tḋ,q0

] ⊆ [Tḋ,q].

To see that such a branch exists, notice that for any σ ∈ Tḋ,q0
there is a

condition q′ deciding σ ⊆ ḋ, and by <κ-distributivity, we can find a stronger

condition q′′ ≤ q′ deciding τ ⊆ ḋ for a proper extension τ of σ. Moreover, at

limit nodes we can continue since Tḋ,q0
is limit-closed by assumption.

Now we see that for any initial segment σ ⊆ x which is longer than σ0, we

know that some q′ ≤ q0 forces σ ⊆ ḋ. Since q′ also forces (∗), we must have

σ(α) ≥ f(σ�α) for all α in the domain of σ with α > β0. Thus we conclude

that x(α) ≥ f(x�α) holds for every α > β0.
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From the Claim and Lemma 4.7, it follows that there is σ ∈ Tḋ,q such

that Tḋ,q�
ωσ contains a short κ-Laver tree. Just as in the proof of Theo-

rem 3.7, let t ∈ D be such that π̃(σ) ⊆ t, u such that π̃(σ)�u = t, and

find η ∈ [Tḋ,q�
ωσ]ω such that supn η(n) ∈ Su. Now, notice that by the assump-

tion that Tḋ,q is limit-closed, σ�η ∈ Tḋ,q, hence there is r ≤ q forcing σ�η ⊆ ḋ.

But then

r � t = π̃(σ)�u = π̃(σ�η) ⊆ π(ḋ),

and so r � π(ḋ) ∈ [t].

Next we look at forcings P whose conditions are limit-closed trees on κ<κ.

Definition 5.4: A forcing partial order P is called a tree forcing if its conditions

are limit-closed trees T ⊆ κ<κ ordered by inclusion, and for every T ∈ P

and σ ∈ T , the restriction T ↑σ ∈ P.

We need to review continuous functions on κκ. Let us call a function

h : κ<κ → κ<κ pre-continuous if:

(1) σ ⊆ τ ⇒ h(σ) ⊆ h(τ), and

(2) ∀x ∈ κκ, {len(h(σ)) : σ ⊆ x} is cofinal in κ.

If h is pre-continuous, let f = lim(h) be the function defined as

f(x) :=
⋃

{h(σ) : σ ⊆ x}.
Just as in the classical situation, it is easy to check that if h is pre-continuous,

then lim(h) is continuous, and conversely if f is continuous, then the function

defined by

h(σ) :=
⋃

{τ : f ′′[σ] ⊆ [τ ] and len(τ) ≤ len(σ)}
is pre-continuous and f = lim(h).5

Unlike the classical situation, “being pre-continuous” is not necessarily an

absolute notion. The statement (2) above is a generalized Π1
1-statement, so

it will be absolute between <κ-closed forcing extensions, but it might not be

absolute between arbitrary <κ-distributive forcing extensions.6

5 The second condition in the definition of h is needed to avoid h(σ) being an element of

κκ when f is constant on some [σ].
6 The fact that generalized Π1

1-absoluteness holds for <κ-closed forcing notions is well-

known, see, e.g., [4, Lemma 2.7]. On the other hand, the canonical forcing to add a club

to a stationary set in the ground model is <κ-distributive (see [6, Lemma 23.9]) but fails

to preserve Π1
1-sentences.
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However in our case, this will not present a problem. We will always talk

about pre-continuous functions in the ground model, and implicitly assume

that the continuous function in the extension is well-defined at least on the

generic κ-real.

The main point is that for tree forcings, the interpretation trees are directly

related to the forcing conditions. For a tree T and a pre-continuous function h,

we will consider the tree generated by the image of T under h:

tr(h′′T ) := {τ : ∃σ ∈ T (τ ⊆ h(σ))}.
Lemma 5.5: Let P be a <κ-distributive tree forcing, ẋ a name for a κ-real, h a

pre-continuous function in the ground model with f = lim(h), and suppose that

T ∈ P is such that T � ẋ = f(ẋgen) (i.e., T forces that {len(h(σ)) : σ ⊆ ẋgen} is

cofinal, therefore that f(ẋgen) is well-defined, and also that f(ẋgen) = ẋ). Then

Tẋ,T = tr(h′′T ).

Proof. First suppose σ ∈ T . Then T ↑σ � σ ⊆ ẋgen, therefore

T ↑σ � h(σ) ⊆ f(ẋgen) = ẋ.

Therefore h(σ) ∈ Tẋ,T .

Conversely, let τ ∈ Tẋ,T be given. We want to find σ ∈ T such that τ ⊆ h(σ).

By definition there is S ≤ T such that S � τ ⊆ ẋ. But since S � ẋ = f(ẋgen),

we also have

S � ∃σ ⊆ ẋgen (τ ⊆ h(σ)).

By <κ-distributivity, there exists S′ ≤ S which decides σ, i.e., we may assume

that σ is in the ground model, τ ⊆ h(σ) holds, and S′ � σ ⊆ ẋgen. Moreover,

σ ⊆ stem(S′),

because otherwise there would be some incompatible σ′ ∈ S′, and we would

have S′↑σ′ � σ′ ⊆ ẋgen, contradicting S′ � σ ⊆ ẋgen. We conclude that

σ ∈ S′ ⊆ S ⊆ T and τ ⊆ h(σ) as desired.

Taking h to be the identity, an immediate corollary is that if P is a <κ-

distributive tree forcing, then the interpretation trees for the generic ẋgen are

limit-closed. If, in addition, the generic is strongly dominating, then by Lem-

ma 5.3 we immediately know that P adds Cohen κ-reals.
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For our stronger result, we want to consider pre-continuous functions h other

than the identity. In those cases, it is not guaranteed that tr(h′′T ) is limit-

closed, even if T was. To avoid this problem we prove two technical lemmas.

The main idea is that, even if the original continuous function does not preserve

limit-closure, we may change it to another one which does.

Definition 5.6: A pre-continuous function h is called limit-closure-preserving

if for every limit-closed tree T , the tree tr(h′′T ) is also limit-closed.

Lemma 5.7: For every pre-continuous function h, there exists a pre-continuous

and limit-closure-preserving function j such that for all σ and all α in the

domain of both h(σ) and j(σ), we have:

h(σ)(α) ≤ j(σ)(α).

Proof. Fix a function R : κ<κ × κ<κ → κ<κ such that:

(1) len(R(ρ, σ)) = len(σ) for all ρ and σ.

(2) If σ �= ∅, then σ(α) ≤ R(ρ, σ)(α) for all ρ and all α < len(σ).

(3) If ρ �= ρ′, then for any σ, σ′ �= ∅, we have R(ρ, σ)(0) �= R(ρ′, σ′)(0).

In words: R takes every non-empty sequence σ and shifts it coordinate-wise

to a higher sequence of the same length depending on ρ; this happens in such

a way that for different ρ �= ρ′, the first coordinates of R(ρ, . . . ) and R(ρ′, . . . )
are never the same. It is easy to see that such a function exists since κ<κ = κ.

Let h be a pre-continuous function. Define j inductively:

• If j(σ) is defined, then for every β define j(σ�〈β〉) as follows: let w be

such that h(σ)�w = h(σ�〈β〉) (w = ∅ is also allowed). Then let

j(σ�〈β〉) := j(σ)�R(σ�〈β〉, w).
• For σ of limit length (including σ = ∅), let w be such that

h(σ) =
⋃

σ′⊂σ

h(σ′)�w.

Note that this is always possible because h(σ′) ⊆ h(σ) for all σ′ ⊂ σ

(w = ∅ is allowed). Then let

j(σ) :=

( ⋃
σ′⊂σ

j(σ′)
)

�R(σ,w).

We claim that j is as required.
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Notice that, inductively, len(j(σ)) = len(h(σ)) for every σ. It is also clear, by

construction, that σ ⊆ σ′ implies j(σ) ⊆ j(σ′). Therefore j is pre-continuous.

Moreover, by construction we immediately see that h(σ)(α) ≤ j(σ)(α) holds for

every σ and α < len(σ). It remains to prove that j is limit-closure-preserving.

Let T be an arbitrary limit-closed tree, and let

U := tr(j′′T ).

Let {ui : i < λ} be an increasing sequence in U of length λ < κ. We need

to show that this sequence has an extension in U . For each i, let si ∈ T be

⊆-minimal such that ui ⊆ j(si).
7

Claim: si ⊆ si′ for all i < i′ < λ.

Proof. Suppose, towards contradiction, that si �⊆ si′ . First, si′ ⊂ si (proper ex-

tension) is clearly not possible, since this would imply ui ⊆ ui′ ⊆ j(si′) ⊆ j(si),

and thus we would have picked si′ instead of si. Therefore, si and si′ are

incompatible. Let r be maximal such that r ⊆ si and r ⊆ si′ .

Next, notice that j(r) ⊂ ui: otherwise, we would have ui ⊆ j(r), so we would

have picked r instead of si.

So we also know that j(r) ⊂ j(si) and j(r) ⊂ j(si′). Let r0 be minimal such

that

r ⊆ r0 ⊆ si and j(r) ⊂ j(r0)

and let r1 be minimal such that

r ⊆ r1 ⊆ si′ and j(r) ⊂ j(r1).

Note that both r0 and r1 are proper extensions of r, see Figure 1. First we

consider r0: there are two cases.

• Suppose r0 is of successor length. Then there is r00 such that

r0 = r00
�〈β〉 and j(r) = j(r00).

Also (since j(σ) and h(σ) always have the same length) there exists

w �= ∅ such that h(r00
�〈β〉) = h(r00)

�w. Then by definition we have:

j(r0) = j(r00)
�R(r0, w) = j(r)�R(r0, w).

7 The si’s do not need to be distinct; e.g., they could be all equal to a unique s, or there

could be cf(λ)-many distinct si’s, etc.
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• Now suppose r0 is of limit length. Then j(r) = j(r′) for all r′ with

r ⊆ r′ ⊂ r0, but j(r0) ⊃
⋃

r′⊂r0
j(r′). So (again because j(σ) and h(σ)

have the same length) there exists w �= ∅ such that

h(r0) =
⋃

r′⊂r0

h(r′)�w.

By definition, we have

j(r0) =

( ⋃
r′⊂r0

j(r′)
)

�R(r0, w) = j(r)�R(r0, w).

Thus, in both cases we have j(r0) = j(r)�R(r0, w) for some non-empty w.

By exactly the same argument but looking at r1, we see that

j(r1) = j(r)�R(r1, v)

for some non-empty v.

But r0 �= r1, so by condition 3 of the definition of R, the first coordi-

nates of R(r0, w) and of R(r1, v) are not the same. However, we also know

j(r)�R(r0, w) ⊆ j(si) while j(r)�R(r1, v) ⊆ j(si′ ). Together with the fact

that j(r) ⊂ ui ⊆ j(si) and j(r) ⊂ ui ⊆ ui′ ⊆ j(si′ ), this gives us the desired

contradiction (see Figure 1). We conclude that the only option is si ⊆ si′ .

r

si  

0

1
ui  

ui

j(s )i

j(s  )i

T U

j

j(r)
si

r

r
contradiction

Figure 1. Contradiction assuming si⊥si′ .

So we have an increasing sequence {si : i < λ} in T , and since T is limit-

closed, there is sλ ∈ T with si ⊆ sλ for all i. Then ui ⊆ j(si) ⊆ j(sλ) holds for

all i. This completes the proof that U is limit-closed.
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The point of this lemma is that if h is pre-continuous in the ground model

with f = lim(h) and T forces that f(ẋgen) is a dominating κ-real, then letting j

be as in the lemma with g = lim(j), we know that T also forces that g(ẋgen) is

a dominating κ-real.

The next step is to convert the dominating into a strongly dominating real. In

Lemma 4.2 we mentioned how to convert a dominating to a strongly dominating

real, and it is easy to see that this conversion can be coded by a continuous

function in the ground model. The problem is, this function may again fail

to be limit-closure-preserving, so we need to use a similar method as above

to construct such a conversion function which is, in addition, limit-closure-

preserving.

Let us fix a bijective enumeration {σi : i < κ} of κ<κ such that

σi ⊆ σj ⇒ i ≤ j,

using the notation �σ� = i iff σ = σi. Recall that in Lemma 4.2, the conversion

was given by e(α) = d∗(e�α) = d(�e�α�). However, we may relax the condition

to e(α) ≥ d(�e�α�), and the conversion would still work.

Definition 5.8: A function γ : κκ → κκ is called strongly-converting, if for

all x and all α:

γ(x)(α) ≥ x(�γ(x)�α�).

Lemma 5.9: There exists a pre-continuous and limit-closure-preserving func-

tion k such that γ = lim(k) is strongly-converting.

Proof. Fix a function R : κ<κ × κ → κ which is injective and R(ρ, α) ≥ α for

all ρ and all α.

Define k : κ<κ → κ<κ inductively as follows:

• k(σ�〈β〉) :=
⎧⎨
⎩
k(σ)�〈R(σ�〈β〉, β)〉 if len(σ) = �k(σ)�,
k(σ) otherwise.

• For σ of limit length (and σ = ∅), k(σ) :=
⋃{k(σ′) : σ′ ⊂ σ}.

To check that the non-trivial condition of k being pre-continuous is satisfied,

notice that inductively “len(σ) ≤ �k(σ)�” always holds, and therefore the case

“len(σ) = �k(σ)�” in the definition of k(σ�〈β〉) must occur cofinally often as σ

increases in length along any x ∈ κκ.
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We claim that γ = lim(k) is as required. Let us check that γ is strongly-

converting. By construction, for every α, γ(x)(α) = β′ iff there is some

σ�〈β〉 ⊆ x such that

(1) β′ = R(σ�〈β〉, β),
(2) k(σ) = γ(x)�α,
(3) len(σ) = �k(σ)�.

Therefore

γ(x)(α) = β′ ≥ β = x(len(σ)) = x(�k(σ)�) = x(�γ(x)�α�).
It remains to prove that k is limit-closure-preserving. Since this is very similar

to the proof of Lemma 5.7, we will leave out some details. Let T be a limit-

closed tree, U := tr(k′′T ), and {ui : i < λ} an increasing sequence in U . For

each i, let si ∈ T be minimal such that ui ⊆ k(si) (in this case, we actually

have ui = k(si), but this is not relevant). As before, we will be done if we prove

the following claim:

Claim: si ⊆ si′ for all i < i′.

Proof. Suppose si �⊆ si′ . Since si′ ⊂ si is impossible, we must have si⊥si′ , so

let r be maximal with r ⊆ si and r ⊆ si′ . Again we must have k(r) ⊂ ui ⊆ ui′ ,

hence we can find least r0 with r ⊆ r0 ⊆ si and k(r) ⊂ k(r0), and least r1

with r ⊆ r1 ⊆ si′ and k(r) ⊂ k(r1). Moreover r0 and r1 are both of successor

length, say with last digit β0 and β1, respectively. Then k(r0)=k(r)�〈R(r0, β0)〉
and k(r1) = k(r)�〈R(r1, β1)〉. Since r0 �= r1 and R is injective, we obtain a

contradiction as before.

It is clear that if γ is strongly-converting and T � “ḋ is dominating”,

then T � “γ(ḋ) is strongly dominating”. With this, we are ready to prove

the final result.

Theorem 5.10 (Main Theorem 3): Assume κ<κ = κ. Suppose P is a <κ-

distributive tree forcing, h a pre-continuous function in the ground model

with f = lim(h), and assume that T � “f(ẋgen) is a dominating κ-real”. Then

T �“there is a Cohen κ-real”.

Proof. First we apply Lemma 5.7 to obtain a pre-continuous and limit-closure-

preserving function j. Then, for g = lim(j), it follows that

T � “g(ẋgen) is a dominating κ-real”.
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Now let k and γ be as in Lemma 5.9. Then T � “γ(g(ẋgen)) is strongly

dominating”.

Let ė be the name such that T � “γ(g(ẋgen)) = ė”. Since k and j are limit-

closure-preserving, so is k ◦ j. Therefore, by Lemma 5.5, Tė,T = tr((k ◦ j)′′T )
is limit-closed. Of course, the same applies for any stronger condition S ≤ T ,

i.e., Tė,S is also limit-closed for every S ≤ T . This is all we need to apply

Lemma 5.3, from which it follows that T � “there is a Cohen κ-real”.

Unfortunately, none of the methods in this section seem to settle Question 5.1,

which the authors consider very significant in the context of forcing over κκ:

“Is it true that every <κ-distributive forcing adding a dominating κ-real adds

a Cohen κ-real? Is it at least true for every <κ-closed forcing?”
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