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Estimating Probability Distributions of Travel Times
by Fitting a Markovian Velocity Model

Nikki Levering , Marko Boon, and Michel Mandjes

Abstract— To improve the routing decisions of individual
drivers and the management policies designed by traffic oper-
ators, one needs reliable estimates of travel time distributions.
Since congestion caused by both recurrent patterns (e.g., rush
hours) and non-recurrent events (e.g., traffic incidents) leads to
potentially substantial delays in highway travel times, we focus
on a framework capable of incorporating both effects. To this
end, we propose to work with the Markovian velocity model,
based on an environmental background process that tracks both
random and (semi-)predictable events affecting the vehicle speeds
in a highway network. We show how to operationalize this
flexible data-driven model in order to obtain the travel time
distribution for a vehicle departing at a known day and time to
traverse a given path. Specifically, we detail how to structure the
background process and set the speed levels corresponding to the
different states of this process. First, for the inclusion of non-
recurrent events, we study incident data to describe the random
durations of the incident and inter-incident times for different
periods of day. Second, for an estimation of the speed patterns
in both incident and inter-incident regime, loop detector data
for each of these periods is studied. In numerical examples that
use road network detector data of the Dutch highway network,
we obtain the travel time distribution estimates that arise under
different traffic regimes, and illustrate the advantages compared
to deterministic travel time prediction methods, or methods that
only take recurrent patterns into account.

Index Terms— Travel time distribution, Markovian back-
ground process, incident duration, recurrent congestion, loop
detector data.

I. INTRODUCTION

A. Motivation and Short Method Description

ACCURATE and efficient estimation of travel time dis-
tributions is needed to help individual travelers make

well-informed routing decisions. Moreover, traffic operators
use information about travel time distributions for the design
of optimal policies for traffic management. Consequently,
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a reliable description of these travel times may lead to
reductions of delays, economic costs, and CO2 emissions.
Considering vehicle trip times, one should distinguish between
so-called recurrent congestion (i.e., near-periodic effects, such
as congestion during peak hour) and non-recurrent congestion
(which is inherently less predictable, e.g. covering conges-
tion due to incidents) potentially contributing to substantial
delays. When aiming at describing travel time distributions,
it is therefore essential to include both effects. The objective
of this paper is to develop, in the context of a highway
network, a framework for capturing the impact of recurrent and
non-recurrent congestion.

Since the origins of recurrent congestion are of an essen-
tially periodic nature, it follows a highly predictable pattern.
This can be inferred from velocity data, often available through
the loop detectors or speed cameras present in traffic networks.
In contrast, incidents are considerably less predictable, both in
terms of location and severity. Our work focuses on developing
a description of the randomness regarding such incidents,
and a quantification of their impact on highway travel times,
in a model that in addition takes the recurrent, near-periodic
effects into account. In our approach we incorporate events that
directly impact the velocities at which the vehicles can drive
(which we refer to as ‘driveable speed levels’), thus ignoring
second-order effects that are caused by the driving style that
individual drivers may have. Note that the concept of driveable
speeds is heavily relied upon in the routing literature, as, for
the prediction of travel times for cars, it is crucial to work with
the speeds at which cars can effectively drive. If one would
e.g. work with the average link speeds, these are also affected
by slow-moving vehicles such as trucks.

We demonstrate our approach by studying traffic data from
the Dutch highway network, which we use to get a handle
on the (random) incident lengths, inter-incident times and
corresponding driveable speed levels. The analysis employs
loop detector data, in combination with a database of registered
incidents. While we use the Dutch data in our ‘proof of
concept’, our techniques can be applied to any highway
network for which similar data sets are available. Importantly,
with the results of the analysis, we operationalize the Marko-
vian velocity model (MVM), as was introduced in [1]. This
stochastic model uses an environmental background process to
track both recurrent and non-recurrent events affecting vehicle
speeds in a road network, and outputs, given its departure day
and time, a description of the travel time of a vehicle traversing
a specific path. Notably, this description yields an accurate
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proxy for the distribution of this travel time, rather than just
a ‘point estimate’, thereby providing insight into the impact
of the random effects discussed above. With increasing recog-
nition of travel time reliability as an important performance
measure, such distributions serve as input for a line of routing
studies that take the risk-averseness of users into account
(see e.g. [2]).

A main reason for our choice to use the MVM to model
travel time distributions lies in the fact that it is ‘velocity
oriented’ and data-driven. In addition, it is remarkably flexible
in terms of its capacity to include the various sources of
travel time fluctuations, and transparently captures the causes
of recurrent as well as non-recurrent congestion in a single
model. Indeed, we can incorporate near-deterministic events
(such as the onset of the rush hour, or the duration of the rush
hour), as well as events of an intrinsically more random nature
(such as incidents). Moreover, the underlying mechanism is
rich enough to allow for correlation between the speeds on
different segments in the network, present due to e.g. spillback
and rubbernecking after incidents. Lastly, as is demonstrated
in this paper, despite the flexibility the model offers, it can be
made operational with relatively low complexity, which makes
it directly useful for practical purposes. One such practical
application of the MVM is studied in [1], who employ the
model in an optimal routing context, in which an individual
vehicle wishes to minimize its expected travel time between a
given origin and destination.

B. Literature Review

Since incidents potentially have a dramatic impact on high-
way travel times, their duration has been studied extensively.
Some early works describe the randomness of incident dura-
tions by the lognormal distribution [3], [4], [5]. Reviews of
more recent studies reveal that, besides the lognormal distri-
bution, the log-logistic and Weibull distribution are frequently
found to describe the random duration of incidents well
[6], [7]. The authors in [7] distinguish between the analysis
and prediction of traffic incidents. On the one hand, analysis
studies have the objective to determine which factors have a
significant impact on the incident duration. Types of factors
that are found to affect the duration include environmental
conditions, the characteristics of the incident, and traffic
flow conditions. On the other hand, prediction studies have
the objective to forecast the duration of a current incident.
Reviewed prediction methods are e.g. regression models, arti-
ficial neural networks, and hazard-based duration models.

An important remark is that the applicability of the inci-
dent distributions reported in [6] and [7] is limited for the
description of future incidents. First, these studies do not
consider the incident rate (i.e., the rate at which a new incident
occurs), and are therefore unable to describe the time until a
future incident. Second, incident durations are often modeled
under various configurations of explanatory variables, but
information regarding the values of these factors may only be
available if an incident has actually occurred, or even only if an
incident has elapsed for a certain period of time (e.g. number
of involved vehicles, number of closed lanes). Thus, since
these prediction methods are only useful once this information

becomes available, they are of limited use for predicting the
duration of future incidents or incidents that just occurred.
The latter case is also studied by [8] and [9], who account for
the chronological availability of information by presenting a
time-sequential prediction method that updates the prediction
when new information becomes available. Importantly, for
current incidents, the MVM model that we advocate in this
paper offers the same flexibility, while additionally being able
to describe the time until and the duration of future incidents.

The Markovian velocity model of [1] includes current
incidents, future incidents, and daily patterns in the travel
time distribution, by capturing the effect of recurrent and non-
recurrent events on highway speeds. Our approach outputs an
estimate of the travel time distribution. This in contrast to most
travel time prediction methods, including recent approaches
such as combined PCA and clustering (e.g. [10]) and LSTM
neural networks (e.g. [11], [12]), which yield a point estimate
for the travel time rather than a distributional estimate; see
also the prediction methods in the summaries of e.g. [13],
[14], [15]. Furthermore, the MVM is one of the few models
that directly models the impact of traffic incidents on travel
times. That is, most studies regarding travel time distributions
focus solely on daily patterns, and describe the travel time
distribution for different periods of day. Examples of such
recent studies include [16], [17], [18], [19]. In the data-
driven models of [20], both daily patterns and incidents are
incorporated, but, as they investigate general path travel time
distributions, there is no focus towards incidents that are in
the network at the moment of the vehicle’s departure.

To the best of our knowledge, two of the few studies
that assess the impact of current incidents on the travel
time are the regression models presented in [21] and [22].
However, the impact of the incident on the travel time is only
indirectly quantified, as the models use a travel time reliability
measure as response variable. Similarly, in [23] the authors
do not directly investigate travel times during incidents, but
focus on the problem of incident-driven speed prediction, and,
to this end, propose the use of a specific graph convolutional
network. In [24], the authors do consider the incident-induced
delay directly, but only predict the incident impact as a class
variable.

The Markov model of [1] is a natural extension of the travel
time models presented by [25], [26], [27], and [28]. These
studies use a Markovian background process to model the
daily recurrent patterns and let the state of the process on
a link directly impact the travel time on this link, thereby
neglecting spatial correlation. In contrast, besides daily pat-
terns, the background process in [1] is used to model more
complex traffic events, such as traffic incidents, and recognizes
the correlation between link travel times. Moreover, similar
to [29], the travel time adheres the FIFO-property, as the state
of the continuous background process impacts the driveable
vehicle speed instead of the travel time.

C. Main Contributions

The contributions of this paper are twofold. In the first
place, we demonstrate how traffic data can be used to obtain
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Fig. 1. Path on the A35 highway in the Netherlands between Almelo (A)
and Hengelo (H). Nodes represent the ramps on the path, links represent the
highway parts between the ramps.

an accurate description of the randomness of incidents. This
description involves the incidents’ frequency, duration and
impact on traffic velocities. These turn out to typically depend
on the time of day and day of week, but one can deal with
these fluctuations by working with periods over which these
effects are essentially constant. As mentioned above, the data
study concerns the Dutch highway network, but our techniques
extend to all highway networks for which incident and speed
data is available.

In the second place, we show how to include both the
randomness of incidents and the recurrent traffic patterns, so as
to obtain the travel time distribution of a vehicle traversing a
path through the network. Specifically, we use the results from
the data study to operationalize the MVM, thus tracking both
(near-deterministic) time-dependent and intrinsically random
events. Whereas the MVM framework was already introduced
in [1], calibration of such a stochastic velocity model is still
crucial. In this work, we explicitly demonstrate how incidents
and daily patterns can be incorporated into the background
process, and how their effect on vehicle speeds must be chosen
to accurately reflect their impact on the travel time of a
vehicle. By doing so, we provide traffic management centers
and individual drivers with a transparent modeling framework,
which they can easily calibrate to their needs, so as to obtain
travel time distribution estimates.

D. Paper Organization

The MVM is compactly described in Section II. Section III
starts with a description of the considered network and cor-
responding traffic data, to then continue with an analysis of
this data for arcs in both the incident and non-incident setting.
Section IV details how the observations from the data analysis
can be used to operationalize the MVM. Numerical examples
of the resulting travel time distributions are given in Section V.
Section VI presents concluding remarks.

II. MARKOVIAN VELOCITY MODEL

The main objective of this section is to briefly describe the
Markovian velocity model (MVM), as developed in [1], which
we propose to use for the prediction of travel time distribu-
tions. As touched upon in the introduction, our choice for the
MVM stems from the transparency and extreme flexibility it
offers for the modeling of both recurrent and non-recurrent
traffic events, in terms of their frequency, duration, and their
impact on network velocities. Indeed, from a data study of the
Dutch highway network (Section III), it will become apparent
that the MVM framework is well capable of describing the
vehicle speeds in this network. It is important to note that we
focus on the (recurrent and non-recurrent) events that directly
affect the speed levels the vehicles can drive at. This means
that our approach does not incorporate velocity-impacting
effects due to e.g. the individual drivers’ heterogeneity in
driving style.

The MVM uses a background process, or environment
process, to track the near-deterministic and random events
affecting the vehicle speeds in the road network. Section II-A
provides an illustrative example for the structure of this
background process, when considering a vehicle traversing a
path in a small network with typical traffic events. A more
detailed description of the mathematical framework of the
MVM is presented in Section II-B. In Section II-C we dis-
cuss general principles underlying statistically fitting traffic
events.

A. Modeling Example

Consider a vehicle that intends to traverse the A35 highway
in the Netherlands between Almelo and Hengelo (Figure 1a),
and that enters this highway in Almelo at a moment at which
there is no reported incident. Figure 1b shows the graph that
corresponds to the path, with each node representing a ramp
on the highway, and each link representing the highway part
between two of these ramps. As in the rest of this paper, we are
interested in the travel time of the vehicle planning to traverse
the path, given the vehicle enters this path at a specific day
and time.

Observe that the travel time a vehicle experiences can be
inferred from the speeds the vehicle is able to drive. On the
considered part of the A35 highway, the maximum speed as
set by the Dutch government equals 100 km/h. However, the
attained speed on the arcs is not necessarily this maximum.
In reality, events such as rush hour and traffic incidents lead
to fluctuations in vehicle speeds. To model these effects, the
MVM introduces a background process that tracks the events
affecting the speeds.

A prominent source of speed variability is formed by
randomly occurring traffic incidents. To model these incidents,
we let {X i (t), t ≥ 0} be a continuous-time Markov process
that records whether there is an incident on link i at time t .
Specifically, we choose

X i (t) =

{
1 if there is an incident on arc i at time t ,
2 otherwise,
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Fig. 2. Example of speed levels (in km/h) on the path between Almelo (A)
and Hengelo (H) of Figure 1, in case of (a) no incidents, (b) an incident on
link 3. The latter shows the effect of spillback and rubbernecking.

and

Qi =

[
−αi αi
βi −βi

]
,

with Qi the transition rate matrix of X i (t) with transition rates
αi , βi > 0. Thus, in this example, we observe that X i (t) is
a process that cyclically switches between an exponentially
distributed time (with mean 1/αi ) during which there is an
incident on arc i , and an exponentially distributed incident-
free time (with mean 1/βi ). We let, for different links i and
j , the processes X i (t) and X j (t) evolve independently. Then,
the superimposed process B(t) := (X1(t), . . . , X6(t)) is a
Markovian background process recording the incidents in the
network of Figure 1b, having a state space of dimension 26.
Setting t = 0 as the time the vehicle enters the A35 highway
at Almelo, we know B(0) = (2, 2, . . . , 2), as there were no
reported incidents at that time.

Now, if, during the traversal of the path between Almelo
and Hengelo, an incident would occur at one of the links,
naturally, the speed level on this link is affected by the
incident. An important observation is that the impact on
vehicle speeds may not be limited to the incident link itself.
That is, potential spillback and rubbernecking effects may lead
to speed reductions on upstream links or the link on the other
side of the barrier as well. To reflect this dependence, we let
the velocity on an arc be determined by the complete state of
the background process B(t). Specifically, if B(t) is in state
s ∈ {1, 2}

6, the vehicle speed at arc i equals vi (s). Indeed,
modeling the speeds in this fashion, the speed on link i does
not solely depend on X i (t), but is allowed to depend on all
X j (t), j = 1, . . . , 6. Thus, if we would want to capture the
typical traffic behavior during an incident at link 3, with esti-
mated speed levels as displayed in Figure 2, we could simply
set the speeds (v1(s), v2(s), v3(s), v4(s), v5(s), v6(s)) in state
s = (2, 2, 1, 2, 2, 2) equal to (60, 100, 30, 80, 100, 100).

Besides incidents, there may be other traffic events that
have a severe impact on the speeds the vehicle can drive. For
example, consider the situation that between t =15 and t =30
precipitation is forecasted. Note that, typically, precipitation
does not just affect the speeds around one link, but has
impact on a larger area of the network. Now, to include
these weather conditions in the background process B(t), we
simply extend B(t) with an additional Markov process Y (t)
that describes whether at time t the precipitation has not yet
started (encoded by Y (t) = 1), currently falls (Y (t) = 2) or
has already stopped (Y (t) = 3). Note that we do not use
two states, as in that case, similar to the incident dynamics,
we would obtain a cyclic switch between precipitation and
non-precipitation, whereas we only want to model a single

Fig. 3. Structure of a Markov process Y (t) with states that encode the
time until (1), during (2), and after precipitation (3), each transition taking an
average of 15 minutes.

Fig. 4. The Amsterdam highway network [1], with nodes representing ramps,
and links representing the two directed arcs between these ramps.

forecasted precipitation occurrence. Thus, the three states are
visited successively (Figure 3), with Y (t) = 1 at t = 0. The
extension of B(t) allows us to define the speed levels on the
arcs, again, by letting the velocity on an arc i equal vi (s)
whenever B(t)=s. We have thus constructed the background
process B(t) := (Y (t), X1(t), . . . , X6(t)) with 26

· 3 states.
Remark 1: In the above example, we model, for simplicity,

the durations of the first two states of Y (t) by exponential
distributions. However, as we will argue in Section II-C, the
MVM framework is not restrictive, in the sense that we can
work with a considerably more general class of distributions.
Importantly, these phase-type distributions can accommodate
random quantities that are both less and more volatile than
the exponential distribution, thus making the setup highly
flexible. ♢

Notably, the precipitation may not only impact the driveable
speed levels on the arcs, but may, additionally, impact the inci-
dent rate on the arcs [30]. Therefore, we allow the transition
rates of the processes X i (t) to depend on the state of Y (t).
Then, with Q y the transition rate matrix of (X1(t), . . . , X6(t))
in case Y (t) = y ∈ {1, 2, 3}, the (26

· 3)× (26
· 3)-dimensional

transition rate matrix Q of the background process B(t) is of
the form

Q =

Q1−λ1 I λ1 I
Q2−λ2 I λ2 I

Q3

 ,

with λ1 and λ2 as in Figure 3.
In case traffic incidents and the upcoming precipitation are

the only events potentially affecting arc speeds, the full travel
time distribution of the considered vehicle can be derived
from the presented random speed dynamics. Indeed, given that
we know the state of the background process upon departure
from Almelo, the above formalism specifies the distribution
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of the time it takes to arrive in Hengelo. Evidently, if there
are additional sources of variability, the background process
can be extended to include these events as well. Details on the
general structure of B(t) are given in the mathematical model
description below.

B. Mathematical Model Description

After having introduced various concepts in our illustrative
example, let us now consider a general road network, encoded
by its corresponding graph representation G = (N , A), of
which the set of nodes N represents the ramps in the road
network, and the set of directed arcs A represents the roads
connecting these ramps. Hence, kℓ ∈ A only if the ramps
represented by the nodes k and ℓ are subsequent ramps on
one (directed) road. A small example is the path-network
between Almelo-Hengelo, as shown in Figure 1. An example
network of more realistic size, the highway network around
Amsterdam, the Netherlands, is displayed in Figure 4. Note
that splitting highways at the ramps allows the model to be
used for practical applications such as the routing of individual
vehicles. In the rest of this paper, both the terms arc and
link refer to a highway part that arises by this splitting
procedure, i.e., a piece of highway enclosed by two ramps.
In case we consider a highway part enclosed by two highway
intersections, we will use the term highway segment. Note
that, with every intersection being a ramp but not vice versa,
a highway segment can always be partitioned into highway
links.

In reality, the driveable speed level on the link kℓ ∈ A is
not necessarily constant. As argued, events such as incidents
and heavy rainfall lead to fluctuations in the speeds vehicles
can drive at. As illustrated in the modeling example above,
the MVM captures this randomness in vehicle speeds by the
introduction of an environmental background process B(t) on
the arcs A, which keeps track of the events affecting the
arc speeds. To this end, the MVM distinguishes three types
of events: (i) recurrent events, (ii) random incidents, and
(iii) the (semi-)predictable non-recurrent traffic events that are
either present at the vehicle’s departure or known to occur in
the foreseeable future (e.g. forecasted snowfall, road work).
We will refer to the third type of events as scheduled events.

Let n := |A|, and write A = {a1, . . . , an} for the set of
arcs in G, with ai := kiℓi for some ki , ℓi ∈ N . To model
traffic incidents, our primary focus, we define {Xai (t), t ⩾ 0}

as independent Markov processes such that for ai ∈ A:

Xai (t) =

{
1 if there is an incident on arc ai at time t ,
2 otherwise.

Then, the Markovian background process B(t) recording
the ‘incident status’ of the full network G is given by
(Xa1(t), . . . , Xan (t)). We let the velocity of a vehicle travers-
ing ai be determined by the background process B(t) in
the following way: if B(t) is in state s ∈ {1, 2}

n , the
speed at which vehicles are moving on the arc is vai (s).
This way, the speed on arc ai is allowed to depend on all
processes Xa1(t), . . . , Xan (t). Notably, the possibility to model
correlation between speeds on different arcs is an important

asset of the MVM, as it can be used to model real-world traffic
phenomena like the spillback effect.

Note that the current structure of the processes Xai (t) is
such that there are only two states for the modeling of incidents
and their impact on arc speeds. We are, however, by no means
restricted to this two-state structure: we could allow Xai (t) to
be any continuous-time Markov process. This gives us the
opportunity to model more complex incident speed patterns
(e.g. distinguishing the incident itself, a recovery phase, and
the regular conditions), and additionally provides flexibility for
the distribution of the incident length (i.e., this distribution is
no longer strictly exponential; see Remark 1). Thus, we let
Xai (t) be a continuous-time Markov process that represents
the state of an incident at arc ai ∈ A at time t , and set
B(t) = (Xa1(t), . . . , Xan (t)), with Xai (t), Xa j (t) evolving
independently for i ̸= j . Dependence between the arc speeds
is again realized by allowing the velocity on each arc to depend
on the state of the vector B(t): if B(t) = s the velocity at
which vehicles are moving on arc a j is va j (s).

To include the two other types of events, the recur-
rent and the scheduled events, we expand the background
process B(t) with a Markov process Y (t). Specifically,
in case there are m scheduled events, Y (t) is structured as
(Y0(t), Y1(t), . . . , Ym(t)), with Y0(t) a Markov process that
models the effect of the recurrent, daily traffic patterns, and
Y1(t), . . . , Ym(t) Markov processes that model the m sched-
uled events (of which the process in Figure 3 is an example).
As noted in the illustrative example of Section II-A, recurrent
and scheduled events may not just impact the driveable speeds
in the network, but may, additionally, impact the transition
rates of the processes Xai (t). For example, for an arc in
the network, there may be a significant difference between
the inter-incident time within and outside the rush hours.
Therefore, we let B(t) = (Y (t), Xa1(t), . . . , Xan (t)) be such
that only conditional on the state of the ‘common process’
Y (t), the individual processes Xai (t) (for i = 1, . . . , n) evolve
independently.

Now, in case the background process B(t) for a departing
vehicle is fully specified, i.e., all background states and
transition rates are known, the travel time distribution is fully
specified as well. That is, if B(t) is in state s at the departure
time of the vehicle, the travel time on an edge ai with length
dai is distributed as τ s

ai
, with

τ s
ai

:= min
{

t ⩾ 0 :

∫ t

0
vai (B(u)) du ⩾ dai

∣∣∣∣ B(0) = s
}

.

An expression for the Laplace-Stieltjes transform (LST) of
τ s

ai
was derived in [1]. Importantly, the LST of a non-negative

random variable uniquely determines its distribution function,
and, moreover, the derivatives of the LST yield the moments
of the random variable.

C. Fitting Traffic Events

One of the advantages of the MVM framework is its flexi-
bility, in the sense that it allows a high degree of generality
when it comes to the distributions of the durations of the
underlying events. It is true that the times spent in the states
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of a continuous-time Markov process necessarily follow expo-
nential distributions, but, as briefly mentioned in Remark 1, the
MVM is still capable of handling non-exponential distributions.
That is, if data analysis would reveal either the duration of
an event affecting arc speeds, or the duration between two
such events, to be non-exponential, we can use phase-type
distributions to cast these durations into the Markovian setting,
and, as a result, include the event(s) into the MVM. Importantly,
phase-type distributions have the attractive property that they
can model random quantities that are less volatile than the
exponential distribution as well as random quantities that
are more volatile than the exponential distribution. In the
remainder of this subsection we provide more background.

Informally, the class of phase-type (PH) random variables
consists of all sums and mixtures of exponentially distributed
random variables. This means that any phase-type distribution
is characterized by a Markov process with d + 1 states, an
entrance probability vector α ∈ Rd+1, and a transition rate
matrix of the form

QPH =

(
T −T 1
0⊤ 0

)
,

with T ∈ Rd×d , and 0 and 1 respectively denoting all
zeroes and all ones d-dimensional column vectors; see [31,
Section III.4]. The transient states 1, . . . , d are the so-called
phases of the Markov process. From the structure of the transi-
tion matrix QPH, we note that state d+1 is an absorbing state.
With the random variable X denoting the total elapsed time
from the start of the described Markov process until absorption
in d+1, we say that X has a PH(α, QPH) distribution. From
this definition, it is immediately clear that we can include any
traffic event with a PH duration into our framework. Instead of
working with a single phase, as we did in the above examples
with exponentially distributed durations, we now include the
d phases of the PH distribution into our model. When the
event starts, the initial phase is sampled according to α, after
which the Markov process X evolves according to QPH until a
transition to the absorption state occurs. Then the background
process of the MVM moves to one of the outdegree neighbors
belonging to the event under consideration, according to their
respective transition rates.

We already mentioned that phase-type distributions can
model non-negative random quantities that differ in variability
from the exponential distribution. We proceed by making this
claim more precise. To obtain an approximating distribution
for such a random quantity X , it is common procedure to use
the two-moment phase-type matching approximation that was
advocated by Tijms [32]. The underlying principle is to fit
a phase-type distribution to the mean E[X ] and the squared
coefficient of variation c2

X , defined as:

c2
X =

Var(X)

E[X ]2 =
E[X2

]

E[X ]2 − 1.

Note that the SCV of an exponentially distributed random
variable equals 1. The fitting procedure distinguishes two
cases:

◦ In case 0 < c2
X < 1, the distribution of X is less

volatile than the exponential distribution. In this case X is

Fig. 5. Modeling the precipitation length, instead of exponentially (a), with a
mixture Erlang distribution (b). In the latter case, instead of one exponential
state, the precipitation is encoded with three exponential states, such that,
as long the process is in one of these states, precipitation is falling.

approximated by a mixture of Erlang distributions. That
is, the fitted distribution is with probability p an Erlang
distribution with k −1 phases and mean (k −1)/µ, and
with probability 1−p an Erlang distribution with k phases
and mean k/µ. A simple calculation shows that the SCV
of this distribution equals (k − p2)/(k − p)2, which for
p ∈ [0, 1] lies between 1/k and 1/(k−1). Hence, we set k
such that 1/k ≤ c2

X ≤ 1/(k −1). Both µ and p are now
chosen such that the mean and the SCV of the mixture
Erlang distribution uniquely match E[X ] and c2

X .
◦ In case c2

X ≥ 1, the distribution of X is more volatile than
the exponential distribution. In this case X is approxi-
mated by a hyperexponential distribution, which equals
an exponential(µ1) distribution with probability p, and
an exponential(µ2) distribution with probability 1 − p.
In this setting, the three parameters cannot be uniquely
determined from E[X ] and c2

X . However, this can be
tackled by imposing balanced means, i.e., using the
normalization p/µ1 = (1 − p)/µ2, which reduces the
number of free parameters from three to two.

A small example for the implementation of phase-type
distributions in B(t) is provided in Figure 5. We consider the
forecasted precipitation from Section II-A, whose impact was
described by a Markov process with successive states 1, 2 and
3, respectively denoting the time before, during and after the
precipitation (Figure 5a). Consequently, both the time until the
precipitation and the duration of the precipitation are modeled
by exponential distributions. However, if statistical analysis
and the above fitting procedure reveal that the duration of the
precipitation is better described by a mixture of an exponential
distribution and the sum of two exponential distributions, we
can include this PH distribution by replacing state 2 by the
three phases of this distribution (Figure 5b).

III. SPEED PATTERN ANALYSIS IN THE
DUTCH HIGHWAY NETWORK

This section investigates daily speed patterns, and, in partic-
ular, the impact of traffic incidents on these driveable vehicle
speeds. The study focuses on the Dutch highway network, for
which extensive data sets on traffic jams and vehicle speeds
are openly available (Section III-A). Importantly, use of the
Dutch data is merely illustrative, as the techniques we present

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 26,2024 at 09:00:05 UTC from IEEE Xplore.  Restrictions apply. 



12378 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023

Fig. 6. The Dutch highway system (left) [1], and the loop detectors in this
network (right).

can be applied to any highway network for which similar data
sets are accessible.

To describe the traffic patterns in the Dutch network,
we investigate, for all individual segments, the random
durations and attained velocities in both the inter-incident
(Section III-B) and the incident regimes (Section III-C).
Notably, working with traffic jam data, we use the dura-
tion of a traffic jam caused by an incident as the notion
of incident duration. It turns out that these durations and
associated speed levels depend on the time of day and day
of week, but that there are periods in which these effects are
relatively constant (Section III-C). Moreover, we show that,
within these periods, inter-incident lengths and correspond-
ing velocities can be considered time-independent as well
(Section III-B).

In principle, the insights of this section can be used in any
model describing vehicle speeds. The MVM of Section II is an
example of such a model, and we will argue that the findings
of the present section indeed align with the MVM. To this end,
we already include some remarks in the present section that
reveal how the observed speed patterns can be incorporated
in the MVM. More detail is provided in Section IV, in which
we further specify the fitting procedure, and highlight how to
construct the background process of the MVM corresponding
to the Dutch highway network.

A. Network and Data Description

The Dutch highway network, depicted in Figure 6, consists
of all highways (i.e., the so-called A-roads) in the Netherlands.
In our analysis, we additionally include three non-highway
trajectories, that each serve as important connection between
two highways. Now, to study the speed levels in this network,
we split each of these roads into highway segments, i.e.,
highway parts separated by highway interchanges. Hence, each
network segment we consider is either a directed road between
two highway interchanges, or the first or last section of a
highway. Splitting at the interchanges allows the use of the
results for the travel time estimation of vehicles traversing
paths consisting of multiple highways. Moreover, splitting a
highway into a larger number of segments implies that an
even larger amount of data will be required for a meaningful
analysis of the incident impact.

Fig. 7. Number of registered incidents (n) in the Dutch highway system in
the years 2015-2019.

We study traffic data of the Dutch highway network to
predict the impact of traffic events on the velocities at the
highway segments. Specifically, we assess the incident dura-
tion, the time between incidents, and the vehicle speeds in both
these settings. For the analysis, two openly available data sets
are used: (i) a database with traffic speeds and flows at loop
detectors in the Dutch road network and (ii) a list of registered
traffic jams. In the Netherlands, these two data sources are
managed by the National Road Traffic Data Portal (NDW) and
Rijkswaterstaat (RWS), respectively.

The NDW data set [33] contains loop detector data from the
year 2013 onward. On most Dutch highways, there is a high
density of loop detectors, as can be noted from their locations
as shown in Figure 6. Every minute, the average traffic flow
and speed at these loops are registered and stored.

The RWS data set [34] contains all registered traffic jams
from the year 2015 onward, of which we use the registrations
from the years 2015-2019. Even though data for the years
2020-2021 is available as well, we exclude these years from
our analysis, due to a change in traffic conditions. First, early
in 2020, the Dutch government introduced reduced speed
limits during the day. Second, during the Covid-19 pandemic
of the years 2020-2021, the Dutch government imposed a
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TABLE I
SCALE-COMPARISON FOR THE INCIDENT DURATION AND INTER-INCIDENT TIME

working-from-home measure which led to significant reduc-
tions in traffic flows. Note that the RWS files contain all
registered traffic jams, whereas for our study on the impact
of incidents we only used the entries for which the cause
of the traffic jam is marked as ‘incidental’ (i.e., caused by
an incident). Examples of non-incidental causes include rush
hours and planned road works. After cleaning of the incident
data, the database contains 58152 incident entries.

B. Time Between Incidents

We start the analysis by considering traffic in non-incident
state. In this setting, there are two main objectives: (i) fit a
distribution on the length of this state, i.e., the time between
incidents, and (ii) estimate the corresponding vehicle speed
level. For these objectives, it is important to note, as will
be shown below, that both the time between incidents and
the vehicle speed levels are location- and time-dependent.
We deal with the location-dependence by considering the
inter-incident time per highway segment. We deal with the
time-dependence by identifying periods within which time has
hardly any impact on the inter-incident duration and the speed
level.

In the first place, as observed from Figure 7a, the frequency
of incidents differs throughout the highway network. There-
fore, we estimate the inter-incident time per highway segment.
Then, as observed from Table I, the durations of incidents are
short relative to the time between incidents. Thus, we may
redirect our focus, and consider, instead of the time between
incidents, the time between the start of two consecutive
incidents. Satisfying the memoryless property, the exponential
distribution is widely used to model the time between two
elapsed events. Now, if the time between two incident starts
would indeed fit an exponential distribution, the occurrence
of incidents could be modeled by a homogeneous Poisson
process, and, consequently, the starting time of incidents would
be uniformly distributed over the time of day. However, the
incident starts in Figure 7b do not show a uniform pattern.
Therefore, the time between two incidents is unlikely to follow
an exponential distribution.

Nevertheless, we observe that there are periods in Figure 7b
in which the number of incidents is approximately uniform.
Within these periods, the exponential distribution would be a
promising fit for the time between two consecutive incident
starts. To check if a partition into periods could in fact offer
a solution to the observed time-dependence, we identify six
periods, as separated by the dashed lines in Figure 7b, in which
the number of incidents is roughly uniformly distributed.
Modeling the time between two consecutive incident starts
on a segment in a single period with an Exponential(λ)-
distribution corresponds to a Poisson(λt∗)-distribution for the
number of incidents in that period, with t∗ denoting the period

Fig. 8. Variance of the number of registered incidents for each highway
segment and every of the six periods of day (as characterized in Figure 7b),
against the corresponding means.

length. Indeed, from Figure 8, which plots, per segment, the
mean numbers of registered incidents in an elapsed period
against the corresponding variances, we find that the points
are concentrated around the y = x line, which is indicative of
the Poisson distribution providing a good fit.

To further assess the quality of the exponential fits over the
six periods, we compare simulation results with the RWS data.
We plot, for ten randomly selected segments, the quantiles of
the empirical data distribution of the time between incidents
against quantiles of simulations of the time between the start of
two consecutive incidents (Figure 9). All QQ-plots show a high
degree of linearity between the quantiles, thus corroborating
the exponentiality claim. There are some small deviations for
large inter-accident times, but we note that these will have
little effect on travel time predictions, as travel times generally
relate to a considerably smaller timescale.

Two additional remarks on the presented fitting procedure:
◦ We have identified six periods in which the number of

registered incidents behaves roughly uniformly. An even
better fit could potentially be obtained by dividing the
time-frame into more periods. However, increasing the
number of periods will decrease the number of observa-
tions per (segment, period)-pair, and may therefore lead
to less reliable results. Moreover, a favorable consequence
of working with only six periods is the low complexity
of the resulting MVM.

◦ Period transitions have been chosen to occur simultane-
ously at every segment of the network. A potential better
fit could be found by adding more detail with a period
division per segment, or subset of segments. However,
again, the number of observations per segment may limit
the quality of these more detailed partitions. Note that
the uniform choice in period transitions over all segments
also has an advantage when fitting the MVM: we are able
to include the duration of these periods in Y (t) (instead
of including them in Xai (t) for all i = 1, . . . , n), which
will keep the computational complexity low.
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Fig. 9. QQ-plots of real-world observations (vertical axis) against simulated inter-incident times (horizontal axis). With the time between incidents of
high-order, the axes values are omitted for display purposes.

Fig. 10. Average (over the detectors) maximum speeds at weekends (blue)
and weekdays (yellow) on two trajectories of the Dutch highway network in
2017. Vertical lines partition the periods characterized in Section III-B.

We have established that the time between two incidents
in each of the periods in Figure 7b can be modeled by an
exponential distribution. For a description of the traffic patterns
in this non-incident state, we study the corresponding vehicle
speeds. To this end, we have available loop detector data on
traffic speeds and traffic flows, provided by NDW. For a given
segment, we collect, per minute and per detector located at
this segment, the maximum over the registered average speeds
of the road lanes. Note that by taking the maximum of the
averages we limit the impact of slow-moving vehicles on the
collected speed levels. Indeed, we are interested in the per-
segment potential driveable speed, which is not well reflected
by data corresponding to e.g. trucks. Since the driveable speed
cannot exceed the speed limit, we additionally upper bound
these maximum average speeds by the speed limit of the
corresponding segment.

For expositional reasons, we present the results of the loop
detector data study for two representative highway trajectories:
a part of the busy A10 highway around the city of Amsterdam,

Fig. 11. Average (over the detectors) maximum speeds on a trajectory on the
A10 highway at weekdays in February 2017 (blue) and May 2017 (yellow),
with rush hour speeds significantly lower for the month May.

and a part of the less traveled A67 highway in the southern
part of the Netherlands. Figures 10a and 10b show the average
(over the detectors) maximum speeds per minute of the day
for the A67 and A10 trajectory respectively. From these plots
it can be observed that, similar to the duration of the inter-
incident state, vehicle speeds are time-dependent. This is most
notable in Figure 10b, in which the speed patterns around
the rush hours clearly differ from the patterns outside the
rush hours. This time-dependence cannot purely be explained
by the effect of the time of day, as e.g. the speed patterns
during days in the weekend are significantly different from
the speed patterns during weekdays. Moreover, besides time
of day and day of week, we observe that there are also seasonal
effects (Figure 11). Evidently, when estimating travel time
distributions, these temporal influences should be taken into
account.

When considering the periods as characterized in Figure 7b,
there is one period for which the effects of the day of the
week and month of the year should play an insignificant role:
the night period (8:00pm–6:45am). Since traffic demands in
this time interval are typically low, the free-flow speed should
always be a good proxy for the mean car speed in non-incident
state. However, Figure 10 shows that the attained speed levels
during the night are typically low; note that with a relatively
high percentage of slow-moving vehicles traveling at night, the
resulting imbalanced traffic mix is a probable explanation for
this fact. To compare, the mid-day period (09:05am–03:25pm)
generally experiences much higher flow levels (Figure 12),
but has speed levels that are close to the maximum speed.
We therefore conclude that in periods with much lower traffic
flows (such as the nights), cars are able to drive at those
maximum speeds as well.
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Fig. 12. Average (over the detectors) traffic flows during weekends (blue)
and on weekdays (yellow), on two trajectories of the Dutch highway network
in 2017. Vertical lines partition the periods characterized in Section III-B.

For most segments, speed levels outside the night period
are either affected by the day of the week or the month of the
year. We will use the velocity data to deduce a few conclusions
about the speed patterns in these periods, which will be useful
for the prediction of travel time distributions. We focus on
the A10 and A67 highway segments of Figure 10, but similar
conclusions can be drawn for other highway segments:

◦ For both highway segments, on weekend days, the high-
way speed limit is a representative speed level for all
six periods. Similar to our reasoning above for the night
period, the daily flow levels on these days are typically
too low to reduce the driveable vehicle speeds.

◦ Figure 10a shows that on weekdays, the A67 speed
levels in the five non-night periods are fairly constant.
Indeed, only the first morning rush hour period shows
an increasing trend, but the corresponding low traffic
flow exposes that, in this period, the actual driveable
speeds are close to the speed limit. Therefore, in each of
the periods, a constant speed level would serve as good
representative for the driveable speed. Note, however,
that the appropriate representative speed level may be
dependent on the day of the week or the month of the
year.

◦ Figure 10b displays that, on a non-weekend day, working
with one representative speed level for the A10 segment
will certainly work well in the early morning and mid-
day periods. The speed patterns in the other periods are
not well described by a constant speed level, but do show
a distinguishing pattern. That is, around the rush hours,
the high traffic flows clearly affect the driveable speeds,
showing an approximate V-shape for the speed drops. The
period between the evening rush hour and the night period

Fig. 13. Median incident duration (m, in min.) per segment of the Dutch
highway network in the years 2015-2019.

typically serves as recovery period, with decreasing flow
levels and, consequently, increasing speed levels.

In conclusion, the speed pattern of a period is generally either
well represented by one constant speed level, or captured
by (a combination of) decreasing or increasing speed trends.
Working with the MVM to model travel time distributions, the
speed levels belonging to the different background states need
to be chosen such that they emulate these speed patterns.

Remark 2: We have fitted the distribution of the inter-
incident length and the corresponding velocities per (segment,
period)-pair, but the flexibility of the MVM facilitates including
other relevant factors. For instance, if one would want to
build a very detailed model to capture the impact of weather
conditions on the attainable speed as well, similar fitting
procedures for a description per (segment, period, weather
state)-tuple could be used. The same is true for the incident
regime, whose length distribution and attainable velocities will
be estimated below. ♢

C. Incidents

We continue our analysis by considering incidents. The
objectives are in line with those of the inter-incident setting:
(i) fit a distribution on the incident duration, i.e., the time
until the resulting traffic jam has cleared, and (ii) study the
corresponding vehicle speeds. Similar to the inter-incident
time, we study incidents per segment, as their duration depends
on their location (Figure 13). In the previous subsection,
we characterized six periods in Figure 7b in which the
number of incidents on a segment is roughly uniform. We will
show that, additionally, these six periods suffice to deal with
time-dependence in incident length, and describe how to fit
a distribution for the incident duration for each (segment,
period)-pair.

First, we observe from Figure 14a that incident length
is indeed time-dependent. More specifically, it can e.g. be
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TABLE II
FITTING INCIDENT LENGTHS FOR THE (SEGMENT, PERIOD)-PAIRS. THE LAST FOUR COLUMNS SHOW WHAT PERCENTAGE OF THE NON-REJECTED FITS

HAS THE DISTRIBUTION OF THAT COLUMN AS HIGHEST P-VALUE, WITH P-VALUES OBTAINED THROUGH ANDERSON-DARLING TESTS

Fig. 14. The length of incidents against the time of day of their start, (a) without splits, (b) split into the six periods characterized in Figure 7b, and (c) split
into three traffic modes, i.e., nightly hours (blue), rush hours (yellow) and the rest (green).

seen that severe incidents (in terms of duration) occur more
frequently within rush hours than outside rush hours. However,
for the six periods identified for the inter-incident time, the
correlation between the time of occurrence of incidents and
their lengths is not significant, as can be seen in Figure 14b.
Thus, to describe the incident length on a highway segment,
we can fit a distribution for each of these six periods. We are,
however, constraint by the amount of data per (segment,
period)-pair. Therefore, we further combine periods for which
the merged data is still approximately time-independent. As a
result, we obtain the three periods (yellow, green, and blue)
in Figure 14c, and the objective is to fit a distribution to the
incident duration for each of these periods.

To find distributions for the incident lengths, we use the
two-moment phase-type matching approximation discussed
in Section II-C. We additionally fit against the Erlang-1
(equivalent to exponential) and Erlang-2 distribution, as these
are phase-type distributions with at most the complexity of
the hyperexponential and mixture Erlang distribution, making
them even more preferable to work with. Initial fits show that
outliers have a severe impact on the SCV, and consequently,
a negative impact on the fit. Thus, for every data set to fit, the
1% largest observations are excluded in the computation of
the SCV and estimation of the parameters. Importantly, we do
include these outliers in the data set when assessing the quality
of the obtained fits.

We start the fitting procedure by considering the inci-
dent lengths in the night period (Figure 14c, blue). Since,
in this period, less than 5% of the segments have more than
15 reported incidents, we merge the observations and fit one
distribution that will be used to describe the incident length at
night for all segments. With the resulting SCV below 1, this
approximating distribution is a mixture of Erlang distributions
(see Section II-C). For the two other periods, we fit an incident
duration distribution per (segment, period)-pair, if there are
sufficiently many data points for this pair. In case the number

of observations in one of the periods is low, but the total
number of observations on this segment in the two periods
is sufficient, we fit one distribution based on the joint set
of observations. For the remaining segments, we merge all
observations in the rush hour period (Figure 14c, yellow), as
well as in the non-rush hour period (Figure 14c, green), and
fit a distribution on both these periods, used for all segments
in this category.

Table II shows the results of the fitting procedure. Strikingly,
from the 1824 (segment, period)-pairs for which an incident
duration distribution needs to be estimated, there are only six
pairs for which none of the current fits is accepted. Evidently,
we could use more involved methods to find a proper fit for
these six pairs. Note that by the denseness of the class of
phase-type distributions [31, Section III.4], we can include
these into our Markovian framework as well.

Remark 3: In the above, we have fitted the distribution of
incidents based on their location and period of occurrence.
There may, however, be additional information available.
In case there is currently an incident in the network, there
may e.g. be information regarding the nature of the incident,
the involvement of trucks, etc. Alternatively, it may be known
under which weather conditions the incident started. Due
to the inherent flexibility of our approach, such additional
information can be taken into account. That is, in our fitting
procedure, we can choose to only use the data corresponding
with the current incident conditions. For example, if it is
known that there is currently a vehicle breakdown, we may
fit the distribution of the (residual) duration of this incident
on the subset of all incident data entries occurred on the same
segment, having vehicle breakdown as registered cause. ♢

We proceed by investigating the speed patterns around the
reported incidents, such that we are able to model the impact
of incidents on the driveable vehicle speeds. Importantly,
we will argue that, during an incident, the vehicle speeds on
surrounding highway parts are generally well captured by one
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Fig. 15. Maximum speeds as registered by five detectors around an incident
on 16-04-2017 at highway A10. The left time point in both plots corresponds
to midnight. The detectors are identified by the signalling hectometre indi-
cation closest to their location, with the indications being hectometer poles
(hmp), standing 100 metres apart through the highway network.

constant speed level, whose value depends on the distance of
the highway part to the location of the incident. Naturally,
this dependence is only local, and thus, for highway parts
located far from the incident, the driveable vehicle speed is
not affected by the incident.

Incidents are likely to lead to a substantial reduction of the
driveable speed, an example of which is given in Figure 15.
Note that, similar to the procedure for the non-incident speeds,
we show the maximum of the average driven speeds over the
road lanes, as this best reflects the driveable car speed. Now,
we observe that for the longest part of the incident depicted
in Figure 15b, the speed levels at the individual detectors are
relatively stable. Indeed, with the two vertical lines indicating
the reported start and end time of the incident, we observe
that, with exception of the short periods during the start and
end of the incident, the vehicle speeds per detector fluctuate
around a single speed level. Thus, around every detector,
the driveable speed pattern during the studied incident could
roughly be summarized by one speed value. Using harmonic
averaging, a representable incident speed level for a slightly
larger highway part, containing multiple detectors, can be
found.

Figure 15 also shows the spatio-temporal effect of traffic
jams: the incident affects the velocities at detectors with a
further upstream distance from the incident location typically
somewhat later and considerably less severe (in terms of the
speed drop value). Indeed, it can be observed that the speed
level at the detector around hectometer pole (hmp) 6.3 is only
slightly affected by the incident, whereas the speed level at the
detector around hmp 6.7 is the same before, during, and after
the incident. Generally, an incident only affects the speeds
at highway parts relatively close to the incident location.
By studying historical speed patterns of incidents, we can

deduce the area that is potentially affected by an incident
located at a given highway part.

In the above, we only showed the speed pattern during
the incident depicted in Figure 15. However, the relatively
low speed fluctuation during the largest part of the incident
does not only show for this incident, but is a more observed
phenomenon across the studied incidents in the Dutch highway
network. Thus, we claim that, for every highway part located
around an incident, the driveable speed is well described by
just one speed level. Moreover, conform the speed patterns
in Figure 15, typically, the highway parts that are not located
around an incident in the network, do not suffer a speed drop
during the incident.

Now, recognizing the frequently observed stability of speed
patterns during incidents, when working with the MVM to
model travel time distributions, we can, for a given incident,
simply use one speed level per highway link for all background
states encoding this incident. Note that the observation of low
incident speed fluctuation is particularly useful in the case the
incident is present at the vehicle’s departure. Indeed, in this
case, the corresponding incident speed levels can directly be
estimated by the collected speeds in the minutes prior to the
departure.

IV. OPERATIONALIZING THE MARKOVIAN
VELOCITY MODEL

Considering a vehicle that plans to traverse a given path
between an origin and a destination in the Dutch highway net-
work, at a specific day and time, this section demonstrates how
to employ the MVM to obtain the corresponding travel time
distribution. The approach followed incorporates the effects of
events that directly impact the driveable speeds. We consider
the situation that (i) the analysis discussed in Section III
has been performed, (ii) the network state corresponding to
the vehicle’s departure is known (in terms of the location
and starting time of current incidents), and (iii) information
regarding existing or upcoming scheduled events (e.g. road
work, bad weather conditions) is available.

Note that we may additionally know how long roads have
been incident-free. In the MVM we have fitted, the time
between incidents is modeled by the exponential distribution,
so that, by the memoryless property, this information plays no
role. However, in case one would find any other distribution
as ‘best fit’ for the inter-incident time, this information should
be taken into account, and can be taken care of in the precise
same way as how (later in this section) the starting time of
current incidents are handled.

Recall that the MVM models the events affecting arc
speeds through an environmental background process B(t).
Section IV-A details how to construct this background process
B(t), so as to incorporate the recurrent and non-recurrent
events potentially affecting the departing vehicle’s trip time,
and Section IV-B discusses how to set the driveable speed
levels corresponding to the different states of B(t).

A. Background Process

With n = 1378 directed links in the Dutch highway
network, the background process of the MVM takes the
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Fig. 16. Example of a Markov process Y0(t), with k0 states that model the
remaining time of the current period and k1 states that model the duration of
the next period.

form B(t) = (Y (t), X1(t), . . . , Xn(t)). Here, X i (t) mod-
els the occurrence of incidents on link i , and Y (t) the
(semi-)predictable events. Specifically, Y (t) captures the recur-
rent, daily patterns with a Markov process Y0(t), and the
scheduled events upon the vehicle’s departure with Markov
processes Y1(t), . . . , Ym(t) (in case there are m such events).
Importantly, with incident characteristics e.g. dependent on the
time of day, the Markov link processes X i (t) are dependent
on the state of the common process Y (t).

1) Daily Patterns: Since the different traffic regimes during
the day are roughly described by the in Figure 7b identified
periods, Y0(t) captures the daily, recurrent traffic patterns by
modeling the durations of these six periods. Observe that
the durations of these periods are quite predictable. Notably,
including events whose durations have little variability can be
achieved by modeling these durations with Erlang phases. For
given k ∈ N, t ∈ R>0 and Z1, . . . , Zk i.i.d. exponentially
distributed random variables with mean t/k, we have that∑k

i=1 Zi is Erlang(k, k/t) distributed, such that

E
[ k∑

i=1

Zi

]
= t, Var

[ k∑
i=1

Zi

]
= t2/k.

Thus, modeling predictable events with a given mean by an
Erlang-k distribution with the same mean, we obtain a suitably
low variance when choosing k sufficiently large.

Given the departure time of the vehicle, we know the
remaining time of the current period, denoted by t0, as well as
the lengths of the subsequent periods, denoted t1, t2, . . . , t6.
Now, in case duration ti is modeled with ki Erlang phases,
the process Y0(t) in principle has a total of as many as
k0+· · ·+k6 states. Fortunately, travel times are typically in the
order of minutes up to hours, so that a trip will overlap with
a low number of periods. This means that we only need to
include into Y0(t) the phases corresponding to these periods.
Hence, with M a crude upper bound for the time the vehicle
arrives at its destination, we may omit all states belonging to
periods that are extremely unlikely to be entered before time
M . An example of a resulting structure of Y0(t) is given in
Figure 16, only containing states belonging to either of the
first two periods.

We claim that using just a few phases per period (e.g.,
ki ∈ {5, . . . , 10}) is already sufficient to model the period
lengths well. The reason is that such a choice of ki already
reduces the variance of the time spent in period i with a factor
between 5 and 10 compared to the exponential distribution.
It is also noted that working with larger ki values would ignore
the intrinsic fluctuations of the periods’ start and end times.
Moreover, working with large values of ki has the undesired
consequence of inflating the state space of B(t), thus leading
to a high computational complexity.

2) Scheduled Events: We can use the same ideas to capture
the duration of the m scheduled events that are modeled
through the processes Y1(t), . . . , Ym(t). That is, if event i
is an existing event (i.e., present at the vehicle’s departure)
for which the expected remaining duration is known to equal
t ′, we can use the Erlang(k, k/t ′)-distribution to model the
duration of event i (Figure 17a). In case event i is not
an existing but a forecasted event, Yi (t) should, besides the
duration of the event, also include Erlang phases that model
the time until the start of the event (Figure 17b).

Remark 4: If, besides information on the mean duration
of a scheduled event (or the time until its start), there is
information available on the variance of the duration (or the
time until its start), one can alternatively fit its distribution with
the two-moment phase-type matching techniques that were
presented in Section III-C. ♢

3) Incidents: With the general structure of Y (t) known,
we are now able to characterize the Markov processes
X1(t), . . . , Xn(t), that model the incidents on the links of the
network, conditional on the state of Y (t). Specifically, we let
the dynamics of X i (t) depend on the state of Y0(t), since it was
concluded in Section III that incident dynamics depend on the
specific period of the day. Note that these incident dynamics
should cover the incident duration itself, as well as the inter-
incident time. Recall that in Section III, these distributions are
fitted per highway segment (i.e., highway part between two
highway intersections), whereas X i (t) should capture these
distributions per highway link (i.e., highway part between two
ramps).

Given the period of the day, encoded by the state the
process Y0(t) is in, we have shown in Section III-B that,
for every highway segment, the time between two incidents
in this period can be modeled by an exponential distribution.
We will now argue that the inter-incident duration on the links
that partition this segment can be described by the exponential
distribution as well. This implies that, for a link i , the process
X i (t) contains just one exponential state that represents the
situation in which the link is incident-free. The mean time
spent in this state depends on the period of the day, i.e., on the
state of Y0(t).

Denote by 1/λ j,k the mean inter-incident time on seg-
ment j in case Y0(t) = k (i.e., λ j,k is the rate of the
corresponding exponential distribution). To see that the inter-
incident distribution of the links that partition this segment
is indeed exponential, note that the initiation of an incident
on segment j corresponds to the initiation of an incident on
one of these links. Therefore, we assign a value p j

i ∈ [0, 1]

to every link i on segment j , representing the probability
that, given there is an incident on segment j , this incident
has occurred at link i . As a natural proxy for p j

i we take
the ratio of the lengths of link i and segment j . Observe
that, in modeling terms, the inter-incident time on link i will
have an Exponential(p j

i λ j,k)-distribution. Importantly, since
the inter-incident time on segment j is the minimum of the
inter-incident times on the links at j , we (consistently) obtain
the Exponential(λ j,k)-distribution for the inter-incident time
on the full segment.
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Fig. 17. Structure of a Markov process Yi (t) that models the impact of a scheduled event in case the event is (a) present at time 0 or (b) forecasted to occur
in the near future.

If, for link i , the process X i (t) transitions out of the inter-
incident state, this corresponds to the occurrence of an incident
on this link. As was concluded in Section III-C, the distribution
of the duration of such an incident depends on the period of
the day in which the incident occurs. Therefore, for every
period modeled by Y0(t), the process X i (t) should contain
states that describe the duration of an incident which started
in that period. For example, in case Y0(t) is structured as in
Figure 16, X i (t) contains states that describe an incident which
started in the period modeled by k0 phases, as well as states
that describe an incident which started in the period modeled
by k1 phases.

Given the period that corresponds to the state of Y0(t),
we have fitted the distribution of the duration of an incident
starting in this period for every highway segment in the Dutch
network (Section III-C). Now, given such a segment, we will
use the corresponding incident distribution for every link that
partitions this segment. Thus, if a highway segment between
two intersections consists of three links, separated by ramps,
the incident distribution that was fitted for the segment is
used to model incidents on all these three links. Recall that,
because the fitted distributions all fall in the category of phase-
type distributions, we can directly include these in the Markov
processes X i (t).

A special case are the incidents that are already present
upon the vehicle’s departure. Given that link i has an incident,
knowledge of the starting time of the incident yields both the
distribution of the incident length and the current running time
of the incident, from which we can deduct the distribution of
the remaining incident length. Then, the process X i (t) should
also include states modeling this remaining incident length,
which X i (t) visits before transitioning to the inter-incident
state. Trivially, if the incident distribution is exponential, the
remaining incident time is also exponentially distributed. For
an incident with current running time t > 0 and hyperexponen-
tially distributed length with parameters p ∈ [0, 1], µ1, µ2 ∈

R>0, we have:

P(X > t+s | X > t) =
P(X > t+s)

P(X > t)

=
pe−µ1(t+s)

+ (1− p)e−µ2(t+s)

pe−µ1t + (1− p)e−µ2t

= qe−µ1s
+ (1−q)e−µ2s,

with

q :=
pe−µ1t

pe−µ1t + (1− p)e−µ2t .

Thus, the remaining incident time has a hyperexponential dis-
tribution as well, with parameters q, µ1, µ2. It can be proven
that the distribution of an Erlang(k, µ) random variable,
conditioned on being at least t , is a mixture of Erlang( j, µ)

distributions, with j = 1, . . . , k (Theorem 1, Appendix ). This
gives that the remaining time of an Erlang-2 distribution can
be cast in the Markovian framework. Moreover, it can now
easily be deduced that the remaining incident time of a mixture
Erlang distribution is a mixture Erlang distribution as well.

B. Speed Levels

To obtain the travel time distribution for the vehicle, the
speed levels corresponding to the different background states
have to be specified. That is, for all i and all s ∈ S, we need to
set a value for vai (s), the speed at which vehicles are moving
on link ai given B(t) = s. Without loss of generality, we
focus on the speed levels of link a1. Recall from Section III-C
that, with incidents being local events, only incidents on links
surrounding a1 will affect the speed on this link. Denote this
set of links whose congestion status affects a1 by Aa1 .

Let s ∈ S be a state that corresponds to a setting in which
the arcs in Aa1 are incident-free, and there are no existing
scheduled events in the network. Then, the driveable speed
on a1 is fully determined by the daily velocity patterns. The
speed and flow data analysis as performed in Section III-B
has revealed during which periods, and thus for which states
of Y0(t), the driveable speed level on a1 equals the free-flow
speed. In case the state of Y0(t) belongs to a non free-flow (but
still relatively constant) speed period, historical averaging of
the maximum of the road lane speeds yields a representative
speed level per loop detector on link a1. For this averaging,
we only use speed data of the days of the week that match the
current day, and only from a few weeks preceding the vehicle’s
departure. This way, we account not only for within-day time-
dependence, but for dependence on the day of the week and
season as well. Now, to obtain a representative speed level
for the complete link, we simply take the weighted harmonic
mean of the speeds levels of the individual detectors located on
the link. The weights are set to account for the non-uniform
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Fig. 18. Replicating a speed pattern with a step function, in which the
driveable speed level in each step is the average speed during that specific
time interval.

placement of the loops on the link, the weight of a single
detector being the total distance between the midway points
to its neighbors, or, in case of only one neighbor, the distance
from this one midway point to the boundary of the link.

Importantly, we can easily work with more elaborate speed
patterns, in case one constant speed level is not representa-
tive for the speed pattern in the considered period. That is,
by assigning different speed levels to the different Erlang
phases that model the duration of this period, the driveable
speed (as a function of time) is a step function. Being able
to model stepwise speed functions allows to replicate more
complex daily patterns, such as the observed V-shape during
the rush hour on the A10 (Figure 10b). Figure 18 presents
examples of step-functions that may be used to represent this
V-shape. As can be observed, while one level is not sufficient,
the use of six or ten Erlang phases already replicates the shape
of the speed pattern well.

Now, let s ∈ S be a state that corresponds to a setting in
which one of the arcs in Aa1 is not incident-free. As argued
in Section III-C, during this incident, the driveable speed on
link a1 can roughly be described by one speed level. In case the
incident is already present upon the vehicle’s departure, real-
time information regarding the driven speeds at the detectors
on a1 may be available. If these reveal that the incident is in a
stationary state, i.e., speed fluctuations in the minutes prior to
the departure are only mild, we can set the speed level on a1 in
state s as the current speed level on a1. Alternatively, if the last
minutes of speed data do not show a somewhat stable pattern,
the link speed that corresponds to the last minute of data is set
as speed level for s ∈ S. In case the incident has just started
or is in the process of clearance, typically corresponding
with respectively a decreasing or increasing speed trend, this
estimate is expected to be a better representative than an
average over a longer period.

In case there is no real-time speed data available, or the inci-
dent is not already present at the vehicle’s departure, the speed
level of the incident is unknown, and estimated by the average
of the historical speed levels of incidents located on the same
link. To obtain the stable speed level of a historical incident,
we propose to take, as above, the weighted harmonic average

Fig. 19. Identifying the stationary speed level of two historical incidents on
the Dutch A10 highway.

of the stable speed patterns of the individual loop detectors.
For every such detector, the stable speed level is identified
by computing, for every ten minutes of data around the time
interval of the incident, the mean and variance in registered
speeds. Then, from all means below 80 km/h, the stable
speed level is set as the one with the minimum variance.
Figure 19 shows the result for two historical incidents on the
highway A10.

Evidently, in case there are multiple incidents in the vicinity
of arc a1, the speed on a1 is at least as much affected as
it would be by one of these individual incidents. Therefore,
for s ∈ S for which there are multiple arcs in Aa1 that
have incidents, we simply set the velocity on a1 in state s
as the minimum of the speed levels of a1 corresponding to
the individual incidents.

In case there are existing or upcoming scheduled events
modeled through Y (t) (e.g. road work or bad weather), the
effect of these events should be taken into account as well.
The speed levels on the arcs affected by the scheduled events
are estimated in a similar way as the incident speeds. That is,
if the event is present at the vehicle’s departure and current
speeds are available, these speeds are used to estimate the
representable speed level. If these speeds are not available,
or the event is a future event, historical speed data is used to
determine the correct speed level.

V. NUMERICAL EXPERIMENTS

Having described and substantiated the individual compo-
nents of our procedure, we will now display the resulting
travel time distributions for several case studies and provide
examples of the advantage of our model as compared to
deterministic travel time prediction methods, or methods that
only take recurrent patterns into account. The case studies
consider the traversal of three west-to-east directed paths in
the Dutch highway network, depicted in Figure 20, under
various traffic scenarios. Specifically, for each of these paths,
we look at the travel time distribution of vehicles travers-
ing the path in the non-rush hour and rush hour setting,
in case the path is incident-free upon departure (Section V-A).
Additionally, in Section V-B, we consider a traffic setting
where, upon the vehicle’s departure, there is an incident
on the path to travel. With the time until clearance of the
incident a random variable, our procedures, taking this uncer-
tainty into account, are shown to outperform deterministic
estimations. To further show the broad applicability of the
framework, Section V-C presents a wider variety of traffic
scenarios, thereby focusing on the impact of other sources of
uncertainty.
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Fig. 20. Three considered paths in the Dutch highway network.

Before doing so, we briefly explain why the available travel
time data was not adequate for a more detailed (numerical)
assessment of the performance of our methodology. That
is, naturally, one would want to compare the travel time
distributions we obtain for the traversal of the three paths under
various traffic settings with travel time data from the Dutch
highway network. However, hampered by the availability and
quality of the travel time data as provided by NDW, such a
comparison could not be performed.

Limitations arise due to the fact that, with poor availability
of both floating car data and travel time data collected via
Bluetooth or cameras (for the years of study), the NDW
data only contains rough, rounded estimates of average travel
times, based on measurements with loop detectors. In fact,
per trajectory and per minute, there is only one NDW data
value that represents the general mean travel time, averaged
over all vehicles (cars and trucks) on the segment under
consideration. Since the maximum speed trucks are allowed
to drive in The Netherlands is lower than the maximum car
speed, a comparison would (incorrectly) lead to the conclusion
that our travel time distribution estimates are systematically
too low. Indeed, with traffic heterogeneity playing a prominent
role, the realized speed levels are typically below the actual
driveable speeds, limiting a fair numerical comparative analy-
sis. A second conceptual complication is that our procedures
are based on capturing the travel times that vehicles are
effectively able to drive, in contrast to the collected travel time
data, which only reflects (rough estimates of) realized travel
times, which are subject to the heterogeneity in driving style
of individual vehicles.

The experiments have been conducted in Wolfram Mathe-
matica 12.0 on an Intel® Core™ i7-8665U 1.90GHz computer.
The focus of the upcoming subsections lies on the results
of our procedure. Run-time is of less importance because,
in reality, estimation of the parameters and velocity levels
will mostly be performed before the departure. That is, traffic
operators are able to update incident distributions and inter-
incident times (say) once a day, and may also track the
speed level of an incident since its detection. Therefore, the
computational costs will just consist of the fast discrete-event
simulations performed to obtain the travel time distribution
from the model: even without parallelization, for each of

the derived travel time distributions in this section, it takes
less than one second to perform 1000 simulation runs. Note
that such simulations are only necessary to obtain the full
distribution, and that, in practice, for instance when working
with moments of the travel time distribution (expected value,
standard deviation, etc.), these can be computed in real-time
by the numerical differentiation of the known Laplace-Stieltjes
transform (LST) of the travel time distribution [1]. The travel
time distribution itself cannot be computed from this LST in a
straightforward manner: as this distribution is neither discrete
nor continuous (see e.g. Figure 24), common Laplace inversion
methods typically fail.

A. Travel Time Distributions in the Absence of Incidents

Focusing on the travel time distributions on the three paths
of Figure 20, it is important to note that the paths are of a
different characteristic nature. For example, they differ greatly
in terms of incident-proneness, as can be observed from
Figure 7a. For the blue path, which is approximately 37 km
long and located in a rural area, the mean inter-incident time
is highest. The red path, which is approximately 30 km long
and brings vehicles from the city of Amsterdam to a more
rural area, has a relatively low mean inter-incident time. The
mean time between incidents is lowest for the circa 38 km
long black path between two busy urban areas.

We first consider the traversal of the paths in an incident-
free non-rush hour setting. Specifically, we look at vehicles
traveling the paths on a regular Wednesday (i.e., no school
holiday or national holiday) in the year 2019 at noon, in case
there are no registered incidents upon departure. In accordance
with Section IV, the speed levels in the non-incident setting
are estimated by averaging over the speeds of the four regular
and incident-free Wednesdays prior to the considered day, and
the speed levels of future incidents are estimated by averaging
speed levels of historical incidents on the same highway link.
The resulting cumulative travel time distributions are presented
in Figure 21. Recall that our model does not take into account
fluctuations that typically arise due to the differences in driving
styles, which explains the nearly deterministic pattern. Indeed,
since both the probability of incident occurrence during the
trip and the probability of hitting the next time period, cor-
responding to rush hour conditions, are extremely small, the
driveable vehicle speed during the trip is well described by
one constant velocity level.

Now, let us alternatively consider a vehicle that departs at
a regular 2019 Tuesday at 3:15 p.m. or 6:00 p.m. At the
first time instant, upon the vehicle’s departure, the onset of
rush hour is in the near future, whereas the second departure
instant falls within the rush hour period. In contrast to the
non-rush hour setting, the travel time distributions at these
instances, as displayed in Figure 22, clearly show the different
characteristic natures of the considered paths. That is, with
low daily flow levels in all periods, the driveable speed levels
on the A7 highway equal the free-flow speed, again leading to
an approximately deterministic distribution, independent of the
departure time. On the other hand, the A1 and A12 highway do
show uncertainty. For departure at 3:15 p.m., this uncertainty
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Fig. 21. Cumulative travel time distribution estimates for departure at a regular Wednesday at noon in 2019.

Fig. 22. Cumulative travel time distribution estimates for departure at Tuesday 3:15 p.m. (blue) and 6:00 p.m. (yellow) in 2019.

Fig. 23. Mean travel time (in min.) when traversing the A1 path (i.e., the red
path of Figure 20) around 4:00 p.m. with predicted speeds like the weekday
pattern in Figure 10b, as a function of the number of Erlang phases used to
describe the duration of periods of day.

is only mild, as a large part of the paths is traversed in non-
rush hour setting, where traffic speeds are almost constant.
However, the width of the travel time distributions is larger for
departure at 6:00 p.m., with the travel times suffering from the
(semi-)random onset of the different rush-hour speed trends.

In the examples above, we have used an (arbitrarily chosen)
number of five Erlang phases to describe the duration of each
of the different periods of day. To every Erlang phase, we
have assigned an individual speed level, such that the driveable
speed (as a function of time) is a step function. The validity of
choosing five Erlang phases is confirmed by Figure 23, as the
considered mean travel time does not differ significantly with
the mean travel time under higher number of Erlang phases.
We stress that, whereas the figure only shows one example, this
pattern, in which the difference between a high and moderate
number of Erlang phases is minimal, has been observed more
generally in various examples with different departure times
and paths to travel.

B. Travel Time Distributions in the Presence of Incidents

Due to the inherently high amount of uncertainty, the most
interesting distribution estimates correspond to the case that,

Fig. 24. Travel time distribution when traversing the A1 path (i.e., the red
path of Figure 20) in incident setting. Departure time is after 25% (blue),
50% (yellow) or 75% (green) of the total incident duration.

upon the vehicle’s departure, there is an incident on the
intended path through the network. In such traffic scenarios,
our procedures have clear advantages over deterministic meth-
ods, e.g. methods that are restricted to working with the current
speeds, or methods that only take recurrent patterns into
account (such as time-series based models). Since current route
planners often contain software that is based on such methods,
we will refer to those as traditional methods. Notably, such
traditional methods are unable to work with random future
changes in traffic conditions, yielding poor travel time esti-
mations in case there is a high probability of such changes.
For example, these methods are often insufficient when the
incident is located at the end of the path to travel, since, with
relatively much time until the vehicle reaches the incident
location, there is typically a high probability of incident
clearance before reaching the incident. Another example in
which current route-planners may perform unsatisfactorily is
presented in Figure 24. This figure shows the cumulative travel
time distributions for a specific incident, a defective truck at
the first part of the A1 path, when departing after 25%, 50%
or 75% of the total reported incident duration.

To illustrate how the MVM can be used to improve routing
advice, we first consider a vehicle departing at the 25% time
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Fig. 25. Travel time distributions for each of the six periods characterized in Figure 7b, identified by their starting times. Each travel time distribution
corresponds to a randomly selected departure time in that period in a day in June 2019. Note that the distributions that arise in non-incident settings are of
the same shape as in Figures 21 and 22, but seem very vertical due to the typically wider range of travel time distributions in incident settings.

instant. Obviously, the remaining incident duration, being the
time until the resulting traffic jam has cleared, is unknown
to the driver itself. With traditional methods not accounting
for random changes, route planners will predict a travel time
of 35.1 minutes, i.e., the travel time that corresponds to the
location of the probability mass point of the 25% distribution.
Indeed, observe that the mass point corresponds to the scenario
in which the considered traffic jam is not cleared during the
traversal of the links affected by this incident. In contrast, our
method does take into account that with a certain probability,
the traffic jam will have cleared before the vehicle arrives at
the congested links. On the A1 path, there is a high percentage
of reported incidents with relatively short duration. Thus,
the distribution of the remaining incident duration has high
probability mass on the left side, yielding a high probability
of clearance before reaching the incident. The mass point
of the obtained distribution indeed reveals that there is an
almost 40% chance that the traffic jam has cleared before
the vehicle arrives. Therefore, in expectation, the travel time
will be significantly less than the 35.1 minutes estimated by
traditional route-planners.

In the case where 50% percent of the incident duration has
elapsed upon departure, it can be observed from Figure 24
that our procedure estimates that there is a high probability
that the traffic jam is cleared during the traversal of the path,
yielding, again, an expected travel time that is significantly
less than the 40.1 minutes that will be estimated by traditional
methods. Note that, as the position of the mass point provides
an impression for the incident speed levels, the driveable
incident speeds are lower than those recorded after 25% of
the incident. This can be explained by the fact that, after 25%
of the total incident duration, the speed levels at detectors
further away from the incident may not be affected yet, since
the traffic jam is still accumulating, leading to slightly lower
travel time values when compared to the 50% scenario.

For a vehicle departing after 75% of the incident duration,
the location of the mass point indicates that, compared to
departure after 25% and 50% of the incident duration, the
estimated driveable speeds during the incident are significantly
closer to their non-incident counterpart. Reviewing the incident
characteristics, it is revealed that this is due to the fact that the

lanes that were closed at the 25% and 50% instances, are fully
opened after 75%, with recovery speeds shortly revealing a
shockwave pattern. Observe that, whereas traditional methods
will estimate a travel time of 20.3 minutes, the distribution
shows that there is a probability of approximately 30% that
the traffic conditions improve during the traversal of the path.
The fact that this probability is smaller than that of the 25%
and 50% instances is because, to impact the travel time of the
vehicle, traffic conditions should improve within 20.3 minutes
(as compared to 35.1 and 40.1 minutes for the 25% and 50%
instances, respectively). That is, if the traffic jam starts to
resolve after 20.3 minutes, the vehicle will already be at the
desired destination, and will not be affected by the new road
conditions.

The impact of incidents can also be seen in Figure 25. This
plot shows, for each day in the month June 2019 and each
period (as characterized in Figure 7b) in that day, the travel
time distribution for a randomly selected departure time. The
travel time distributions that correspond to an incident upon
departure (green) have the same shape as the distributions in
Figure 24, in the sense that there is a certain mass point that
represents the case in which the traffic jam created by the
incident has not been cleared during the traversal of the path.
For example, for the vehicle departing at the incident instance
in the period that starts at 06:20 p.m., there is a probability of
at least 0.8 that the incident impact remains present during the
whole trip, in which case the travel time is approximately equal
to 17 minutes. Figure 25 also displays the differences between
the periods that were already observed in Figures 21 and 22.
Specifically, we observe the high uncertainty of travel times
in rush hour periods as compared to non-rush hour periods.
Notably, this difference is only present during weekdays
(blue), and does not show in weekends (yellow).

C. Extensions

We have focused on the impact of the time of the day, the
day of the week, and the presence of incidents on the travel
time distribution of a vehicle. However, owing to the inherent
flexibility of our framework, we can capture the impact of
other sources of uncertainty as well. Examples include bad
weather conditions and incidents whose speed pattern is known
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Fig. 26. Travel time distribution when traversing the A1 path (i.e., red path of
Figure 20) in a bad weather setting. Departure time is after 25% (blue), 50%
(yellow) or 75% (green) of the total duration of the bad weather conditions.

to differ from the single speed level shape identified for the
Dutch highway network.

1) Bad Weather Conditions: The modeling example in
Section II-A already demonstrated how to include a (fore-
casted) weather event into the background process. To show
the impact of such an event on the travel time distribution,
we consider a vehicle that traverses the A1 trajectory (i.e.,
the red path in Figure 20), during a shower with an expected
length of 20 minutes, in a setting in which, during the full
duration of the shower, the recorded driveable speed levels on
the segments of the trajectory are 80 km/h. Upon clearance
of the shower, speeds are chosen to reflect the estimated
driveable speeds on Saturday June 1st 2019. Figure 26 shows
the resulting travel time distributions for different departure
times, when, upon departure, the semi-deterministic remaining
duration of the shower is modeled with ten Erlang phases. It is
noted that there is a mass point that corresponds to the event
that it rains continuously during the trip, in which case the trip
lasts 19.6 minutes. The probability of this event is a decreasing
function of the departure time, and of insignificant size when
the vehicle departs close to the predicted end of the shower.

2) Two-Stage Incident: In Section III-C we have observed
that, in the Dutch highway network, the driveable speed during
an incident can, on each of the links affected by this incident,
roughly be described by one speed level. However, there may
be certain networks or incident types for which working with
multiple speed levels is preferable. Consider, for example,
a setting in which it is known that, on a certain three-lane
highway in a road network, an incident has resulted in the
closure of two lanes, of which one will become available once
the incident debris has been cleared. Then, the use of two
speed levels (i.e., one to represent traffic conditions during
the debris clearance and one to represent the traffic conditions
upon availability of the two lanes) will replicate the incident
speed pattern better than the use of just a single speed level.

The MVM can capture an incident that is known to consist
of two stages by including both states that describe the length
of the first stage and states that describe the length of the
second stage. Figure 27 shows the travel time distribution for
a vehicle that travels the A1 trajectory at the start of the night
period, in case there is an incident on the last segment of this
path with a length that is described by an Erlang-2 distribution
with a mean of 20 minutes. The plot displays both the setting
in which, knowing that the incident will have two stages with
the same average length, a different speed is assigned to both
exponential states, and the setting in which only one speed

Fig. 27. Travel time distribution for traversing the A1 trajectory in case a
vehicle departs η time after the start of a two-phase incident. A blue (resp.
yellow) color encodes the use of one (resp. two) speed levels in the MVM.

level per link is used. In the experiment, the incident only
impacts the speeds on the last segment, and the predicted
speeds in the second stage are 80 km/h. We observe that,
in case one speed level is modeled, there is a mass point
that corresponds to the setting in which the incident has been
cleared upon arrival at the final segment, and a mass point that
corresponds to the setting in which the incident is still present
upon reaching the end of the path. Now, in case two speed
levels are modeled, there are two mass points that encode the
presence of the incident upon traversing the final segment,
corresponding to the event of the incident being in its first
and second stage respectively. Notably, this difference is only
present when departing during the first stage of the incident,
as otherwise the incident is known to be in its second stage.

VI. CONCLUSIVE REMARKS

In this paper we presented comprehensive techniques to
describe the randomness of incidents in a highway network,
in terms of their frequency, duration and impact on vehicle
speeds. With these results, we were able to operationalize
the Markovian velocity model, a stochastic model that tracks
both recurrent and non-recurrent traffic events that affect
driveable vehicle speeds. Numerical experiments demonstrated
the impact of recurrent and non-recurrent effects on such travel
time distribution estimates in various traffic settings.

We have shown that, on a given highway segment, both the
incident duration and inter-incident time are dependent on the
time of day, but that we can deal with this time-dependence
by working with periods in which these effects are essen-
tially constant. For every highway segment, the inter-incident
time within each of these periods is well described by an
exponential distribution, whereas, in nearly all cases, the
duration of an incident starting in this period fits a phase-type
distribution with a relatively low number of phases. When
fitting the incident data, we have used the collection of all
registered incidents per highway segment, and not distin-
guished on environmental conditions. A future study could
include both incident and weather data, and investigate the
impact of different weather conditions on the incident length
and driveable vehicle speeds. This could further improve
the prediction results in case, upon the vehicle’s departure,
weather conditions are poor.

To operationalize the Markovian velocity model, we pre-
sented methods to obtain representative levels for the driveable
vehicle speeds in both the incident and inter-incident setting.
In the inter-incident setting, it could be observed that these
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speed levels depend on the period-of-day, day-of-week and
time-of-year. To tackle these dependencies, we proposed a
simple, fast and transparent clustering method, in which we
just average over the speeds observed in the same period
and on the same day, in the weeks previous to the vehicle’s
departure. Evidently, more enhanced prediction methods could
be used to find representative speed levels.

The numerical experiments we conducted showed the
impact of recurrent traffic patterns, current incidents and
potential future incidents on the travel time distribution esti-
mates. It was observed that the impact of future incidents
is minor, whereas the impact of both rush hour and current
incidents is more pronounced. Future work could be specified
towards incorporating the impact of second-order effects into
the travel time distribution estimates as well. A potential
suggestion would be to incorporate the heterogeneity in driving
style by letting the vehicle speeds – instead of being constant
– be described by a distribution that depends on the state of
the background process.

As discussed in Section V, the absence of reliable travel
time data prohibits a full comparison between the obtained
travel time distribution estimates and real-world data. How-
ever, we have been able to show the advantages compared
to traditional travel time prediction methods through some
illustrative examples. A more extensive comparison is clearly
desirable, and should be carried out once there is access to
more suitable travel time data. Note that, with current technical
advances, floating car data is expected to become available on
a large scale in the upcoming years.

APPENDIX
CONDITIONAL ERLANG DISTRIBUTION

Theorem 1: For t ∈ R>0 and X ∼ Erlang(k, µ), the distri-
bution of X | X > t is a mixture of Erlang( j, µ) distributions
with j = 1, . . . , k.

Proof: For an Erlang(k, µ) distribution we have:

p̃(t) := P(X > t) =

k−1∑
n=0

e−µt

n!
(µt)n .

Thus, Newton’s Binomial gives that:

P(X > t + s | X > t)

=
1

p̃(t)

k−1∑
n=0

e−µ(t+s)

n!
(µ(t+s))n

=
1

p̃(t)

k−1∑
n=0

n∑
j=0

e−µ(t+s)

j !(n− j)!
(µt) j (µs)n− j

=
1

p̃(t)

k−1∑
j=0

k−1∑
n= j

e−µ(t+s)

j !(n− j)!
(µt) j (µs)n− j

=
1

p̃(t)

k−1∑
j=0

e−µt

j !
(µt) j

k−1−j∑
n=0

e−µs

n!
(µs)n

=
1

p̃(t)

k−1∑
j=0

e−µt

(k−1− j)!
(µt)k−1− j

j∑
n=0

e−µs

n!
(µs)n

=

k∑
j=1

p̃ j (t)
j−1∑
n=0

e−µs

n!
(µs)n,

with

p̃ j (t) :=
1

p̃(t)
e−µt

(k− j)!
(µt)k− j .

We conclude that the remaining time of an Erlang(k, µ) ran-
dom variable, conditioned on being at least t , is a mixture of
Erlang( j, µ) distributions with j = 1, . . . , k; with probability
p̃ j (t) there are j phases. Indeed,

k∑
j=1

p̃ j (t) =
1

p̃(t)

k∑
j=1

e−µt

(k− j)!
(µt)k− j

=
1

p̃(t)

k−1∑
j=0

e−µt

(k− j −1)!
(µt)k− j−1

=
1

p̃(t)

k−1∑
j=0

e−µt

j !
(µt) j

= 1.

□
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