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Chapter 1

Disease-causing viruses repeatedly attack the human body during its lifetime. Our immune 
system and these viruses fight continuous battles. While the immune system undergoes 
training and develops memory, viruses mutate, recombine and emerge in new populations. 
Monumental discoveries and technological advances have led to the eradication of 
smallpox, while polio, rubella and measles are considered viable targets for eradication1. 
We possess a range of broad-spectrum medicines, some of which may even act against 
pathogens that remain undiscovered. Recent technological advancements have enabled 
the production of treatments and vaccines against novel pathogens at unprecedented 
speed and finesse2. However, viral diseases are still prevalent. There is a constant threat 
of viruses spilling over from animal reservoirs, exemplified by the emergence of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Moreover, viruses can re-
emerge, as occurred with yellow fever virus and chikungunya virus, or migrate, which is 
happening for West Nile virus3. The emergence of SARS-CoV-2 has exposed our scientific, 
medical and regulatory shortcomings. It has sparked the establishment of pandemic 
preparedness programs, but it has also fueled vaccine hesitancy, skepticism about science, 
and occasionally, social unrest. Viruses are immensely diverse and cause an incompletely 
known variety of diseases. There is still much to learn about the mechanisms employed by 
viruses to enhance their effectiveness and evade immune responses. Continued research 
on viruses, viral disease and antiviral strategies is still incredibly important. We likely 
understand only a small portion of this arms race between viruses and the host immune 
system. Additional knowledge will be invaluable to (re-) invent alternative therapies 
and preventative strategies. This thesis, written in part during the COVID-19 pandemic, 
describes several novel findings related to antiviral antibodies.

Antiviral immunity
The human body’s first line of defense against viruses is comprised of several cellular 
and biochemical defense mechanisms, collectively called innate immunity. This includes 
physical and chemical barriers, phagocytic cells, dendritic cells (DCs), natural killer (NK) cells, 
complement proteins and other blood derived proteins4. Adaptive immunity constitutes 
the next layers of antiviral defense. In contrast to innate immunity, adaptive immunity 
is a specific response which increases in magnitude upon repeated exposures. Adaptive 
immunity can be subdivided in cell-mediated immunity and humoral immunity. Innate 
immunity, cell-mediated immunity and humoral immunity collectively form a coordinated 
system of host defense against viral challenges5 (Fig. 1). 

The initiation of adaptive T cell immunity requires antigen capture by antigen-presenting 
cells (APC; such as dendritic cells). After antigen capture, APCs migrate to lymphoid 
organs to present these antigens to naive T cells leading to activation, proliferation and 
differentiation6. Precursor B cells migrate to lymphoid organs, where the matured naive B 
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Figure 1. Overview of the mechanisms of innate and adaptive immunity. (A) Mucosal barriers, 
phagocytic cells, dendritic cells, natural killer (NK) cells and complement comprise five components of 
the innate immune system with relevant effects on viruses. (B) Simplified presentation of T cell immunity 
showing the activation and differentiation of T cells as well as the formation of T cell memory. (C) Simplified 
presentation of B cell immunity including the path generating germinal center (GC)-independent plasma 
cells and memory cells as well as GC reactions and the resulting formation of high-affinity plasma cells, 
memory B cells and long-lived plasma cells.
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cells can encounter antigen. Naive B cells can interact with antigen on APCs, with antigen 
deposited on follicular dendritic cells, or they can be activated directly by unprocessed 
circulating antigens. Upon activation, the antigen-experienced B cells undergo clonal 
expansion and can follow one of two different paths (Fig. 1B). They can differentiate via 
a rapid extrafollicular response, leading to memory B cells and short-lived plasmablasts. 
These plasmablasts leave the lymph node and move to the circulation to secrete low-
affinity antibodies7. Alternatively, activated B cells can move into the follicles of secondary 
lymphoid organs, interact with T follicular helper cells and form germinal centers. Germinal 
center reactions lead to B cells that produce antibodies with improved affinity and different 
functionalities8. During affinity maturation, the B cells with the highest affinity are selected 
while the clones with lower affinity undergo apoptosis. The resulting high-affinity B cells 
can become antibody secreting cells or memory B cells9. When a viral infection is resolved, 
most of the expanded immune cells undergo apoptosis. However, long-lived memory 
cells will remain in the circulation: a pool of antigen-specific cells that do not produce 
antibodies continuously, but can rapidly react to viral antigen re-exposure6. Memory cells 
are crucial for protection against previously encountered viruses. In addition, some plasma 
cells migrate to the bone marrow to continuously secrete low levels of antibodies in 
absence of stimulation. These long-lived plasma cells can provide life-long immunity10. The 
type of antigen, the affinity for the antigen, T cell help, prior exposure to the same antigen 
and the site of activation in the body all influence the quantity and the type of antibodies 
that are produced by B cells. This thesis will focus on humoral immunity mediated by 
antibodies (also called immunoglobulins). Antibody production is an essential part of 
effective antiviral immunity and crucial for protection from viral infections. Furthermore, 
antibodies form the protective basis for the vast majority of effective vaccines11. 

Formation and structure of antiviral antibodies
Antibodies are composed of two heterodimers of a heavy and light chain, which are linked 
by a disulfide bond. On one end is the antigen-binding region (Fab) and on the other 
end is the Fc region. These regions are linked by a flexible hinge (Fig. 2B). The Fab region 
is extremely variable to allow a nearly infinite amount of specificities. This variability is 
generated through V(D)J recombination and somatic hypermutation. V(D)J recombination 
already occurs during the early development of B cells and is therefore antigen 
independent. Antibody heavy chains are encoded by variable (V), diversity (D) and joining 
(J) gene segments. D segments recombine with J segments and their product recombines 
with V segments to yield thousands of possible combinations12. Antibody light chains are 
generated by recombination of V and J segments with hundreds of possible combinations. 
The result is millions of possible combinations of heavy and light chains. Antibody genes 
are further diversified by junctional diversity: mutations which are introduced when the 
gene segments are linked together. Together, this leads to the virtually unlimited pool 
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Figure 2. Overview of antibody structure and the mechanisms of the generation of diversity. (A) 
Overview of how the diversity of the naive antibody repertoire is generated. On the top of the panel, the 
process of VDJ recombination of heavy chains is shown, with first the recombination leading to the joining 
of a D and J segment followed by the second recombination leading to the joining of this DJ segment to 
a V segment and finally, the removal of unwanted gene segments to yield the final antibody sequence. 
On the bottom of the panel, the same process is shown for the light chain, which involves only a single 
recombination event between a V and J segment. During each recombination event, junctional diversity 
mutations occur which are indicated by the stars. On the left of the panel, the final antibody product is 
indicated with the recombined segments highlighted in different colors. (B) Structure of an antibody with 
the Fab region, the Fc region and the hinge region indicated. The light chain is shown in a lighter shade of 
blue than the heavy chain. (C) Overview of how the diversity of the mature antibody repertoire is generated. 
On the top of the panel, the process of somatic hypermutation (SHM) is shown, where activation-induced 
cytidine deaminase (AID) introduces mutations in the recombined VDJ gene. Mutations accumulate during 
iterative rounds of SHM and affinity selection in the germinal center. Mutations are indicated by small 
stars. On the bottom of the panel, the process of class-switch recombination is shown. AID induces double 
stranded breaks which lead to excision of unwanted antibody loci and joining of the next-in-line locus 
which will determine the new antibody class. In the example, the Cα1 locus will lead to the production of 
IgA1 antibodies. The full organization and order of human antibody loci is shown in the first step, but the 
sequence is truncated in the next steps.
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of specificities of naive B cells (Fig. 2A). Further diversity is introduced after exposure to 
antigen. During somatic hypermutation within germinal centers, mutations are introduced 
by Activation-induced cytidine deaminase (AID) in so-called AID hotspots13. Both the heavy 
and the light chain contain three complementarity-determining regions (CDRs) each. 
Mutations in these CDRs change the antigen-binding properties of antibodies (Fig. 2C). 

During class switching, a particular variable domain is combined with another Fc domain 
sequence. This results in an antibody with the same antigen specificity but of a different 
antibody isotype or subtype12 (Fig. 2C). The Fc region dictates several functional properties 
of an antibody. Antibody half-life is determined by the affinity of the Fc region for the 
neonatal Fc receptor (FcRn), which is responsible for keeping antibodies in the circulation. 
The ability of the Fc region to interact with Fc γ receptors (FcγRs) determines the 
induction of antibody effector functions. The Fc region also contains a N-linked glycan, 
with a different composition per antibody class and an important effect on antibody 
functionality14. Next to these antibody classes, which are shared across all individuals, 
inherited gene polymorphisms cause further diversity between antibody Fc regions in the 
form of personal allotypes15. This allotype diversity also affects the functionality of the 
antibody response16. For some antibodies, the composition of the Fc region also affects 
the affinity of the Fab region17. 

Isotypes and dynamics of antiviral antibodies
The human antibody isotypes include IgG, IgA, IgM, IgD and IgE. Serum contains on 
average 75% IgG, 10% IgM, 15% IgA and very low levels of IgD and IgE12. IgD is mostly 
found on the surface of B cells. There is also a secreted form, but its function is not well 
understood18. IgE is associated with allergy and protects from parasites through interaction 
with the Fc ε receptor19. In this thesis, we will focus only on IgG, IgA and IgM, which are 
known to play important roles in viral disease (Fig. 3A). IgM appears during the early 
immune response. It is a multimeric antibody (mostly pentameric), has low affinity, and 
can be produced without T cell help20. IgG is produced after B cell class switching. It has 
high affinity and a long serum half-life, therefore it is generally maintained at high levels 
for months. There are four subtypes of IgG: IgG1 is the most prevalent (67%), followed by 
IgG2 (22%), while IgG3 (7%) and IgG4 (4%) are generally present at low concentrations 
in blood12. Since IgG3 is the first IgG subtype on the gene locus, it is produced early in 
response to viral infection21. Compared to other IgG subtypes, most IgG3 allotypes have 
a shorter half-life due to their lower FcRn affinity. IgG3 also has a longer hinge than other 
subtypes, leading to increased flexibility22. IgA is the main antibody type at the mucosa 
and it is also present in blood. Systemic IgA plays a key role in the early immune response, 
however it wanes relatively quickly. IgA can be multimeric or monomeric and has two 
subtypes: IgA1 and IgA2. IgA in serum is mostly monomeric and generally 90% is IgA123. 



15

Introduction

1

IgG3

IgG4

IgG1

IgG2

IgM

Hexameric Pentameric, secretory

IgA1

IgA2

A Monomeric Dimeric, secretory

Circulation

IgA1
IgA2

IgG1
IgG2

IgG3
IgG4

IgM

Serum

Mucosa

Vaginal fluid

IgA
IgG

IgM

IgA1

IgA2

IgG

IgM

Bronchoalveolar lavage

IgA1

IgA2

IgG IgM

Human milk

IgA

IgG IgM

Gut lavage

IgM

IgA1
IgA2

IgG

Saliva

IgA1

IgA2
IgG IgM

Nasal secretions

B

Figure 3. Overview of IgG, IgA and IgM isotypes and subtypes and their localization. (A) On the left 
of the panel, the structure of the four subtypes of IgG is shown. The IgG3 isotype has an elongated hinge 
region. There are different conformations of the IgG2 hinge possible, but we depicted only the version 
with four disulfide bonds. On the top right of the panel, the structures of IgA1 and IgA2 are shown in 
monomeric form and in dimeric form with the secretory component attached. However, non-secreted, 
dimeric IgA1 and IgG2 also occur. More rarely, IgA can also assemble into a multimeric form. IgA1 has a 
more extended hinge than IgA2. On the bottom right of the panel, IgM is shown in the hexameric form and 
in the pentameric form with the secretory component attached. However, non-secreted, pentameric IgM 
also occurs. (B) Overview of different compartments of the body containing antibodies and an overview of 
the different antibody types that occur in blood and various mucosal secretions. The relative composition 
of different isotypes and subtypes of antibodies is shown for serum, bronchoalveolar lavage24,25, human 
milk26,27, nasal secretions28, saliva29, gut lavage30 and vaginal fluid31. Subfigure B has been created using 
images of the human body from Freepik.com.
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Localization of antiviral antibodies
Mucosal surfaces constitute the main entry site of many infectious viruses. Therefore, local 
antibodies play a significant role in antiviral defense. Mucosal antibodies can be derived 
from serum or result from a local antibody response. Mucosa and secretory glands contain 
more than 80% of all antibody-producing cells in the body. These are mostly IgA-producing 
cells32. IgA is known to act as the first line of defense in the mucosa by coating pathogens 
and preventing their advance to the cells lining the mucosa. At mucosal surfaces, IgA is 
commonly present as a multimer (mainly as a dimer) and the IgA2/IgA1 ratio is higher 
than in serum23. Transport of IgA and IgM across the epithelial cells on mucosal surfaces 
is mediated by the polymeric immunoglobulin receptor (pIgR). After transport, pIgR 
leaves the secretory component (SC) on the secreted antibody, yielding secretory IgA 
(sIgA) or secretory IgM (sIgM). The SC can provide protection from proteolytic cleavage, 
which increases degradation resistance and leads to a longer retention time at mucosal 
surfaces33. IgG does not have a secretory form and is only transferred to the mucosa via 
transudation, which is a much less efficient process34. 

In the respiratory mucosa, most IgA production occurs in the upper respiratory tract (Fig. 
3B). Primed antibody-producing cells preferentially migrate close to the tissue where they 
have been initially stimulated. Immune cells activated in upper respiratory tissue migrate 
to proximal lymphoid tissue and matured cells home back to the respiratory tissues 
(including the upper airway, nasal tissue and salivary glands) to secrete antibodies35. Most 
mucosal plasma cells are considered to be short-lived, however, evidence of a mucosal 
compartment of long-lived plasma cells is increasing36. Moreover, antibody secretion 
at mucosal surfaces is known to persist for months after infection37. Sampling of the 
respiratory tract can be extremely invasive. However, saliva is an easily collected mucosal 
secretion which resembles other mucosal sites in terms of antibody isotype distribution. 
Therefore, saliva is a useful tool to approximate the antibody composition of the upper 
respiratory mucosa. IgA constitutes the vast majority of saliva antibodies, while saliva IgG 
is derived from serum through passive diffusion38. Ninety-five percent of IgA is produced 
locally, by cells in the salivary glands, and transported by pIgR39. Monomeric IgA in saliva 
is mostly serum derived38. 

Mucosal antibodies are also abundant in mammary glands of nursing mothers: IgA can be 
up to 50% of all proteins in colostrum12. Antibodies in human milk are mostly produced 
by plasma cells which home to the mammary glands from other systemic and mucosal 
sites40. Neonates are not yet able to produce their own sIgA and sIgM. Therefore, human 
milk is the only source of mucosal antibodies during the first months of life41. When 
ingested by the neonate, sIgA, sIgM and IgG provide passive immunity by lining the gut, 
oral cavity and throat42. These antibodies function exclusively in the neonate mucosa, they 
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are not transferred to blood. Human milk antibodies are an important supplementation to 
antibodies transferred over the placenta during gestation. Breastfed infants are known to 
experience less respiratory infections and have a lower mortality risk compared to infants 
who received formula43. 

Virus neutralization by antibodies
Neutralizing antibodies (NAbs) are a strong correlate of protection for many vaccines, 
such as for yellow fever, smallpox, measles and SARS-CoV-244-47. Virus neutralization is the 
independent ability of antibodies to block virus infectivity. This usually occurs by blocking 
important proteins on the virus surface which prevents interaction of these proteins with 
their cellular targets48 (Fig. 4). For many viruses, neutralizing antibodies mainly target the 
site of the viral glycoprotein containing the receptor binding domain. However, also a 
variety of virus neutralizing antibodies that bind targets not implicated in receptor binding 
have been described. This can be mediated through steric hindrance, allosteric hindrance, 
dissociation of viral proteins, protein subunit shedding, inhibition of membrane fusion 
or inhibition of viral egress49-52 (Fig. 4A). Since viral proteins are often metastable, the 
threshold for triggering conformational changes by antibodies is not very high50,53. 
Neutralization potency can also be affected by the antibody Fc domain composition. For 
example, for human immunodeficiency virus-1 (HIV-1), IgG3 and IgA were shown to be 
intrinsically more potently neutralizing than IgG1, likely due to increased flexibility54-56. 

Antibody-mediated effector functions
Antibodies can also provide protection from viruses via Fc-mediated effector functions 
(Fig. 4B). Importantly, antibody effector functions can clear virus particles and also lead to 
killing of infected cells57. These functions are mediated by interaction of the antibody Fc 
region with immune receptors and proteins. Antibody-mediated effector functions can be 
mediated by neutralizing antibodies or by non-neutralizing antibodies58. The structural 
composition of the Fc region determines the type of functions that are induced. IgG is the 
isotype that is most well-known to induce effector functions. IgG1 and IgG3 are the more 
functional IgG subtypes while IgG2 and IgG4 are generally weak at inducing effector 
functions or may even inhibit these functions59. While IgG3 is the most functional IgG 
subtype, it has a short half-life. This may be an important mechanism to prevent excessive 
inflammation22. The main antiviral functions of IgM are opsonization and complement 
fixation. IgA can activate complement and also trigger effector functions through the Fc 
α receptor23,60. Binding of IgG to Fc γ receptors (FcγR) on NK cells can initiate antibody-
dependent cellular cytotoxicity (ADCC). IgG that interacts with FcγR on phagocytic cells 
can induce antibody-dependent cellular phagocytosis (ADCP). Antibody binding to 
C1q protein can induce complement activation which could result opsonization or in 
antibody-dependent complement-dependent cytotoxicity (ADCDC)57. FcγRs and C1q 
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Figure 4. Mechanisms of antibody neutralization and antibody-mediated effector functions. (A) 
Antibodies can neutralize virus particles by blocking the interaction between virus glycoproteins and their 
receptors. This can be mediated directly, by antibodies targeting the receptor binding domain, or indirectly, 
by antibodies that target another epitope which results in steric hindrance or allosteric hindrance of receptor 
binding. Antibodies can also neutralize later in the virus life cycle by targeting essential processes such as 
membrane fusion or viral egress. Virus particles can also be rendered non-infectious by antibodies that 
mediate dissociation of trimeric protein or shedding of protein subunits. (B) Antibody-dependent cellular 
cytotoxicity is mediated when the antibody Fc region interacts with Fc γ receptors (FcγR), mainly on natural 
killer (NK) cells, which release cytotoxins that can kill infected cells. Antibody-dependent cellular phagocytosis 
is mediated through interaction of the antibody Fc region with FcγRs, for example on macrophages, which 
can phagocytose virus particles or infected cells. Antibody-dependent complement-dependent cytotoxicity 
is mediated by interaction of the antibody Fc region with the complement protein C1q. This can lead 
to activation of the complement cascade, resulting in opsonization of virus particles or infected cells. 
Cytotoxicity can be mediated by complement via the formation of pores in the membrane of infected cells.
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protein need to be engaged by multiple Fc tails (at least two) in close proximity to be 
properly activated. This ensures that these functions are not induced by free antibody; 
the antibody needs to be bound to antigen to prevent untargeted effector responses5. 
Antibody-mediated effector functions have been implicated in protection against West 
Nile virus, influenza virus and HIV-1, among others61-63. Furthermore, antibody-mediated 
effector functions have been associated with control of malaria and reduced HIV-1 
disease progression64,65.

Antibodies against SARS-CoV-2 and other coronaviruses 
After its appearance at the end of 2019, SARS-CoV-2 rapidly spread across the world. 
The resulting coronavirus disease 2019 (COVID-19) pandemic led to major healthcare 
issues and unprecedented socio-economic losses. At the end of 2022, over 6.7 
million deaths had been attributed to the COVID-19 pandemic66. Within a year after 
the publication of the SARS-CoV-2 genome sequence, a rapid response across the 
globe resulted in the approval of the first effective vaccine and the rollout of mass 
vaccination campaigns. SARS-CoV-2 is one of the seven coronaviruses known to 
infect humans (hCoVs). The other hCoVs are SARS-CoV and MERS-CoV, which led to 
contained epidemics, and the common cold coronaviruses hCoV-OC43, -HKU1, -229E 
and -NL63, which are endemic and circulate seasonally67,68. The hCoV virus genome is 
internally packaged in nucleocapsid protein. This protein is not present in vaccines since 
it cannot lead to neutralizing antibodies. Therefore, nucleocapsid-targeting antibody 
detection has become a popular method to distinguish infection from vaccination69. 
Most SARS-CoV-2 vaccines are based on the Spike protein, which is considered the 
only target for a protective antibody response against hCoVs70. The Spike protein is 
a trimeric class I fusion protein that mediates cell entry. It consists of a membrane-
distal S1 domain, which contains the receptor binding domain (RBD), and a membrane-
proximal S2 domain, which contains the fusion peptide (Fig. 5)71. Many neutralizing 
antibodies bind to the RBD, which has also been the target site of many mutations 
across SARS-CoV-2 variants72,73. The S2 domain is more conserved and S2-targeting 
antibodies are more often cross-reactive74. HCoV infection induces antibodies that can 
cross-react with other hCoVs. Seroconversion studies have shown that seasonal hCoV 
infection may provide short-term protection from closely related seasonal hCoVs75. 
Although antibodies induced by seasonal hCoV infection may influence the incidence, 
course and severity of SARS-CoV-2 infection, they rarely cross-neutralize76-78. Since its 
original appearance, many variants of SARS-CoV-2 have emerged, often with reduced 
vulnerability to vaccine-induced neutralizing antibodies79. Moreover, protective 
neutralizing antibodies induced by vaccination or infection wane quickly. It is currently 
estimated that a yearly vaccination may be necessary to maintain protection, at least in 
vulnerable populations80. 
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Figure 5. Structure of the main antigen of SARS-CoV-2, HIV-1, influenza virus and RSV. From left to 
right: the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the envelope 
protein (Env) of human immunodeficiency virus-1 (HIV-1), the hemagglutinin protein (HA) of influenza 
virus and the fusion protein (F) of Respiratory syncytial virus (RSV). For each class I fusion protein, the 
individual protomers are shown in different colors. Side views and top views are included. For SARS-CoV-2 
S, the S2 domains are shown in darker colors than the S1 domains. For HIV-1 Env, the gp41 subunits are 
shown in darker colors than the gp120 subunits. For influenza virus HA, the HA2 domains are shown in 
darker colors than the HA1 domains. (A) Density maps with glycans indicated in dark blue. Only the core 
N-acetyl-glucosamine groups are shown on the structure, therefore this only provides an indication of the 
abundance of glycosylation sites, not of potential differences in glycan composition between viral proteins. 
(B) Ribbon structures. Glycans are not included in this panel. Structures were visualized in UCSF ChimeraX 
v.1.6.1.81 using Protein Data Bank IDs 6VXX, 5FYK, 4FNK and 7LVW.
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Antibodies against HIV
Discovered in the 1980s as the causative agent of acquired immunodeficiency syndrome 
(AIDS), HIV-1 has led to a global epidemic. In 2022, there were approximately 1.3 million 
new HIV-1 infections and an estimated 630,000 people died from AIDS-related illnesses 
(https://www.unaids.org/). Despite over 40 years of intensive research, there is no effective 
vaccine or cure for this virus. Fortunately for the approximately 39 million people living 
with HIV-1, there is effective antiretroviral therapy (ART). When taken consistently, ART 
results in undetectable viral loads and prevents virus transmission82. However, ART can 
lead to long-term organ toxicity and HIV-1 viruses can evolve escape mutations83,84. 
Other factors contributing to the continuing spread of HIV-1 include poor access to 
therapy in some populations and unawareness of HIV-1 positivity. Therefore, the need 
for a vaccine or cure is evident. HIV-1 contains a single viral protein on its surface, the 
envelope glycoprotein (Env). HIV-1 Env is sparsely distributed and the only possible 
target of neutralizing antibodies85. It is a trimeric class I fusion protein consisting of three 
gp120 domains on top of three membrane-proximal gp41 domains86 (Fig. 5). Neutralizing 
antibodies generally target the native, pre-fusion conformation of HIV-1 Env. An important 
target for neutralizing antibodies is the CD4 (receptor) binding site, since blocking this site 
prevents cell entry87. However, this epitope is difficult to access and shielded by the dense 
glycan shield of the Env protein88,89. HIV-1 Env contains six other known epitopes that 
can be targets of broadly-reactive neutralizing antibodies: variable loops 1-2, the variable 
loop 3 glycan patch, the gp120-gp41 interface, the fusion peptide, the silent face and 
the membrane proximal external region90. Interestingly, glycans are also involved in the 
epitopes of several NAbs91. The immense genetic variety in HIV-1 Env protein sequences 
is a major hurdle for the development of a protective vaccine. Antibodies induced by a 
single strain are generally not protective against other strains of HIV-192. There are four 
groups of HIV-1 and group M is responsible for the global epidemic. Group M consists 
of 9 subtypes, each containing many different strains. Even in a single individual, different 
viral quasispecies are commonly found due to viral evolution caused by chronic infection93. 
During untreated HIV-1 infection, 10-30% of individuals develop broadly neutralizing 
antibodies (bnAbs) as their immune system chases behind the rapidly mutating virus over 
the course of years94,95. These bnAbs fail to eliminate the continuously mutating virus in 
the infected individual. However, they can protect from infection and delay viral rebound 
when passively administered to others96-98. Therefore, eliciting potent bnAbs is a major 
goal for the development of an eventual HIV-1 vaccine.

Antibodies against influenza virus and RSV
With distinct and overlapping winter seasonality, Respiratory syncytial virus (RSV) 
and influenza virus cause substantial morbidity and mortality. While healthy adults are 
minimally affected, both viruses are known to cause critical disease in young children, 
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the elderly and immunocompromised individuals. In the elderly, the mortality rate of RSV 
and influenza virus is comparable. In young children, seasonal influenza is less likely to be 
deadly while RSV can be life-threatening in the first two years of life99,100. 

RSV contains three viral membrane proteins: small hydrophobic protein (SH), glycoprotein 
(G) and fusion protein (F)101. Both G and F are essential for viral entry in cells. Since 
the F protein is more conserved and more immunogenic, this is the target of virtually 
all antiviral strategies under development for RSV102 (Fig. 5). RSV has two antigenic 
subtypes; A and B, which can be further divided in different clades. While RSV poses a 
significant health burden, there is no cure and supportive care is still the best medical 
response. RSV is known to employ several immune-modulatory mechanisms that disrupt 
the development of immunity. Because of this, protection from re-infection is limited 
despite initially high antibody titers103. After a vaccine trial in the 1960s that failed 
because the vaccine aggravated disease, progress towards a RSV vaccine has been slow. 
However, in 2023, two vaccines against RSV were approved by the United States Food 
and Drug Administration (FDA)104. Both are subunit vaccines based on the pre-fusion 
stabilized F protein and both vaccines are effective against RSV subtypes A and B105,106. 
Furthermore, a monoclonal antibody injection was recently approved for prophylactic 
use in infants107,108. 

Influenza virus contains three viral membrane proteins: hemagglutinin (HA), neuraminidase 
(NA) and matrix protein 2 (MP2). HA is required for cell entry, while NA is implicated in 
release of virus particles109,110. The HA protein consists of a stem region and a head region 
(Fig. 5). While the stem is more conserved, the head is immunodominant and contains the 
receptor binding domain111. There are four species of influenza virus, but only influenza A 
and influenza B are generally problematic in humans. Influenza virus strains can mutate, 
leading to substantial antigenic drift and escape from immune responses112. Because of 
this, the strong strain-specific immunity elicited by infection is often irrelevant. Various 
vaccines are available against influenza virus. These vaccines are periodically updated with 
specific strains that warrant protection in the upcoming season, as determined by the 
World Health Organization (WHO)113. However, it remains difficult to accurately predict 
future strains. As a result, the current vaccines are far from optimal despite the frequent 
updates114. For decades, there has been considerable effort to generate an universal 
influenza vaccine that would be protective against many different influenza viruses. 
Currently, several clinical studies for universal influenza vaccines are ongoing115. Beside 
antigenic drift, antigenic shifts also occur. An antigenic shift is a major recombination 
event which can lead to new viruses with pandemic potential that are dangerous for 
people of all ages. Influenza has caused four pandemics since the beginning of the 20th 
century due to antigenic shifts116.
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Antiviral antibodies to detect, control and prevent infections
Antibodies can play multiple roles in antiviral strategies. They can be used as markers for 
viral infections and, with sufficient quantity and specificity, they can prevent infections 
from occurring. When infection does take place, antibodies can control or induce clearance 
of viral infections. The role of antiviral antibodies in prevention, control and clearance is 
also not one-dimensional, and a polyfunctional antibody response is likely a desirable 
response.

The first step towards countering viral disease is obtaining knowledge on the occurrence 
of infections. Antibodies are attractive biomarkers because they are usually plentiful in 
serum and can be easily detected. Antibody-based diagnosis is standard practice for 
HIV-1, hepatitis viruses and flaviviruses, among others. Moreover, antibodies possess 
a variety of properties that can provide additional information on the infection course 
and severity, as has been demonstrated for HIV-1 and SARS-CoV-2117,118. When enough 
information is available, it may even be possible to predict disease course by studying 
temporaneous antibody responses. This can be highly informative when considering 
treatment options. Finally, antibody assays are widely applied and the most cost-effective 
approach for immune surveillance. Immune surveillance allows tracking of infection- and 
vaccine-mediated population immunity to different viruses. This can identify areas where 
interventions are needed119. Moreover, our continuously evolving knowledge on the 
roles of different antibody features such as type, localization and specificity can provide 
opportunities for additionally informative surveillance in the future. 

Antibodies are known to control viral infections by mediating clearance of virus particles 
and killing of infected cells. Antibodies can be passively administered to substitute or 
supplement an effective antibody response. This was shown to be effective for the control 
of Ebola and SARS-CoV-2 infection120,121. Antibody therapy is also being considered for 
HIV-1, and progress is being made to overcome the challenge of achieving prolonged 
viral suppression122. However, there is still much we can learn from mechanisms employed 
by our humoral immune system to naturally control and clear viral infections. Factors 
underlying either effective viral control or disease progression are still incompletely 
understood and new insights on these factors may lead to the development of better 
antibody-based treatment options. 

Finally, antibodies also play an important role in protection against viral infection123. At 
sufficient dose, specificity, and precise timing, passively administered antibodies can also 
protect from viral infection124. However, this approach still lacks large-scale feasibility in 
many settings. Prophylactic antibody treatment is currently mainly attractive in specific 
scenarios of high infection risk with associated high mortality or morbidity125. Antibodies 
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also indirectly play an important role in the design of protective vaccines, with the recently 
developed RSV and SARS-CoV-2 vaccines are prime examples126. Structure-based vaccine 
design has become a popular strategy where the vaccine antigen is designed with the 
induction of a specific antibody profile in mind. For HIV-1, this strategy is of considerable 
importance in ongoing research. Sequential immunization schedules are being tailored 
to take B cells by the hand and lead them precisely on the path towards development 
of the most effective (potent and broad) antibody response127. Increased knowledge on 
protection by antibodies is vital for the success of these strategies. As our knowledge on 
the many antiviral roles of antibodies grows, so will our toolset to fight viral disease, with 
the hope that one day even HIV-1 will no longer be a threat to human health. 

Scope of the thesis
The research in this thesis explores the many roles and functionalities of antiviral antibodies. 
In the first chapters of this thesis, we focus primarily on the role of antibodies as markers 
for respiratory virus infections and for population immunity screening. First, we measured 
different types of antibodies systemically and locally to clarify the value of studying mucosal 
antibodies in children. In chapter 2, we show an additional role for saliva antibodies in 
the detection of SARS-CoV-2 infection in children. Our outcomes demonstrate that a 
combination of serum and saliva testing provides the most complete overview of children 
with a SARS-CoV-2-specific antibody response. In chapter 3, we studied the prevalence 
of SARS-CoV-2-specific antibodies in children during a period of much higher infection 
prevalence. In this setting, we could clarify that most children that were positive for 
SARS-CoV-2 antibodies in serum were also positive for SARS-CoV-2 antibodies in saliva. 
Therefore, this chapter demonstrates that saliva antibody testing could be an attractive 
alternative for serum antibody testing to alleviate the need for venipuncture. Then, we 
broadened the scope to other human coronaviruses, influenza virus and RSV to study 
antibody levels after a period of reduced immune stimulation. Chapter 4 reveals that 
antibody levels to other respiratory viruses such as RSV decreased during the restrictive 
measures of the COVID-19 pandemic. This antibody waning was apparent in human milk, 
suggesting that young infants may have received less antibody-based protection from 
respiratory infections due to the COVID-19 pandemic restrictions.

Antibodies can play an important role in the control or clearance of viral infections and 
we sought to investigate which antibodies are optimally equipped to mediate this. In the 
next chapters of this thesis, we investigated the functionality and breadth of HIV-1 specific 
antibodies during natural infection and of SARS-CoV-2-specific antibodies after infection 
and vaccination. Additional information on the mechanisms of viral control during natural 
HIV-1 infection, which is achieved only in some individuals, could lead to valuable insights. 
In chapter 5, we clarify which HIV-1 antibody features are associated with naturally 
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delayed disease progression. In this chapter, we present a profile of antibody features and 
functions to aim for in vaccine design. Moreover, this profile illustrates targets for future 
antiviral therapy and cure strategies. Both HIV-1 and SARS-CoV-2 consist of many different 
strains and variants, although the extent of this diversity differs substantially. Therefore, 
the breadth of the antibody response is an important factor contributing to viral control 
and protection from infection. In chapter 6, we explored whether SARS-CoV-2 antibodies 
might confer cross-protection against other hCoVs. Accordingly, we determined the levels 
of antibodies that are cross-reactive with all other hCoVs after SARS-CoV-2 infection and 
vaccination. Our demonstration of detectable cross-reactivity, which is mainly targeting 
the S2 domain, provides a basis for further research towards a pan-coronavirus vaccine.

Even for highly effective vaccines, it remains important to investigate to what extent 
antibodies are induced in different populations as well as factors such as antibody 
functionality, localization, and breadth. Therefore, in the next chapters of this thesis, we 
investigated how antibodies develop after vaccination against SARS-CoV-2 and HIV-1 and 
how we can steer the antibody response by vaccine design. While vaccines against SARS-
CoV-2 have proven to be very effective, they are not equally immunogenic in all individuals 
in the population. It is vital to keep monitoring immune responses to new vaccines, 
especially for individuals with a compromised immune system. Chapter 7 describes the 
immunogenicity of SARS-CoV-2 vaccination in people living with well-controlled HIV-1. 
In this chapter we demonstrate that both B and T-cell immunity are comparable between 
people with HIV-1 and controls. In chapter 8, we describe the waning of the immune 
response following two SARS-CoV-2 vaccinations. We observed that individuals with 
inborn errors of immunity do have a similar waning speed of B and T-cell responses, but 
that lower initial responses in some cohorts coincide with low immune levels six months 
later. Furthermore, individuals without an antibody response did not benefit from an 
additional third vaccine. 

Even though current SARS-CoV-2 vaccines are highly effective, their efficacy was shown 
to be clearly reduced for novel SARS-CoV-2 variants that emerged over the past three 
years. Therefore, investigating ways to broaden vaccine-induced immunity is very relevant. 
Chapter 9 describes the breadth of the antibody response induced by a virosome-based 
vaccine presenting the SARS-CoV-2 beta variant Spike. This vaccine actually resulted in 
a more narrow antibody response compared to the ancestral Spike, demonstrating that 
informed immunogen choices are necessary to achieve desirable vaccine breadth. Next to 
quantity and breadth of the antibody response, the functionality of the antibody response 
is also an important aspect to consider in vaccine design. After earlier demonstration 
that antibody effector functions are positively associated with natural HIV-1 control in 
chapter 5, we investigated the extent to which effector function-mediating antibodies are 
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elicited by vaccination. In chapter 10, we demonstrate the induction of several antibody-
mediated effector functions by an HIV-1 Env trimer vaccine in a human clinical trial. One 
of the major findings was the observation of sex-specific differences in the magnitude of 
these responses. This chapter also shows that antibody-mediated effector functions can be 
predicted in animal models and that vaccine administration methods and adjuvant choice 
can modulate the functionality of the elicited antibodies.

Finally, in chapter 11, the results presented in this thesis, their implications and the 
remaining challenges are discussed. 
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