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Abstract: Weshow thatmotivicDonaldson–Thomas invariants of a symmetric quiverQ,
captured by the generating function PQ , can be encoded in another quiver Q(∞) of (al-
most always) infinite size, whose only arrows are loops, and whose generating func-
tion PQ(∞) is equal to PQ upon appropriate identification of generating parameters.
Consequences of this statement include a generalization of the proof of integrality
of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open
BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary
symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that
the already known combinatorial interpretation of invariants of m-loop quivers extends
to arbitrary symmetric quivers.
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1. Introduction and Summary

Quivers play a pivotal role inmathematics and physics. Formathematicians, an important
challenge is to understand the structure of moduli spaces of quiver representations.
This structure is characterized by various invariants, in particular motivic Donaldson–
Thomas (DT) invariants. In physics, one role of quivers is to characterize BPS states
in supersymmetric theories—in this context, nodes of a quiver correspond to certain
basic states, while arrows encode how these basic states may form more complicated
bound states. Such states are enumerated by (motivic) DT invariants (or appropriate
combinations thereof) and their multiplicities provide an important information about
a given theory.

In this paper we focus on symmetric quivers, meaning that for each arrow connecting
two different nodes, there is also an arrow in the opposite direction. Symmetric quivers
are understood better than generic quivers, and in particular it is known how to deter-
mine their (motivic) DT invariants [1–6]. Symmetric quivers are especially relevant in
the knots-quivers correspondence [7,8], where they are assigned to knots and encode
BPS spectra in associated 3-dimensionalN = 2 theories. All this provides an important
motivation for this work.

Themain result of this paper is the statement thatmotivicDT invariants of an arbitrary
symmetric quiver can be expressed in terms of motivic DT invariants of another quiver,
generically of infinite size, whose only arrows are loops (loops are arrows that connect
a node to itself). If we encode a structure of a quiver in a matrix C , whose entry Ci j is
the number of arrows from node i to j , then thematrix representing the latter (generically
infinite) quiver is diagonal—this is why we introduce the name diagonal quiver.

Definition 1. We call the quiver diagonal, if all of its arrows are loops, i.e. all nodes are
disconnected.

Recall that motivic DT invariants of a symmetric quiver Q are encoded in the fac-
torization of the quiver generating series PQ(x, q), whose detailed form is given in
(2), and which depends on a quiver matrix C , a number of generating parameters
(x1, . . . , x|Q0|) = x with each xi associated to the i’th node, and the motivic parameter
q. The main result of this paper, i.e. a relation between motivic DT invariants of a sym-
metric quiver and the corresponding diagonal quiver, follows in fact from the relation
between their generating functions, which is given in the following theorem. (Note that
matrices C that we consider may also have negative entries; to formalize this feature,
we introduce extended quivers, which are objects corresponding to such matrices.)

Theorem 2. For every symmetric extended quiver Q there exist a diagonal extended
quiver Q(∞) and a set of identifications {x (∞)

i = x (∞)
i (x1, . . . , x|Q0|, q)}

i∈Q(∞)
0

such
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that the motivic generating series of Q and Q(∞) are equal upon the identification of
generating parameters given by this set:

PQ(x, q) = PQ(∞) (x(∞), q)

∣
∣
∣
x (∞)
i =x (∞)

i (x1,...,x|Q0 |,q)
. (1)

This theorem has further interesting consequences. Note that motivic DT invariants
of a diagonal quiver are expressed in terms of motivic DT invariants of m-loop quivers,
i.e. quivers which consist of one node and m loops. Therefore, our main result relates
motivic DT invariants of an arbitrary symmetric quiver to those ofm-loop quivers. Since
invariants of the m-loop quiver, as well as its Cohomological Hall Algebra, are quite
well understood [4], it is of a great advantage to connect them to invariants of an arbi-
trary symmetric quiver. In particular, it is quite interesting to know the interpretation of
the factorization of the motivic generating series of an arbitrary quiver into generating
series form-loop quivers at the level of Cohomological Hall Algebras. On the other hand,
taking advantage of this factorization and the knowledge of classical DT invariants for
m-loop quivers, it would be of interest to derive expressions for classical DT invariants
for an arbitrary symmetric quiver that were proposed in [9]. Similarly, a combinatorial
interpretation of invariants of m-loop quivers extends now to an arbitrary symmetric
quiver. Relation to m-loop quivers also provides a novel proof of integrality of motivic
DT invariants of a symmetric quiver. This relation has also an interesting physical in-
terpretation in the context of 3-dimensional N = 2 theories. We discuss some of these
aspects in this paper and leave the rest for elucidation in future work.

The plan of the paper is as follows. In Sect. 2 we summarize relevant results for
symmetric quivers and generalize the description of m-loop case (with m ∈ N) to nega-
tive values-m. In Sect. 3 we present how to determine a diagonal quiver corresponding
to an arbitrary symmetric quiver. In Sect. 4 we discuss how to express (motivic) DT
invariants of a symmetric quiver in terms of invariants of the corresponding diagonal
quiver. In Sects. 5, 6 and 7 we illustrate our results respectively in simple examples,
examples related to the knots-quivers correspondence, and for the variant of this corre-
spondence related to FK invariants. In Appendix A we discuss combinatorial properties
of (−m)-loop quivers.

2. Symmetric Quivers and DT Invariants

In this section we recall relevant aspects of the study of symmetric quivers and (mo-
tivic) DT invariants. We also explain the generalization of quiver arrows that allows for
the negative entries in the adjacencymatrix and show that DT invariants of an (−m)-loop
quiver are in one-to-one correspondence with those of the (m + 1)-loop quiver.

2.1. Motivic generating series. Quiver Q is a pair (Q0, Q1), where Q0 is a set of vertices
and Q1 is a set of arrows i → j . We denote the number of arrows between vertices i and
j byCi j , and assemble these numbers into |Q0|×|Q0| adjancency matrixC . A quiver is
called symmetric if for each arrow between two different vertices there is also an arrow
in the opposite direction; this also means that Ci j = C ji .

For a given quiver, it is important to understand the structure of moduli spaces of its
representations, i.e. spaces of linear maps Cdi → C

d j , where each C
di is assigned to

vertex i . d = (d1, . . . , d|Q0|) ∈ N
|Q0| is called the dimension vector. Basic information

about such spaces is encoded in their Betti numbers or their generalizations, which are
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captured by motivic DT invariants �(d1,...,d|Q0 |),s = �d,s . For a symmetric quiver, these
invariants are encoded in the motivic generating series

PQ(x, q) =
∑

d

(−q)d·C ·d xd

(q2; q2)d =
∑

d1,...,d|Q0 |≥0

(−q)
∑|Q0 |

i, j=1 Ci j di d j

|Q0|∏

i=1

xdii
(q2; q2)di

,

(2)

where a generating parameter xi is assigned to each vertex i ∈ Q0 and

(α; q2)n =
n−1
∏

k=0

(1 − αq2k) (3)

is the q-Pochhammer symbol. The product decomposition of this series into quantum
dilogarithms determines �d,s as follows.1

PQ(x, q) =
∏

d,s

(xdqs; q2)�d,s∞

=
∏

d∈N|Q0 |\0

∏

s∈Z

∏

k≥0

(

1 − (xd11 · · · xd|Q0 |
|Q0| )q2k+s

)�(d1,...,d|Q0 |),s
. (4)

We also introduce a generating series

�(x, q) =
∑

d

�d(q) xd =
∑

d∈N|Q0 |\0

∑

s∈Z
�(d1,...,d|Q0 |),s x

d1
1 · · · xd|Q0 |

|Q0| q
s . (5)

A non-trivial fact is that invariants �(d1,...,d|Q0 |),s defined via the decomposition (4) are

integer, and multiplied by (−1) j+1 become positive [2,3].
In fact, in this work we consider a larger class of quiver matrices C , which may

also have negative entries. Note that such quiver matrices appear in the knots-quivers
correspondence [8]. To take such cases into account, we slightly generalize the usual
definition of a quiver.

Definition 3. Let C be an arbitrary integer symmetric matrix. We say that it defines
an extended quiver Q = (Q0, Q+

1 ∪ Q−
1 ) where Q0 is a set of nodes, Q+

1 is a set of
arrows and Q−

1 is a set of negative arrows, such that

• every Cii > 0 (Cii < 0) corresponds to |Cii | loops (negative loops) at the node i ,
• every Ci j > 0 (Ci j < 0) corresponds to |Ci j | pairs of arrows (negative arrows)
between i and j in Q.

As an example, consider extended quiver

Q = • • • , C =
⎡

⎣

0 1 0
1 0 −1
0 −1 0

⎤

⎦ . (6)

arrows is denoted by solid lines, whereas the pair of negative arrows is denoted by
dashed lines. Moreover, if all Ci j ≥ 0, we call Q a proper quiver (or simply quiver),
whereas if all Ci j ≤ 0, we call Q a negative quiver.

1 Note that in this paper the sign is included in the definition of �’s and the product form with quantum
dilogarithms serves a basis. In consequence, we have

∑

s∈Z �d,sq
s = ∑ j∈Z �′

d, j (−q) j+1, where �′
d, j is

the DT invariant in the notation from [8].
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2.2. Unlinking and linking. Basing on the study presented in [10], we know that for
any symmetric quiver Q with |Q0| nodes, there exists another symmetric quiver with
|Q0|+1 nodes, given by a removal (or an addition) of a pair of arrows in Q and addition
of an extra node.2 Importantly, motivic DT invariants for the two quivers are equal after
a proper identification of a variable for the new node. We call such operations unlinking
and linking, and define them as follows.

Definition 4 (Ekholm, Kucharski, Longhi). Consider a symmetric extended quiver Q
together with a set of generating parameters {xi }i∈Q0 and fix a, b ∈ Q0.

• The unlinking of nodes a, b is defined as a transformation of Q leading to a new
quiverQ(unlinked) and a set of identifications {x (unlinked)

i = x (unlinked)
i (x1, . . . , x|Q0|, q)}

such that:
– There is a new node n: Q(unlinked)

0 = Q0 ∪ {n}.
– The number of arrows of the new quiver is given by

C (unlinked)
ab = Cab − 1, C (unlinked)

nn = Caa + 2Cab + Cbb − 1,

C (unlinked)
in = Cai + Cbi − δai − δbi , C (unlinked)

i j = Ci j for all other cases,
(7)

where δi j is a Kronecker delta.
– The functions encoding the identification of generating parameters are given by

x (unlinked)
n (x1, . . . , x|Q0|, q) = q−1xaxb,

x (unlinked)
i (x1, . . . , x|Q0|, q) = xi ∀i 
= n.

(8)

• The linking of nodes a, b is defined as a transformation of Q leading to a new
extended quiver Q(linked) such that:
– There is a new node n: Q(linked)

0 = Q0 ∪ {n}.
– The number of arrows of the new quiver is given by

C (linked)
ab = Cab + 1, C (linked)

nn = Caa + 2Cab + Cbb,

C (linked)
in = Cai + Cbi , C (linked)

i j = Ci j for all other cases . (9)

– The functions encoding the identification of generating parameters are given by

x (linked)
n (x1, . . . , x|Q0|, q) = xaxb,

x (linked)
i (x1, . . . , x|Q0|, q) = xi ∀i 
= n.

(10)

Theorem 5 (Ekholm, Kucharski, Longhi). The operations of unlinking and linking both
preserve the motivic generating function of the quiver:

PQ(x, q) = PQ(unlinked) (x(unlinked), q)

∣
∣
∣
x (unlinked)
i =x (unlinked)

i (x1,...,x|Q0 |,q)
,

= PQ(linked) (x(linked), q)

∣
∣
∣
x (linked)
i =x (linked)

i (x1,...,x|Q0 |,q)
.

(11)

For brevity, in the rest of the paper we will write (un)linking whenever we mean
either unlinking or linking.

2 Essentially, this procedure is based on the enumerative-geometric interpretation of motivic DT generating
series as a generating series for open Gromov-Witten invariants, as noted in [11] and [10]
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2.3. m-loop quivers. In this section we summarize properties of m-loop quivers, i.e.
quivers that consist of one vertex and m ∈ N loops. In what follows we generalize some
properties of m-loop quivers to extended quivers (which may be thought of as possibly
having also negative number of loops, denoted by −m), and show that DT invariants of
a (−m)-loop quiver are in one-to-one correspondence with those of (m +1)-loop quiver.

An adjacency matrix of an m-loop quiver consists of a single entry, which counts
the number of loops:

Q =
· · ·

,C = [m ] .

(12)

The motivic generating series of such a quiver takes form

Pm-loop(x, q) =
∞
∑

d=0

(−q)md2

(q2; q2)d xd . (13)

From the perspective of this paper, an important feature of m-loop quivers is that they
play a role of building blocks of diagonal quivers.

The case m ≥ 0 has been studied in relation to moduli of quiver representations
[4,12], as well as counting of topological strings and quantum knot invariants [7,8].
A product decomposition (4) for the series (13), which encodes motivic Donaldson–
Thomas (DT) invariants �m

r,s ∈ Z [1–3], in this case takes form

Pm−loop(x, q) =
∏

r,s

(

xrqs; q2
)�m

r,s

∞ . (14)

We stress again that in our convention�m
r,s differ from the usual DT invariants considered

in the literature by absorbing a minus sign—we do so for future convenience. The
generating series of DT invariants (5) in this case takes form

�m-loop(x, q) =
∞
∑

r=1

�m
r (q) xr =

∑

r,s

�m
r,s x

rqs . (15)

The product (14) is finite only when m = 0 and m = 1:

P0-loop(x, q) = 1

(x; q2)∞ , P1-loop(x, q) = (qx; q2)∞ (16)

which corresponds to

�0-loop(x, q) = −x, �1-loop(x, q) = qx . (17)

Otherwise, the combinatorial structure encoded in DT invariants is quite involved and
the spectrum of DT invariants is infinite.

In [4] a combinatorial model which captures the behavior of DT invariants form-loop
quivers with m ≥ 0 was introduced. Equivalent model, which is especially convenient
for us, has been described in [13]—we discuss it in more detail in Appendix A.

Wewrite the generating function of DT invariants for a fewm-loop quivers in Table 1.
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Table 1. Generating functions of DT invariants for m-loop quivers with m ≥ 0

m �m-loop(x, q)

0 −x
1 qx
2 −q2x + q4x2 − q8x3 + O(x4)
3 q3x + q8x2 + (q11 + q13 + q17) x3 + O(x4)
4 −q4x + (q8 + q12)x2 − (q14 + q16 + q18 + q20 + q22 + q26) x3 + O(x4)
5 q5x + (q12 + q16)x2 + (q17 + q19 + q21 + 2q23 + q25 + q27 + q29+

q31 + q35) x3 + O(x4)

One can notice that

�m-loop(x, q) = (−1)m−1qmx + O(x2), (18)

which is true for any m ∈ N (in fact, as we will see in Lemma 6, it is true also for any
m ∈ Z).

Now our goal is to extend (13) to negative integers −m. This is important, since
an infinite diagonal quiver can have negative entries. We also note that it would be very
interesting to understand a possible representation-theoretic meaning of this generaliza-
tion. We proceed with an important lemma generalizing (14) to (−m)-loop quivers.

Lemma 6. For any m ∈ N, the (−m)-loop quiver generating series admits the following
form

P(−m)-loop(x, q) =
∏

r,s

(

xrqs; q2
)�−m

r,s

∞ , (19)

where

�−m
r (q) = −q2−r �m+1

r (q−1) . (20)

We provide two independent proofs of the above lemma. The one presented below
is rather elementary and involves a simple q-Pochhammer identity. The second one is
included in Appendix A and it shows how this structure is captured by the combinatorial
models from [4,13].

Proof. We use the following q-Pochhammer identity

(α; q2)d = (−1)dqd
2−dαd(α−1; q−2)d , (21)

where α is any formal variable, to obtain

P(−m)-loop(x, q
−1) =

∑

d≥0

(−q)md2

(q−2; q−2)d
xd

=
∑

d≥0

(−q)(m+1) d2

(q2; q2)d (qx)d = P(m+1)-loop(qx, q) . (22)

Applying this result to m = 0 gives

(x; q−2)∞ = 1

(q2x; q2)∞ . (23)
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Table 2. Generating functions of DT invariants for (−m)-loop quivers

−m �(−m)-loop(x, q)

−1 q−1x + q−4x2 + q−9x3 + O(x4)
−2 −q−2x − q−8x2 − (q−18 + q−14 + q−12) x3 + O(x4)
−3 q−3x − (q−12 + q−8) x2 + (q−27 + q−23 + q−21 + q−19 + q−17 + q−15) x3 + O(x4)
−4 −q−4x − (q−16 + q−12) x2 − (q−36 + q−32 + q−30 + q−28 + q−26 + 2q−24 + q−22+

q−20 + q−18) x3 + O(x4)

The latter in turn can be applied to every q-Pochhammer in (14), yielding the explicit
relation between the DT invariants (20). ��

We finish the discussion of (−m)-loop quivers by tabulating DT invariants for some
values of −m (Table 2). A complete combinatorial description of these invariants is
presented in Appendix A.

3. Quiver Diagonalization

In this section we describe what we call a quiver diagonalization. We start from an ex-
tended symmetric quiver Q and successively apply (un)linking operations, ending up
with a (generically infinite) diagonal extended quiver, denoted Q(∞). The only arrows
of Q(∞) are loops, and thus its motivic generating series factorizes as a product of
(±m)-loop quivers. We also discuss the uniqueness of this infinite quiver.

3.1. n-th degree approximation. We will construct Q(∞) order by order, so we start
from the following:

Definition 7. We say that a pair consisting of a symmetric extended quiver Q(n) and a set
of identifications {x (n)

i = x (n)
i (x1, . . . , x|Q0|, q)}

i∈Q(n)
0

is an n-th degree approximation

of a symmetric extended quiver Q, if

PQ(x, q) − PQ(n) (x(n), q)

∣
∣
∣
x (n)
i =x (n)

i (x1,...,x|Q0 |,q)
= O(xn+1), (24)

i.e. the difference contains only terms proportional to xd =∏|Q0|
i=1 xdii with total degree

|d| =∑i di ≥ n + 1.

Theorem 8. For every symmetric extended quiver Q and n ∈ Z+ there exists an n-th
degree approximation of Q such that the extended quiver Q(n) is diagonal and finite.

Proof. Let us fix a symmetric quiver Q. Looking at the general expression for themotivic
generating series

PQ(x, q) =
∑

d

(−q)d·C ·d xd

(q2; q2)d , (25)

we can see that the lowest degree contribution of each diagonal entry of the quiver
adjacency matrix to the quiver motivic generating series is

(−q)Cii
xi

(q2; q2)1 , (26)
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which is of total degree 1. On the other hand, the lowest degree contribution of each
non-diagonal entry to PQ is

(−q)2Ci j
xi x j

(q2; q2)21
, (27)

which is of total degree 2. From [10], we know that the lowest degree contribution of
the new diagonal entry Cnew.new that comes from the unlinking of Ci j is

(−q)Cnew.new
xnew

(q2; q2)1 = (−q)Cii+C j j+2Ci j−1 q
−1xi x j

(q2; q2)1 , (28)

whereas the one that comes from linking of Ci j is

(−q)Cnew.new
xnew

(q2; q2)1 = (−q)Cii+C j j+2Ci j
xi x j

(q2; q2)1 . (29)

In both cases it is of total degree 2, since we count the degree in the variables xi corre-
sponding to the initial quiver Q. We can generalize these considerations and write that
each non-diagonal entry Crs and the new entry coming from the unlinking or linking of
nodes r and s both have the lowest degree contribution equal to the sum of the lowest
degree contributions of nodes r and s. In consequence, the lowest degree of the contri-
bution to PQ—a positive integer—can be assigned to each entry of the adjacency matrix
C and matrices coming from the unlinking or linking procedure.

Now we will recursively construct C̃ (n) and C (n)—the adjacency matrices of quivers
Q̃(n) andQ(n)—assigning to each entry of thematrix the lowest degree of the contribution
to PQ . We start from assigning 1 to each diagonal entry and 2 to each non-diagonal entry
of C . In order to avoid confusion with matrix entries, we will write assigned lowest
degrees in brackets:

lowest_degree(C) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1) (2) (2) · · · (2)

(2) (1) (2)
. . .

...

(2) (2) (1)
. . . (2)

...
. . .

. . .
. . . (2)

(2) · · · (2) (2) (1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (30)

Then, we unlink all positive non-diagonal entries ofC and link all negative non-diagonal
entries. We denote the resulting matrix C̃ (1) and the corresponding change of vari-
ables x̃ (1)

i = x̃ (1)
i (x1, . . . , x|Q0|, q)

lowest_degree(C̃ (1)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1) (3) (3) · · · (3)
. . .

...
...

. . .
...

(1) (3) (3) · · · (3)
(3) · · · (3) (2) (4) · · · (4)

(3) · · · (3) (4) (2)
. . .

...
...

...
...

. . .
. . . (4)

(3) · · · (3) (4) · · · (4) (2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31)
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Moreover, we can see that the |Q0| × |Q0| top-left corner of matrix C̃ (1) is a diagonal
matrix which we will call C (1) (and the corresponding quiver Q(1)). Since it came from
unlinking or linking all non-diagonal entries of the matrix C , we have

C (1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C̃ (1)
11 0 · · · 0

0 C̃ (1)
22

. . .
...

...
. . .

. . . 0
0 · · · 0 C̃ (1)

|Q0||Q0|

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

C11 0 · · · 0

0 C22
. . .

...
...

. . .
. . . 0

0 · · · 0 C|Q0||Q0|

⎤

⎥
⎥
⎥
⎥
⎦

, x (1)
i = xi (32)

for all i ∈ Q0, and

PQ(x, q) = PQ̃(1) (x̃(1), q)

∣
∣
∣
x̃ (1)
i =x̃ (1)

i (x1,...,x|Q0 |,q)

= 1 +
|Q0|∑

i=1

(−q)Cii
xi

(q2; q2)1 + O(x2) = PQ(1) (x(1), q)

∣
∣
∣
x (1)
i =xi

+ O(x2),

(33)

so (Q(1), {x (1)
i = xi }i∈Q0) is a first degree approximation of Q.

Now we move to the induction step and assume that for some n ∈ Z+ there exists
an n-th degree approximation of Q formed by a finite diagonal quiver Q(n) and a change
of variables {x (n)

i = x (n)
i (x1, . . . , x|Q0|, q)}

i∈Q(n)
0
, as well as a finite symmetric quiver

Q̃(n) obtained from the (un)linking of Q, which contains Q(n) as a subquiver.3. In other
words

C (n) =

⎡

⎢
⎢
⎢
⎢
⎣

C̃ (n)
11 0 · · · 0

0 C̃ (n)
22

. . .
...

...
. . .

. . . 0
0 · · · 0 C̃ (n)

kk

⎤

⎥
⎥
⎥
⎥
⎦

,

C̃ (n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃ (n)
1,k+1 · · · C̃ (n)

1,|Q̃(n)
0 |

C (n)
...

...

C̃ (n)
k,k+1 · · · C̃ (n)

k,|Q̃(n)
0 |

C̃ (n)
1,k+1 · · · C̃ (n)

k,k+1 C̃ (n)
k+1,k+1 · · · C̃ (n)

k+1,|Q̃(n)
0 |

...
...

. . .
. . .

...

C̃ (n)

1k̃
· · · C̃ (n)

k,|Q̃(n)
0 | C̃

(n)

k+1,|Q̃(n)
0 | · · · C̃ (n)

|Q̃(n)
0 |,|Q̃(n)

0 |

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(34)

and we have

PQ(x, q) = PQ̃(n) (x̃(n), q)

∣
∣
∣
x̃ (n)
i =x̃ (n)

i (x1,...,x|Q0 |,q)

= PQ(n) (x(n), q)

∣
∣
∣
x (n)
i =x (n)

i (x1,...,x|Q0 |,q)
+ O(xn+1).

(35)

3 The change of variables {x̃(n)
i = x̃(n)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
follows from the changes of variables

associated to (un)linking, given in Definition 4.
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Moreover, from the previous considerations we know that the structure of lowest degrees
of contributions to PQ(n) for the entries of C̃ (n) reads

lowest_degree(C̃ (n)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1) (n + 2) · · · (n + 2) (n + 3) · · ·
. . .

...
. . .

...
...

(n) (2n) · · · (2n) (2n + 2) · · ·
(n + 2) · · · (2n) (n + 1) · · · (2n + 2) (2n + 3) · · ·

...
. . .

...
...

. . .
...

...

(n + 2) · · · (2n) (2n + 2) · · · (n + 1) (2n + 3) · · ·
(n + 3) · · · (2n + 2) (2n + 3) · · · (2n + 3) (n + 2) · · ·

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, in the next step we unlink all positive entries and link all negative entries
of C̃ (n) which are above diagonal terms of lowest degree n + 1. We denote the result-
ing quiver Q̃(n+1) and the change of variables x̃ (n+1)

i = x̃ (n+1)
i (x1, . . . , x|Q0|, q). Since

unlinking and linking preserve the quiver motivic generating series, we know that

PQ(x, q) = PQ̃(n+1) (x̃(n+1), q)

∣
∣
∣
x̃ (n+1)
i =x̃ (n+1)

i (x1,...,x|Q0 |,q)
. (36)

If we have l terms of lowest degree n + 1, the adjacency matrix of Q̃(n+1) is given by

C̃ (n+1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃ (n)
11 0 · · · 0 C̃ (n)

1,k+l+1 · · · C̃ (n)

1,|Q̃(n)
0 | · · ·

0 C̃ (n)
22

. . .
... C̃ (n)

2,k+l+1 · · · C̃ (n)

2,|Q̃(n)
0 | · · ·

...
. . .

. . . 0
...

. . .
...

0 · · · 0 C̃ (n)
k+l,k+l C̃ (n)

k+l,k+l+1 · · · C̃ (n)

k+l,|Q̃(n)
0 | · · ·

C̃ (n)
1,k+l+1 C̃ (n)

2,k+l+1 · · · C̃ (n)
k+l,k+l+1 C̃ (n)

k+l+1,k+l+1 · · · C̃ (n)

k+1,|Q̃(n)
0 | · · ·

...
...

. . .
...

...
. . .

...

C̃ (n)

1,|Q̃(n)
0 | C̃

(n)

2,|Q̃(n)
0 | · · · C̃ (n)

k+l,|Q̃(n)
0 | C̃ (n)

k+1,|Q̃(n)
0 | · · · C̃ (n)

|Q̃(n)
0 |,|Q̃(n)

0 | · · ·
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(37)

The entries denoted by rightmost and downmost dots come from the unlinking and
linking of all entries of C̃ (n) which are above diagonal terms of lowest degree n + 1
(so C̃ (n+1) is finite). Their lowest degrees are n + 2, n + 3, . . . 2n + 2, so they do not
alter PQ(n) up to total degree n + 1. The situation is the same for the entries above

C̃ (n)
k+l+1,k+l+1, . . . , C̃

(n)

|Q̃(n)
0 ||Q̃(n)

0 |—their lowest degrees are bigger than n + 2. Summing, up

we can write



1562 J. Jankowski, P. Kucharski, H. Larraguível, D. Noshchenko, P. Sułkowski

lowest_degree(C̃ (n+1)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1) (n + 3) · · ·
. . .

...

(n + 1) (2n + 3) · · ·
(n + 3) · · · (2n + 3) (n + 2) · · ·

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(38)

and from the analysis above we know that the lowest degree is non-decreasing when
we move right or down in C̃ (n+1). Let us denote the (k + l) × (k + l) top-left corner of
matrix C̃ (n+1) as

C (n+1) =

⎡

⎢
⎢
⎢
⎢
⎣

C̃ (n)
11 0 · · · 0

0 C̃ (n)
22

. . .
...

...
. . .

. . . 0
0 · · · 0 C̃ (n)

k+l,k+l

⎤

⎥
⎥
⎥
⎥
⎦

, (39)

and the change of variables as x (n+1)
i = x (n+1)

i (x1, . . . , x|Q0|, q). Then, we know that
for the corresponding finite diagonal quiver Q(n+1) we have

PQ(x, q) = PQ(n+1) (x(n+1), q)

∣
∣
∣
x (n+1)
i =x (n+1)

i (x1,...,x|Q0 |,q)
+ O(xn+2) , (40)

so (Q(n+1), {x (n+1)
i = x (n+1)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
) is an n+1-st degree approximation

of the initial quiver Q.
Since we checked the theorem for n = 1 and proved the induction step, we know

that it is valid for any n ∈ Z+. ��
Let us formalize the criteria that we used in the proof above, since they will be

important in other constructions:

Definition 9. We say that the sequence of linkings and unlinkings follows the rules of
diagonalization if:

• For each positive non-diagonal entry Ci j we apply unlinking until nodes i and j are
disconnected and Ci j = 0.
• For each negative non-diagonal entry Ci j we apply linking until nodes i and j are
disconnected and Ci j = 0.
• We unlink and link nodes of lowest degree n + 1 only if all nodes of lowest degree
n are disconnected, i.e. C (n) has already been constructed.

3.2. Infinite diagonal quiver—proof of Theorem 2. Having discussed the finite approx-
imations of Q, we are ready for a jump to infinity.

Definition 10. For any symmetric extended quiver Q, the recursive construction de-
scribed in the proof of Theorem 8 enables us to construct an infinite set of pairs

{(Q(n), {x (n)
i = x (n)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
)}n∈Z+ , (41)

such that (Q(n), {x (n)
i = x (n)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
) is the n-th degree approximation

of Q and
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Q(n) ⊆ Q(m), (42)

{x (n)
i = x (n)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
⊆ {x (m)

i = x (m)
i (x1, . . . , x|Q0|, q)}

i∈Q(m)
0

(43)

for all m ≥ n.4

The extended quiver Q(∞) is a union of all extended quivers approximating Q:

Q(∞) =
∞
⋃

n=1

Q(n), (44)

and the corresponding identification of the generating parameters is a union of all sets
of equations:

{x (∞)
i = x (∞)

i (x1, . . . , x|Q0|, q)}
i∈Q(∞)

0
=

∞
⋃

n=1

{x (n)
i = x (n)

i (x1, . . . , x|Q0|, q)}
i∈Q(n)

0
.

(45)

We will call Q(∞) the infinite diagonal quiver. From the definition it is clear that the in-
finite quantity is strictly speaking the degree of approximation, however in generic case
the size of Q(∞) is also infinite. Exceptions are described in Sect. 5.

Now we are ready to prove the main theorem of this paper, stating that the mo-
tivic generating series of Q and Q(∞) are equal upon the identification of generating
parameters given by (45).

Proof of Theorem 2 Assume that PQ(x, q) − PQ(∞) (x(∞), q)

∣
∣
∣
x (∞)
i =x (∞)

i (x1,...,x|Q0 |,q)
is

not zero. Then it is proportional to xd =∏|Q0|
i=1 xdii for some di ∈ N. However, we know

that (Q(∞), {x (∞)
i = x (∞)

i (x1, . . . , x|Q0|, q)}
i∈Q(∞)

0
) is a |d|-th degree approximation of

Q, since

Q(|d|) ⊆ Q(∞), (46)

{x (|d|)
i = x (|d|)

i (x1, . . . , x|Q0|, q)}
i∈Q(|d|)

0
⊆ {x (∞)

i = x (∞)
i (x1, . . . , x|Q0|, q)}

i∈Q(∞)
0

,

(47)

and for all i ∈ Q(∞)\Q(|d|) the total degree of x (∞)
i is at least |d| + 1. Therefore,

PQ(x, q) − PQ(∞) (x(∞), q)

∣
∣
∣
x (∞)
i =x (∞)

i (x1,...,x|Q0 |,q)
= O(x|d|+1) , (48)

which is a contradiction. ��

3.3. Uniqueness. In this section we show that if the adjacency matrix of the initial
quiver Q satisfies either Ci j ≥ 0 or Ci j ≤ 0, for all i, j = 1 . . . |Q0|, then the entries

4 We treat the superscripts (n) and (m) as decorationswhichmake the expressionsmore readable, but should

not interfere with the subset relation. For example, we treat sets {x(2)
n = q−1xaxb} and {x(3)

n = q−1xaxb} as
equal, so {x(2)

n = q−1xaxb} ⊆ {x(3)
n = q−1xaxb} is true.
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in the diagonal quiver matrices C (n) are unique, as long as they satisfy the rules of
diagonalization from Definition 9.

Lemma 11. For any proper or negative quiver Q and n ∈ Z+ the n-th approximate
quiver Q(n) obtained following the rules of diagonalization (Definition 9) is unique (up
to permutation corresponding to relabeling of nodes).

Proof. Weuse the induction in n and denote the nodes of Q(n) for any n as i ∈ {1, . . . , k},
keeping in mind that Q(n)

0 ⊆ Q(n+1)
0 . Without loss of generality we focus on the case of

Ci j ≥ 0. Given a symmetric quiver Q, its n-th approximate quiver Q(n) by definition
satisfies

PQ(x, q) − PQ(n) (x, q) = O(xn+1) . (49)

Alternatively, this can be written in terms of DT invariants as

�Q(x, q) − �Q(n) (x, q) = O(xn+1) . (50)

We have

C (1) =
⎡

⎢
⎣

C11
. . .

C|Q0||Q0|

⎤

⎥
⎦ , C (n) =

⎡

⎢
⎣

C11
. . .

Ckk

⎤

⎥
⎦ , (51)

where k > |Q0| and blank space denotes zero entries. The first degree approximation
to Q is defined from the main diagonal of C , therefore C (1) is manifestly unique. We
further assume that Q(n) is also unique. For (n + 1) we write

C (n+1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11
. . .

Ckk
Ck+1,k+1

. . .

Ck+l,k+l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C (n)

R(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (52)

where the first block is justC (n) and the rest is a quiver of size l, which we denoted R(n),
so that

�Q(n+1) (x, q) = �Q(n) (x, q) + �R(n) (x, q) . (53)

Q(n) is uniquely fixed by induction assumption and it contains all nodes with the lowest
degree ≤ n. The contributions from R(n) to PQ are of degree ≥ n + 1, but since we
are interested only in the n + 1-st approximation, only the lowest degree contributions
matter. Therefore, we need to check whether it is possible to have R′(n) 
= R(n) such
that lowest degree terms of �R′(n)(x, q) are equal to those of �R(n)(x, q). To clarify

that, we study the coefficient in front of the monomial x I = xi11 . . . x
i|Q0 |
|Q0| of total degree

n + 1 (the lowest degree) in �R(n) (x, q). Let us assume that this monomial arises from
the change of variables associated to the quiver parameters x j1 , . . . , x js in R(n). Since
x I is of total degree n + 1, each x jr (r ∈ {1, . . . , s}) originated from n unlinkings and
(8) implies that x jr = q−nx I . On the other hand, the generating series of DT invariants
of each C jr jr -loop quiver reads (18)
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�C jr jr -loop(x jr , q) = (−1)C jr jr −1qC jr jr x jr + O(xn+2) . (54)

Substituting x jr = q−nx I and summing over r we obtain the explicit form of the coef-
ficient:

coeffx I �R(n) (x, q) = q−n ((−1)C j1 j1−1qC j1 j1 + . . . + (−1)C js js−1qC js js ) . (55)

It is now evident that the only allowed operations which preserve the coefficient (55) are
permutations of the diagonal entries and thus the quiver R(n) is unique. This completes
the induction step, and the reasoning for linking negative quivers follows exactly the same
path. Note that if linking and unlinking are combined, this argument does not work,
since then we do not get the overall factor (like q−n in (55)) and one could smartly trade
the number of linkings, unlinkings and loops to get the same power of q. ��

We can easily generalize this result to approximations of an infinite degree.

Theorem 12. For any proper or negative quiver Q the infinite diagonal quiver Q(∞) ob-
tained following the rules of diagonalization (Definition 9) is unique (up to permutation
corresponding to relabeling of nodes).

Proof. Given that Q(n) is unique for every n ∈ Z+, we make use of the definition of
Q(∞) via set-theoretic union (44), taking into account identifications (45), which proves
the statement. ��

It remains unclear whether the infinite diagonal quiver is unique for an extended
quiver with both positive and negative entries. This important question will be taken into
account in the future. However, since such extended quivers occur frequently in many
physical applications, we take a look at a few of them in Sect. 6 and 7.

4. DT Invariants from Infinite Diagonal Quivers

In this section we show how we can apply the knowledge of infinite diagonal quivers
to obtain a novel way of analyzing DT invariants. This framework leads to a proof of
integrality of DT invariants for any extended quiver, as well as interesting physical and
algebraic interpretations.

4.1. New proof of integrality of DT invariants. At this stage of our journey we have
discovered two important facts:

• The motivic generating series of any m-loop quiver can be factorized into q-
Pochhammers with integer powers (Lemma 6 combined with (14)).

• The motivic generating series of any symmetric extended quiver can be factorized
into an infinite product of the motivic generating series of m-loop quivers (Theo-
rem 2).

Combining the above statements we arrive at

Theorem 13. For any extended symmetric quiver Q (see Definition 3), its motivic DT
invariant admits the following decomposition:

�Q(x1, . . . , x|Q0|, q) =
∑

i∈Q(∞)
0

�
C(∞)
i i -loop

(x (∞)
i (x1, . . . , x|Q0|), q) . (56)

Moreover, if Q is a proper or negative quiver, then this decomposition is unique.
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Proof. Theorem 2 tells us that for every formal symmetric quiver Q = (Q0, Q1) there
exists an infinite diagonal quiver Q(∞) such that PQ = PQ(∞) . Therefore, motivic
generating series for Q can be written as a product of m-loop quiver series:

PQ(x, q) =
∏

i∈Q(∞)
0

P
C(∞)
i i -loop

(x (∞)
i , q)

∣
∣
∣
x (∞)
i =x (∞)

i (x1,...,x|Q0 |,q)
. (57)

Each term in the above product corresponds to a diagonal entry in C (∞), and we can
express motivic DT invariants of Q as a linear combination of m-loop quiver invariants,
which yields the statement (as uniqueness follows from Theorem 12). ��
Corollary 14. For any extended quiver Q, its motivic DT invariants are integer.

Proof. It is left to apply the results from Sect. 2.3, which, combined with Eq. (56),
confirm integrality of �Q in terms of DT invariants for m-loop quivers. ��

An important implication of Theorem 13 is that the DT invariants for an arbitrary
symmetric quiver obtain a purely combinatorial description. Indeed, Eq. (56) shows
that motivic DT invariants of Q are essentially captured by the construction of the DT
invariants for m-loop quiver given in [4,13] along with the data coming from unlinking
and linking. In practice, �d,s for a given vector d can be computed in two steps:

• Finding the |d|-th approximation quiver Q(|d|) (see Sect. 3.1), which is diagonal by
construction, and whose motivic generating series are given by a product of m-loop
quivers.

• Computing themotivicDT invariants�(|d|)
Q (x1, . . . , x|Q0|, q) forQ(|d|) using the for-

mulas for m-loop quivers, .

Note that the definition of approximate quiver implies that

�Q(x1, . . . , x|Q0|, q) − �
(|d|)
Q (x1, . . . , x|Q0|, q) = O(xd+1) . (58)

This allows to identify �d ′,s = �
(|d|)
d ′,s for any monomial of total degree |d ′| ≤ |d|.

In particular, since Q(|d|) is a finite diagonal quiver, there are only finitely many DT
invariants�d ′,s 
= 0 for a fixed d ′. One can then use the recurrence relations of Ref. [13]
to directly compute the C (|d|)

i i -loop quivers invariants. Afterwards, one unfolds changes
of variables used in (un)linkings, and identifies the desired DT invariants in order to find
�

(|d|)
Q and thus �Q up to a given order in x1, . . . , x|Q0|. We discuss these steps in detail

in examples in Sect. 5.
Summing up, the above procedure allows for an effective computational approach

for the DT invariants of any symmetric quiver. As a useful application one can resort
to the knots-quivers correspondence [7,8] and compute the LMOV invariants of knots,
see Sect. 6. Another application, which uses the fact that quivers can be related to
the FK invariants of knot complements [14], is discussed in Sect. 7.

4.2. Physical and algebraic interpretations. Let us study the physical and algebraic
interpretations of the results obtained in previous sections.

Following [11], we know that to every symmetric quiver Q we can assign a 3dN = 2
gauge theory T [Q] using the following rules:
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• Gauge group: U (1)(1) × · · · ×U (1)(|Q0|)
• Matter: chiral fields �i charged δi j under U (1)( j)

• Chern-Simons (CS) couplings: κeff
i j = Ci j

• Fayet-Ilioupoulos (FI) couplings: ζi = log
(

(−1)Cii xi
)

To that end, anm-loop quiver corresponds to aU (1) levelm Chern-Simons gauge theory
coupled to a single chiral superfield.More concretely, the partition function of this theory
is equal to the motivic generating series Pm-loop(x, q) after appropriate identification of
variables, as shown in [11].

Theorem 2 implies that with appropriate choice of levels and FI couplings (corre-
sponding to infinite diagonal quiver data), the product of simple U (1) Chern-Simons
theories described above can reproduce the partition function of theory T [Q] for any
symmetric quiver Q. In other words, the theory T [Q(∞)] corresponding to infinite di-
agonal quiver is dual to T [Q]. It is possible because the whole structure encoded in
the CS couplings connecting different U (1) theories (corresponding to quiver arrows)
is translated into FI couplings (corresponding to changes of variables).

The duality between T [Q] and T [Q(∞)] implies the equality of their BPS spectra,
however they are built in different ways. In case of Q, we have basic states corresponding
to quiver nodes and the their bound states coming from interactions encoded in the quiver
arrows [11]. On the other hand, the BPS spectrum of Q(∞) consists only of basic states,
which are non-interacting from the perspective of CS couplings, but become interdepen-
dent via FI couplings. One can also view T [Q] and T [Q(∞)] as two ends of the chain of
dualities between 3d N = 2 theories. Each duality corresponds to unlinking or linking
one pair of nodes [10]. Physically, it means that one bound state and the corresponding
CS coupling are translated into a basic state and the FI coupling. Since the BPS spec-
trum of T [Q] is usually infinite, so is the chain of dualities coming from unlinking and
liniking. However, we can group these dualities into two-level structure.

The first level comes from the fact that whenever we have Ci j > 1 pairs of arrows
connecting nodes i and j with Cii and C j j loops respectively, then unliking leads to
a new node with Cii + C j j + 2Ci j − 1 loops and a corresponding quiver variable given
by q−1xi x j . However, we still have Ci j − 1 > 0 pairs of arrows to unlink. The change
of variables remains the same, but now there are Cii + C j j + 2Ci j − 3 loops at the new
node. In consequence, unlinking Ci j > 1 leads to a sequence of Ci j new nodes with
the number of loops following the double factorial pattern:

Cii + C j j + 2Ci j − 1, Cii + C j j + 2Ci j − 3,

Cii + C j j + 2Ci j − 5, . . . , Cii + C j j + 1 (59)

(the corresponding quiver variables are all given by q−1xi x j ). In analogy, linking Ci j <

−1 leads to a sequence of |Ci j | new nodes with the number of loops following the double
factorial pattern:

Cii + C j j + 2Ci j , Cii + C j j + 2Ci j + 2, Cii + C j j + 2Ci j + 4, . . . , Cii + C j j − 2

(60)

(the corresponding quiver variables are all given by xi x j ).
The second level of the structure of the chain of dualities is given by the lowest degree

of quiver nodes. We start from Q where all nodes are of lowest degree 1. After unlinking
(or linking) them, we obtain nodes of lowest degree 2. Unlinking the arrows connecting
the new nodes with the old ones produces nodes of lowest degree 3, and so on. This
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grouping is clearly visible in the proof of Theorem 8, since the difference between Q(n)

and Q(n+1) lies exactly in nodes of lowest degree n + 1. We will see these two levels
of the structure of the chain of dualities in various examples of quivers in the following
sections.

Finally, we mention the intriguing possibility for an algebraic interpretation of The-
orem 13. In [15], certain Lie superalgebra gQ , whose Koszul dual is presumably related
to Cohomological Hall algebra of Kontsevich and Soibelman [1], has been defined for
every symmetric quiver. gQ has generators bi,k for i = 1 . . . |Q0|, subject to relations
for all i, j = 1 . . . |Q0| and k, l ∈ N:

[bi,k, bi,l ] = 0, Cii = 0,
Cii−1
∑

p=0

(−1)p
(
Cii − 1

p

)

[bi,k−p, bi,l+p] = 0, Cii ≥ 1,

Ci j
∑

p=0

(−1)p
(
Ci j

p

)

[bi,k−p, b j,l+p] = 0, i 
= j. (61)

The main outcome of this construction is that the Poincare series for gQ coincides
with the motivic DT invariant of Q, up to an overall factor. In this context (56) suggests
that gQ admits a decomposition into “elementary” Lie algebras associated to m-loop
quivers. Furthermore, we expect a relation between (un)linking and the Lie bracket.
These considerations deserve a thorough study, especially in relation to negative quivers
(for example, in the context of the vertex operator description in [15]), and we leave it
for future work.

5. Simple Examples

In the following part of the paper we illustrate our results in explicit examples. To
start with, in this section we consider simple quivers with one or two pairs of arrows
connecting different nodes. In the next sections we discuss examples related to the knots-
quivers correspondence.

While examples considered in this paper are relatively uncomplicated andwe are able
to analyze them explicitly, in analysis of more intricate cases one could take advantage
of prequivers [16], which encode a part of the spectrum and simplify computations by
dividing it in steps.5

5.1. Symmetric A2 quiver. The simplest example of the quiver diagonalization corre-
sponds to the unlinking of the single pair of arrows in the symmetrization of the A2
Dynkin quiver. The quiver and its adjacency matrix are given by

Q = • • , C =
[

0 1
1 0

]

, (62)

and we will call it a symmetric A2 quiver.

5 The idea of this approach follows from the observation that (un)linking and splitting of prequiver nodes
commute. One way to understand this is to notice that unlinking does not affect the diagonal terms, while
splitting acts solely on them.
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Let us follow Sect. 3.1 and construct all n-th degree approximations of Q. From (32)
we immediately find that

C (1) =
[

0 0
0 0

]

= diag(0, 0), x (1)
1 = x1, x (1)

2 = x2, (63)

and Eq. (33) takes a very simple form:

PQ(x, q) = 1 +
x1

1 − q2
+

x2
1 − q2

+ O(x2). (64)

We can obtain the matrix C̃ (1) and the change of variables x̃ (1)
i = x̃ (1)

i (x1, x2, q) by
applying the unlinking operation described in Definition 4 and Theorem 5:

C̃ (1) =
⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ = diag(0, 0, 1), x̃ (1)
1 = x1, x̃ (1)

2 = x2, x̃ (1)
3 = q−1x1x2.

(65)

We can see that Q(1) is a diagonal subquiver of Q̃(1) and the lowest degrees of contri-
butions to PQ̃(1) for entries of C̃ (1) are given by

lowest_degree(C̃ (1)) =
⎡

⎣

(1) (2) (3)
(2) (1) (3)
(3) (3) (2)

⎤

⎦ . (66)

In the next step, we would normally unlink the new node from the initial ones, but we
can see that Q̃(1) is already diagonal. In consequence, we have

C (n) =
⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ = diag
(

0, 0 ��
�1

)

, x (n)
1 = x1, x (n)

2 = x2, x (n)
3 = q−1x1x2

(67)

for all n > 1, where the dashed line separates the nodes which belong to n-th and n+1-st
approximations. Following the Definition 10, it leads to

C (∞) =
⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ = diag
(

0, 0 ��
�1
)

, x (∞)
1 = x1, x (∞)

2 = x2, x (∞)
3 = q−1x1x2.

(68)

Having found Q(∞), we can construct the BPS spectrum of Q using our knowledge
about m-loop quivers, described in Sect. 4. In the case of symmetric A2 quiver, Eq. (57)
takes form

PQ(x, q) = P0-loop(x1, q)P0-loop(x2, q)P1-loop(q
−1x1x2, q). (69)

From Table 1 we can immediately read off that

PQ(x, q) = (x1; q2)−1∞ (x2; q2)−1∞ (x1x2; q2)+1∞, (70)
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Table 3. Q(∞) data for symmetric A2 quiver

m Unlinkings
0 x1, x2
1 (x1, x2)

so DT invariants are given by

�(x, q) = −x1 − x2 + x1x2 ⇔ �(1,0),0 = −1, �(0,1),0 = −1, �(1,1),0 = +1.

(71)

The symmetric A2 quiver is exceptional in a twofold sense. First, Q(∞) is finite, which
comes from the fact that the pair (Q(2), x (2)

i = x (2)
i (x1, x2, q)) is not only a seconddegree

approximation of Q, but also gives an exact expression for themotivic generating series:

PQ(x, q) = PQ(2) (x(2), q)

∣
∣
∣
x (2)
i =x (2)

i (x1,x2,q)
. (72)

Second, Q(∞) is not only diagonal, but all nodes have either zero or one loop. This leads
to a finite BPS spectrum consisting of 3 states. In this simple case we can see clearly
that after diagonalization the bound state arising from the interaction of nodes 1 and 2
(represented by the pair of arrows) becomes a basic state associated to the node 3.

To summarize, the unlinking data which generate the infinite diagonal quiver in this
example can be compactly presented in the table form (see Table 3).

The first row encodes two copies of 0-loop quiver, each corresponding to xi ; the sec-
ond row is one copy of 1-loop quiver and (x1, x2) denotes the node created at unlinking
of the initial pair of nodes. Therefore, by looking at this table one can immediately
write down the factorized form (69). This phenomenon is closely related to the pen-
tagon relation [1], which was noticed in [10]. Analogous features can be stated for more
complicated quivers, as we will discuss in the upcoming paper [17].

5.2. Symmetric A3 quiver. The next examplewe consider is a symmetrization ofDynkin
quiver A3:

Q = • • • , C =
⎡

⎣

0 1 0
1 0 1
0 1 0

⎤

⎦ , x =
⎡

⎣

x1
x2
x3

⎤

⎦ . (73)

Unlike the A2 case, here the set of DT invariants is infinite, and so Q(∞) has infinitely
many nodes. Nevertheless, we can take advantage of the construction of n-th degree
approximation quivers Q(n) to compute Q(∞) up to any given order.

Let us beginwith the first degree approximation.We can consecutively unlink (x1, x2)
and (x2, x3) (pairs of arrows that will be unlinked are highlighted in red)

C = 0 1 0
1 0 1
0 1 0

⎡

⎢
⎣

⎤

⎥
⎦ →

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 1

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

→
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 1 1
0 0 0 1 1

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

= C̃ (1) , (74)

where the last two nodes coming fromunlinking correspond to quiver variables q−1x1x2
and q−1x2x3. This gives the first degree approximation
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C (1) =
⎡

⎣

0 0 0
0 0 0
0 0 0

⎤

⎦ , x (1)
1 = x1, x (1)

2 = x2, x (1)
3 = x3. (75)

In order to get the second degree approximation, we start from C̃ (1) and perform
unlinking at (x3, (x1, x2)), i.e. we unlink the node corresponding to x3 and the node
that came from unlinking x1 and x2. In the second step6 we perform unlinking at
(x3, (x1, x2)), which gives C̃ (2):

C̃ (1) =
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 1 1
0 0 0 1 1

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

→

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 1
0 0 0 1 1 2 2
0 0 0 1 1 2 3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C̃ (2) .

(76)
The top-left 5×5 subquiver is diagonal and contains all entries of lowest degree≤ 2,

therefore it provides the second degree approximation of Q:

C (2) =

⎡

⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

,
x (2)
1 = x1, x (2)

2 = x2, x (2)
3 = x3,

x (2)
4 = q−1x1x2, x (2)

5 = q−1x2x3.
(77)

Likewise, to get the cubic approximation we unlink all nodes of lowest degree ≤ 3.
They are inside the dashed submatrix of C̃ (2) (the bottom-right entry 3 corresponding to
x̃ (2)
7 is of lowest degree 4):

C̃ (2) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 1
0 0 0 1 1 2 2
0 0 0 1 1 2 3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 2 2 2
0 0 0 1 1 2 3 3
0 0 0 1 1 2 3 4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1 1
0 0 0 0 0 2 2 2 2
0 0 0 1 1 2 3 3 3
0 0 0 1 1 2 3 4 3
0 0 0 0 1 2 3 3 4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C̃ (3) .

(78)

6 The ordering of the steps corresponding to the same degree is arbitrary.
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This gives

C (3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
x (3)
1 = x1, x (3)

2 = x2, x (3)
3 = x3,

x (3)
4 = q−1x1x2, x (3)

5 = q−1x2x3, x (3)
6 = q−2x1x2x3.

(79)

This allows us to write the cubic approximation (79) as

PQ(3) (x, q) = P0-loop(x1, q) P0-loop(x2, q) P0-loop(x3, q) P1-loop(q
−1x1x2, q)

× P1-loop(q
−1x2x3, q) P2-loop(q

−2x1x2x3, q)

= (x1; q2)−1∞ (x2; q2)−1∞ (x3; q2)−1∞ (x1x2; q2)∞
× (x2x3; q2)∞ [(x1x2x3; q2)−1∞ × (1 + O(x4))],

(80)

where (1 + O(x4)) factor comes from infinite q-Pochhammers with the first entry of
total degree 4 or higher. The generating series of corresponding DT invariant reads

�(x, q) = −x1 − x2 − x3 + x1x2 + x2x3 − x1x2x3 + O(x4) . (81)

Summing up, by taking the union of n-th degree approximations we obtain the infinite
diagonal quiver:

C (∞) = diag
(

0, 0, 0 ��
�1, 1 ��
�2 ��
�3 ��
�4, 4 ��
�5, 5, . . .

)

x(∞) = (x1, x2, x3 ��
�q−1x1x2, q

−1x2x3 ��
�q−2x1x2x3 ��
�q−3x1x

2
2 x3 ��

�

q−4x1x
2
2 x

2
3 , q

−4x1x
2
2 x

2
3 ��

�q−5x21 x
3
2 x3, q

−5x1x
3
2 x

2
3 , . . .

)

(82)

Last but not least, in Table 4 we provide a slightly different presentation of the infinite
diagonal quiver (82), where various contributions from one-vertex quivers up toC (∞)

i i ≤
8 are segregated. We believe that this data can be ultimately related to the poset of
generators of the Lie algebra gQ (see Sect. 4.2), and leave it for future research.

6. Quivers Corresponding to Knots

The knots-quivers correspondence, as its name indicates, expresses various characteris-
tics of knots in terms of those of corresponding symmetric quivers. In particular, it relates
the motivic generating series and motivic DT invariants of a quiver to the generating
series of HOMFLY-PT polynomials and Labastida–Mariño–Ooguri–Vafa (LMOV) in-
variants of a knot. The appearance of symmetric quivers in this context is an important
motivation for our work. Understanding properties of such quivers enables to understand
properties of corresponding knots, as well as properties of brane systems in which knots
and quivers can be engineered and related to each other.

The knots-quivers correspondence was discovered in [7,8]. Further developments
and elucidations were presented in [9–11,16,18–20]. In [21,22] the correspondence
was generalized to toric Calabi-Yau manifolds other than the conifold, and in [14,23]
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Table 4. Q(∞) data for symmetric A3 quiver up to C∞
i i ≤ 8. The rows encode all C(∞)

i i -loop quivers
contributing to the infinite factorized form (57), and the variable x for each copy of such a quiver is given by
the bracket expression in the second column from identification (xi , x j ) � q−1xi x j

m unlinkings
0 x1, x2, x3
1 (x1, x2), (x2, x3)
2 (x3, (x1, x2))
3 ((x1, x2), (x2, x3))
4 ((x1, x2), (x3, (x1, x2))), ((x2, x3), (x3, (x1, x2)))
5 ((x1, x2), ((x1, x2), (x2, x3))), ((x2, x3), ((x1, x2), (x2, x3)))
6 ((x3, (x1, x2)), ((x1, x2), (x2, x3))), ((x1, x2), ((x1, x2), (x3, (x1, x2))))

((x2, x3), ((x1, x2), (x3, (x1, x2)))), ((x2, x3), ((x2, x3), (x3, (x1, x2))))
7 ((x1, x2), ((x1, x2), ((x1, x2), (x2, x3)))), ((x2, x3), ((x1, x2), ((x1, x2), (x2, x3))))

((x2, x3), ((x2, x3), ((x1, x2), (x2, x3)))), ((x3, (x1, x2)), ((x1, x2), (x3, (x1, x2))))
((x3, (x1, x2)), ((x2, x3), (x3, (x1, x2))))

8 ((x3, (x1, x2)), ((x1, x2), (x2, x3))), ((x3, (x1, x2)), ((x1, x2), ((x1, x2), (x2, x3))))
((x3, (x1, x2)), ((x2, x3), ((x1, x2), (x2, x3)))),
(((x1, x2), (x2, x3)), ((x1, x2), (x3, (x1, x2)))),
(((x1, x2), (x2, x3)), ((x2, x3), (x3, (x1, x2))))

its version for 3-manifolds that are knot complements was proposed. Diagonalization of
quivers discussed in this paper may be of interest in all these contexts.

For a knot K ⊂ S3, the HOMFLY-PT polynomial PK (a, q) [24,25] is a topolog-
ical invariant which can be calculated via the skein relation. More generally, colored
HOMFLY-PT polynomials PK ,R(a, q) are similar polynomial knot invariants that de-
pend also on a representation R of the Lie algebra u(N ). (In this setting, the orig-
inal HOMFLY-PT polynomials correspond to the fundamental representation.) From
the physical point of view, PK ,R(a, q) is the expectation value of the knot viewed as
a Wilson line in U(N ) Chern-Simons gauge theory [26]. The HOMFLY-PT generating
series is given by

PK (λ, a, q) =
∞
∑

r=0

PK ,r (a, q)λ−r , (83)

where PK ,r (a, q) are HOMFLY-PT polynomials colored by the totally symmetric rep-
resentations Sr . The unusual expansion variable with the negative power comes from
the necessity of resolving the clash of different conventions present in the literature and
avoiding the confusion with the quiver variables. For more detailed discussion of all
conventions see [14, Sect. 2.1] and references therein.

The LMOV invariants Nr,i, j [27–29] are numbers that give the following expression
for the HOMFLY-PT generating series:7

PK (λ, a, q) =
∏

r≥1

∏

i, j∈Z
(λ−r aiq j ; q2)Nr,i, j∞ (84)

We can assemble Nr,i, j into the LMOV generating series N (λ, a, q) = ∑

r,i, j Nr,i, j

λ−r aiq j . From the physical point of view, LMOV invariants count BPS states in the
effective 3d N = 2 theory on the world-volume of M5-brane wrapped on the knot
conormal inside the resolved conifold [27].

7 Note that in this paper the product form with quantum dilogarithms serves as a basis. In consequence, we
have

∑

j∈Z Nr,i, j q
j =∑k∈Z N ′

r,i,kq
k+1, where N ′

r,i,k is the LMOV invariant in the notation from [8].
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The knots-quivers correspondence [7,8] is a conjecture that for each knot K there
exist a quiver Q and integers ni , ai , li , i ∈ Q0, such that

PK (λ, a, q) = PQ(x, q)
∣
∣
xi=λni aai qli . (85)

If we substitute (84) and (4), we obtain theknots-quivers correspondence at the level of
LMOV and DT invariants:

N (λ, a, q) = �(x, q)|xi=λni aai qli . (86)

Since DT invariants are integer, this equation implies integrality of Nr,i, j—this means
that the knots-quivers correspondence automatically proves the LMOV conjecture.

In the rest of this section we apply the framework of infinite diagonal quivers and
m-loop quivers to the knots-quivers correspondence. Quivers corresponding to knots are
in general much more complicated than examples from the previous section. In conse-
quence, we will focus on the reduced normalization8 and simplest nontrivial examples,
namely the trefoil and figure-eight. Moreover, even in these cases the matrix C̃ (2) ex-
ceeds 50×50 entries. Therefore, we will compute C (2) and, if possible, C (3) in the most
efficient way, (un)liking only those non-diagonal entries that are necessary.

6.1. Trefoil knot. In this case the adjacency matrix and the change of variables are given
by [8]

C =
⎡

⎣

0 1 1
1 2 2
1 2 3

⎤

⎦ ,

⎡

⎣

x1
x2
x3

⎤

⎦ =
⎡

⎣

λ−1a2q−2

λ−1a2

λ−1a4q−3

⎤

⎦ . (87)

The first degree approximation is immediate, as it coincides with the diagonal of
the initial quiver (87) with x(1) = (x1, x2, x3). The second order approximaton comes
from unlinking all arrows in (87), which gives

C̃ (1) =

0 0 0 0 0 0 0
0 2 0 2 2 3 2
0 0 3 3 3 4 3
0 2 3 3 3 5 5
0 2 3 3 4 5 5
0 3 4 5 5 8 7
0 2 3 5 5 7 6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (88)

Since the seven diagonal entries of C̃ (1) are the only ones which contribute to quadratic
terms xi x j in PQ(x, q), we do not have to write the whole C̃ (2), but we can conclude
that

C (2) = diag
(

0, 2, 3 ��
�3, 4, 8, 6

)

x(2) =
(

x1, x2, x3 ��
�q−1x1x2, q

−1x1x3, q
−1x2x3, q

−1x2x3
)

.
(89)

8 For the discussion of the normalizations of HOMFLY-PT polynomials see [8, Sect. 4.5]. The fact that we
use the reduced normalization implies that the BPS spectrum we consider is a subset of the BPS spectrum of
the unreduced case built from the half of the generators. We do it to avoid very tedious computations, but all
our methods can be applied also in the unreduced normalization.
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Following Sect. 4.1 and expanding the product of Cii -loop quivers, we obtain

�(x, q) = − x1 − q2x2 + q3x3

+ q2x1x2 − q3x1x3 + q4x22 − q5x2x3 − q7x2x3 + q8x23 + O
(

x3
)

. (90)

The application of the change of variables (87) translates DT invariants into LMOV
invariants:

N (λ, a, q) = −a2q−2
(

1 + a2q5 + q6
)

λ−1 + a4q
(

a2 + q
) (

1 + q6 + a2q7
)

λ−2

+O
(

λ−3
)

.

In order to find the third degree approximation, we have to unlink all arrows between
the four new nodes corresponding to diagonal entries (3, 4, 8, 6) and the initial triple
corresponding to (0, 2, 3). For clarity, we highlight the unlinked non-diagonal entries in
red:

C̃ (1) =

0 0 0 0 0 0 0
0 2 0 2 2 3 2
0 0 3 3 3 4 3
0 2 3 3 3 5 5
0 2 3 3 4 5 5
0 3 4 5 5 8 7
0 2 3 5 5 7 6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (91)

This procedure results in 29 × 29 matrix which is too large to write here. However,
its main diagonal and the corresponding change of variables gives us the third order
approximation:

C(3) = diag
(

0, 2, 3 ��
�3, 4, 8, 6 ��
�

8, 6, 9, 7, 15, 13, 11, 11, 9, 11, 9, 7, 12, 10, 8, 18, 16, 14, 12, 14, 12, 10
)

,

x(3) =(x1, x2, x3 ��
�q−1x1x2, q

−1x1x3, {q−1x2x3}2 ��
�

{q−2x1x
2
2 }2, {q−2x1x2x3}2, {q−2x22 x3}3, {q−2x22 x3}2, {q−2x1x2x3}3, {q−2x1x

2
3 }3,

{q−2x2x
2
3 }4, {q−2x2x

2
3 }3
)

, (92)

where we denote {α}n =
n times
︷ ︸︸ ︷
α, . . . , α for any monomial α .

In turn, using Theorem 13 we compute

�(x, q) = − x1 − q2x2 + q3x3

+ q2x1x2 − q3x1x3 + q4x22 − q5x2x3 + q8x23

− (q4 + q6)x1x
2
2 − (q6 + q8)x1x

2
3 + (2q5 + 2q7 + q9)x1x2x3 + O

(

x4
)

(93)

The generating series of the corresponding LMOV invariants reads

N (λ, a, q) = − a2q−2
(

1 + a2q5 + q6
)

λ−1 + a4q
(

a2 + q
) (

1 + q6 + a2q7
)

λ−2

− a6q11
(

a6 + a6q2 + q3 + a6q6
)

λ−3 + O
(

λ−4
)

.
(94)
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6.2. Figure-eight knot. This is the first example in our selection where we encounter
both ordinary and negative arrows in Q. This indicates necessity to use both unlinking
and linking in order to compute Q(n), following the rules of diagonalization given in
Definition 9. The adjacency matrix and the change of variables are given by

C =

⎡

⎢
⎢
⎢
⎣

0 −1 −1 0 0
−1 −2 −2 −1 0
−1 −2 −1 −1 0
0 −1 −1 1 1
0 0 0 1 2

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

λ−1

λ−1a−2q2

λ−1q−1

λ−1q
λ−1a2q−2

⎤

⎥
⎥
⎥
⎥
⎦

. (95)

The first degree approximation is immediately given by C (1) = diag(0,−2,−1, 1, 2),
x(1) = (x1, . . . , x5). C (1) is a diagonal submatrix of

C̃ (1) =

0 0 0 0 0 −1 −1 0 0 0 0 0
0 −2 0 0 0 −3 −2 −4 −3 −3 −1 0
0 0 −1 0 0 −3 −2 −3 −2 −2 −2 0
0 0 0 1 0 −1 −1 −2 0 0 0 1
0 0 0 0 2 0 0 0 0 1 1 2

−1 −3 −3 −1 0 −4 −4 −6 −6 −4 −4 −1
−1 −2 −2 −1 0 −4 −3 −4 −4 −3 −3 −1
0 −4 −3 −2 0 −6 −4 −7 −7 −6 −5 −2
0 −3 −2 0 0 −6 −4 −7 −5 −5 −3 0
0 −3 −2 0 1 −4 −3 −6 −5 −3 −2 1
0 −1 −2 0 1 −4 −3 −5 −3 −2 −2 1
0 0 0 1 2 −1 −1 −2 0 1 1 4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (96)

obtained from C by the successive application of (un)linking. The diagonal of C̃ (1)

togetherwith the change of variables coming from (un)linking gives us the second degree
approximation (the matrix C̃ (2) is of size 125 × 125):

C (2) = diag
(

0,−2,−1, 1, 2 ��
� − 4,−3,−7,−5,−3,−2, 4

)

.

x(2) = (x1, x2, x3, x4, x5 ��
�x1x2, x1x3, {x2x3}2, x2x4, x3x4, q−1x4x5

)

.
(97)

This comes from the fact that all nodes whose leading term is of the form xi x j , i 
= j ,
come from (un)linking of the nodes of Q. Using this data and Theorem 13, we can write
the generating seires of DT invariants up to quadratic terms:

�(x, q) = − x1 − q−2x2 + q−1x3 + qx4 − q2x5 − q−4x1x2 + q−3x1x3

− q−8x22 + (q−7 + q−5) x2x3 + q−3x2x4 − q−4x23 − q−2x3x4

− q3x4x5 + q4x25 + O
(

x3
)

.

(98)

As a consistency check, note that terms of the form xi x j with i 
= j precisely correspond
to seven extra nodes in C (2). The application of the change of variables (95) gives
the following LMOV invariants:

N (λ−1, a, q) = − a−2q−3
(

a2 + a4q + a2q3 + q5 + a2q6
)

λ−1 − a−4q−9

(

1 + a2q
) (

a6 + a4q + a4q4 + a4q7 − q13
)

λ−2 + O
(

λ−3
)

.
(99)
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7. Quivers Corresponding to Knot Complements

FK invariants were introduced in [30] as knot complement versions of Ẑ invariants
[31,32]:

FK = Ẑ
(

S3\K
)

. (100)

From the physical point of view, the FK invariant arises from the reduction of 6d
N = (0, 2) theory describing M5-branes on the 3-manifold with the topology of
the knot complement [30]. The a-deformed FK invariants were introduced in [33].
In [14] the knots-quivers correspondence was generalized to knot complements using
the a-deformed version of FK (which for simplicity wewill call just FK invariant). More
specifically, the author conjectured—and proved for the complements of (2, 2p+1) torus
knots—that after appropriate change of variables the FK invariant can be expressed as
a motivic generating series of some quiver Q:

FK (μ, a, q) =
∑

d1,...,d|Q0 |≥0

(−q)
∑|Q0 |

i, j=1 Ci j di d j

|Q0|∏

i=1

μni di aai di qli di

(q2; q2)di
= PQ(x, q)

∣
∣
xi=μni aai qli . (101)

As a consequence, the knot complement analogues of LMOV invariants N (μ, a, q)were
introduced basing on DT invariants of corresponding quivers:

N (μ, a, q) =
∑

r,i, j

Nr,i, jμ
r aiq j = �(x, q)|xi=μni aai qli . (102)

Further developments, including explicit formulas for many knot complements and gen-
eralisation to different branches of A-polynomials were presented in [23].

In the rest of this section we apply the framework of infinite diagonal quivers and
m-loop quivers to the simplest nontrivial cases of quivers corresponding to the trefoil
and figure-eight knot complements.9

7.1. Trefoil knot complement. In case of the trefoil knot complement, F31 can be written
in the form (101) for the following quiver and the change of variables:10 [14]

C =
⎡

⎢
⎣

0 −1 0 −1
−1 −1 0 −1
0 0 1 0

−1 −1 0 0

⎤

⎥
⎦ ,

⎡

⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

μ2a2

μ2q3

μa2q−1

μq2

⎤

⎥
⎥
⎦

. (103)

In this example we explicitly present two steps of the calculation—the second and third
degree approximations, which are computable in reasonable time. After linking all non-
diagonal entries, we obtain the second degree approximation:

C (2) = diag(0,−1, 1, 0 ��
� − 3,−2,−3) ,

x(2) = (x1, x2, x3, x4 ��
�x1x2, x1x4, x2x4) .

(104)

9 More precisely, we consider quivers corresponding to the FK invariants associated to the abelian branches
of the A-polynomials for these knots. For more details see [23].
10 The difference between the change of variables (103) and [14] comes from the conventional switch

q ↔ q2 and a ↔ a2.
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Following the procedure of expanding the product of Cii -loop quivers, described in
Sect. 4.1, we get

�(x, q) = − x1 + q−1x2 + qx3 − x4

+ q−3x1x2 − q−4x22 − q−2x1x4 + q−3x2x4 + O
(

x3
)

.
(105)

Combining the above result with the definition (102) and change of variables (103), we
obtain the trefoil knot complement analogues of LMOV invariants:

N (μ, a, q) = (a2 − q2) μ − (a2 − q2) μ2 + O(μ3) . (106)

Following analogous steps, we obtain the third degree approximation:

C (3) = diag(0,−1, 1, 0 ��
� − 3,−2,−3 ��
� − 5,−4,−8,−6,

− 5,−8,−6,−7,−5,−4,−5) ,

x(3) = (x1, x2, x3, x4 ��
�x1x2, x1x4, x2x4 ��
�x21 x2, x21 x4, {x1x22 }2, x1x2x4, {x22 x4}2,

{x1x2x4}2, x1x24 , x2x24 ) .

(107)

This allows to refine the expression for the generating series given in (105):

�(x, q) = − x1 + q−1x2 + qx3 − x4

+ q−3x1x2 − q−2x1x4 − q−4x22 + q−3x2x4

+ q−5x21 x2 − q−4x21 x4 − (q−8 + q−6) x1x
2
2 + (q−7 + 2q−5) x1x2x4

− q−4x1x
2
4 + q−9x32 − (q−8 + q−6) x22 x4 + q−5x2x

2
4 + O(x4) .

(108)

After specialization of xi , given by (103), they take form

N (μ, a, q) =
(

a2 − q2
)

μ −
(

a2 − q2
)

μ2 −
(

a2 − q2
)

μ3 + O(μ4) . (109)

The presence of (a2−q2) factor in the expression for N (μ, a, q) is a trace of trivialization
FK (μ, a = q, q) = 1 conjectured in [33] for any knot complement. However, the lack
of other dependence on a and q suggests that the analogous of LMOV invariants for
the complement of 31 satisfy the following property

NS3\31(μ, a−1, q−1) = (−a−2q−2) NS3\31(μ, a, q). (110)

7.2. Figure-eight knot complement. For the figure-eight knot complement, one canwrite
F41 in the form (101) using the following quiver and the change of variables:11 [23]

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 −1 −1 0 0
0 −1 0 0 0 0
1 −1 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μq2

μq2

μq2

μa2q−1

μa2q−1

μa2q−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (111)

11 The difference between the change of variables (111) and [23] comes from the conventional switch
q ↔ q2 and a ↔ a2.
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The second degree approximation obtained after (un)linking all non-diagonal entries
reads

C (2) = diag(0, 0, 0, 1, 1, 1 ��
�2,−2,−1, 3) ,

x(2) = (x1, x2, x3, x4, x5, x6 ��
�q−1x1x4, x2x3, x2x4, q

−1x4x5).
(112)

After the application of Theorem 13, this leads to

�(x, q) = − x1 − x2 − x3 + qx4 + qx5 + qx6

− qx1x4 − q−2x2x3 + q−1x2x4 + q2x4x5 + O
(

x3
)

. (113)

If we put this equation together with (103) into (102), we obtain

N (μ, a, q) = 3
(

a2 − q2
)

μ +
(

1 + a2
) (

a2 − q2
)

μ2 + O
(

μ3
)

. (114)

Following similar steps, we get the third degree approximation:

C (3) = diag(0, 0, 0, 1, 1, 1 ��
�2,−2,−1, 3 ��
�0,−4,−3,−4, 4,−3, 5, 4, 1, 5) ,

x(3) = (x1, x2, x3, x4, x5, x6 ��
�q−1x1x4, x2x3, x2x4, q

−1x4x5 ��
�q−1x1x2x4, x

2
2 x3, x

2
2 x4,

x2x
2
3 , q

−2x1x
2
4 , x2x3x4, q

−2x24 x5, q
−2x1x4x5, q

−1x2x4x5, q
−2x4x

2
5 ).

(115)

This allows us to compute more DT invariants, extending (113) to

�(x, q) = − x1 − x2 − x3 + qx4 + qx5 + qx6

− qx1x4 − q−2x2x3 + q−1x2x4 + q2x4x5 + q2x4x5 − q−1

× x1x2x4 − q2x1x
2
4 − q2x1x4x5 − q−4x22 x3 + q−3x22 x4 − q−4x2x

2
3

+ q−3x2x3x4 + x2x4x5 + q3x24 x5 + q3x4x
2
5 + O

(

x4
)

.

Finally, we perform the change of variables indicated in (111) to derive the analogue of
LMOV invariants of F41 :

N (μ, a, q) =3
(

a2 − q2
)

μ +
(

1 + a2
) (

a2 − q2
)

μ2 (116)

+
(

2 + a2 + 2a4
) (

a2 − q2
)

μ3 + O
(

μ4
)

.

Similarly to the LMOV invariants for the complement of 31 (which are reciprocal
polynomials, see Eq. (110)), we conjecture that the above expression enjoys the property

NS3\41
(

μ, a−1, q−1
)

=
(

−q−2
)

NS3\41
(

a2μ, a, q
)

. (117)
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Appendix A: Combinatorial Model for (−m)-Loop Quivers

In Sect. 2.3 we proved Lemma 6 using a simple q-Pochhammer identity. However,
we can also show how the relation between DT invariants for (−m)- and (m + 1)-
loop quivers is realized at the combinatorial level. The base for this construction is
a combinatorial model for m-loop quivers introduced in [4]. In [13] it was connected
to the quantum version of extremal A-polynomials and extremal LMOV invariants of
knots [34]. The quantum A-polynomials annihilate HOMFLY-PT polynomials [35–38]
and have quiver analogues that annihilate motivic generating series [10,39,40].

The reasoning of the proof below can be summarized in the following way. The
relation betweenm-loop quiver model [4] and themodel associated to extremal quantum
A-polynomialwithm’thq-power [13]was described in [13,App.B] form ≥ 0.However,
extremal quantum A-polynomials can be considered also with a q-power of (−m) (see
Eq. (120)). Then, following the steps of [13, App. B], we can relate the case of (−m) to
the one corresponding to m + 1.

Combinatorial proof of Lemma 6. In order to follow [13, App. B] and the conventions
used in that paper, we rescale our variable x by qm+1 and sum over r instead of d:

P(−m)-loop(x
′qm+1, q) =

∞
∑

r=0

(−q)(−m)r2q(m+1)r

(q2; q2)r (x ′)r . (118)

Then, we define

Y (x ′, q) = P(−m)-loop(x ′qm+3, q)

P(−m)-loop(x ′qm+1, q)
, (119)

which satisfies the following A-polynomial equation:

1 − Y (x ′, q) + (−1)m+1qx ′
m
∏

i=1

Y (q−2i x ′, q)−1 = 0 . (120)

Using the series expansion, Y (x ′, q) =∑∞
n=0 Yn(q)(x ′)n , Eq. (120) implies that

Yn(q) = −
∑

a+b=n
0<ab

Ya(q)
∑

k1+···+km=b

m
∏

i=1

q−2iki Yki (q) , (121)

http://creativecommons.org/licenses/by/4.0/
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with Y0(q) = 1 and Y1(q) = (−1)m+1q.12 For example, for n = 2 we have only one
option a = 1 and b = 1, whence

Y2(q) = −Y1(q)

m
∑

i=1

q−2i Y1(q) = −Y1(q)2
m
∑

i=1

q−2i = −q2
m
∑

i=1

q−2i . (122)

Using Eq. (121), analogously to the construction from Ref. [13], we can represent
Yn(q) as a signed list φ = (−1)mn+1[φ1, · · · , φn]. In order to do it, we start from

T0 = {[]} , T1 = {(−1)m+1[1]} , (123)

and define sets T2, T3, · · · recursively by

Tn =
{

− φ(a) ∗ (φ(km ) − 2m
) ∗ · · · ∗ (φ(k1) − 2

)

| ∀ (a + b = n ∧ 0 < ab) ∧ (∀k1 + · · · + km = b ∧ φ(ki ) ∈ Tki , i = 1, · · · ,m
)
}

,

(124)

where ∗ is a concatenation of lists:

φ(1) ∗ φ(2) = [φ(1), φ(2)] = [φ(1),1, . . . , φ(1),n1 , φ(2),1, . . . , φ(2),n2 ] , (125)

and subtracting a number from a list means a subtraction for each entry. All powers in
Eq. (121) sum up to n and eventually all terms are expressed as powers of Y1(q) =
(−1)m+1q. Since each Y∗ term contributes a (−1), then the sign of a list of length n is
(−1)n(m+1)+n+1 = (−1)1+(2+m)n = (−1)1+mn . The weight of a list is wt(φ) =∑n

i=1 φi ,
so that

Yn(q) =
∑

φ∈Tn
sgn(φ)qwt(φ) . (126)

Note that Eq. (124) implies that for n > 0 we have

φ0 = 1 , φi ≤ φ0 for i = 1, · · · , n − 1, |φi+1 − φi | ≤ 2m . (127)

Now we are ready to define a map ϕ from (−m)-loop case to (m + 1)-loop case:

ϕ(φ) = −[2 − φ1, 2 − φ2, · · · , 2 − φn] . (128)

Comparing Eq. (124) with the rules of creating primary lists13 given in [13, Eq. (4.18)],
one can check that ϕ is a bijection from Tn of (−m)-loop case to T 0

n of (m + 1)-loop

12 Note that on the right-hand side there are m + 1 factors of Y , whereas in [13, Eq. (4.13)] there are m of
them. This is a structural manifestation of the Lemma 6.
13 We say that the list is primary if it cannot be expressed as a concatenation of smaller lists.
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case. Combining it with the construction described in [13, Sect. 3.2]14 we learn that

�(−m)-loop(x
′, q) =

∑

r≥0

⎛

⎜
⎝

∑

φ∈(T L ,+
r )(−m)-loop

sgn(φ)qwt(φ)

⎞

⎟
⎠

(x ′)r

[r ]q2

=
∑

r≥0

⎛

⎜
⎝

∑

ϕ∈(T L ,+
r )(m+1)-loop

−sgn(ϕ)q2r−wt(ϕ)

⎞

⎟
⎠

(x ′)r

[r ]q2

=
∑

r≥0

⎛

⎜
⎝

∑

ϕ∈(T L ,+
r )(m+1)-loop

−sgn(ϕ)q2−wt(ϕ)

⎞

⎟
⎠

(x ′)r

[r ]q−2

= −q2�(m+1)-loop(x
′, q−1) ,

(129)

where we used

wt(ϕ) =
n
∑

i=1

ϕi = 2n −
n
∑

i=1

φi = 2n − wt(φ) ,

[r ]q2 = 1 − q2r

1 − q2
.

(130)

In Ref. [13]
∑

ϕ∈(T L ,+
r )(m+1)-loop sgn(ϕ)q−wt(ϕ) was linked to the Qr

(

q−2
)

of Ref. [12],

where Qr
(

q2
)

was proven to be divisible by [r ]q2 and that implies that Qr
(

q−2
)

is also
divisible by [r ]q2 . This happens because if ζ is a root of unity then ζ−1 is also a root of
unity.

Now we only need to take into account that the relation between x ′ and x for the (m +
1)-loop quiver with inverted q reads x = x ′qm , therefore

�(−m)-loop(x, q) = −q2 �(m+1)-loop(q
−1x, q−1) , (131)

which is consistent with (20). ��
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to quantum modularity. Commun. Math. Phys. 396(1), 143–186 (2022). arXiv:2005.13349
34. Garoufalidis, S., Kucharski, P., Sulkowski, P.: Knots, BPS states, and algebraic curves. Commun. Math.

Phys. 346, 75–113 (2016). arXiv:1504.06327
35. Garoufalidis, S.: On the characteristic and deformation varieties of a knot. Geom. Topol. Monographs 7,

291–304 (2004). (math/0306230)
36. Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun.

Math. Phys. 255(3), 577–627 (2005). hep-th/0306165
37. Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots,

arXiv:1204.4709
38. Garoufalidis, S., Lauda, A.D., Le, T.T.Q.: The colored HOMFLYPT function is q-holonomic. DukeMath.

J. 167(3), 397–447 (2018). arXiv:1604.08502

http://arxiv.org/abs/1411.4062
http://arxiv.org/abs/1707.02991
http://arxiv.org/abs/1707.04017
http://arxiv.org/abs/1802.04573
http://arxiv.org/abs/1910.06193
http://arxiv.org/abs/1811.03110
http://arxiv.org/abs/0903.0261
http://arxiv.org/abs/1608.06600
http://arxiv.org/abs/2005.13394
http://arxiv.org/abs/2111.07588
http://arxiv.org/abs/2105.11806
http://arxiv.org/abs/1711.03333
http://arxiv.org/abs/2004.10837
http://arxiv.org/abs/2108.12645
http://arxiv.org/abs/1811.03556
http://arxiv.org/abs/2011.06783
http://arxiv.org/abs/2110.13768
http://arxiv.org/abs/1904.06057
http://arxiv.org/abs/1602.05302
http://arxiv.org/abs/1701.06567
http://arxiv.org/abs/2005.13349
http://arxiv.org/abs/1504.06327
http://arxiv.org/abs/1204.4709
http://arxiv.org/abs/1604.08502


1584 J. Jankowski, P. Kucharski, H. Larraguível, D. Noshchenko, P. Sułkowski

39. Larraguivel, H., Noshchenko, D., Panfil, M., Sułkowski, P.: Nahm sums, quiver A-polynomials and
topological recursion. JHEP 07, 151 (2020). arXiv:2005.01776

40. Noshchenko, D.: Combinatorics of Nahm sums, quiver resultants and the K-theoretic condition. JHEP
03, 236 (2021). arXiv:2007.15398

Communicated by S. Gukov

http://arxiv.org/abs/2005.01776
http://arxiv.org/abs/2007.15398

	Quiver Diagonalization and Open BPS States
	Abstract:
	1 Introduction and Summary
	2 Symmetric Quivers and DT Invariants
	2.1 Motivic generating series
	2.2 Unlinking and linking
	2.3 m-loop quivers

	3 Quiver Diagonalization
	3.1 nth degree approximation
	3.2 Infinite diagonal quiver—proof of Theorem 2
	3.3 Uniqueness

	4 DT Invariants from Infinite Diagonal Quivers
	4.1 New proof of integrality of DT invariants
	4.2 Physical and algebraic interpretations

	5 Simple Examples
	5.1 Symmetric A2 quiver
	5.2 Symmetric A3 quiver

	6 Quivers Corresponding to Knots
	6.1 Trefoil knot
	6.2 Figure-eight knot

	7 Quivers Corresponding to Knot Complements
	7.1 Trefoil knot complement
	7.2 Figure-eight knot complement

	Acknowledgements
	References




