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Abstract: Brascamp–Lieb inequalities are entropy inequalities which have a dual for-
mulation as generalized Young inequalities. In this work, we introduce a fully quantum
version of this duality, relating quantum relative entropy inequalities to matrix exponen-
tial inequalities of Young type. We demonstrate this novel duality by means of examples
fromquantum information theory—including entropic uncertainty relations, strong data-
processing inequalities, super-additivity inequalities, and many more. As an application
we find novel uncertainty relations for Gaussian quantum operations that can be in-
terpreted as quantum duals of the well-known family of ‘geometric’ Brascamp–Lieb
inequalities.

1. Introduction

The classical Brascamp–Lieb (BL) problem asks, given a finite sequence of surjective
linear maps Lk : Rm → R

mk and qk ∈ R+ for k ∈ [n], for the optimal constant C ∈ R

such that [7,10,14,47]

∫
Rm

n∏
k=1

fk
(
Lk x

)
dx ≤ exp(C)

n∏
k=1

‖ fk‖1/qk (1)

holds for all non-negative functions fk : Rmk → R+, k ∈ [n], where ‖ · ‖p denotes the
p-norm. Many classical integral inequalities fall into this framework, such as the Hölder
inequality,Young’s inequality, and theLoomis-Whitney inequality.Acelebrated theorem
by Lieb asserts that the optimal constant in Eq. (1) can be computed by optimizing over
centred Gaussians fk alone [47].

Remarkably, Eq. (1) has a dual, entropic formulation in terms of the differential
entropy H(g) := − ∫

g(x) log g(x) dx . Namely, Eq. (1) holds for all f1, . . . , fn as

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04678-w&domain=pdf
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above if, and only if, for all probability densities g onRm with finite differential entropy,
we have [19]

H(g) ≤
n∑

k=1

qk H(gk) + C . (2)

Here, gk denotes the marginal probability density on Rmk corresponding to Lk , i.e., the
push-forward of g along Lk defined by

∫
Rm φ(Lk x)g(x)dx = ∫

R
mk φ(y)gk(y)dy for all

bounded, continuous functions φ on R
mk . The duality between Eqs. (1) and (2) readily

generalizes to arbitrary measure spaces and measurable maps [19].
Of particular interest is the so-called geometric case where each Lk is a surjective

partial isometry and
∑n

k=1 qk L†
k Lk = 1Rm [2–7]. In this case, Eqs. (1) and (2) hold

with C = 0. This setup includes the Hölder and Loomis-Whitney inequalities. Equiva-
lently,we are givenn subspacesVk ⊆ R

m (the supports of the Lk) such that
∑n

k=1 qk �k =
1Rm , where �k denotes the orthogonal projection onto Vk . In this case we can think of
the marginal densities gk as functions on Vk , namely

gVk (y) =
∫

V⊥
k

g(y + z)dz ∀y ∈ Vk . (3)

In particular, if Vk is a coordinate subspace of Rm then gVk is nothing but the usual
marginal probability density of the corresponding random variables, justifying our ter-
minology. As a concrete example, let V1, V2 be the two coordinate subspaces of R2 and
q1 = q2 = 1; then Eq. (2) amounts to the sub-additivity property of the differential
entropy, which is dual to the trivial estimate

∫
R2 f1(x1) f2(x2) dx ≤ ‖ f1‖1‖ f2‖1. In

contrast, already for three equiangular lines in R2 (a ‘Mercedes star’ configuration) and
q1 = q2 = q3 = 2

3 , neither inequality is immediate.
Recently, the BL duality has been extended on the entropic side to not only include

entropy inequalities as in Eq. (2) but also relative entropy inequalities in terms of the
Kullback–Leibler divergence [52]. The dual analytic form then again corresponds to gen-
eralized Young inequalities as in Eq. (1) but now for weighted p-norms. Interestingly,
this extended BL duality covers many fundamental entropic statements from informa-
tion theory and more. This includes, e.g., hypercontractivity inequalities, strong data
processing inequalities, and transportation-cost inequalities [53].

Here, we raise the question how aforementioned BL dualities can be extended in the
non-commutative setting. Ourmainmotivation comes fromquantum information theory,
where quantum entropy inequalities are pivotal and dual formulations often promise new
insights. BL dualities for non-commutative integration have previously been studied by
Carlen and Lieb [20]. Amongst other contributions, they gave BL dualities similar to
Eqs. (1)–(2) leading to generalized sub-additivity inequalities for quantum entropy.

In this paper, we extend the classical duality results of [52,53] to the quantum
setting—thereby generalizing Carlen and Lieb’s BL duality to the quantum relative
entropy and general quantum channel evolutions. In particular, we derive in Sect. 2 a
fully quantum BL duality for quantum relative entropy and discuss its properties. In
Sect. 3 we then discuss a plethora of examples from quantum information theory that are
covered by our quantum BL duality. As novel inequalities, we give quantum versions
of the geometric Brascamp–Lieb inequalities discussed above, whose entropic form
can be interpreted as an uncertainty relation for certain Gaussian quantum operations
(Sect. 3.2).
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Note added: Since the first version of our manuscript, our geometric quantum
Brascamp–Lieb inequalities from Sect. 3.2 have been extended to the conditional case
[50] and to more general Gaussian quantum operations [29]. We briefly mention these
extensions in Sect. 3.2.

Notation. Let A and B be separable Hilbert spaces. We denote the set of bounded
operators on A by L(A), the set of trace-class operators on A by T(A), the set of
Hermitian operators on A by Herm(A), the set of positive operators on A by P	(A),
and the set of positive semi-definite operators on A by P
(A). A density operator or
quantum state is a positive semi-definite trace-class operator with unit trace; we denote
the set of density operators on A by S(A). The set of trace-preserving and positive
maps from T(A) to T(B) is denoted by TPP(A, B) and the set of trace-preserving and
completely positive maps from T(A) to T(B) is denoted by TPCP(A, B). For E ∈
TPP(A, B) the adjoint map E†, which is a unital and positive map from L(B) to L(A),
is defined by tr E(X)†Y = tr X†E†(Y ) for all X ∈ T(A) and Y ∈ L(B). When it is
clear from the context, we sometimes leave out identity operators, i.e., we may write
ρAσABρB for (ρA ⊗ 1B)σAB(1A ⊗ ρB).

The von Neumann entropy of a density operator ρ ∈ S(A) is defined as1

H(ρ) := − tr ρ log ρ

and can be infinite (only) if A is infinite-dimensional. The quantum relative entropy of
ω ∈ S(A) with respect to τ ∈ P
(A) is given by

D(ω‖τ) := tr ω(logω − log τ) ifω � τ and as +∞ otherwise,

where ω � τ denotes that the support of ω is contained in the support of τ . The von
Neumann entropy can be expressed as a relative entropy, H(ρ) = −D(ρ‖1), where 1
denotes the identity operator. For ρAB ∈ S(A ⊗ B) with H(A)ρ < ∞, the conditional
entropy of A given B is defined as [45]

H(A|B)ρ := H(A)ρ − D(ρAB‖ρA ⊗ ρB),

where the notation H(A)ρ := H(ρA) refers to the entropy of the reduced density oper-
ator ρA = trB(ρ) on A. For A and B finite-dimensional we can also write H(A|B)ρ =
H(AB)ρ − H(B)ρ .

Throughout this manuscript the default is that Hilbert spaces are finite-dimensional
unless explicitly stated otherwise (such as in Sect. 3.2).

2. Brascamp–Lieb Duality for Quantum Relative Entropies

In this section, we describe our main result (Theorem 2.1) and discuss some of its
mathematical properties.

1 The case when ρA does not have full support is covered by the convention 0 log 0 = 0. Unless specified
otherwise, we choose to leave the basis of the logarithm function log(·) unspecified and write exp(·) for its
inverse function.
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2.1. Main result. The following result establishes a version of the Brascamp–Lieb du-
alities of [19,52,53] for quantum relative entropies.

Theorem 2.1 (Quantum Brascamp–Lieb duality). Let n ∈ N, �q = (q1, . . . , qn) ∈ R
n
+,

�E = (E1, . . . , En) with Ek ∈ TPP(A, Bk) for k ∈ [n], σ ∈ P	(A), �σ = (σ1, . . . , σn)

with σk ∈ P	(Bk) for k ∈ [n], and C ∈ R. Then, the following two statements are
equivalent:

n∑
k=1

qk D
(Ek(ρ)‖σk

) ≤ D(ρ‖σ) + C ∀ρ ∈ S(A), (4)

tr exp

(
log σ +

n∑
k=1

E†
k (logωk)

)
≤ exp(C)

n∏
k=1

∥∥exp(logωk + qk log σk
)∥∥

1/qk
∀ωk ∈ P	(Bk), (5)

where ‖L‖p := (tr|L|p)
1
p is the Schatten p-norm for p ∈ [1,∞] and an anti-norm for

p ∈ (0, 1].2 Moreover, Eq. (5) holds for all ωk ∈ P	(Bk) if and only if it holds for all
ωk ∈ S(Bk) with full support.

We refer to Eq. (4) as a quantum Brascamp–Lieb inequality in entropic form, and to
Eq. (5) as a quantum Brascamp–Lieb inequality in analytic form. The latter can be
understood as a quantum version of a Young-type inequality. The two formulations in
Eqs. (4) and (5) encompass a large class of concrete inequalities, as we will see in Sect. 3
below; we are also often interested in identifying the smallest constant C ∈ R such that
either inequality holds. To this end, both directions of Theorem 2.1 are of interest:

1. To prove quantum entropy inequalities, Theorem 2.1 allows us to alternatively work
with matrix exponential inequalities in the analytic form. That this approach can give
crucial insights was already discovered in the original proof of strong sub-additivity
of the von Neumann entropy [49], which relied on Lieb’s triple matrix inequality for
the exponential function (see also [31,60] for more recent works). We discuss similar
examples in Sect. 3.3.

2. In the commutative setting, we know that for deriving Young-type inequalities it can
be beneficial to work in the entropic form [19,21]. As the quantum relative entropy
has natural properties mirroring its classical counterpart, this translates to the non-
commutative setting. We discuss corresponding examples in Sect. 3.1 and Sect. 3.2.

The proof of Theorem 2.1 relies on the following formula for the Legendre transform
of the quantum relative entropy and its dual.

Fact 2.2. (Variational formula for quantum relative entropy [56]) Let σ ∈ P	(A). Then:

• For all ρ ∈ S(A) we have

D(ρ‖σ) = sup
ω∈P
(A)

{tr ρ logω − log tr exp(logω + log σ)} . (6)

Furthermore, the supremum is attained for ω = exp(log ρ − log σ)/ tr exp(log ρ −
log σ).

2 An anti-norm is a non-negative function on P	(A) that is homogeneous (‖αω‖ = α ‖ω‖ for α > 0) and
super-additive (

∥∥ω + ω′∥∥ ≥ ‖ω‖ + ∥∥ω′∥∥) for ω, ω′ ∈ P	(A) [13]. NB: ‖·‖1 is both a norm and an anti-norm.
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• For all H ∈ Herm(A), we have

log tr exp(H + log σ) = sup
ω∈S(A)

{tr Hω − D(ω‖σ)} . (7)

Furthermore, the supremum is attained for ω = exp(H + log σ)/ tr exp(H + log σ).

These variational formulas are powerful on their own for proving quantum entropy
inequalities, as, e.g., the first term in Eq. (6) only depends on ρ (but not on σ ) and the
second term only on σ (but not on ρ). We refer to [60] for a more detailed discussion.

Wemention that Carlen-Lieb use the variational characterization of the vonNeumann
entropy to derive Brascamp–Lieb dualities and [20, bottom of page 564] commented
that their proof strategy extends to the relative entropy via Petz’s variational expression
for the relative entropy (Lemma 2.2), which is what is done here.

Proof of Theorem 2.1. We first show that Eqs. (4) implies (5). Let Hk := logωk and
define H ∈ Herm(A) and ρ ∈ S(A) by

H :=
n∑

k=1

E†
k (Hk) and ρ := exp(H + log σ)

tr exp(H + log σ)
, (8)

respectively. Then,

log tr exp

(
log σ +

n∑
k=1

E†
k (Hk)

)
= log tr exp(H + log σ)

= tr Hρ − D(ρ‖σ)

=
n∑

k=1

tr E†
k (Hk)ρ − D(ρ‖σ)

≤ C +
n∑

k=1

qk

(
tr

Hk

qk
Ek(ρ) − D

(Ek(ρ)‖σk
))

≤ C +
n∑

k=1

qk log tr exp

(
Hk

qk
+ log σk

)
,

where we used Eq. (7) in both the second and the last step and Eq. (4) in the penultimate
step. By substituting Hk = logωk and taking the exponential on both sides we obtain
Eq. (5).

We now show that, conversely, Eqs. (5) implies (4). Letω = exp(H), with H defined
as in Eq. (8) in terms of Hk = log(ωk) for ωk ∈ P	σk (Bk) that we will choose later.
Then, using Eq. (6),

D(ρ‖σ) ≥ tr ρ logω − log tr exp(logω + log σ)

=
n∑

k=1

tr ρ E†
k (Hk) − log tr exp

(
n∑

k=1

E†
k (Hk) + log σ

)

=
n∑

k=1

tr Ek(ρ) logωk − log tr exp

(
log σ +

n∑
k=1

E†
k (logωk)

)
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≥
n∑

k=1

qk

(
tr Ek(ρ)

logωk

qk
− log tr exp

( logωk

qk
+ log σk

))
− C

=
n∑

k=1

qk D
(Ek(ρ)‖σk

) − C,

where the last inequality uses Eq. (5) and the final step follows from Eq. (6) provided
we choose ω

1/qk
k as the maximizer for the variational expression of D

(Ek(ρ)‖σk
)
. ��

Remark 2.3. As the variational characterizations from Lemma 2.2 hold in the general
W ∗-algebra setting [56], the BL duality in Theorem 2.1 extends to separable Hilbert
spaces.

Remark 2.4. The BL duality in Theorem 2.1 can be extended to σ ∈ P
(A) and �σ =
(σ1, . . . , σn) with σk ∈ P
(Bk) for k ∈ [n] when
1. Ek(ρ) � σk for all ρ ∈ S(A) with ρ � σ

2. E†(logωk) � σ for all ωk ∈ P
(B) with ωk � σk .

Then, the BL duality still holds but for the alternative conditions

ρ ∈ S(A) with ρ � σ in Eq. (4) and ωk ∈ P	(Bk) with ωk � σk in (5).

To see this, note that the variational formula in Eq. (6) still holds for σ ∈ P
(A) as long
as ρ � σ with the supremum taken over ω ∈ P
(A) with ω � σ . Similarly, Eq. (7)
still holds for H ∈ Herm(A) for H � σ with the supremum taken over ω ∈ S(A) with
ω � σ . The proof of Theorem 2.1 then also goes through in the more general form.

In many important applications, we are interested in using Theorem 2.1 either in the
situation that σk = Ek(σ ) for all k ∈ [n], or in a setting where σ = 1A and σk = 1Bk

for all k ∈ [n]. In the latter case, Theorem 2.1 specializes to the following equivalence
between von Neumann entropy inequalities and Young-type inequalities:

Corollary 2.5. Let n ∈ N, �q = (q1, . . . , qn) ∈ R
n
+, �E = (E1, . . . , En) with Ek ∈

TPP(A, Bk) for k ∈ [n], and C ∈ R. Then, the following two statements are equivalent:

H(ρ) ≤
n∑

k=1

qk H
(Ek(ρ)

)
+ C ∀ρ ∈ S(A), (9)

tr exp
( n∑

k=1

E†
k (logωk)

)
≤ exp(C)

n∏
k=1

‖ωk‖1/qk
∀ωk ∈ S(Bk). (10)

Carlen and Lieb previously proved a variant of Corollary 2.5 in the W ∗-algebra setting
assuming that the maps E†

k are W ∗-homomorphisms and that qk ∈ [0, 1] [20, Theorem
2.2]. One interesting special case is when the Ek are partial tracemaps. The entropic form
Eq. (9) then corresponds to generalized sub-additivity inequalities for the von Neumann
entropy (cf. Sect. 3.1).
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2.2. Weighted anti-norms. In the commutative setting, the right-hand side of Eq. (5)
can conveniently be understood as a product of σk-weighted norms or anti-norms of
the operators ωk [52,53]. It is natural to ask whether such an interpretation also holds
quantumly. To this end, given p ∈ (0, 1] and σ ∈ P	(A), define

|||ω|||σ,p := (
tr exp(logωp + log σ)

) 1
p =

∥∥∥∥exp
(
logω +

1

p
log σ

)∥∥∥∥
p
,

for all ω ∈ P	(A). The following proposition, which follows readily from [41], shows
that |||·|||σ,p is an anti-norm provided that p ≤ 1. For p > 1, it is easy to find σ ∈ P	(A)

such that the functional |||·|||σ,p is neither a norm nor an anti-norm.

Proposition 2.6. For p ∈ (0, 1] and σ ∈ P	(A), |||·|||σ,p is homogeneous and concave,
hence an anti-norm.

Proof. Clearly, |||·|||σ,p is homogeneous. Since moreover p ∈ (0, 1], [41, Lemma D.1]
asserts that its concavity on the set of positive matrices is equivalent to the concavity of
its p-th power, i.e.,

ω �→ tr exp(p logω + H), (11)

where H = log σ . A well-known result of Lieb [46] states that Eq. (11) is indeed
concave for any Hermitian matrix H . Thus, |||·|||σ,p is concave. As a consequence of
homogeneity and concavity, we obtain that |||·|||σ,p is super-additive, as

∣∣∣∣∣∣ω + ω′∣∣∣∣∣∣
σ,p =

2
∣∣∣∣∣∣ 1

2ω + 1
2ω

′∣∣∣∣∣∣
σ,p ≥ |||ω|||σ,p+

∣∣∣∣∣∣ω′∣∣∣∣∣∣
σ,p for allω,ω

′ ∈ P	(A). We conclude that |||·|||σ,p

is an anti-norm. ��
Thus, the quantum Brascamp–Lieb inequality in its analytic form Eq. (5) can be written
as

tr exp

(
log σ +

n∑
k=1

E†
k (logωk)

)
≤ exp(C)

n∏
k=1

|||ωk |||σk ,1/qk
∀ωk ∈ S(Bk), (12)

where, assuming that all qk ≥ 1, the right-hand side can be interpreted in terms of
anti-norms, pleasantly generalizing Eq. (10).

2.3. Convexity and tensorization. For fixed n ∈ N, �E = (E1, . . . , En) with Ek ∈
TPP(A, B), σ ∈ P	(A), and �σ = (σ1, . . . , σn) with σk ∈ P	(Bk), we define the
Brascamp–Lieb (BL) set as

BL
( �E, �σ , σ

)
:=

{(�q, C
) ∈ R

n
+ × R : Eq. (4)/Eq. (5) holds

}
.

We record the following elementary property.

Proposition 2.7 (Convexity). The set BL( �E, �σ , σ ) is convex.
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Proof. We use the characterization using the entropic form Eq. (4). Let (�q(i), C (i)) ∈
BL( �E, �σ , σ ) for i ∈ {1, 2}. Let θ ∈ [0, 1] and (�q, C) the corresponding convex com-
bination, i.e., �q := θ �q(1) + (1 − θ) �q(2) and C := θ C (1) + (1 − θ) C (2). Then, for all
ρ ∈ S(A),

n∑
k=1

qk D
(Ek(ρ)‖σk

) = θ

n∑
k=1

q(1)
k D

(Ek(ρ)‖σk
)
+ (1− θ)

n∑
k=1

q(2)
k D

(Ek(ρ)‖σk
)

≤ θ
(

D(ρ‖σ) + C (1)
)
+ (1− θ)

(
D(ρ‖σ) + C (2)

)
= D(ρ‖σ) + C.

Thus, (�q, C) ∈ BL( �E, �σ , σ ). ��
In the commutative case, the BL set satisfies a tensorization property [53, Section

V.B], and we can ask if a similar property holds in the non-commutative case as well.

Namely, do we have that for
(�q, C (i)

) ∈ BL
( �E (i), �σ (i), σ (i)

)
with i ∈ {1, 2} and

�E :=
(
E (1)
1 ⊗ E (2)

1 , . . . , E (1)
n ⊗ E (2)

n

)
as well as �σ :=

(
σ

(1)
1 ⊗ σ

(2)
1 , . . . , σ (1)

n ⊗ σ (2)
n

)

that

(
�q, C (1) + C (2)

) ?∈ BL
( �E, �σ , σ (1) ⊗ σ (2)

)
. (13)

As we will see in several examples (Sect. 3), tensorization does in general not hold due
to the potential presence of entanglement. Indeed, the problem of deciding in which case
Eq. (13) holds can be understood as a general information-theoretic additivity problem,
which contains the (non-)additivity for the minimum output entropy as a special case
(cf. Eq. (39) in Sect. 3.4).

3. Applications of Quantum Brascamp–Lieb Duality

The purpose of this section is to present examples from quantum information theory
where the duality from Theorem 2.1 is applicable. The majority of examples concern
entropy inequalities that are of interest from an operational viewpoint. Theorem 2.1 then
shows that all entropy inequalities of suitable structure have a dual formulation as an
analytic inequality, and vice versa. Depending on the scenario, one formmay be easier to
prove than the other, and we find that these reformulations often give additional insight.

3.1. Generalized (strong) sub-additivity. In this section, we discuss entropy inequalities
that generalize the sub-additivity and strong sub-additivity properties of the von Neu-
mann entropy. Recall that the latter states that H(AB) + H(BC) ≥ H(ABC) + H(B)

for ρABC ∈ S(A ⊗ B ⊗ C) [49].
We first state the following result from [20, Theorem 1.4 & Theorem 3.1], which

gives generalized sub-additivity relations and their dual analytic form. Here, the second
argument in the relative entropy is always equal to the identity. Throughout this section,
all quantum channels are given by partial trace channels.
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Corollary 3.1 (Quantum Shearer and Loomis–Whitney inequalities, [20]). Let S1, …,
Sn be non-empty subsets of [m] such that every s ∈ [m] belongs to at least p of those
subsets. Then, the following inequalities hold and are equivalent:

H(A1 . . . Am) ≤ 1

p

n∑
k=1

H({As}s∈Sk ) ∀ρ ∈ S(A1 ⊗ · · · ⊗ Am), (14)

tr exp

(
n∑

k=1

1S̄k
⊗ logωSk

)
≤

n∏
k=1

∥∥ωSk

∥∥
p ∀ωSk ∈ S(⊗s∈Sk As) , (15)

where S̄ denotes the complement of a subset S of [m].
Inequalities in the form of Eq. (14) have been termed quantum Shearer’s inequalities
and their analytic counterparts as in Eq. (15) are known as quantum Loomis-Whitney
inequalities. Interestingly, and as explained in [20, Section 1.3], the latter cannot directly
be deduced from standardmatrix trace inequalities such asGolden–Thompson combined
with Cauchy–Schwarz. That Eqs. (14) and (15) are equivalent follows from Corollary
2.5 by choosing C = 0, qk = 1

p , and Ek(·) = tr S̄k
(·). The following result provides a

conditional version of the quantum Shearer inequality with side information.

Proposition 3.2 (Conditional quantum Shearer inequality). Let S1, …, Sn be non-empty
subsets of [m] such that every s ∈ [m] belongs to exactly p of those subsets. Then,

H(A1 . . . Am |B) ≤ 1

p

n∑
k=1

H({As}s∈Sk |B) ∀ρ ∈ S(A1 ⊗ · · · ⊗ Am ⊗ B) . (16)

For n = 2, S1 = {1}, S2 = {2}, p = 1, Eq. (16) reduces to H(A1A2|B) ≤ H(A1|B) +
H(A2|B), which is equivalent to the strong sub-additivity of von Neumann entropy.3

Note that, in contrast to Corollary 3.1, in the conditional case it is not enough to
assume that every s ∈ [m] belongs to at least p of the subsets. This is clear from the
following proof. For a concrete counterexample, note that for n = 2, S1 = S2 = {1},
S3 = {2}, p = 1, Eq. (16) is violated for, e.g., a maximally entangled state between A1
and B.

Proof of Corollary 3.1 Proposition 3.2. Weadapt the argument of [20] to the conditional
case. If S and T are two subsets of [m] then strong sub-additivity implies that

H({As}s∈S∪T |B) + H({As}s∈S∩T |B) ≤ H({As}s∈S|B) + H({As}s∈T |B) .

This means that we obtain a stronger version of Eq. (16) if we replace any two subsets
Sk , Sl by Sk ∪ Sl , Sk ∩ Sl . Moreover, each such replacement preserves the number of
times that any s ∈ [m] is contained in the subsets S1, . . . , Sn . We can successively apply
replacement steps until we arrive at the situation where Sk ⊆ Sl or Sl ⊆ Sk for any
two subsets. Without loss of generality, this means that it suffices to prove Corollary 3.1
Proposition 3.2 in the case that S1 ⊇ · · · ⊇ Sn . In this case, S1 = · · · = Sp = [m], since

3 Our quantum BL duality (Theorem 2.1) does not directly provide a dual analytic form for the strong
sub-additivity of von Neumann entropy or more generally Eq. (16). Rather, in Sect. 3.5 we provide a dual
analytic form for the (a priori more general) data processing inequality of the quantum relative entropy.
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each s ∈ [m] is contained in at least p of the subsets. The corresponding inequality Eq.
(16) can thus be simplified to

0 ≤
n∑

k=p+1

H({As}s∈Sk |B).

If B = ∅, as in Corollary 3.1, this inequality holds since the von Neumann entropy is
never negative. And if each s ∈ [m] belongs to exactly p of the subsets, as in Corollary
3.2, then Sp+1 = · · · = Sn = ∅, so the inequality holds trivially. ��
Remark 3.3. Corollaries 3.1 and 3.2 also hold for separable Hilbert spaces, as the vari-
ational characterizations from Lemma 2.2 hold in the general W ∗-algebra setting [56].

3.2. Brascamp–Lieb inequalities for Gaussian quantum operations. In this section, we
present quantum versions of the classical Brascamp–Lieb inequalities as in Eqs. (1) and
(2), where probability distributions on R

m are replaced by quantum states on L2(Rm),
the Hilbert space of square-integrable wave functions onRm . We focus on the geometric
case discussed in the introduction. The marginal distribution with respect to a sub-
space X ⊆ R

m has the following natural quantum counterpart. Define a TPCP map EX
as the composition of the unitary L2(Rm) ∼= L2(X)⊗L2(X⊥)with the partial trace over
the second tensor factor. Given a density operator ρ on L2(Rm), we can think of

ρX = EX (ρ)

as the reduced density operator corresponding to X . This is the natural quantum version
of the marginal probability density in Eq. (3) of the introduction. Indeed, if we identify
ρ with its kernel in L2(Rm × R

m), and likewise for ρk , then we have the completely
analogous formula

ρk(y, y′) =
∫

X⊥
ρ
(
y + z, y′ + z

)
dz ∀y, y′ ∈ X .

This definition is very similar in spirit to the quantum addition operation in the quantum
entropy power inequality of [43] (see also [28,44]) and in fact contains the latter as
a special case. In linear optical terms, ρX can be interpreted as the reduced state of
dim X many output modes obtained by subjecting ρ to a network of beamsplitters with
arbitrary transmissivities.

The following result establishes quantum versions of the Brascamp–Lieb dualities
as in Eqs. (1) and (2) for the geometric case.

Proposition 3.4 (Geometric quantum Brascamp–Lieb inequalities). Let X1, . . . , Xn ⊆
R

m be subspaces and let q1, . . . , qn ≥ 0 such that
∑n

k=1 qk�k = 1Rm , where �k

denotes the orthogonal projection onto Xk. Then, for all ρ ∈ S(L2(Rm)) with finite
second moments,

H(ρ) ≤
n∑

k=1

qk H(ρXk ). (17)
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Furthermore, for all ωXk ∈ S(L2(Xk)) such that exp
(∑n

k=1 1X⊥
k
⊗ logωXk

)
has finite

second moments, it holds that4

tr exp
( n∑

k=1

1X⊥
k
⊗ logωXk

)
≤

n∏
k=1

∥∥ωXk

∥∥
1/qk

. (18)

Note that if Xk is spanned by a subset Sk ⊆ [m] of the m coordinates of Rm , then ρXk

is nothing but the reduced density matrix of subsystems Sk , which appears on the right-
hand side of the quantum Shearer inequality Eq. (14). Thus, Proposition 3.4 implies
Corollary 3.1 in the case that all s ∈ [m] are contained in exactly p of the subsets Sk .

To establish Proposition 3.4, we will first prove the entropic form Eq. (17) using a
quantum version of the heat flow approach from [8,21] (cf. the recent works [22–24]
on entropy inequalities for quantum Markov semigroups). We assume some familiarity
with Gaussian quantum systems (see, e.g., [40]) and follow the framework of König and
Smith [43], which holds under regularity assumptions on the quantum state, which were
subsequently removed by De Palma and Trevisan [28].

Let X ⊆ R
m be a subspace and m X its dimension. For all x ∈ X , define position

and momentum operators on L2(X) by (Q X,xψ)(y) := (x · y)ψ(y) and PX,x := −i∂x .
Denote by N X

t the non-commutative heat flow or heat semigroup [28,43], which is a
one-parameter semi-group, meaningN X

0 = 1 andN X
s ◦N X

t = N X
s+t for s, t ≥ 0. On a

suitable domain it is generated by

LX := −1

4

m X∑
j=1

[Q X,e j , [Q X,e j , ρ]] + [PX,e j , [PX,e j , ρ]],

where {e j }m X
j=1 is an arbitrary orthonormal basis of X (but we will not directly use this

specific form). For every t ≥ 0, N X
t is a Gaussian TPCP map, hence fully determined

by its action on covariance matrices and mean vectors,5 which is given by

� �→ � + t1 and μ �→ μ . (19)

In particular, the heat flow is independent of the choice of orthonormal basis in X . The
generalized partial trace maps EX : ρ �→ ρX defined above are also Gaussian and act by

� �→ �|X and μ �→ μ|X , (20)

where μ|X denotes the restriction of μ onto X ⊕ X and likewise for �|X . The non-
commutative heat flow is compatible with the maps EX , i.e.,

EX ◦NR
m

t = N X
t ◦ EX .

Indeed, since both channels (and hence their composition) are Gaussian, it suffices to
verify that the action commutes on the level of mean vectors and covariance matrices,

4 As we only prove Eq. (17) for states with finite second moments, we can not apply Theorem 2.1 directly
to obtain Eq. (18) (see end of proof). Removing this assumption is an interesting open problem.

5 The mean vector of a quantum state ρ on L2(X) is the linear formμ on X ⊕ X given byμ(v) = tr ρRX,v ,
where RX,v = Q X,x + PX,y for v = (x, y); the covariance matrix of ρ is the quadratic form � defined by
�(v, v′) = tr ρ{RX,v − μ(v), RX,v′ − μ(v′)}.



1818 M. Berta, D. Sutter, M. Walter

and the latter is clear from Eqs. (19) and (20). See also [28, Lemma 2]. Thus, we may
unambiguously introduce the notation

ρ
(t)
X := EX

(NR
m

t (ρ)
) = N X

t

(EX (ρ)
) = N X

t

(
ρX

)
(21)

for the reduced density operator on L2(X) at time t . Similarly, we may show that EX is
compatible with phase-space translations (cf. [43, Lemma XI.1]). For x ∈ X , define the
unitary one-parameter groups

Q(t)
X,x (ρ) := e−it PX,x ρ eit PX,x and P(t)

X,x (ρ) := eit Q X,x ρ e−it Q X,x .

They are Gaussian, leave the covariance matrices invariant, and send mean vectorsμ �→
μ + t (xT , 0) and μ + t (0, xT ), respectively. By comparing with Eq. (20), we find that

Q(t)
X,x ◦ EX = EX ◦Q(t)

Rm ,x and P(t)
X,x ◦ EX = EX ◦ P(t)

Rm ,x . (22)

In the following we shall make use of two crucial properties of the heat flow that
will allow us to ‘linearize’ the proof of the entropy inequality: First, the entropy of ρ

(t)
X

grows logarithmically as t → ∞ and becomes asymptotically independent of the state
ρ, as proved in [43, Corollary III.4] and [28, Theorem 5]:

∣∣H
(
ρ

(t)
X

)
/m X − (1− log 2 + log t)

∣∣ → 0.

In particular, this implies that any valid inequality of the form Eq. (17) must satisfy the
inequality

n∑
k=1

qkm Xk ≥ m , (23)

since this is precisely equivalent to the validity of Eq. (17) as t → ∞. For us, this
condition follows by taking the trace on both sides of our assumption that

∑n
k=1 qk�k =

1Rm . To state the second property of the heat flow that we will need, we momentarily
assume sufficient regularity of the states under consideration, following [43]. Then, the
Fisher information of a one-parameter family of states

{
σ (s)

}
is defined as

J
({

σ (s)}) := ∂2s=0D
(
σ 0

∥∥σ (s)).
It satisfies the following version of the data processing inequality [43, Theorem IV.4]:
For any TPCP map E ,

J
({E(

σ (s))}) ≤ J
({

σ (s)}) . (24)

For a covariant family of the form σ (s,K ) := eisK σ e−isK , the Fisher information can be
computed as [43, Lemma IV.5]

J
({σ (s,K )}) = tr σ [K , [K , log σ ]]. (25)

We can now state the quantum de Bruijn identity [43, Theorem V.1], which computes
the derivative of the entropy along the heat flow in terms of the Fisher information:

∂t H
(
ρ

(t)
X

) = 1

4
J
(
ρ

(t)
X

)
, (26)
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where the total Fisher information J (σX ) of a state σX on L2(X) is defined by

J (σX ) :=
m X∑
j=1

J
({

σ
(s,Q X,e j )

})
+ J

({
σ

(s,PX,e j )
})

, (27)

for an arbitrary orthonormal basis {e j }m X
j=1 of X . While above we assumed regularity,

the Fisher information J (σX ) can be defined for any state with finite second moments,
and the de Bruijn identity (26) generalizes as well [28, Definition 7 & Proposition 1].6

Proof of Proposition 3.4. We first prove the entropic Eq. (17) by considering ρ(t) :=
ρ

(t)
Rm for t ≥ 0. As t → ∞, Eq. (17) holds up to arbitrarily small error, as explained below

Eq. (23). To show its validity at t = 0, we would therefore like to argue that ∂t H(ρ(t)) ≥∑n
k=1 qk ∂t H

(
ρ

(t)
Xk

)
for all t ≥ 0. In view of the de Bruijn identity in Eqs. (26) and (21),

it suffices to establish the following super-addivity property of the Fisher information
for all states σ on L2(Rm) with finite second moment:

n∑
k=1

qk J (σXk ) ≤ J (σ ) . (28)

We first prove this under the regularity assumptions of [43], so that Eq. (25) applies. We
will abbreviate Q j := QRm ,e j and Pj := PRm ,e j , where {e j }m

j=1 is the standard basis
of Rm . For all x ∈ Xk , it holds that

J
({

σ
(s,Q Xk ,x )

Xk

}) = J
({P(s)

X,x (EXk (σ ))
})

= J
({EXk (P(s)

Rm ,x (σ ))
})

≤ J
({P(s)

Rm ,x (σ )
})

= tr σ [QRm ,x , [QRm ,x , log σ ]]

=
m∑

j, j ′=1

x j x j ′ tr σ [Q j , [Q j ′ , log σ ]]

=
m∑

j, j ′=1

(
xxT )

j, j ′ tr σ [Q j , [Q j ′, log σ ]]

where the second step is by the compatibility of phase-space translations and general-
ized partial trace (22), the third step uses the data-processing inequality for the Fisher
information Eq. (24), and the fourth step follows from Eq. (25). If we apply the same

6 The key idea is to first define an integral version of the Fisher information [28, Definition 6]. In the
setting without side information, this is defined for a state σX on L2(X) and for t > 0 by (σX )(t) :=
I (X : V )σX V (t), where σX V (t) denotes the classical-quantum state with V is a multivariate Gaussian random

variable with covariance matrix t (IX ⊕ IX ) and σX |V=v = DX,vσXD†
X,v

, with DX,v = Q(1)
X,x ◦ P(1)

X,y for
v = (x, y) ∈ X⊕X ; one also setsX (σX )(0) := 0. This iswell-defined for any stateσX and satisfies a finitary
version of the de Bruijn identity [28, Theorem 1]. Moreover, if σX is a state with finite energy then (σX )(t)
is continuous, increasing, and concave as a function of t ≥ 0. Hence, for such states one can define the Fisher

information J (σX ) as the (right) derivative of (σX )(t) at t = 0, that is, as J (σX ) = limt↓0 (σX )(t)
t [28,

Definition 7]. Then the de Bruijn identity (26) follows directly from its finitary version [28, Proposition 1].
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argument to J
({

σ
(s,PX,x )

Xk

})
and sum both inequalities over an orthonormal basis {x} of

Xk , we obtain

J (σXk ) ≤ J (σ,�k) , (29)

where we used the shortcut J (σ, A) := ∑m
j, j ′=1 A j, j ′

(
tr σ [Q j , [Q j ′ , log σ ]] + tr σ [Pj ,

[Pj ′, log σ ]]) for any positive semidefinite m × m matrix A, which is linear in A. Thus,
our assumption that

∑n
k=1 qk�k = 1Rm (with all qk ≥ 0) implies the desired inequality:

∑
k

qk J (σXk ) ≤
∑

k

qk J (σ,�k) = J (σ,
∑

k

qk�k) = J (σ,1Rm ) = J (σ ). (30)

This establishes Eq. (28) and hence Eq. (17) for states that are sufficiently regular.
While Eq. (25) need not apply in general, the Fisher information J (σ ) and the de Bruijn
identity (26) have been generalized to arbitrary states with finite second moments [28],
as discussed above. The quantity J (σ, A) can be defined in the same manner so that Eqs.
(29) and (30) hold verbatim, see [29, Definition 6, Propositions 6 & 9].7

The analytic form in Eq. (18) then follows from a slight extension of Theorem 2.1,
or more specifically the special case discussed in Corollary 2.5. Namely, we need to
incorporate on the entropic side the finite second moment assumption from Eq. (17).
By inspection, the variational formulae from Lemma 2.2 applied to operators with finite
second moment still hold for the respective suprema only taken over operators with
finite second moment. Hence, following the proof of the BL duality in Theorem 2.1, we
can still go from the entropic to the analytic form when assuming that the operator in
exponential form on the left hand side of the analytic form has finite second moment. ��

While the preceding discussion restricted to the geometric case, we can also con-
sider the general case of surjective linear map Lk : Rm → R

mk , as in Sect. 1. For
this, write Lk as the composition of an invertible map Mk ∈ GL(m) and the pro-
jection onto the first mk coordinates. Define a unitary operator Uk on L2(Rm) by
(Uk g)(x) := g(M−1

k x)/
√| det Mk |. Then, Ek(ρ) := trmk+1,...,m(UkρU †

k ) defines a
TPCP map that is the natural quantum version of the marginalization g �→ gk (same
notation as in Eq. (2)). We leave it for future work to determine under which conditions
such quantum Brascamp–Lieb inequalities hold in general.

Note added: In follow-up work, Eq. (17) from Proposition 3.4 has been extended to
the conditional case with side information [50, Theorem 7.3] for Gaussian states, based
on [44]. Subsequently, the latter assumption was removed by De Palma and Trevisan
[29], who further generalized Proposition 3.4 and also fully resolved the aforementioned
question.

3.3. Entropic uncertainty relations. In this section, we explain how the duality of Theo-
rem 2.1 and Corollaray 2.5 offers an elegant way to prove entropic uncertainty relations
(cf. the related work [57]). In order to compare our uncertainty bounds with the previous
literature, we work in the current subsection with the explicit logarithm function relative
to base two.

7 The idea is the same in footnote 6. One first defines an integral quantity (σ, A) just like for the Fisher
information, except that the multivariate Gaussian random variable now has covariance matrix A ⊕ A [29,
Definition 5] If σX is a state with finite energy then t �→ (σ, t A) is again continuous, increasing, and concave
[29, Proposition 5], and hence one can define J (σ, A) := limt↓0 (σ,t A)

t [29, Definition 6]. Then J (σ, A)

satisfies a Stam inequality [29, Prop. 9] that implies (29), and it is still a linear function of A (for nonnegative
linear combinations) [29, Prop. 6], which is what we used in (30).
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Example 3.5 (Maassen–Uffink). For ρA ∈ S(A) the Maassen–Uffink entropic uncer-
tainty relation [54] for two arbitrary basis measurements,

MX(·) =
∑

x

〈x | · |x〉|x〉〈x |X and MZ(·) =
∑

z

〈z| · |z〉|z〉〈z|Z ,

asserts in its strengthened form [11] that

H(X) + H(Z) ≥ − log c(X, Z) + H(A) withc(X, Z) := max
x,z

|〈x |z〉|2. (31)

The constant c(X, Z) is tight in the sense that there exist quantum states that achieve
equality for certain measurement maps. Equation (10) of Corollary 2.5 for n = 2,
q1 = q2 = 1, E1 = MX, and E2 = MZ then immediately gives the equivalent analytic
form

tr exp
(

M†
X
(logω1) + M†

Z
(logω2)

)
≤ c(X, Z) ∀ω1, ω2 ∈ S(A) . (32)

In other words, in order to prove Eq. (31) it suffices to show Eq. (32). Now, since the
logarithm is operator concave and M†

X
is a unital map, the operator Jensen inequality

[36] implies

M†
X
(log X1) ≤ log M†

X
(X1).

Together with the monotonicity of X �→ tr exp(X) [18, Theorem 2.10] and the Golden–
Thompson inequality8 [34,61], this establishes the analytic form of Eq. (32)

tr exp
(

M†
X
(logω1) + M†

Z
(logω2)

)
≤ tr exp

(
log M†

X
(ω1) + log M†

Z
(ω2)

)

≤ tr M†
X
(ω1)M†

Z
(ω2)

≤ c(X, Z).

Thus, the entropic Maassen–Uffink relation Eq. (31) follows from our Corollary 2.5.
We note that the approach of proving entropic uncertainty relations via the Golden–

Thompson inequality was pioneered by Frank & Lieb [31] and is conceptually different
from the original proofs that are either based on complex interpolation theory for Schatten
p-norms [54] or the monotonicity of quantum relative entropy [26]. We refer to [25]
for a review on entropic uncertainty relations. As a possible extension one could choose
non-trivial pre-factors qk  = 1 and study the optimal uncertainty bounds in that setting
as well (as done in [57] without the H(A) term). Another natural extension is to general
quantumchannels insteadofmeasurements (as detailed in [12,32]). The constant c(X, Z)

from Eq. (31) is multiplicative for tensor product measurements. However, we might
ask more generally if for given measurements the optimal lower bound in Eq. (31)
becomes multiplicative for tensor product measurements. This amounts to an instance
of the tensorization question from Eq. (13) and we refer to [32,57] for a discussion.

An advantage of our BL analysis is that it suggests tight generalizations to mul-
tiple measurements by means of the multivariate extension of the Golden–Thompson
inequality [60]. A basic example is as follows.

8 The Golden–Thompson inequality ensures that for all Hermitian matrices H1 and H2 we have tr exp(H1 +
H2) ≤ tr exp(H1) exp(H2).
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Example 3.6. (Six-state [27]) For ρA ∈ S(A) with dim(A) = 2 and measurement maps
MX, MY, MZ of the Pauli matrices σX , σY , σZ we have

H(X) + H(Y ) + H(Z) ≥ 2 + H(A). (33)

Moreover, this relation is tight in the sense that there exist quantum states that achieve
equality. Note that applying the Maassen–Uffink relation Eq. (31) for any two of of the
three Pauli measurements only yields the weaker bound

H(X) + H(Y ) + H(Z) ≥ 3

2
+
3

2
H(A).

The equivalent analytic form of Eq. (33) is given by Corollary 2.5 as

tr exp
(

M†
X
(logω1) + M†

Y
(logω2) + M†

Z
(logω3)

)
≤ 1

4
∀ω1, ω2, ω3 ∈ S(A).

The same steps as in the proof of the Maassen–Uffink relation, together with Lieb’s
triple matrix inequality [46] then yield the upper bound9

∫ ∞

0
tr MX(ω1)

1

MZ(ω3)−1 + t
MY(ω2)

1

MZ(ω3)−1 + t
dt

=
∑
x,y

〈x |ω1|x〉〈y|ω2|y〉
∫ ∞

0
|〈x | 1

MZ(ω3)−1 + t
|y〉|2dt

≤ max
x,y

∫ ∞

0
|〈x | 1

MZ(ω3)−1 + t
|y〉|2dt.

In the penultimate step we used that

MX(ω) =
∑

x∈{x0,x1}
〈x |ω|x〉|x〉〈x | where

{
|x0〉 = 1√

2
(1, 1)T , |x1〉 = 1√

2
(1,−1)T

}

MY(ω) =
∑

y∈{y0,y1}
〈y|ω|y〉|y〉〈y| where

{
|y0〉 = 1√

2
(1, i)T , |y1〉 = 1√

2
(1,−i)T

}

MZ(ω) =
∑

z∈{z0,z1}
〈z|ω|z〉|z〉〈z| where

{
|z0〉 = (1, 0)T , |z1〉 = (0, 1)T

}
. (34)

As (MZ(ω3)
−1 + t)−1 = ∑

z
1

〈z|ω3|z〉−1+t
|z〉〈z|, we get

∣∣∣∣〈x | 1

MZ(ω3)−1 + t
|y〉

∣∣∣∣
2

=
∣∣∣∣∣
∑

z

1

〈z|ω3|z〉−1 + t
〈x |z〉〈z|y〉

∣∣∣∣∣
2

.

Together with 〈x |z0〉〈z0|y〉 = 1
2 and 〈x |z1〉〈z1|y〉 = ± i

2 for all x ∈ {x0, x1}, y ∈
{y0, y1} we find the upper bound

1

4

∫ ∞

0

(
(〈z0|ω3|z0〉−1 + t)−2 + (〈z1|ω3|z1〉−1 + t)−2

)
dt = 1

4

(〈z0|ω3|z0〉 + 〈z1|ω3|z1〉
) = 1

4
.

This then concludes the proof of the six-state entropic uncertainty relation Eq. (33).

9 Lieb’s triple matrix inequality corresponds to the three matrix Golden–Thompson inequality from [60].
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3.4. Minimum output entropy. TheBrascamp–Liebduality fromTheorem2.1 andCorol-
lary 2.5 is also applied usefully to general quantum channels. Recall that the minimum
output entropy of a map E ∈ TPCP(A, B) is defined by

Hmin(E) := min
ρ∈S(A)

H
(E(ρ)

)
. (35)

The computation of minimum output entropy is in general NP-complete [9]. Neverthe-
less, it is a fundamental information measure [58] that has been used, e.g., to prove
super-additivity of the Holevo information [38]. Corollary 2.5 for n = 2, q1 = q2 = 1,
E1 = I, and E2 = E gives the following result.

Corollary 3.7 (Minimum output entropy). For E ∈ TPCP(A, B) and C ∈ R, the fol-
lowing two statements are equivalent:

C ≤ H
(E(ρ)

) ∀ρ ∈ S(A) , (36)

tr exp(logω1 + E†(logω2)) ≤ exp(−C) ∀ω1 ∈ S(A), ω2 ∈ S(B) . (37)

Moreover, we have

Hmin(E) = − max
ω∈S(B)

λmax(E†(logω)). (38)

It is unclear if the form Eq. (38) could give new insights on the tensorization question
of when the minimal output entropy of tensor product channels becomes additive. That
is, for which E,F ∈ TPCP(A, B) do we have

Hmin(E ⊗ F)
?= Hmin(E) + Hmin(F). (39)

We note that probabilistic counterexamples are known [38], which shows that the ten-
sorization question Eq. (13) is in general answered in the negative.

Proof of Corollary 3.7. We give two proofs of Eq. (38), one based on the variational
characterization of the relative entropy from Eq. (6), and the other based on the dual
formulation from Eq. (37). Using the former approach, we see that

Hmin(E) = min
ρ∈S(A)

H
(E(ρ)

) = min
ρ∈S(A)

−D
(E(ρ)‖1)

= min
ρ∈S(A)

−
(

max
ω∈P	(B)

tr E(ρ) logω − log tr ω

)

= min
ρ∈S(A),ω∈S(B)

− tr ρ E†(logω)

= − max
ρ∈S(A),ω∈S(B)

tr ρ E†(logω)

= − max
ω∈S(B)

λmax
(E†(logω)

)
,

where the final step follows from the variational formula of the largest eigenvalue.
Alternatively we can verify Eq. (38) in the analytic picture. To see this, we note that

using the equivalence between Eqs. (36) and (37) as well as the monotonicity of the
logarithm,

Hmin(E) = − max
ω1∈S(A), ω2∈S(B)

log tr exp
(
logω1 + E†(logω2)

)
. (40)
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Next, note that, for any Hermitian H , the Golden–Thompson inequality gives

max
ω1∈S(A)

tr exp
(
ω1 + H

) ≤ max
ω1∈S(A)

tr ω1 exp(H) = λmax(exp(H)) = exp(λmax(H)),

where the second step uses again the variational formula for the largest eigenvalue. This
inequality is in fact an equality, since the upper-bound is attained if we choose ω1 to be
a projector onto an eigenvector of H with largest eigenvalue (any such ω1 commutes
with H ). If we use this to evaluate Eq. (40), then we obtain the desired result.

Example 3.8. (Qubit depolarizing channel) The minimal output entropy of the qubit
depolarizing channel

Ep : X �→ (1− p)X + p
1C2

2
tr X forp ∈ [0, 1] (41)

is given by Hmin(Ep) = h
(

p/2
)
with h(x) := −x log x − (1 − x) log(1 − x) is the

binary entropy function. In the entropic picture, this follows as the concavity of the
entropy ensures that the optimizer in Eq. (35) can always be taken to be a pure state; the
unitary covariance property of the depolarizing channel then implies that we only need
to evaluate the output entropy for a single arbitrary pure state. In the analytic picture,
we can use Eq. (38) to see that

Hmin(Ep) = − max
ω∈S(B)

λmax(E†(logω)) = − max
t∈[0,1]

{(
1− p

2

)
log t +

p

2
log(1− t)

}
= h

( p

2

)
,

where the second step follows from unitary covariance and the final step uses that
t� = 1− p/2 is the optimizer.

3.5. Data-processing inequality. The examples given so far employedCorollary 2.5, but
in this sectionwe give an example that demonstrates Theorem2.1 in its full strength (with
σ , σk  = 1). The data-processing inequality (DPI) for the quantum relative entropy is a
cornerstone in quantum information theory [51,55,62]. It states that, for ρ ∈ S(A) and
σ ∈ P	(A), the quantum relative entropy cannot increase when applying a channel E ∈
TPP(A, B) to both arguments, i.e.,

D
(E(ρ)‖E(σ )

) ≤ D(ρ‖σ).

The DPI is mathematically equivalent to many other fundamental results, including the
strong sub-additivity of quantum entropy [48,49]. Our Brascamp–Lieb duality frame-
work fits the DPI. That is, Theorem 2.1 applied for n = 1, q1 = 1, σ1 = E(σ ), and
C = 0 implies the following duality.

Corollary 3.9 (DPI duality). For σ ∈ P	(A) and E ∈ TPP(A, B) the following inequal-
ities hold and are equivalent:

D
(E(ρ)‖E(σ )

) ≤ D(ρ‖σ) ∀ρ ∈ S(A) ,

tr exp
(
log σ + E†(logω)

) ≤ tr exp
(
logω + log E(σ )

) ∀ω ∈ P	(B) . (42)
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As a simple example for tr σ ≤ tr ρ = 1, one can immediately see that D(ρ‖σ) ≥ 0
by considering the trace map E(·) = tr(·). Namely, data processing for the trace map
takes the trivial analytic form tr logω ≤ 0 for quantum states ω ∈ S(A).

Given that the DPI is quite powerful, we suspect that Eq. (42) may be of interest too.
We note that Eq. (42) does not immediately follow from existing results and thus seems
novel. For example, employing the operator concavity of the logarithm, the operator
Jensen inequality, and the Golden–Thompson inequality we get

tr exp
(
log σ + E†(logω)

) ≤ tr exp
(
log σ + log E†(ω)

) ≤ tr E†(ω)σ = tr ωE(σ ).

(43)

This immediately implies Hansen’s multivariate Golden–Thompson inequality [35, In-
equality (1)], but is in general still weaker than Eq. (42) as the Golden–Thompson
inequality applied to the right-hand side of Eq. (42) likewise gives

tr exp
(
logω + log E(σ )

) ≤ tr ωE(σ ). (44)

Only when σ = 1 and E is unital does Eq. (42) simplify to tr exp(E†(logω)) ≤ tr ω,
reducing to Eq. (43).10

3.6. Strong data-processing inequalities. It is a natural to study potential strengthen-
ings of the DPI inequality and a priori it is possible to seek for additive or multiplicative
improvements. Additive strengthenings of the DPI have recently generated interest in
quantum information theory [30,42,59,60]. Here, we consider multiplicative improve-
ments of the DPI, which have been called strong data-processing inequalities in the lit-
erature. To this end, define the contraction coefficient of E ∈ TPCP(A, B) at σ ∈ S(A)

as

η(σ, E) := sup
S(A)!ρ  =σ

D
(E(ρ)‖E(σ )

)
D(ρ‖σ)

. (45)

The data-processing inequality then ensures that η(σ, E) ≤ 1, and we say that E satisfies
a strong data-processing inequality at σ if η(σ, E) < 1. Theorem 2.1 for n = 1, C = 0,
σ1 = E(σ ), and q1 = η(σ, E)−1 implies the following equivalence.

Corollary 3.10 (Strong DPI duality). For E ∈ TPP(A, B), σ ∈ P	(A), and η > 0, the
following two statements are equivalent:

D
(E(ρ)‖E(σ )

) ≤ ηD(ρ‖σ) ∀ρ ∈ S(A) , (46)

tr exp
(
log σ + E†(logω)

) ≤
∥∥∥∥exp

(
logω +

1

η
log E(σ )

)∥∥∥∥
η

∀ω ∈ S(B) . (47)

Thus, to determine η(σ, E), we aim to find the smallest constant η ∈ [0, 1] such that
Eq. (46) or, equivalently, Eq. (47) holds. For unital E and maximally mixed σ = 1/d,
d := dim(A), the duality in Corollary 3.10 simplifies to

log d − H
(E(ρ)

) ≤ η
(
log d − H(ρ)

) ∀ρ ∈ S(A) , (48)

tr exp
(E†(logω)

) ≤ d
η−1
η ‖ω‖η ∀ω ∈ S(B). (49)

10 Alternatively, this also follows directly via Jensen’s trace inequality [37].
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Often we are also interested in the global contraction coefficient of E , obtained by
optimizing η(σ, E) over all σ ∈ S(A), i.e.,

η(E) := sup
σ∈S(A)

η(σ, E) . (50)

Example 3.11. (Qubit depolarizing channel) For the qubit depolarizing channel Ep from
Eq. (41), which is unital, we claim that

η

(
1C2

2
, Ep

)
= (1− p)2. (51)

To prove this in the entropic picture we start by recalling that η(Ep) = (1 − p)2 [39],

which already gives η(
1
C2

2 , Ep) ≤ (1 − p)2. Thus, it suffices to find states ρ ∈ S(A)

such that

(1− p)2 ≤ D(Ep(ρ)‖1
C2

2 )

D(ρ‖1
C2

2 )
= 1− H

(Ep(ρ)
)

1− H(ρ)
(52)

up to arbitrarily small error. The states ρε = diag( 12 + ε, 1
2 − ε) satisfy this condition in

the limit ε → 0. Indeed,

lim
ε→0

1− H
(Ep(ρε)

)
1− H(ρε)

= lim
ε→0

1− h
(
(1− p)(1/2 + ε) + p/2

)
1− h(1/2 + ε)

= (1− p)2 , (53)

as follows from the Taylor expansion of the binary entropy function h(·).
In the analytic form of Eq. (49), the statement of Eq. (51) is equivalent to the claim

that η = (1− p)2 is the smallest η ∈ [0, 1] such that

tr exp
(
(1− p) logω +

p

2
1C2 tr logω

) ≤ 2
η−1
η ‖ω‖η for all ω ∈ S(B) . (54)

Without loss of generality we can assume that ω = diag(t, 1 − t) for t ∈ [0, 1]. Then,
the statement above simplifies to showing that η = (1 − p)2 is the smallest η ∈ [0, 1]
such that

(
t (1− t)

) p
2
(
t1−p + (1− t)1−p) ≤ 2

η−1
η

(
tη + (1− t)η

) 1
η for all t ∈ [0, 1] . (55)

3.7. Super-additivity of relative entropy. Another type of strengthening of the DPI is as
follows. The quantum relative entropy is super-additive for product states in the second
argument. That is, for ρAB , σAB ∈ S(A ⊗ B) we have

D(ρAB‖σA ⊗ σB) ≥ D(ρA‖σA) + D(ρB‖σB) . (56)

This directly follows from the non-negativity of the relative entropy, since D(ρAB‖σA ⊗
σB) − D(ρA‖σA) − D(ρB‖σB) = D(ρAB‖ρA ⊗ ρB) ≥ 0. If the state in the second
argument is not a product state we can apply the DPI twice and find

D(ρAB‖σAB) ≥ t D(ρA‖σA) + (1− t)D(ρB‖σB) for all t ∈ [0, 1] . (57)



Quantum Brascamp–Lieb Dualities 1827

A natural question is thus to find parameters α(σAB), β(σAB) with α(σA ⊗ σB) =
β(σA ⊗ σB) = 1 such that11

D(ρAB‖σAB) ≥ α(σAB)D(ρA‖σA) + β(σAB)D(ρB‖σB) . (58)

Recently, it was shown [17] that Eq. (58) indeed holds for

α(σAB) = β(σAB) =
(
1 + 2

∥∥∥σ
− 1

2
A ⊗ σ

− 1
2

B σABσ
− 1

2
A ⊗ σ

− 1
2

B − 1AB

∥∥∥∞
)−1

. (59)

Applying Theorem 2.1 for n = 2, σ1 = σA, σ2 = σB , C = 0, E1 = trB , E2 = trA,
q1 = α, and q2 = β gives the following BL duality.

Corollary 3.12 (Duality for super-additivity of relative entropy). For σAB ∈ P	(A⊗B)

with tr σAB = 1, α > 0, and β > 0, the following two statements are equivalent:

αD(ρA‖σA) + βD(ρB‖σB ) ≤ D(ρAB‖σAB ) ∀ρAB ∈ S(A ⊗ B), (60)
tr exp(log σAB + logωA + logωB )≤‖exp(logωA + α log σA)‖ 1

α
‖exp(logωB + β log σB )‖ 1

β

∀ωA ∈ S(A), ωB ∈ S(B) . (61)

We leave it as an open question to find parameters α(σAB) and β(σAB) different from
Eq. (59), satisfying Eq. (60) or equivalently Eq. (61).

4. Conclusion

Our fully quantum Brascamp–Lieb dualities raise a plethora of possible extensions to
study. Taking inspiration from the commutative case [53], this could include, e.g., Gaus-
sian optimality questions, hypercontractivity inequalities, transportation cost inequali-
ties, strong converses in Shannon theory, entropy power inequalities [1], or algorithmic
and complexity-theoretic questions [15,16,33]. For some of these applications it seems
that an extension of Barthe’s reverse Brascamp–Lieb duality [7] to the non-commutative
setting would be useful.

Acknowledgements. MB and DS thank the Stanford Institute for Theoretical Physics for their hospitality
during the time this project was initiated.MWwould like to thankGraeme Smith and JILA for their hospitality.
MW gratefully acknowledges Misha Gromov for his hospitality at IHES and for suggesting the problem
discussed in Sect. 3.2. We thank Eric Carlen for corresponding with us about Brascamp–Lieb inequalities
for relative entropies. We thank Ernest Tan for informing us about an error in Sect. 3.3 in a previous version
of this manuscript. DS acknowledges support from the Swiss National Science Foundation via the NCCR
QSIT as well as project No. 200020_165843. MB acknowledges funding by the European Research Council
(ERC Grant Agreement No. 948139). MW acknowledges support by the NWO through Veni grant no. 680-
47-459 and grant OCENW.KLEIN.267, by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, by the BMBF through
project QuantumMethods and Benchmarks for Resource Allocation (QuBRA), and by the European Research
Council (ERC) through ERC Starting Grant 101040907-SYMOPTIC.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

11 We might also ask for α(σAB ) + β(σAB ) ≥ 1.



1828 M. Berta, D. Sutter, M. Walter

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

1. Anantharam, V., Jog, V., Nair, C.: Unifying the Brascamp–Lieb inequality and the entropy power inequal-
ity. In: IEEE International Symposium on Information Theory (ISIT), pp. 1847–1851 (2019). https://doi.
org/10.1109/ISIT.2019.8849711. Extended version available at arXiv:1901.06619

2. Ball, K.: Volumes of Sections of Cubes and Related Problems, pp. 251–260. Springer, Berlin (1989).
https://doi.org/10.1007/BFb0090058

3. Ball, K.: Shadows of convex bodies. Trans. Am. Math. Soc. 327(2), 891–901 (1991). https://doi.org/10.
1090/S0002-9947-1991-1035998-3

4. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44(2), 351–359 (1991).
https://doi.org/10.1112/jlms/s2-44.2.351

5. Ball, K.: An elementary introduction to modern convex geometry. Flavors Geom. 31, 1–58 (1997)
6. Ball, K.: Convex Geometry and Functional Analysis, chapter 4, vol. 1, pp. 161–194. Elsevier, New York

(2001)
7. Barthe, F.:On a reverse formof theBrascamp–Lieb inequality. Inventionesmathematicae 134(2), 335–361

(1998). https://doi.org/10.1007/s002220050267
8. Barthe, F., Cordero-Erausquin, D.: Inverse Brascamp–Lieb Inequalities along the Heat Equation, pp.

65–71. Springer, Berlin (2004)
9. Beigi, S., Shor, P.W.:On the complexity of computing zero-error andHolevo capacity of quantumchannels

(2007). arXiv:0709.2090
10. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure and

extremals. Geometr. Funct. Anal. 17(5), 1343–1415 (2008). https://doi.org/10.1007/s00039-007-0619-6
11. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence

of quantum memory. Nat. Phys. (2010). https://doi.org/10.1038/nphys1734
12. Berta, M., Furrer, F., Scholz, V.B.: The smooth entropy formalism for von Neumann algebras. J. Math.

Phys. 57, 015213 (2016). https://doi.org/10.1063/1.4936405
13. Bourin, J.-C., Hiai, F.: Norm and anti-norm inequalities for positive semi-definite matrices. Int. J. Math.

22(08), 1121–1138 (2011). https://doi.org/10.1142/S0129167X1100715X
14. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generaliza-

tion to more than three functions. Adv. Math. 20(2), 151–173 (1976). https://doi.org/10.1016/0001-
8708(76)90184-5

15. Bürgisser, P., Franks, C., Garg, A., Oliveira, A., Walter, A., Wigderson, A.: Efficient algorithms for
tensor scaling, quantum marginals, and moment polytopes. In: 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 883–897. IEEE (2018). https://doi.org/10.1109/FOCS.
2018.00088

16. Bürgisser, P., Franks, C., Garg, A., Oliveira, R., Walter, R., Wigderson, A.: Towards a theory of non-
commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes. In:
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 845–861. IEEE
(2019). https://doi.org/10.1109/FOCS.2019.00055

17. Capel, A.: Superadditivity of quantum relative entropy for general states. IEEE Trans. Inf. Theory 64(7),
4758–4765 (2018). https://doi.org/10.1109/TIT.2017.2772800

18. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 4, 5 (2009).
https://doi.org/10.1090/conm/529

19. Carlen, E.A., Cordero-Erausquin, D.: Subadditivity of the entropy and its relation to Brascamp–Lieb type
inequalities. Geometr. Funct. Anal. 19(2), 373–405 (2009). https://doi.org/10.1007/s00039-009-0001-y

20. Carlen, E.A., Lieb, E.H.: Brascamp–Lieb inequalities for non-commutative integration. Doc. Math. 13,
553–584 (2008)

21. Carlen, E.A., Lieb, E.H., Loss, M.: A sharp analog of Young’s inequality on SN and related entropy
inequalities. J. Geometr. Anal. 14(3), 487–520 (2004). https://doi.org/10.1007/BF02922101

22. Carlen, E.A., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability under
which the Fermionic Fokker–Planck equation is gradient flow for the entropy. Commun. Math. Phys.
331(3), 887–926 (2014). https://doi.org/10.1007/s00220-014-2124-8

23. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with
detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017). https://doi.org/10.1016/j.jfa.2017.05.003

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ISIT.2019.8849711
https://doi.org/10.1109/ISIT.2019.8849711
http://arxiv.org/abs/1901.06619
https://doi.org/10.1007/BFb0090058
https://doi.org/10.1090/S0002-9947-1991-1035998-3
https://doi.org/10.1090/S0002-9947-1991-1035998-3
https://doi.org/10.1112/jlms/s2-44.2.351
https://doi.org/10.1007/s002220050267
http://arxiv.org/abs/0709.2090
https://doi.org/10.1007/s00039-007-0619-6
https://doi.org/10.1038/nphys1734
https://doi.org/10.1063/1.4936405
https://doi.org/10.1142/S0129167X1100715X
https://doi.org/10.1016/0001-8708(76)90184-5
https://doi.org/10.1016/0001-8708(76)90184-5
https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.1109/FOCS.2019.00055
https://doi.org/10.1109/TIT.2017.2772800
https://doi.org/10.1090/conm/529
https://doi.org/10.1007/s00039-009-0001-y
https://doi.org/10.1007/BF02922101
https://doi.org/10.1007/s00220-014-2124-8
https://doi.org/10.1016/j.jfa.2017.05.003


Quantum Brascamp–Lieb Dualities 1829

24. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in dis-
sipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020). https://doi.org/10.1007/s10955-019-
02434-w

25. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications.
Rev. Mod. Phys. 89, 015002 (2017). https://doi.org/10.1103/RevModPhys.89.015002

26. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys.
Rev. Lett. 108, 210405 (2012). https://doi.org/10.1103/PhysRevLett.108.210405

27. Coles, P.J., Yu, L., Gheorghiu, V., Griffiths, R.B.: Information-theoretic treatment of tripartite systems
and quantum channels. Phys. Rev. A 83, 062338 (2011). https://doi.org/10.1103/PhysRevA.83.062338

28. De Palma, G., Trevisan, D.: The conditional entropy power inequality for bosonic quantum systems.
Commun. Math. Phys. 360(2), 639–662 (2018). https://doi.org/10.1007/s00220-017-3082-8

29. De Palma, G., Trevisan, D.: The generalized strong subadditivity of the von Neumann entropy for bosonic
quantum Gaussian systems (2021). arXiv:2105.05627

30. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Com-
mun. Math. Phys. 340(2), 575–611 (2015). https://doi.org/10.1007/s00220-015-2466-x

31. Frank, R.L., Lieb, E.H.: Extended quantum conditional entropy and quantum uncertainty inequalities.
Commun. Math. Phys. 323(2), 487–495 (2013). https://doi.org/10.1007/s00220-013-1775-1

32. Gao, L., Junge, M., LaRacuente, N.: Uncertainty principle for quantum channels. In: IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 996–1000 (2018). https://doi.org/10.1109/ISIT.
2018.8437730

33. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: Algorithmic and optimization aspects of Brascamp–
Lieb inequalities, via operator scaling. Geom. Funct. Anal. 28(1), 100–145 (2018). https://doi.org/10.
1007/s00039-018-0434-2

34. Golden, S.: Lower bounds for the Helmholtz function. Phys. Rev. 137, B1127–B1128 (1965). https://doi.
org/10.1103/PhysRev.137.B1127

35. Hansen, F.:Multivariate extensions of theGolden–Thompson inequality. Ann. Funct. Anal. 6(4), 301–310
(2015). https://doi.org/10.15352/afa/06-4-301 https://doi.org/10.15352/afa/06-4-301

36. Hansen, F., Pedersen, G.K.: Jensen’s operator inequality. Bull. Lond. Math. Soc. 35(4), 553–564 (2003).
https://doi.org/10.1112/S0024609303002200

37. Hansen, F., Pedersen, G.K.: Jensen’s trace inequality in several variables. Int. J. Math. 14(06), 667–681
(2003). https://doi.org/10.1142/S0129167X03001983

38. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5(4),
255–257 (2009). https://doi.org/10.1038/nphys1224

39. Hiai, F., Ruskai, M.B.: Contraction coefficients for noisy quantum channels. J. Math. Phys. 57(1), 015211
(2016). https://doi.org/10.1063/1.4936215

40. Holevo, A.S.: Quantum Systems, Channels, Information. De Gruyter Studies in Mathematical Physics
16, (2012). https://doi.org/10.1515/9783110273403

41. Huang, D.: Generalizing Lieb’s concavity theorem via operator interpolation. Adv. Math. 369, 107208
(2020). https://doi.org/10.1016/j.aim.2020.107208

42. Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery maps and approximate
sufficiency of quantum relative entropy. Annales Henri Poincaré 19(10), 2955–2978 (2018). https://doi.
org/10.1007/s00023-018-0716-0

43. König, R., Smith, G.: The entropy power inequality for quantum systems. IEEE Trans. Inf. Theory 60(3),
1536–1548 (2014). https://doi.org/10.1109/TIT.2014.2298436

44. König, R., Smith, G.: Corrections to “The entropy power inequality for quantum systems”. IEEE Trans.
Inf. Theory 62(7), 4358–4359 (2016). https://doi.org/10.1109/TIT.2016.2563438

45. Kuznetsova, A.: Conditional entropy for infinite-dimensional quantum systems. Theory Probab. Appl.
55(4), 709–717 (2011). https://doi.org/10.1137/S0040585X97985121

46. Lieb, E.H.: Convex trace functions and theWigner–Yanase–Dyson conjecture. Adv.Math. 11(3), 267–288
(1973). https://doi.org/10.1016/0001-8708(73)90011-X

47. Lieb, E.H.: Gaussian kernels have onlyGaussianmaximizers. InventionesMathematicae 102(1), 179–208
(1990). https://doi.org/10.1007/BF01233426

48. Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30,
434–436 (1973). https://doi.org/10.1103/PhysRevLett.30.434

49. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math.
Phys. 14(12), 1938–1941 (1973). https://doi.org/10.1063/1.1666274

50. Ligthart, L.: Linear quantum entropy inequalities beyond strong subadditivity and their applications. MSc
thesis, University of Amsterdam & Vrije Universiteit Amsterdam (2020)

51. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151
(1975). https://doi.org/10.1007/BF01609396

https://doi.org/10.1007/s10955-019-02434-w
https://doi.org/10.1007/s10955-019-02434-w
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/PhysRevLett.108.210405
https://doi.org/10.1103/PhysRevA.83.062338
https://doi.org/10.1007/s00220-017-3082-8
http://arxiv.org/abs/2105.05627
https://doi.org/10.1007/s00220-015-2466-x
https://doi.org/10.1007/s00220-013-1775-1
https://doi.org/10.1109/ISIT.2018.8437730
https://doi.org/10.1109/ISIT.2018.8437730
https://doi.org/10.1007/s00039-018-0434-2
https://doi.org/10.1007/s00039-018-0434-2
https://doi.org/10.1103/PhysRev.137.B1127
https://doi.org/10.1103/PhysRev.137.B1127
https://doi.org/10.15352/afa/06-4-301
https://doi.org/10.15352/afa/06-4-301
https://doi.org/10.1112/S0024609303002200
https://doi.org/10.1142/S0129167X03001983
https://doi.org/10.1038/nphys1224
https://doi.org/10.1063/1.4936215
https://doi.org/10.1515/9783110273403
https://doi.org/10.1016/j.aim.2020.107208
https://doi.org/10.1007/s00023-018-0716-0
https://doi.org/10.1007/s00023-018-0716-0
https://doi.org/10.1109/TIT.2014.2298436
https://doi.org/10.1109/TIT.2016.2563438
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1007/BF01233426
https://doi.org/10.1103/PhysRevLett.30.434
https://doi.org/10.1063/1.1666274
https://doi.org/10.1007/BF01609396


1830 M. Berta, D. Sutter, M. Walter

52. Liu, J., Courtade, T. A., Cuff, P., Verdú, S.: Brascamp–Lieb inequality and its reverse: An information
theoretic view. In: IEEE International Symposium on Information Theory (ISIT), pp. 1048–1052 (2016).
https://doi.org/10.1109/ISIT.2016.7541459

53. Liu, J., Courtade, T.A., Cuff, P., Verdu, S.: Information-theoretic perspectives on Brascamp–Lieb inequal-
ity and its reverse (2017). arXiv:1702.06260

54. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106
(1988). https://doi.org/10.1103/PhysRevLett.60.1103

55. Müller-Hermes, A., Reeb, D.: Monotonicity of the quantum relative entropy under positive maps. Annals
of Henri Poincaré (2017). https://doi.org/10.1007/s00023-017-0550-9

56. Petz, D.: A variational expression for the relative entropy. Commun.Math. Phys. 114(2), 345–349 (1988).
https://doi.org/10.1007/BF01225040

57. Schwonnek, R.: Additivity of entropic uncertainty relations. Quantum 2, 59 (2018). https://doi.org/10.
22331/q-2018-03-30-59 https://doi.org/10.22331/q-2018-03-30-59

58. Shor, P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys.
246(3), 473–473 (2004). https://doi.org/10.1007/s00220-003-0981-7

59. Sutter, D.: Approximate QuantumMarkov Chains. Springer, Berlin (2018). https://doi.org/10.1007/978-
3-319-78732-9_5

60. Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. Commun. Math. Phys. 352(1),
37–58 (2017). https://doi.org/10.1007/s00220-016-2778-5

61. Thompson, C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6(11), 1812–1813
(1965). https://doi.org/10.1063/1.1704727

62. Uhlmann, A.: Relative entropy and theWigner–Yanase–Dyson–Lieb concavity in an interpolation theory.
Commun. Math. Phys. 54(1), 21–32 (1977). https://doi.org/10.1007/BF01609834

Communicated by A. Giuliani

https://doi.org/10.1109/ISIT.2016.7541459
http://arxiv.org/abs/1702.06260
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1007/s00023-017-0550-9
https://doi.org/10.1007/BF01225040
https://doi.org/10.22331/q-2018-03-30-59
https://doi.org/10.22331/q-2018-03-30-59
https://doi.org/10.22331/q-2018-03-30-59
https://doi.org/10.1007/s00220-003-0981-7
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/s00220-016-2778-5
https://doi.org/10.1063/1.1704727
https://doi.org/10.1007/BF01609834

	Quantum Brascamp–Lieb Dualities
	Abstract:
	1 Introduction
	2 Brascamp–Lieb Duality for Quantum Relative Entropies
	2.1 Main result
	2.2 Weighted anti-norms
	2.3 Convexity and tensorization

	3 Applications of Quantum Brascamp–Lieb Duality
	3.1 Generalized (strong) sub-additivity
	3.2 Brascamp–Lieb inequalities for Gaussian quantum operations
	3.3 Entropic uncertainty relations
	3.4 Minimum output entropy
	3.5 Data-processing inequality
	3.6 Strong data-processing inequalities
	3.7 Super-additivity of relative entropy

	4 Conclusion
	Acknowledgements.
	References




