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Abstract

This paper addresses the “curse of dimensionality” in the loss valuation of credit risk
models. A dimension reduction methodology based on the Bayesian filter and smoother
is proposed. This methodology is designed to achieve a fast and accurate loss valuation
algorithm in credit risk modelling, but it can also be extended to valuation models of other
risk types. The proposed methodology is generic, robust and can easily be implemented.
Moreover, the accuracy of the proposed methodology in the estimation of expected loss and
value-at-risk is illustrated by numerical experiments. The results suggest that, compared
to the currently most used PCA approach, the proposed methodology provides more
accurate estimation of expected loss and value-at-risk of a loss distribution.
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1 Introduction

1.1 Problem description and background

In this paper we apply the grids methodology to construct an approximation of the valuation
function which is used to evaluate potential credit losses of loans. To tackle the “curse
of dimensionality” problem that the grids methodology heavily suffers from, we propose a
dimension reduction technique based on the Bayesian filter and smoother.

Computing risk metrics in credit risk for large portfolios is computationally intensive. This
is especially true when the analytical loss distribution is not available. In general, Monte Carlo
simulation is required to estimate the loss distribution. In such a case, one needs to simulate
the multi-year default probabilities (PD) and realize loss-given default (LGD) of each single
loan or each pool of loans, and then evaluate the potential losses. The simulation of the
multi-year PD and realized LGD for large and complex portfolios requires extremely large
computational resources. Therefore, in practice a valuation grid is usually used to approxi-
mate the portfolio valuation functions to avoid multi-year simulations. Valuation grids are
a commonly applied computational tool in science and engineering (for example, Thompson
et al. (1998)) and have also been applied in finance. For instance, Broadie and Glasserman
(2004) uses grids to speed up the valuation of high dimensional American options. Recently,
the grids method are also used together with the neural networks or Gaussian process regres-
sion to obtain better precision and faster calculations in valuations, see Horvath et al. (2021),
Pagnottoni (2019), Evans and Nair (2018). The idea of using grids to measure portfolio risk
is used in the stratified sampling methodology by Jamshidian and Zhu (1996) to approximate
directly the probability density function of a portfolio value.
The grids methodology that applies to approximate the valuation function needs only a small
number of exact valuations, which are used to construct a grid. The constructed grid is a fast
approximation of the valuation function that can then be used during a simulation. The key to
applying this method is to be able to express the valuation function as a function of a small
number of risk factors, usually not larger than three, since the grids methodology heavily
suffers from the “curse of dimensionality”, Bellman (1957). The “curse of dimensionality” de-
scribes the extraordinarily rapid growth of computation time as the number of the dimension
increases. When the dimensionality of the risk factors is large, a large number of valuations
is required to construct the interpolation pricing function and hence the grid methodology
becomes impractical. Nevertheless, in credit risk modelling, a higher factor model is preferred
to better describe the transition probabilities. Therefore, a dimension reduction approach is
needed to map the higher dimensional factors to lower dimensional factors that can be used
in the valuation grids. Currently, the most used dimension reduction approach is Principal
Component Analysis (PCA), Jolliffe (1990). It transforms the original risk factors into a new
risk factor space composed of orthogonal principal directions. For example, five dimensional
risk factors result in five uncorrelated principal components. Movements of the five dimen-
sional factors can thus be described by the principal components. The principal components
are ordered from the largest to the least in terms of explaining the total variance of the five
dimensional risk factors. In practice, one needs to decide on the number of principal com-
ponents to use. Assume one decides to use the first two principal components. Then the
original five dimensional risk factors are ”reduced” to two dimensional risk factors, which are
a linear combination of the first two principal components. However, using the PCA approach
in credit risk modelling has the following drawbacks.
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• Low interpretability : principal components are linear combinations of the risk factors,
but they are not easy to interpret. For example, usually the risk factors need to be stan-
dardized before PCA decomposition. Consequently, it is difficult to tell which are the
most important risk factors after computing principal components. Therefore one loses
the economic interpretation when analyzing the impact of the principal components.

• Sensitivity to outliers: PCA is a method based on the correlation or covariance matrix,
which can be very sensitive to outliers. Consequently, outliers can completely mess
up a classical PCA analysis and yield a PCA model with an arbitrarily bad fit to the
genuine part of the data. Indeed, PCA cannot account for outliers in the risk factors
that are outside the range of the selected components and such outliers usually need
to be removed before performing PCA. However, in credit risk modeling, these outliers
are actually desired since they might be located in the tail of the loss distribution and
hence contribute to the Value-at-Risk (VaR).

• Assumption on the correlations: PCA assumes correlations between the risk factors. If
the risk factors are not correlated, PCA will not provide any additional insight.

As an alternative to the PCA approach, in this paper we propose a dimension reduction
methodology.

1.2 Contribution

Our first and main contribution is a dimension reduction methodology based on the Bayesian
filter and smoother. The Bayesian filter and smoother estimate the distribution (or value) of
a latent process, given the observed data. We interpret the Bayesian filter and smoother as a
projection from the observed data to unobserved latent factors. More precisely, this feature
is applied to project the higher dimensional risk factors onto lower dimensional factors.

Compared to the commonly used Principal Components Analysis (PCA) approach, the
proposed dimension reduction methodology has the follow advantages.

• Economic interpretability : The proposed approach projects the higher dimensional fac-
tors to lower dimensional factors in such a way that the lower dimensional factors capture
the most importance features in the model maintaing an economic interpretation. For
instance, if one applies the proposed approach to a transition model in which a certain
rating migration constitutes the majority of observations (i.e. the majority of clients),
this rating migration is an importance risk driver and the lower factors will tend to
capture the feature of this rating migration.

• Optimality : The proposed approach is optimal in the sense that the Bayesian filter
is optimal on the criterion of Bayes risk of minimum mean square error (MMSE), see
Chen (2003). Intuitively, the proposed approach is optimal in that it seeks the posterior
distribution of the lower dimensional factors which integrates and uses all of available
information.

• It is generic and robust : This approach is generic in that it applies to a wide range of
risk or pricing models, and insensitive to outliers.

Our second contribution is an application of our proposed dimension reduction approach
to credit loss estimation. We review the important concepts and models used in the credit
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risk modelling, like transitions, loss given default (LGD), exposure at default (EAD) and
loss valuation models. We also derive a closed form formula of Black-Scholes type for the
expected LGD of collateral LGD models. We conduct numerical experiments to illustrate the
performances of the proposed methodology on the credit loss estimation and we assess the
accuracy of the estimation on PD curves, expected losses, and the VaR at different levels. We
compare the performance of the valuation grid based on the proposed methodology and the
PCA approach. The results indicate that the proposed approach convincingly outperforms
the PCA approach.

1.3 Organization of the paper

Section 2 provides the background knowledge for loss calculations in credit risk modelling.
We present the valuation model and the valuation grid approach for the loss calculation.
This section also contains brief reviews of transition, LGD and EAD models and specifies
the models used in this paper. The proposed dimension reduction methodology is presented
in Section 3, in which the Bayesian filter and smoother are also presented. In Section 4 we
provide numerical experiments to show the performance of the proposed approach. Finally,
Section 5 is devoted to the conclusions. In the Appendix we provide a Black-Scholes formula
for the expected LGD.

Here follows some notations and other conventions used in this paper. All random pro-
cesses are defined on a fixed probability space (Ω,F,P). Time is assumed to be discrete. We
will use a filtration {Fk, k = 0, . . . , n}, where Fk summarizes the information up to time k
and n is the final time. We denote by ·⊤ the transpose of a vector or a matrix.

2 Set up and background

In this section we outline the set up, we pose the problem, give a brief survey of models used
for loss calculations in credit risk modeling, Bayesian filters (including Kalman, and particle
filter) and address the “curse of dimensionality” problem for loss calculations using Bayesian
filters.

2.1 Overview of loss calculations in credit risk

One of the main tasks in credit risk is to forecast and quantify future losses of a portfolio at
a certain time horizon. The time horizon is a future time period over which the credit risk
is assessed. For instance, in the regulations prescribed by the Basel Committee on Banking
Supervision Basle Committee (1999) there is a one-year time horizon across all asset classes.
The forecast risk can be quantified, for example, by expected losses or value at risk, depending
on the purpose. In the International Financial Reporting Standards (IFRS) extensive reports
of the expected losses for different obligors and sectors are required and for Economic Capital
(EC) the extreme quantile of the loss distribution (usually the 99.95% quantile) needs to be
calculated.

Three risk parameters are essential in the process of calculating the potential losses: the
probability of default (PD), the loss given default (LGD) and the exposure at default (EAD).
The PD is the probability that a borrower will fail to pay back a debt. The LGD is the
fraction of a loan that is lost when a borrower defaults and the EAD is the predicted amount
of the loss, the borrower may be exposed to, when a debtor defaults on a loan. They are
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generally estimated using the available historical information and are assigned to operations
and customers according to their particular characteristics. In this context, the credit rating
tools (ratings and scorings) assess the risk for each transaction or customer according to their
credit quality by assigning them a score. This score is then used in assigning risk metrics,
together with additional information such as transaction seasoning, loan to value ratio, cus-
tomer segment, etc. The increase in the number of default events in the current economic
situation contributes to reinforce the soundness of the risk parameters by adjusting their es-
timates and by refining methodologies. The incorporation of data from the years of economic
slowdown is particularly important for refining the analysis of the cyclical behavior of credit
risk. The effect on the PD estimates and on the credit conversion factor is immediate.1 An
analysis of the impact on the LGD, however, requires waiting for the outcome of the recovery
processes associated with the default events. Below we present a brief review to the models
of the three risk parameters, i.e. PD, LGD and EAD.

Transition models

A model for the PD, or for transition matrices that govern rating migrations, depends on
the rating system. A credit rating system uses a limited number of rating grades to rank
borrowers according to their default probabilities. Ratings are assigned by rating agencies
such as Fitch, Moody’s and Standard & Poor’s, but also by financial institutions themselves.
Rating assignments can be based on a qualitative process or on default probabilities estimated
with a scoring model. To translate default probability estimates into ratings, one defines a set
of rating grades depending on the default probabilities. For example, borrowers are assigned
grade AAA if their probability of default is lower than 0.02%, to grade AA if their probability
of default is between 0.02% and 0.05% and so on. Once the ratings are defined, the concern
is to determine the probability with which the credit risk rating of a borrower decreases or
increases by a given degree and a transition (PD) model is required. These probabilities
that a credit risk rating of a borrower decreases or increases, from one period to the next
one, are usually collected in a transition matrix. Namely, the transition matrix measures the
probabilities of the migrations between different credit ratings over specific time intervals. In
the transition matrix, the element located at the i-th row and j-th column represents the
probability of a borrower migrates from the i-th rating to the j-th rating. These are called
transition probabilities and are often related to macroeconomic variables such as interest
rates, inflation, gross domestic product (GDP), unemployment, etc. Alternatively, transition
probabilities can also be modelled by using certain abstract latent processes.

The transition (PD) models in general can be divided into two main classes: structural and
reduced form models.

Structural models link the up- or down-grade (or default) probabilities of a firm to the
value of its assets and liabilities. The origin of structural credit risk models is the Merton
model, Merton (1974), and then further developed by, for instance, Hull and White (2001),
Avellaneda and Zhu (2001), Duffie and Singleton (2004), Albanese et al. (2003), and Jeanblanc
and Rutkowski (1999). In these structural models, the latent credit process is called a credit
index (Xt)t≥0, reflecting unobservable credit quality over time which is driven by firm-specific
variables such as the asset values. A default occurs if the credit index crosses a default barrier.

1The credit conversion factor calculates the amount of a free credit line and other off-balance-sheet trans-
actions (with the exception of derivatives) to an EAD amount and is an integral part in the European banking
regulation since the Basel II accords, see Basle Committee (2006).
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The dynamics of the credit index are specified by the model and the default barriers can be
calibrated to historical migration or market data. Structural models can be generalized to
describe not only defaults, but also rating migrations. This requires a mapping from the latent
credit index to the rating states at each time, which corresponds to specifying an interval for
the credit index that corresponds to each rating class. The intervals are defined by rating
barriers, and rating changes occur when the credit index passes a barrier value.

Reduced form models, see for example, Jarrow and Turnbull (1995), Duffie and Singleton
(2004), Frey and McNeil (2002), Wendin and McNeil (2006), Koopman et al. (2008), Jeanblanc
and Li (2020), and Jeanblanc and Lecam (2008), give a description for the latent credit
quality of an entity by assuming that it is driven by exogenous factors. They are based
on a linear factor model for the latent variable, or equivalently, for the hazard rate of a
firm. The key assumption of reduced form models is that the latent process or hazard rate
process is driven by systematic external factors. For instance, in a reduced form model the
latent credit process (Xt)t≥0 can be decomposed into two independent parts: a systematic
risk factor and a idiosyncratic risk factor. The systematic risk factor includes factors that
are relevant for the business environment of the firms, such as the state of the economy,
dummy variables for the industry sectors and regions, or other variables that are related to
credit quality. The idiosyncratic risk factor is the firm-specific term. As in the structural
model, in reduced form model a default occurs if the latent variable (Xt)t≥0 falls below a
certain threshold at a certain time. Same concept can be generalized to credit ratings by
defining a mapping from the credit variable (Xt)t≥0 to the rating states, by using threshold
parameters for all ratings. These threshold parameters give the limits for the latent variable
to move from current rating to other ratings, see for instance Nickell et al. (2000), Frey
and McNeil (2002), Wei (2003), Duffie and Singleton (2004). Given the systematic factors,
the default (transition) probabilities depends on the cumulative distribution function of the
idiosyncratic factors. This distribution function is usually referred to as the response function.
The most common choices for the response function are the probit function (standard normal
distribution function) and the logit function. Compared to the structural model, the reduced
form models are not explicitly based on on the company’s balance sheet. It only requires
information generally available in financial markets and hence historical estimation methods
can be easily used. But the consequence, and drawback, is that the models do not explain
the economic reasons for default.

In this paper we use a reduced form approach to model the transition probability. We
will describe this in more detail in Section 4.1.

LGD models

Loss Given Default (LGD) is one of the key determinants of the credit risks of loans and other
credit exposures, which measures the severity of the loss when a debtor defaults. It is the
share of an asset that is lost when a borrower defaults. An client may not end up with a loss if
it is in default since it could be cured. Hence it is always worth noting that the LGD estimate
is sensitive to the definition of default, which can substantially change the implied Recovery
rate. Moreover, the LGD is client-specific because such losses are generally understood to be
influenced by key transaction characteristics such as the presence or the value of a collateral.
For example, in mortgages the houses themselves are usually the collateral. That means that if
the borrower defaults, the bank could sell the house to compensate for the loss from missing
payments from the borrower. Obviously, the LGD could be stochastic over time. Despite
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its stochastic nature, statistical modeling of the LGD has been challenging in the academic
literature and in banking practice. Therefore many credit risk models used in practice assume
that LGD is a deterministic proportion of the exposures subject to impairment and ignore the
fact that LGD can fluctuate according to the economic cycle. For example, Altman (2011)
and Altman et al. (2005) show that default rates and recovery rates are strongly negatively
correlated and measure a correlation of 0.75 between yearly average default rates and loss
rates in the United States. They provide strong correlation evidence between macroeconomic
growth variables (such as gross domestic product) and recovery rates and test the impact of
correlated defaults and LGD. There are various models proposed to describe the LGD. Frye
(2000a) and Frye (2000b) propose a structural model with a systematic risk factor representing
the state of the economy that drives both defaults and LGD. The dependence of the default
indicator and LGD on the common risk factor gives rise to a strong correlation between the
two, which is in line with empirical evidence. Hillebrand (2006) introduces dependent LGD
modeling into a multifactor latent variable framework, providing a good fit to corporate bond
data. Marginal distributions for indicator functions and LGD can be specified. Frontczak
and Rostek (2015) show that for the retail sector it is important to include collateral and
suggested improvements for modelling LGD for this sector. We adopt this latter approach to
model the LGD in this paper. The details are presented in Section 4.2.

EAD models

Exposure at Default (EAD) is the predicted amount of loss that may be exposed to when a
debtor defaults on a loan. In many cases, such as residential mortgages and personal loans,
the EAD are deterministic and can be simply taken from the current on-balance amount. For
credit cards though, the revolving nature of the credit line poses challenges with regards to
predicting the exposure at default time. As credit card customers may borrow more money (off
balance) in the months prior to default, simply taking the current balance for non-defaulted
customers would not produce a conservative enough estimate for the amount drawn by the
time of default. Examples to model the EAD with an off balance amount can be found in
Gumbo (2013) and Tong et al. (2016). In this paper, we treat the EAD as deterministic and
equal to the on-balance amount. Finally, given the risk parameters we next explain how the
portfolio losses are determined.

Portfolio losses

Given the PD, LGD and the EAD models, the realized losses of the obligors can be determined
by simulating the risk factors and the migrations. If the simulated rating of an obligor becomes
default at a certain time t, the loss of this obligor can be simply computed as LGDt ×EADt,
the notation should be obvious. After discounting and aggregating all the losses at different
times, one can obtain the aggregated loss of the obligor. Then the portfolio loss for each
realization is computed by summing the aggregated losses from all obligors.

By simulating a lot of scenarios, one obtains the distribution of the portfolio losses and
hence determines the desired risk metrics, such as expected loss or value-at-risk. Figure 2.1
is presented as a simple illustration to determine the loss distribution of the portfolio. A
number of scenarios are simulated until maturity. In this case the maturity is 30 periods and
the horizon is one period. In each scenario, the migrations of all obligors are simulated over
time and the losses at each time point are computed for the obligors that move to default at
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that time point. Aggregating all the discounted losses from all time points for all obligors, one
obtains the portfolio losses for this specific scenario. In the end the loss distribution can be
obtained by repeating the calculations for all simulated scenarios. This procedure is very time

Figure 2.1: An illustration to determine the loss distribution

consuming when dealing with a huge portfolio, since it requires simulations of the migrations
for all the obligors along each scenario. Hence, in practice, a valuation model together with
a valuation grid method is needed to simplify the loss calculations. In the next subsections
we introduce the valuation model we use in this paper and we introduce our valuation grid
approach to compute the risk metrics.

2.2 Valuation model for the credit losses

In general, a portfolio’s credit loss is defined as the difference between the portfolio’s current
value and its future value at the end of some time horizon see Basle Committee (1999).
Therefore a valuation model can be used to compute the value of the loans and hence to
capture the risks. For example, such a model is used to capture the risk of a one-year loan
and a ten-year loan. If, over the one-year horizon, the one-year loan is downgraded but does
not default, then it survives and there is no loss. If the ten-year loan is downgraded but does
not default, then the economic value of this loan should be lower than if this loan was not
downgraded. The loan values are based on a net present value (NPV). Specifically the NPV
is computed as the expected discounted value of all future net cash flows:

NPV = E
( n∑
k=1

δkCFk

)
, (2.1)

where n is the maturity of the loan, the δk ∈ R+ are the risk-free discounting factors and
the CFk are the future cash flows at time k. It is very important to note, while it is correct
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to use risk-free rates to discount risk-free cash flows, we have to discount risky cash flows
due to potential defaults. This issue can be resolved in two ways: find risk-adjusted dis-
count rates or transform the probabilities to risk adjusted (risk neutral) probabilities. The
former way requires finding an appropriate discount rate for each (type of) obligor or loan,
which would introduce a lot of parameters in the model. Therefore the latter approach to
transform the physical default probabilities into risk-neutral default probabilities is usually
used. More details about the risk neutral default probability can be found in Delianedis and
Geske (2003). To reduce the complexity of the model in practice, the risk-free discounting
factors are usually derived from deterministic curves, for instance those obtained from the
Libor rates or Overnight Indexed Swaps (OIS). In this paper, we do not distinguish between
the physical measure and the risk neutral measure for simplicity, and hence the expectation
in equation (2.1) is interpreted as a risk neutral expectation.

Consider a loan with coupon payments sk at time k = 1, 2, . . . , n and a principal repayment
PC at maturity n. Since the default depends on the rating of the loan, we denote the default
time of a loan with rating r by τr, a non-negative real random variable. If the loan defaults
in period k (between time k − 1 and k), denoted by the indicator 1τr∈(k−1,k], the cash flow
equals the coupon until time k − 1 plus the recovery 1− LGDk. If the loan does not default,
the cash flow equals all the coupons plus the principal. Hence, one obtains the value of the

loan with rating r at initial time k = 0, denoted by V
(r)
0 as

V
(r)
0 = E

 n∑
k=1

1τr∈(k−1,k]

( k−1∑
j=1

δjsj + δk(1− LGDk)EADk

)
+ 1τr>n

( n∑
k=1

δksk + δnPC
)

= E[
n∑

k=1

δk1τr∈(k−1,k]︸ ︷︷ ︸
lifetimePD

(1− LGDk)EADk] + E

[
n∑

k=1

δk1τr>ksk

]
︸ ︷︷ ︸

coupon payments

+E [δnPC1τr>n]︸ ︷︷ ︸
principle

.

Hence, standing at horizon h and suppose the sigma-algebra Fh contains the information up

to time h,2 the resulting value of a performing loan with rating r, denoted by V
(r)
h , is

V
(r)
h = RVh +

n∑
k=h+1

δkE
[
1τr∈(k−1,k](1− LGDk)EADk | Fh

]
+

n∑
k=h+1

δkskE [1τr>k | Fh] + δnPCE [1τr>n | Fh] ,

(2.2)

where RVh is the summation of the cash flow until horizon, i.e.

RVh =

h∑
i=1

δisi.

Note that V
(r)
h is Fh measurable.

2In practice, the specific definition of Fh depends on the models used for PD, LGD, and EAD. For instance,
if factor models are used, the sigma-algebra Fh is usually defined as the sigma-algebra that is generated by
the factors upto time h.
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If there is no default after horizon h, the value of the loan is just the summation of all the
discounted cash flows,

V
(r)
h,ND = RVh +

n∑
k=h+1

δksk + δnPC.

Therefore, one obtains the valuation model for the loss of a performing loan with rating r at
horizon h, conditioned on information at h, as follows.

L
(r)
h = V

(r)
h,ND − V

(r)
h

=

n∑
k=h+1

δkskE [1τr≤k | Fh] + δnPCE [1τr≤n | Fh]

−
n∑

k=h+1

δkEADk E
[
1τr∈(k−1,k](1− LGDk) | Fh

]
.

(2.3)

Moreover, note that in the last equality we consider the EADt as the on-balance amount
at time t, as in most cases, and hence it is deterministic. One observes that the loss at
time k is from the future cash flows after the defaults, but compensated by the recovery
(1 − LGDk)EADk. It is worth noticing that the definition of loss in this valuation model is
in the economic sense. That means once a loan defaults, the losses not only come from the
outstanding exposures at default, but also from missing interest payments from the future
coupons. Note that the loss in Equation (2.3) is path-dependent. The probability of default
depends on the value of the risk factors in the transition model and the LGDk may also
depend on risk factors in the LGD model.

2.3 Valuation grid for losses valuation

There is usually no closed-form expression for the conditional distribution of the cumulative
PD or the conditional joint distribution of PD and LGD. Accordingly it is not possible to de-
rive analytical formulas for the conditional expectations E[1τr≤k | Fh] and E[1τr∈(k−1,k]LGDk |
Fh] in Equation (2.3). As alternative, a valuation grid is usually used to approximate the
aforementioned conditional expectations. The valuation grid methodology, see for instance,
Chishti (1999) and Gibson and Pritsker (2000), requires only a small number of valuations,
which are used to construct a fast approximation of the valuation function (in our case the
conditional expectations in (2.3)) when doing the simulation. The basic idea behind the valu-
ation grid approach is simple. Consider a conditional expectation in which the value depends
on a small number of risk factors (say two or three). Firstly, the conditional expectation
values are evaluated, by Monte Carlo for instance, on a small, pre-selected set of points which
forms a grid in the risk factor space. Then, during the simulation to construct the loss dis-
tribution, the conditional expectation values under different scenarios are quickly calculated
by using the previously computed values on the grid points through interpolation or more
sophisticated tools such as Gaussian process regression, see Rasmussen and Williams (2006)
or neural networks, see Bishop (1994) and Angelini et al. (2008).

We apply the valuation grid to every conditional expectation in (2.3), that is to E[1τr≤k |
Fh] and to E[1τr∈(k−1,k]LGDk | Fh] for k = h+ 1, . . . , n. These conditional expectations are
also called bullets since they can be seen as the loss of a unit bullet loan3. In the rest of

3A unit bullet loan is a loan with unit notional where a payment of the entire principal of the loan, possibly
the principal and interest, is due at the end of the loan term.

11



our paper, we adopt this terminology and refer the conditional expectations as bullets. The
key to applying the valuation grid method for valuation is to be able to express the bullet
as a function of a small number of risk factors. However, these risk factor inputs are often
high dimensional, since high dimensional factors are usually needed to describe the transition
probabilities. The high dimensionality will result in big challenges in the implementation of
the valuation grid, since the number of grid points to maintain a ‘minimum density’ grows too
fast. This can be understood intuitively with a simple example. Suppose five risk factors are
used to determine the value of a loan. If one wants to create a valuation grid with ten points
in each of the five dimensions, then 105 exact valuations would be required to create the grid.
To tackle this problem, we propose a dimension reduction approach to project a higher factor
model onto a lower factor model for the valuation. The advantage of the proposed projection
approach is that the higher factor model is kept to model the transition probabilities, whereas
a corresponding lower factor model is used for the valuation. Further details of the proposed
projection approach will be presented in Section 3.

2.4 valuation grid pre-processing and loss simulation

Suppose factor models are assigned to model the transitions and LGDs. Denote the risk
factors at time k by xk. The filtration {Fs, s = 0, 1, ..., n} is the information set in which
Fs is the sigma-algebra generated by {x0, ..., xs}. For every time k, every initial rating and
possibly every initial loan-to-value (depending on the LGD model), the values of the bullets
E [1τr≤k | Fh] and E

[
1τr∈(k−1,k]LGDk | Fh

]
in Equation (2.3) are pre-computed on certain

pre-selected points of risk factors. Then given time k, initial rating r and possibly initial
loan-to-value, the set of bullet values and the risk factor points form a valuation grid. The
pre-computation of the bullets are usually done by Monte Carlo simulation.

Suppose the default indicator 1τr∈(k−1,k] and LGDk are conditionally independent given
Fk. Then one derives

E
[
1τr∈(k−1,k]LGDk | F0

]
= E

[
E
[
1τr∈(k−1,k]LGDk | Fk

]
| F0

]
= E

[
E
[
1τr∈(k−1,k] | Fk

]
E [LGDk|Fk] | F0

]
= E [P(τr ∈ (k − 1, k] | Fk)E [LGDk|Fk] | F0]

= E [(PDr(k | Fk)− PD(k − 1 | Fk))E [LGDk|Fk] | F0] ,

with PDr(k | Fk) the cumulative PD of loan with initial rating r, at time k conditioned on
the information Fk. This result suggests that, in the case that 1τr∈(k−1,k] and LGDk are con-
ditionally independent given Fk, one only needs to simulate transition (default) probabilities
and expected LGD when using Monte Carlo simulations to estimate E

[
1τr∈(k−1,k]LGDk | F0

]
.

The additional simulations of the indicator 1τr∈(k−1,k] or the realized LGDt are not necessary.
Therefore, the valuation function (2.3) at horizon h can be reformulated as

L
(r)
h =

n∑
k=h+1

δkskE [PD(k | Fk) | Fh] + δnPCE [PD(n | Fn) | Fh]

−
n∑

k=h+1

δkEADkE [(PD(k | Fk)− PD(k − 1 | Fk)) (1− LGDk) | Fh] .

(2.4)

When constructing the loss distribution, firstly the paths of the risk factors need to be simu-
lated until the horizon. Then based on the simulated risk factors, the rating transitions and
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the LGDs can be simulated (computed) according to the transition and LGD models. If the
loan defaults or expires before the horizon, the losses are already obtained by the simulation.
If the loan is still performing (not defaulted or expired) at the horizon, the valuation grids are
then used to valuate the bullets and consequently the loss after the horizon according to the
valuation model. Aggregating the losses of all the loans, one obtains the distribution of the
aggregated loss. In Figure 2.2 a simple illustration is presented that shows how the valuation
grid is used to approximate the loss distribution. Scenarios and migrations are simulated only
until the time horizon. Then given each simulation, the realised loss is computed for each
loan. Aggregating the losses from all the loans, the loss distribution is obtained by collecting
the portfolio losses from all the scenarios.

Figure 2.2: An illustration to determine the loss distribution using valuation grids

As stated, the losses happened before or on the horizon can be directly computed using
the simulated transitions and LGDs and only the losses that happened after the horizon will
be evaluated by the valuation grid. Therefore, in this paper we ignore the pre-horizon losses
and only focus on the losses after the horizon.

3 A dimension reduction approach: Bayesian filter projection

This section on our projection method is the core of the paper and the approach is motivated
as follows. The desired advantage of the proposed logit transition model, see (4.2) and (4.4),
is that it allows a high dimensional multi-factor model which describes the transition data
accurately. However, the challenge of implementing a high dimensional transition model in
credit risk modeling is the computational complexity in the expected loss valuation using val-
uation grid. Ideally, the high dimensional transition model is used to simulate the risk factors
and determine the transitions, while lower dimensional factors are used for the valuation grid.
Note that the simulated higher dimensional factors that are used to determine the transitions
and the lower dimensional factors used in the valuation grid need to be consistent. Therefore a
(dimension reduction) projection approach is required to map the higher dimensional factors
to lower dimensional factors. The most used dimension reduction method approach to tackle
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this problem is Principal Component Analysis (PCA). But this approach is not optimal to
capture the transition probabilities in a lower dimensional space. Hence the performance of
this approach is not assured, see the experiments in Sections 4.3.1, 4.3.3 and 4.3.5. In this
section, we propose a dimension reduction method, which link the higher dimensional factors
with the lower dimensional factor through the Bayesian filter (smoother). Since the Bayesian
filter (smoother) achieves minimum mean square error (MMSE) Chen (2003), the proposed
dimension reduction method is optimal for the criterion of the Bayes risk, i.e. MMSE, to
project the simulated higher dimensional factors to lower dimensional factors. The Bayesian
filter is a general probabilistic approach for estimating the (distribution) of the latent states
in a state space model. The state space model and the Bayesian filter will be described in
Sections 3.1 and 3.2 respectively. The proposed dimension reduction algorithm is described
in Section 3.3.

3.1 State space model

State-space models deal with dynamic time series problems that involve unobserved variables
or parameters that describe the evolution in the state of the underlying system. The general
state space model, defined on some probability space (Ω,F ,P), is as follows

xk = fk(xk−1, uk), x0

yk = hk(xk, vk) , k ∈ N+ ,
(3.1)

where fk : Rd×Rp → Rd, hk : Rd×Rq → Rm are given Borel measurable functions, {uk}k∈N+

are p-dimensional and {vk}k∈N+ are q-dimensional white noise processes both independent of
the initial condition x0, and mutually independent as well. Parameters in the functions fk
and hk, together with the covariance of uk and vk can be seen as the parameters of the state
space model, to which we collectively refer to as ψ.

We are interested in estimating the (latent) state process {xk}k∈N+ , but only have access
to the process {yk}k∈N+ which represents the observations. Because of the existence of the
white noise in the data, estimating the values, or even the distributions, of the latent states
{xk}k∈N+ by the observations {yk}k∈N+ is not trivial. There are different methodologies in the
literature to estimate the latent process, see e.g. Press (2003); Chui and Chen (2017); Aru-
lampalam et al. (2002), and the Bayesian filter (smoother) is one of the mostly used approach
in practice. Especially, the Bayesian filter (smoother) can be considered as a projection from
the observation space to the state space. The Bayesian filter and smoother will be explained
in Section 3.2.

The state space model is widely used in many different areas such as economics and
finance, statistics, computer science, and electrical engineering and neuroscience. Particularly
in finance, it can be used to identify the latent variables including business cycles, expectations
of certain economic variables, permanent income streams, reservation wages, etc. The state
space model is also often applied to factor models to describe, for instance, interest rate and
credit risk driving factors.

3.2 Bayesian filter and smoother

The Bayesian filter and Bayesian smoother, see e.g. Särkkä (2013); Press (2003); Robert
(2007) for an overview, are used to estimate the distribution of the latent states {xk}k∈N+
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in (3.1) given the parameters, which we denote ψ. Often, but not always, we emphasize the
dependence of densities on the parameters in the notation.

We let the initial density function of x0 be p0. The methodology in Bayesian filtering
consists of two parts: prediction and update. At every time point k, the prediction part
computes (estimates) the prior distribution (density) of xk given the past observations up to
time k − 1),

p(xk | y1:k−1, ψ),

and the update part computes (estimates) the posterior distribution (density) of xk given the
past up to time k,

p(xk | y1:k, ψ).

The purpose of the Bayesian smoother4 is to compute the marginal posterior distribution of
the state xk at the time step k after receiving the measurements up to a time step T with
T > k,

p(xk | y1:T , ψ).

The difference between filters and smoothers is that that the filter uses the information from
the previous and current period to estimate the posterior distribution of current state xk,
while the smoothers uses also the observations after the current period and hence produces
optimal estimations.

It follows that the state space model (3.1) satisfies the properties of a stochastic system,
i.e. at every (present) time k ≥ 1 the future states and future observations (xj , yj), j ≥ k, are
conditionally independent from the past states and observations (xj , yj−1), j ≤ k, given the
present state xk, see van Schuppen (1989). It then follows that {xk}k∈N is a Markov process,
and for every k ≥ 1 one has that yk and y1:k−1 are conditionally independent given xk−1, in
terms of densities,

p(xk | xk−1, y1:k−1) = p(xk | xk−1). (3.2)

Similarly, due to Markov property, xk and yk+1:T are independent given xk+1, which gives

p(xk | xk+1, y1:T ) = p(xk | xk+1, y1:k). (3.3)

Moreover, one also has, for every k ≥ 1, that yk and y1:k−1 are conditionally independent
given xk−1, in terms of densities,

p(yk | y1:k−1, xk) = p(yk | xk) , for k ∈ N+ . (3.4)

These three equations, (3.2), (3.3) and (3.4) are used in the next sections in the derivation of
Bayesian filter and smoother recursions.

3.2.1 Bayesian filter recursion

Using Bayes’ rule and Equation (3.2), we deduce that the density function of the prior dis-
tribution is given by

p(xk | y1:k−1, ψ) =

∫
p(xk | xk−1, y1:k−1, ψ)p(xk−1 | y1:k−1, ψ) dxk−1

4This definition actually applies to the fixed-interval type of smoothing. For fixed-leg smoothing, one can
consult Anderson and Moore (2012).
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=

∫
p(xk | xk−1, ψ)p(xk−1 | y1:k−1, ψ) dxk−1 . (3.5)

Note that when k = 1, the posterior distribution p(xk−1 | y1:k−1, ψ) is defined as the initial
density p0.

The purpose of the Bayesian algorithm is to sequentially compute the posterior distribu-
tion pk(dxk | ψ) = p(dxk | y1:k, ψ). Again using Bayes’ rule, (3.4) and (3.5), we obtain the
posterior

p(xk | y1:k, ψ) =
p(yk | xk, y1:k−1, ψ)p(xk | y1:k−1, ψ)

p(yk | y1:k−1, ψ)

=
p(yk | xk, ψ)p(xk | y1:k−1, ψ)∫
p(yk | xk, ψ)p(xk | y1:k−1, ψ) dxk

. (3.6)

If we assume the marginal likelihood function p(yk | xk, ψ) and the transition probability
p(xk | xk−1, ψ) are known, then given the posterior density p(xk−1 | y1:k−1, ψ) at time k − 1,
we can use Equations (3.5) and (3.6) to compute the posterior density p(xk | y1:k, ψ) at
time k. In this way the posterior distributions can be computed recursively given the initial
distribution p0.

3.2.2 Bayesian smoother recursion

According to Bayes’s rule and Equations (3.2) and (3.3), the density p(xk | y1:T ) can be
expressed as

p(xk | y1:T , ψ)) =
∫
p(xk | xk+1, y1:T , ψ)p(xk+1 | y1:T , ψ) dxk+1

=

∫
p(xk | xk+1, y1:k, ψ)p(xk+1 | y1:T , ψ) dxk+1

=

∫
p(xk, xk+1 | y1:k, ψ)
p(xk+1 | y1:k, ψ)

p(xk+1 | y1:T , ψ) dxk+1

=

∫
p(xk+1 | xk, y1:k, ψ)p(xk | y1:k, ψ)

p(xk+1 | y1:k, ψ)
p(xk+1 | y1:T , ψ) dxk+1

= p(xk | y1:k, ψ)
∫

p(xk+1 | xk, ψ)
p(xk+1 | y1:k, ψ)

p(xk+1 | y1:T , ψ) dxk+1. (3.7)

According to Equation (3.7), given that the prior and posterior distribution are known from
the Bayesian filter recursions, the Bayesian smoother estimation p(xk | y1:T , ψ) can be com-
puted using a backward recursion.

While the mathematical derivations of the Bayesian filter and smoother are straightforward,
in practice it is always a big challenge to compute the integrals in Equations (3.5), (3.6) or
(3.7). Although there are some special cases (Gaussian linear cases) where theoretical for-
mulas are available for the integrals, such as Kalman filter (see Welch and Bishop (1995) for
instance), in most cases one has to find approximations or numerical algorithms to compute
these integrals. For the extended Kalman filter, see, for example, Einicke and White (1999)
and Wan and Nelson (2002) and for the unscented Kalman filter, see Wan and van der Merwe
(2002), the prior and the posterior distributions are approximated by Gaussian distributions.
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Durbin and Koopman (2012, Section 10.6–10.7) proposes a mode estimation approach to com-
pute the maximum-a-posterior (MAP) estimate of the posterior distribution. A more general
approach to estimate the prior and posterior distribution is the particle filter, see e.g. Aru-
lampalam et al. (2002); Cappé et al. (2007); Doucet and Johansen (2011), in which prior and
posterior distributions are estimated by a Monte Carlo method. For the implementation of
the particle filter one can also refer to Chopin et al. (2013); Crisan and Mı́guez (2018); He
et al. (2021).

3.3 Bayesian filter/smoother projection

As described in Section 3.2, the Bayesian filter and smoother can be seen as a projection from
the observations y1:k to the (distribution of) state variables, given the model parameters ψ.
From this perspective, the Bayesian filter (smoother) can be used as an approach to project
higher dimensional factors to lower dimensional factors. In this section we will illustrate
the Bayesian filter (smoother) projection approach in the credit risk environment specified
in Sections 2.2. However, note that this approach can also easily be applied or extended to
other models for different risk types, such as market risk or interest rate risk, see also the
examples in Section 3.4.

Suppose transition models, see Section 2.1, with higher and lower dimension are calibrated
based on the same data, and denote the calibrated parameters of higher and lower dimensional
model by ψH and ψL, respectively. The higher dimensional factor model is used to simulate
the transition probabilities until the horizon according to the transition model, for instance,
a simulation based on Equations (4.4) and (4.2) in Section 4. Denote the simulated higher
dimensional factors by xk,H and the corresponding transition probabilities by T (xk,H), for
k = 1, . . . , h + 1. One would like to use a lower factor model for a loss calculation. It is
then required to project the higher dimensional factors xk,H to the lower dimensional factors,
denoted by xk,L. Note that the simulated transition probabilities T (xk,H), based on the
higher dimensional factors xk,H , can be used as the observations of the lower factor model.
Therefore, using the Bayesian filter and smoother iterations, one can obtain a projection from
xk,H to xk,L, as described in Algorithm 3.1.

Algorithm 3.1 (projection). Given are the calibrated parameters of the higher and lower
factor model ψH and ψL. Suppose x1:h+1,H and T (x1:h+1,H) are the simulated higher di-
mensional factors and the corresponding transition probabilities from time k = 1 to horizon
h+ 1.

1. Specify the initial density p(x0 | ψL) for the lower dimensional factors.

2. Using the transition probabilities T (x1:h+1,H) as the data,

a. for k = 1, . . . , h + 1, compute the prior and posterior distribution xk,L according
to the Bayesian filter iterations, see Section 3.2.1, i.e.

p(xk | T (x1:k−1,H), ψL) =

∫
p(xk | xk−1, ψL)p(xk−1 | T (x1:k−1,H), ψL) dxk−1

p(xk | T (x1:k,H), ψL) =
p(T (xk,H) | xk, ψL)p(xk | T (x1:k−1,H), ψL)∫
p(T (xk,H) | xk, ψL)p(xk | T (x1:k−1,H), ψL) dxk

;
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b. given prior and posterior distributions computed in step 2.a, for k = h, . . . , 1,
compute the Bayesian smoother using the backward recursion, see Section 3.2.2,

p(xk | T (x1:h+1,H), ψL) = p(xk | T (x1:k,H), ψL)×∫
p(xk+1 | xk, ψL)

p(xk+1 | T (x1:k,H), ψL)
p(xk+1 | T (x1:h+1,H), ψL) dxk+1;

c. determine the lower dimensional factor xk,L projected from xk,H as equal to

E [p(xk | T (x1:h+1,H), ψL)] , k = 1, . . . , h.

We are in particular interested in the value of the lower dimensional factor at horizon h, i.e.
xh,L, since it is finally used as the input of the valuation grid to evaluate the losses after this
horizon. Note that in order to obtain the optimal estimate of xh,L, the simulation is generated
until h + 1 so that the Bayesian smoother, step 2.b in Algorithm 3.1, can be used for xh,L.
Figure 3.1 presents the diagram of the projection approach.

Figure 3.1: High level description of projection algorithm

Remark 3.1. An important input for the iteration of the projection is the initial distribution
of xk,L, i.e. p(x0 | ψL). In credit risk, there are two methodologies to specify the initial
distribution (or starting point) of the simulation, the point-in-time (PiT) or through-the-
cycle (TtC). In PiT, all the simulations start at the same point and this point is defined as
the ‘state of today’, i.e. the value of the risk factor at the last period used in the calibration.
In TtC, instead of defining a single starting point, an initial distribution is assigned to sample
the starting point of each path. This initial distribution is usually defined as the equilibrium
distribution of the risk factors process.5 Therefore, in both PiT and TtC cases, the initial
distribution of xk,L can be easily defined.

Integrating the projection algorithm into the calibration, simulation and valuation algo-
rithms, we have our engine for the risk calculation, illustrated by Figure 3.2, and described
in the following Algorithm 3.2 , formulated in high level terms.

5In practice, constraints are always imposed to make sure that the risk factor process is stationary and
hence the equilibrium distribution exists.
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Algorithm 3.2 (calibration, training, simulation, projection and valuation).

• Calibration

1. The transition matrices are modeled by a higher factor model, which is calibrated
using historical data. One obtains ψH , the calibrated parameters of the higher
dimensional model.

2. A lower factor model is also calibrated using the historical data and one obtains
ψL, the calibrated parameters of the lower dimensional model.

• Training of the interpolation grid

Define the higher dimensional grid, perform then for each rating the following steps.

1. Starting at the points on the defined grid, use the higher factor model to simulate
the scenarios of the risk factors and determine the expected losses.

2. Project the points (factors) of the higher dimensional grid to obtain lower dimen-
sional points (factors) using the projection approach as in Algorithm 3.1.

3. Use the lower dimensional points and the simulated expected losses to build the
valuation grid, using interpolation or other techniques like Gaussian process re-
gression, Neural networks, etc.

• Simulation

1. Using the high factor model, generate the factors and hence the transition matrices
until the horizon.

2. Based on the generated transition matrices, simulate the rating migrations of the
obligors until the horizon.

• Projection and valuation

1. Project according to the Projection Algorithm 3.1 the higher dimensional factors
simulated in Step 2 of the Simulation part above to lower dimensional factors.

2. Use the valuation grid to evaluate the expected losses, given the ratings at the
horizon and the lower dimensional factors.

3. The desired risk metrics, such as expected loss and value-at-risk, can finally be
obtained by aggregating the expected losses.

3.4 Application examples

The proposed Bayesian projection approach is a generic dimension reduction method which
can be used for different types of credit risk valuations. It is originally designed for the
credit risk valuations, but it can also be applied to other grid based valuation models where
the dimension reduction approach is needed. We list some possible directions for further
applications of the proposed Bayesian projection approach in the following subsections.
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Figure 3.2: High level description of the algorithm

3.4.1 Credit Risk Economic Capital

Economic Capital, mainly for financial service forms, is a metric to determine the amount of
capital a firm must hold to protect itself against economic risks (such as market risk, credit
risk, and operational risk), given its mixture of assets and liabilities and its strategy to risk
appetite. The risks are measured by the unexpected losses through client defaults and the
asset value changes through the movements in the market parameters. Typically the losses
are estimated based on a time horizon and a confidence level. The time horizon is usually
one year and the confidence level is usually 99.9% or 99.95%, implying that the Economic
Capital should cover the losses that would arise in case an adverse event would occur with a
probability of 0.1% or 0.05% over one year horizon. In particular, the Credit Risk Economic
Capital (CREC) is to measure the internal capital required to cover the unexpected credit
losses under ECB ICAAP Guidelines, see European Central Bank (2018).

To measure the CREC, one particularly looks into two statistics: the expected loss (EL)
and the 99.9% or 99.95% quantile of the portfolio loss. The CREC covers both default risk
and migration risk. The default risk captures the losses from the default event within the
time horizon, while the migration risk concerns the potential economic losses associated with
non-default credit rating migrations. Although a non-default transition may not result in a
direct loss under accrual accounting at the time horizon, it may result in an indirect loss in
terms of the expected future cashflows, interest, principal and recoveries. According to this
nature, the calculation of the CREC risk measures can be divided into two parts: the realised
default losses within the time horizon and the potential losses after the time horizon. A Monte
Carlo approach can be directly used to estimate the default losses within the time horizon,
while a valuation grid is needed to compute the potential losses after the time horizon. Higher
dimensional factors are desired for the simulation of the defaults and rating migrations up to
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the horizon, due to the higher precision. Meanwhile, a dimensional factors are used as the
inputs of the grids to compute the potential losses after horizon. Therefore, the proposed
Bayesian dimension reduction approach can be implemented to project higher dimensional
factors to lower dimensional factors for the valuation of the potential losses after the horizon.

3.4.2 Incremental Risk Charge

The Incremental Risk Charge (IRC), see European Banking Authority (2012), is a complement
to the traditional stressed Value-at-Risk measured in Market Risk Economic Capital. It is an
estimate of default and migration risk of unsecuritized credit products in the trading book.
The concept and calculation of IRC is in general similar to CREC. The IRC also measures the
default and migration risks at a 99.9% level of confidence over a one-year horizon. However,
the CREC model mainly applies to the banking book, including exposures to government,
institutions, corporates, retail exposures secured by real estate, and revolving retail exposures.
It also covers the (one-year) counterparty credit risk of derivative instruments, securities
financing transactions and hold-to-maturity assets in the trading book. By comparison, the
IRC mainly concerns the credit risks of the bond and equity exposures in the trading book.
Different from the booking book, in which the positions are held to maturity, the positions in
the trading book are continuously bought and sold before their maturities. Therefore, unlike
CREC, the IRC model differentiates the underlying traded instruments by liquidity horizon,
with a minimum of three months6. A constant level of risk assumption 7 is also imposed in
IRC and ensures that all positions in the IRC portfolio are evaluated over the full one-year
time horizon. Since the calculation of IRC also requires migration/default simulations for
every liquidity until a one year capital horizon, and the migration risks need to be evaluated
according to certain valuation function, the proposed Bayesian dimension reduction approach
can be applied to make the calculations more efficient.

3.4.3 International Financial Reporting Standard 9

The International Financial Reporting Standard 9 (IFRS 9), see for example International
Accounting Standards Board (2016), Board (2019), Gornjak (2020), is published by the In-
ternational Accounting Standards Board (IASB). It addresses the accounting for financial
instruments and it replaced the International Accounting Standard (IAS) 39 with regard to
the methodology used to compute impairment provisions on financial instructions. IFRS 9
introduces a new impairment model based on the Expected Credit Loss (ECL), which is dif-
ferent from the Incurred Credit Loss (ICL) model under IAS 39. Under IFRS 9, institutions,
as reporting entities, will have to recognize not only incurred credit losses but also losses that
are expected in the future. In IFRS 9, two different ECLs are required, depending on the
stages of impairment, see Bank for International Settlements (2017). In stage 1, the ECLs
result from the default events that are possible within the next 12 months (12-month ECL).
While in stage 2 or 3, lifetime ECLs are recognised. To obtain a 12-month ECL, a Monte
Carlo simulation can be used based on the given PD and LGD models. While, for the lifetime

6Note that the capital horizon is still one year.
7The constant level of risk means the risk of the portfolio remains to be its initial risk level over the one-

year horizon. In practice, This can be achieved by holding the constant portfolio over the liquidity horizon,
rebalancing any default, downgraded, or upgraded positions at the beginning of each liquidity horizon, and
rolling over any matured positions at the beginning of each horizon.
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ECL, a grid approach is required8. Since the valuation of life time ECL usually involves
a large number of factors from the PD and LGD models, the proposed Bayesian projection
approach can be applied to reduce the dimensionality of the valuation grid for ECL and hence
improve the efficiency of the computations.

3.4.4 Market risk

Market risk can be defined as the risk of losses in on and off-balance sheet positions arising
from adverse movements in market prices. From a regulatory perspective, market risk stems
from all the positions included in the trading book as well as from commodity and foreign
exchange risk positions in the whole balance sheet. In market risk calculations, the VaR
needs to be determined according to the future Profit-and-Loss (P&L) distribution of the
portfolios. The value of the portfolio depends on the future values of the asset prices, equity
market volatilities, interest rates, etc. Therefore, to obtain the P&L distribution, one has to
simulate the future scenarios of (the risk factors of) the relevant asset prices, equity market
volatilities or interest rates curves, and re-evaluate the portfolio values given the simulated
scenarios. In order to efficiently re-evaluate the portfolio values, a valuation grid is usually
used, see for instance Gibson and Pritsker (2000), Zamani et al. (2022). The valuation grid
links the risk factors and the derivative values. However, many derivatives involve multiple
underlyings, for instance the multi-asset options (Leentvaar and Oosterlee (2007), Ekedahl
et al. (2007)). Therefore, the proposed Bayesian projection approach can be used in pricing
such derivatives to avoid the “curse of dimensionality”.

3.4.5 Interest rate risk in the banking book

Interest rate risk in the banking book (IRRBB) refers to the current or prospective risk of
the bank’s capital and earnings arising from adverse movements in interest rates that affect
the bank’s banking book positions. When interest rates change, the present value and timing
of future cash flows change. This in turn changes the underlying value of a bank’s assets,
liabilities and off-balance sheet items and hence its economic value. Changes in interest
rates also affect a bank’s earnings by altering interest rate-sensitive income and expenses,
affecting its net interest income (NII). The calculation of the VaR for IRRBB is similar to the
calculation of VaR for market risk. The P&L is generated by simulating the (risk factors of)
interest rates curves and re-evaluating the balance sheet given the simulated scenarios. The
re-evaluation of the balance sheet can be done by using the valuation grid method. In the past
years since the credit and liquidity crisis of 2007, a multi-curve framework of interest rates was
developed to replace the single-curve framework. The single-curve framework bootstrapped a
single risk-free curve which represented both the cost of funding future cash flows and forward
rates. This unique curve is used for both discounting and forecasting, while in the multi-curve
framework, the discount curves and the forecasting curves are distinguished. As expected,
the different forecasting tenor curve forecasts the future cashflows of different tenors and
the discounting curve values these cashflows to today. More details regarding the single- and
multi-curve framework can be found in, for instance, Henrard (2014), Pallavicini and Tarenghi
(2010). The multi-curve framework introduces more curves in pricing the derivatives. For
example, three curves are needed to price the Constant Maturity Swaps or the Basis Swaps,

8Sometimes the 12-month ECL is used to construct a proxy for the lifetime ECL in the simplified approach,
see European Banking Authority (2021).
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i.e. one discounting curve and two forecasting curves. If each curve requires a two-factor
model, in total six factors are needed to construct a valuation grid for these derivatives.
To decrease the dimensionality of the valuation grid, one can apply the proposed Bayesian
projection approach.

4 Numerical studies

In the sequel we illustrate the performance of the projection approach by examples. We aim to
forecast the bullets in Equation (2.4), and hence forecast the loss distribution of a loan. The
chosen loan in the experiment is a unit bullet loan, of which the notional is 1. Consequently
the principal repayment PC = 0 and EADk = 1 for k = 1, . . . , n. The coupon payments sk
are set to be equal to s = 1

n , k = 1, . . . , n. For convenience and without loss of generality,
discounting is not considered in this experiments. Hence Equation (2.4) simplifies to

L
(r)
1 =

n∑
k=2

sE [PD(k | Fk) | Fh] + E [PD(n | Fn) | Fh]

−
n∑

k=h+1

E [(PD(k | Fk)− PD(k − 1 | Fk)) (1− LGDk) | Fh] .

(4.1)

In all experiments we assume the maturity of the unit loan after a horizon of 30 periods, i.e.
n = 30.

The value of the bullets depends on the transition and LGD models, therefore, we next
introduce the transition and LGD models used in the experiments.

4.1 Transition model

The transition model we use belongs to the reduced form model. Let k = 1, . . . , n. Suppose
we have R > 2 credit states. We denote by Tij,k the probability at time k of the transition
from a credit state i = 1, . . . , R to a credit state j = 1, . . . , R. We model the transition
probabilities (or observed transition rates) using a logit function as follows,

Tij,k =
gij exp(θij,k)∑R
j=1 gij exp(θij,k)

, i, j = 1, . . . R , k = 1, . . . , n . (4.2)

The θij,k+log gij are usually referred to as the log-odds for the transition from a credit state i
to a credit state j, in which the gij are the parameters which indicate the level of the transition
probabilities and θij,k are the signals that describe the dynamics of the transition probabilities.
Suppose, for clients in the i-th rating, that in Ni,k independent trials the number of observed
migrations of these clients to the j-th credit state is mij,k for j = 1, . . . , R. It is easy to see
that mi,k = [mi1,k, . . . ,miR,k] has a multinomial distribution, with log-density given by

log p(mi,k|Tk) =
R∑

j=1

mij,k log Tij,k + logCi,k , (4.3)

where

Ci,k =
Ni,k!∏R

j=1mij,k!
.
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Plugging Equation (4.2) into Equation (4.3), one can rewrite the log-likelihood function (4.3)
at time k as

log p(mi,k|θij,k) =
R∑

j=1

mij,k(θij,k + log gij)−Ni,k log
( R∑
j=1

gij exp(θij,k)
)
+ log(Ck) .

We assume that the migrations from a state i to a state j are driven by the latent common
factors x (hence the migrations are also correlated). The latent process x is assumed to evolve
linearly over time with a Gaussian error η, and therefore our transition model is given by:

mi,k ∼ p(mi,k|θij,k) , θij,k = Kxk, k = 1, . . . , n ,

xk = Axk−1 + ηk , ηk ∼ N (0, Q),
(4.4)

where xk is a d×1 random vector, K is a (R−1)×d-matrix, and A and Q are d×d-matrices.
The g = {gij , i, j = 1, . . . , R}, K, A and Q are referred to as the parameters of the transition
model. The initial distribution of xk is assumed to be Gaussian with mean a0 and (co)variance
P0, i.e. x0 ∼ N (a0, P0).

This transition model belongs to the class of state space models of Section 3.1. The latent
states xt and the model parameters are usually estimated by the Bayesian filter introduced
in Section 3.2. Specially, we estimates the latent states xt by using the method of mode
estimation (Durbin and Koopman (2012, Section 10.6)) based on the Kalman filter.

We suppose to have four different ratings with three performing ratings (P1, P2 and P3) and
one default rating (D). We further assume that the default state is absorbing, which means
that the probabilities of the transition from D to P1, P2 or P3 are zero. The set-up of the
transition model in this example is the same as in Equations (4.4) and (4.2). In this experi-
ment we have three models: one benchmark model and two testing models. The benchmark
model is chosen to be a four factor model, i.e. the dimensionality of xk is four. This model
is treated as the ‘true’ model and used to generate the loss distribution which serves as a
benchmark for comparison. The two testing models are chosen to be a two factor model and
an one factor model. These two models are used to assess the performance of the proposed
dimension reduction approach. All models are calibrated using the same migration data with
a horizon of 120 periods. These migration data are simulated by using the benchmark model
with parameters as follows. The parameter values are obtained from further classified real
data, which we are not allowed to disclose.

A = diag([0.6, 0.95, 0.9, 0.5]),

Q = diag([0.6, 0.1, 0.1, 0.7]),
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K =



k11,1 k11,2 k11,3 k11,4
k12,1 k12,2 k12,3 k12,4
k13,1 k13,2 k13,3 k13,4
k14,1 k14,2 k14,3 k14,4
k21,1 k21,2 k21,3 k21,4
k22,1 k22,2 k22,3 k22,4
k23,1 k23,2 k23,3 k23,4
k24,1 k24,2 k24,3 k24,4
k31,1 k31,2 k31,3 k31,4
k32,1 k32,2 k32,3 k32,4
k33,1 k33,2 k33,3 k33,4
k34,1 k34,2 k34,3 k34,4
k41,1 k41,2 k41,3 k41,4
k42,1 k42,2 k42,3 k42,4
k43,1 k43,2 k43,3 k43,4
k44,1 k44,2 k44,3 k44,4



=



0 0 0 0
0.2 0.04 0.06 0.1
0.12 −0.36 0.12 −0.04
0.38 −0.28 −0.26 −0.08
−0.17 0.34 0.18 −0.01

0 0 0 0
0.02 −0.27 0.08 −0.01
−0.07 −0.14 0.16 −0.05
−0.22 −0.11 0.01 0.12
−0.03 −0.2 0.01 0.22

0 0 0 0
−0.08 0.09 −0.05 −0.03

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

G =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 =


0.95 0.03 0.0198 0.0002
0.05 0.9 0.04 0.01
0.05 0.12 0.78 0.05
0 0 0 1

 .

4.2 LGD model

We adopt ideas from Frontczak and Rostek (2015) and use the collateral to model the LGD
as

LGDk = (1− ck
EADk

)+, (4.5)

where ck is the value of the collateral at time k. At time k, the log-return of the collateral
value is denoted LCk, LCk = ck

ck−1
, k ≥ 1. The log-return of the collateral is assumed to be

modeled by an AR(1) process, see also Equation (A.2),

LCk = 0.73LCk−1 + zk, zk ∼ N(0, 0.042).

The value of the collateral, recall (4.5), determines the LGD as follows.

LGDk = (1− ck
EADk

)+

= (1− ck
c0

∗ c0
EAD0

∗ EAD0

EADk
)+

= (1− ck
c0

∗ 1

LTV0
∗ 1

n− k + 1
)+.

Note that, in order to determine the LGDk, the loan-to-value at the horizon LTV0 should
be defined. Moreover, for convenience, we further assume that the risk factors for the transi-
tion matrices and the log-returns of the collateral factors are independent, hence the default
probabilities and the LGD are independent. Note that this assumption is not valid in real life
practice. Actually, in practice the correlation between the PD and LGD is a very important
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parameter in risk calculations. Under the independence assumption the loss in Equation (4.1)
is simplified to

L
(r)
1 =

n∑
k=2

sE [PD(k | Fk) | Fh] + E [PD(n | Fn) | Fh]

−
n∑

k=2

E [(PD(k | Fk)− PD(k − 1 | Fk)) | Fh] (1− E [LGDk | Fh]).

(4.6)

Given the assumed independence, we only need to approximate the multi-year expected prob-

ability of default E[PD(r)
k ] by Monte Carlo simulation, while the expected loss given default

E[LGDk] is analytically computed by using the Black-Scholes formula (A.6) of Corollary A.2.

In order to assess the performance of the proposed Baysian projection approach, a waterfall
terminology is used. In the waterfall, the analyses are done step by step as follows.

1. The Bayesian and PCA projection approach are compared when used to describe the
transition probabilities. The two approaches project the four dimensional factors onto
two dimensional factors respectively, and then the transition probabilities based on the
two dimensional factors are compared with the original transition probabilities from
the four dimensional factors. In particular, for the Bayesian projection approach, Algo-
rithm 3.1 is applied.

2. The convergence analysis of the Monte Carlo simulation for expected PD is conducted
to find out how many Monte Carlo scenarios are needed to obtain a reliable estimate of
the multi-year expected PD.

3. Then the Bayesian and PCA projection approaches are used in the valuation grid to
estimate the multi-year expected PD and accuracies are compared. In this case, Algo-
rithm 3.2 is applied.

4. The closed-form Black-Scholes formula for the expected LGD is checked by comparing
with the Monte Carlo estimation. The expected LGDs are used to construct the loss
distribution according to Equation (4.1).

5. In the end, the proposed Bayesian approach, see Algorithm 3.2, is used to construct the
loss distribution of a unit loan and the risk metrics (expected losses and value-at-risk)
are estimated. The accuracy of the estimation is compared with the estimation from
the PCA approach.

Table 1 summaries the waterfalls in the experiments Section 4.3.

4.3 Experiments

In this section we perform a number of numerical studies to assess and illustrate our projection
approach.
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Section Description Results

Section 4.3.1 Comparison of Bayesian and PCA projection approach Figure 4.1
on transition probabilities

Section 4.3.2 Convergence of Monte Carlo simulation for expected PD Figure 4.2

Section 4.3.3 Comparison of Bayesian and PCA projection Figures 4.3, 4.4
approach on multi-year PD estimation

Section 4.3.4 Black-Scholes formula for expected LGD Figure 4.5

Section 4.3.5 Comparison of Bayesian and PCA projection approach Figures 4.6-4.9
on loss distribution of the target unite bullet loan

Table 1: Waterfalls

4.3.1 Transition probabilities

Suppose the four dimensional model and the two dimensional model are calibrated on the
data. In the experiment of this section, we assess the potential error introduced by the
dimension reduction approaches, when projecting a higher dimensional transition model, in
this case a four factor model, to a lower dimensional transition model, in this case, a two
factor model. In particular, we apply the proposed projection approach, see Algorithm 3.1
and the PCA approach on the transition probability models and compare the performance of
the two approaches. To achieve this, in total 100 different scenarios (risk factors and hence the
transition probability matrices) are simulated using the four factor model. Then the proposed
projection approach and the PCA approach are used to project the four dimensional factors
onto two dimensional factors. For the proposed approach, the two factor model above is used
and for the PCA approach the first two principal components are used to match with the
number of factors. Based on the two dimensional factors, the transition probabilities can be
recomputed according to the two factor model. These transition probabilities from the two
factor model are compared with the original transition probabilities based on the four factor
model and the relative difference between them are calculated. Figure 4.1 shows the relative
difference (error) between the transition probabilities of the benchmark (four factor model)
and the projections from the proposed approach and PCA approach. One can observe that
the differences for the Bayesian projection approach are significantly smaller than those for
the PCA approach.

4.3.2 Expected PD simulation

In order to create the training samples for the expected losses, the expected cumulative PD
up to the maturity need to be approximated using Monte Carlo, see Equation (4.6). In the
experiment of this section we investigate how many Monte Carlo scenarios are required to
obtain a adequate approximation for the expected cumulative PD. For each rating P1, P2
and P3, we randomly create 1000 starting points for the simulation. These starting points
can be treated as the points on the grids. Then starting at each point, the risk factor paths
are simulated up to the maturity, in total 30 periods. The number of risk factor paths for
each starting points varies from 500 to 20000. The expected cumulative PDs for each starting
point are approximated by averaging over the risk factor paths. For the expected cumulative
PD approximation 20000 paths are used as the benchmark, while the approximation using
500, 1000, 5000 and 10000 paths are used as the test sets. The relative difference of the
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Figure 4.1: Relative difference of the transition probabilities: the red line is for the proposed
Bayesian projection approach and the blue line is for the PCA. On the x-axis are the 100
simulated scenarios.

expected cumulative PD between the benchmark and the test sets are computed and the
results are presented in Figure 4.2. The results indicate that the expected cumulative PD can
be adequately approximated by using 1000 paths.

4.3.3 Experiments for the projection approach for expected PD

The purpose of the experiments is to assess the performance of the proposed Bayesian filter
dimension reduction approach on valuating the losses, see Algorithm 3.2. Due to the inde-
pendent assumption between the PD and LGD, the loss valuation is simplified such that the
interpolation grid is only required for the expected PD valuation, see Equation (4.1). While
the expected LGD can be easily computed by using the Black- Scholes formula in Appendix A.
Therefore, in this section, we apply Algorithm 3.2 to compute the expected PD and the per-
formance of the proposed Bayesian projection approach is assessed by comparing with the
PCA approach. The assessment for the loss valuation will be presented later in Section 4.3.5.

Based on the four and two dimensional transition models, one can train the interpolation
grid by simulating the expected PD for each point on the grid. As we described in Algo-
rithm 3.2, the simulation of the expected PD uses the higher dimensional transition model
while the grid points are in a lower dimensional space, obtained by a dimension reduction
approach, i.e. the proposed Bayesian projection approach or the PCA approach. Then the
valuation grid can be trained using the simulated expected PD and the projected factors. We
compare the accuracy of the valuation grid based on the proposed Bayesian filter projection
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Figure 4.2: Maximum relative difference of the expected cumulative PD between 20000 MC
paths and 500, 1000, 5000, 10000 paths: the y-axis is the maximum relative difference of
the expected cumulative PD for the 1000 different starting points, on the x-axis are the time
periods up to 30.

approach and the PCA approach. To build the valuation grid, the expected PD are simulated
from the four factor model specified in Section 4.1.

The starting points of the simulations (i.e. the higher dimensional factors) consist of
two parts: one contains the pre-determined points to cover the possible extreme simulated
values of the factors, the other contains random simulated points to fill the density. In this
experiments, the pre-determined points are chosen linearly spaced from minus four sigma
to plus four sigma, i.e. for the i-th component of the factor, the linear spaced points are
chosen from interval [−4σi, 4σi], with σi the standard deviation of the i-th component of the
factor. For each dimension, we chose 15 points. Moreover, 1000 more points are randomly
simulated from the joint distribution of the four dimensional factors. Therefore, in total there
are 154 + 1000 = 51625 points in the valuation grid. Starting from the factors, each term
structure of the expected PD is estimated by Monte Carlo simulation with 1000 paths. The
term structure is considered from 1 to 30 periods. Meanwhile, the four dimensional factors are
projected to lower dimensional factors using the Bayesian filter projection approach and the
PCA approach. The chosen lower dimensional models are the one-factor and two-factor model.
Once the valuation grids are trained, 1000 new four dimensional factors are simulated as the
test set to assess the performance of different valuation grids based on different approaches.
Based on these 1000 new four dimensional factors, the term structures of the expected PD

29



are estimated by using 20000 Monte Carlo paths. These Monte Carlo estimations are used as
the benchmark for the comparison.

Figures 4.3 and 4.4 show the average (over the 20000 MC paths) relative difference on
the term structure between the valuation grids and the Monte Carlo benchmarks. Specially,
Figure 4.3 presents the comparison between the Bayesian filter projection using one factor
model and the PCA projection using the first principal component, while Figure 4.4 presents
the Bayesian filter projection of the two factor model and the PCA projection using the
first two principal components. One observes that for one factor projection, in general PCA
approach performs slightly better than the Bayesian filter projection approach. In particular,
the Bayesian filter projection performs better for the first rating, but worse for rating 2 and
rating 3. This is because the one factor model mainly focuses on the transitions of the first
rating and hence the errors for the other two ratings are large. For the two factor projection, on
the other hand, the Bayesian filter projection performs much better than the PCA approach.
Comparing Figures 4.3 and 4.4, one observes very big improvements on the relative error for
the Bayesian filter projection, while the improvement for the PCA projection is limited.

Figure 4.3: Average relative error on expected PD: Bayesian filter projection vs. PCA pro-
jection, one factor.

4.3.4 Expected LGD: Black-Scholes formula v.s. Monte Carlo

Before proceeding to the experiment on the loss valuation, in the experiment of this section, we
illustrate the Black Scholes formula, the analytical solution of Equation (A.6) in Corollary A.2,
for the expected LGD (ELGD), by comparing it to the Monte Carlo approximation. Note
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Figure 4.4: Average relative error on expected PD: Bayesian filter projection vs. PCA pro-
jection, two factors.

that the ELGD depends on the initial LTV and the initial log-return of the collateral. In this
case, we choose the initial LTV to be 0.8, 1, 1.5 and 2, the initial log-return of the collateral
to be -0.1, 0, and 0.1. Figure 4.5 shows the term structure of the ELGD computed by the
Black-Scholes formula and the Monte Carlo simulation with 1 million scenarios. One can
easily see that the outcomes of the two approaches align very well with each other.

4.3.5 Experiments for the projection approach for risk measures of the loss
distribution

These experiments assess the accuracy of the proposed projection approach when estimat-
ing the quantiles of the loss distribution. In order to obtain a deeper insight about the
performance, we investigate the loss distribution per initial rating, instead of the total loss
distribution, which aggregates over different ratings. In this way we can compare the perfor-
mance of the projection approaches for different initial ratings. To be more specific, the loss
distribution per initial rating is constructed as follows.

1. Simulate one million scenarios (risk factors and collateral process) using the four factor
model,

2. project the simulated risk factors into lower dimensional risk factors,

3. for each initial rating, given the lower dimensional factors, estimate the expected PD
per scenario using the trained grid as in Section 4.3.3,
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Figure 4.5: Term structure of ELGD: Black-Scholes (analytical) vs. Monte Carlo.

4. given the simulated collateral value, compute the expected LGD using the Black Scholes
formula (A.6).

5. Note that the PD and LGD are assumed to be independent, therefore the loss per
scenario can be evaluated, according to equation (2.2), by using the estimated expected
PD and the expected LGD.

To illustrate the performance, the loss distribution based on the four factor model is used as
a benchmark. In this benchmark, instead of using the projection approach and the interpo-
lation grids, the expected PD per scenario in step 3 mentioned above is estimated directly
by Monte Carlo simulation based on the four dimensional model itself. The chosen risk mea-
sures are expected loss, 95%-, 99%- and 99.9%-quantiles. We compute the absolute relative
difference of these risk measures between the estimates from projection approaches and from
the benchmark. Figures 4.6–4.9 present the comparison of the relative differences between
different projection approaches for different risk measures: expected loss (EL), 95%-, 99%-
and 99.9%- quantiles, respectively. In each figure, the dotted lines and the solid lines show
the relative difference for the Bayesian projection approach and for PCA approaches, respec-
tively, while the blue and red lines present the relative difference of one factor and two factor
models (PCA), respectively.

In general, the results are in line with the results in Section 4.3.3. The Bayesian projection
approach with the two factor model performs significantly better than the other candidates.
Specially it has significantly smaller error than the PCA approach with the first two principal
components. By contrast, the Bayesian projection approach with the one factor model does
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not outperform the PCA approach with the first principal component. The reason is that the
Bayesian projection approach with the one factor model focuses on the best rating, i.e. rat-
ing 1, which has the majority number of clients, while the PCA approach does not have this
concentration. Therefore, one observes a better performance of one-factor Bayesian projection
in the best rating but worse performance in rating 2 and 3. Another important observation
is that, the Bayesian projection approach has a much better performance in the best rating
than the PCA approach when estimating the more extreme quantile of the loss distribution.
in particular one observes in Figure 4.9 that even the one factor Bayesian projection has com-
parable performance as the two-factor PCA projection in the best rating when estimating the
99.9%-quantile. This is a desired property since in practice most of the exposures are located
in the low-default-probability portfolios.

Figure 4.6: Absolute relative difference on expected loss: Bayesian filter projection vs. PCA
projection.

5 Conclusions

In this paper we developed a dimension reduction methodology based on the Bayesian filter
and smoother. This methodology is designed to achieve a fast and accurate loss valuation
algorithm in the credit risk modelling, but it can also be extended to the valuation models
of other risk types. The proposed methodology is generic, robust and can easily be imple-
mented. Moreover, we showed the accuracy of the proposed methodology in the estimation of
expected loss and value-at-risk by numerical experiments. The results suggest that, compared
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Figure 4.7: Absolute relative difference on 95%-quantile: Bayesian filter projection vs. PCA
projection.

to the currently most used PCA approach, the proposed methodology provides more accurate
estimation on the expected loss and value-at-risk of a loss distribution.
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Figure 4.8: Absolute relative difference on 99%-quantile: Bayesian filter projection vs. PCA
projection.
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Figure 4.9: Absolute relative difference on 99.9%-quantile: Bayesian filter projection vs. PCA
projection
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A Analytic formula for expected loss-given-default

The LGD at time k conditional on the initial information, the sigma-algebra F0, is defined
by

ELGDk = E [LGDk|F0] .

In the present paper, we assume the LGD depends on the collateral value, see (4.5). Hence
we have

ELGDk = E
[
(1− ck

EADk
)+|F0

]
,

with ck the value of collateral and EADk the exposure-at-default at time k. Since we assume
the EADk is deterministic, the ELGDk is determined by the stochastic nature of the collateral
value ck. The loan-to-value ratio is LTV0 =

EAD0
c0

, hence we have

ELGDk = E
[
(1− ck

c0

c0
EAD0

EAD0

EADk
)+|F0

]
= E

[
(1− ck

c0

1

LTV0

EAD0

EADk
)+|F0

]
= E

[
(1−Kk

ck
c0
)+|F0

]
, (A.1)

with Kk = 1
LTV0

EAD0
EADk

. We suppose that the log-returns LCk = log ck
ck−1

of the collateral follow

an AR(1) process,
LCk = c+ xLCk−1 + σzk, zk ∼ N(0, 1), k ≥ 1, (A.2)

with |x| < 1. Define the numbers ak by the iteration

ak = 1 + xak−1, a0 = 0, (A.3)

which results in the analytic expression ak = 1−xk

1−x . We now have the following result.

Proposition A.1. For given LC0, it holds that

log
ct
c0

∼ N(µt,Ωt), (A.4)

with

µt = c

t∑
i=1

ai + atxLC0,

Ωt = σ2
t∑

i=1

a2i .

Proof. It follows from the recursion (A.2) that all LCk are normal (conditional on LC0).
Hence for (A.4) to hold we only have to find mean and variance. We first prove a general
result. Namely, for s = 0, . . . , k, the equation

log
ck
c0

+ LC0 = c
s∑

i=1

ai + as+1LCk−s +
k−s−1∑
i=0

LCi + σ
s∑

i=1

aizk−i+1 (A.5)
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holds. We now show (A.5) by induction w.r.t. the variable s = 0, . . . , k. When s = 0,

log
ck
c0

=
k∑

i=1

LCi,

which is Equation (A.5) for s = 0 by definition of the LCi. Suppose then that Equation (A.5)
holds for s = t. Using (A.2) with k replaced by k− t and (A.3) with k replaced by t+ 2, one
gets starting from the induction assumption

log
ck
c0

+ LC0 = c

t∑
i=1

ai + at+1(c+ xLCk−t−1 + σzk−t) +

k−t−1∑
i=0

LCi + σ

t∑
i=1

aizk−i+1

= c
t+1∑
i=1

ai + at+1xLCk−t−1 + LCk−t−1 +
k−t−2∑
i=0

LCi + σ
t+1∑
i=1

aizt−i+1

= c
t+1∑
i=1

ai + at+2LCk−t−1 +
k−t−2∑
i=0

LCi + σ
t+1∑
i=1

aizt−i+1,

which is indeed Equation (A.5) for s = t+ 1, as was to be shown.
Taking k = t and s = k in Equation (A.5), we have, using (A.3) once more,

log
ct
c0

= −LC0 + c
t∑

i=1

ai + at+1LC0 + σ
t∑

i=1

aizt−i+1

= c

t∑
i=1

ai + xatLC0 + σ

t∑
i=1

aizt−i+1.

Therefore we obtain the distribution of log ct
c0
, conditional on LC0,

log
ct
c0

| LC0 ∼ N(µt,Ωt)

with µt = c
∑t

i=1 ai + xatLC0 and Ωt = σ2
∑t

i=1 a
2
i , which finishes the proof.

As a corollary we obtain a Black-Scholes like formula for the expected loss given default.

Corollary A.2. For the expected loss given default one has

ELGDt = Φ(−d2)−Kte
µt+

Ωt
2 Φ(−d1), (A.6)

with Φ the standard normal cumulative probability function, and

d1 =
log(Kt) + µt +Ωt√

Ωt
,

d2 =
log(Kt) + µt√

Ωt
.

Proof. The proof is completely analogous to the proof of the classical Black-Scholes formula
by realizing that Equation (A.1) gives ELGDt = E [(1−Kt logZ)

+|F0], where Z has the
conditional normal distribution with mean µt and variance Ωt as in Proposition A.1.
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