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Abstract: CuO nanoparticles produced by methods from inorganic chemistry and physics are applied
as biocides and applications thereof in solar stills, solar collectors, catalysis, sensing and diesel
fuels have been proposed. Such CuO nanoparticles are hazardous due to the release of Cu ions
and the induced generation of reactive oxygen species after uptake by organisms. Nanoparticle
hazard may be reduced by surface modification (coating or capping) and doping which reduces
the release of Cu ions and the generation of reactive oxygen species. None of the published safe-
by-design modifications of CuO nanoparticles that will be discussed here have been proven safe
(no risk). By targeting the release of Cu ions and the generation of reactive oxygen species by CuO
nanoparticles, safe(r)-by-design studies target properties that underly the biocidal functionality of
CuO nanoparticles. Other functionalities of CuO nanoparticles may also be impacted. There is a case
for complementing safe(r)-by-design studies by investigating the impact of the modifications studied
on CuO nanoparticle functionality.

Keywords: CuO nanoparticles; safe(r)-by-design; coating; capping; doping; hazard; safety; functionality

1. Introduction

Maynard et al. [1] called safe-by-design ‘a grand challenge of safe nanotechnology’.
In this journal, Martins and Kczarewska [2], discussing green nanotechnology, noted
the importance of safer-by-design approaches as objects for future research. Reviews
suggest that most of the research regarding safe(r)-by-design nanomaterials is in the field
of nanomedicine, where the focus is on safety for humans in the use stage [3–5]. As
to nanoparticles that can be applied outside the field of nanomedicine, there is now a
substantial amount of research regarding safe(r)-by-design efforts based on modifications
of CuO nanoparticles, which will be reviewed in Section 2.

CuO nanoparticles are used as biocides, for instance in wood preservation and an-
tifouling, and presumably also in agricultural fungicides [6–10]. The proposed applications
of CuO nanoparticles regard catalysts [11–13], sensing [14–16], solar stills [17], solar collec-
tors [18,19] and additives in diesel fuels [20].

CuO nanoparticles are traditionally generated using methods from physics and in-
organic chemistry. Approaches to synthesis include electrochemistry, sonochemistry,
mechanochemistry and solvothermal and hydrothermal methods [15]. Nanoparticles
generated by such methods will be considered here. It is possible to synthesize specific
nanostructures, such as CuO nanorods, belts, fibers and flowers, but these will not be dis-
cussed. Recently, there has been an upsurge in the laboratory-scale biosynthetic generation
of CuO nanoparticles, especially using plant extracts [21]. Such particles will be briefly
referred to below.

Hazards of CuO nanoparticles apply to their production, processing, use and waste
stages. In a variety of organisms, including invertebrates, plants and mammalian species,
hazard of such CuO nanoparticles have been linked to the release of Cu ions and the
pro-oxidant activity associated with the induced generation of reactive oxygen species
(ROS) [22–31]. It may be noted, though, that Nations et al. [6] have found that exposure
of the tadpole Xenopus laevis to low CuO nanoparticle concentrations positively affected
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growth and metamorphosis, whereas, at higher concentrations, the impact on development
was negative. The mechanism underlying this biphasic impact has not been clarified, but it
has been reported that CuO nanoparticles may have an antioxidant effect by scavenging free
radicals [32]. It has furthermore been documented by Ge et al. [33] and Podder et al. [34]
that, dependent on morphology and concentration, several other metal oxide nanoparticles
have an antioxidant effect, in which the scavenging of free radicals and the mimicking of an-
tioxidant enzymes may be involved. Jiang et al. [35] studied manganese oxide nanoparticles
that were predominantly antioxidant at low concentrations and predominantly pro-oxidant
at higher concentrations. It may be that, similar to the manganese oxide nanoparticles stud-
ied by Jiang et al. [35], CuO nanoparticles may have a predominantly antioxidant effect at
low nanoparticle concentrations. In the case of biosynthesized CuO nanoparticles, biogenic
compounds with antioxidant activity might be present in the nanoparticles, enhancing the
overall antioxidant activity of CuO nanoparticles [36,37]. An antioxidant effect is relevant
to the hazard of metal oxide nanoparticles, e.g., [33].

One safe-by-design option for nanoparticles that prevents exposure during their use,
is their irreversible binding to large inorganic substrates, e.g., [38]. This option may be
considered for CuO nanoparticles in terms of their application in sensors and regarding
a part of their proposed applications in catalysis. When irreversible binding to large
inorganic substrates is at variance with nanoparticle functionality, the modification of CuO
nanoparticles may be considered.

In two cases it has been claimed that modifications of Cu nanoparticles confer safety-
by-design. Naatz et al. [39] studied CuO nanoparticles doped with Fe. The rationale
behind this was that Fe-doping should decrease the dissolution of Cu ions which were
held to be responsible for cytotoxicity. Such a decrease in metal ion dissolution was shown
by Naatz et al. [39] in several media. Naatz et al. [39] furthermore tested Fe-doped and
non-doped CuO nanoparticles as to their cytotoxicity in the human cell lines BEAS-2B and
THP-1, and regarding their hatching inhibition of zebrafish embryos. Fe-doping was found
to be linked to reduced cytotoxicity and reduced inhibition of hatching. Naatz et al. [39]
concluded that their study demonstrated the safe use of (6–10%) Fe-doped CuO nanopar-
ticles in the environment. Feng et al. [40] focused on the generation of reactive oxygen
species (ROS) induced by Mn3O4 nanoparticles and in their conclusions generalized their
findings to all metal oxide nanoparticles. Feng et al. [40] have shown that doping with
about 5 (molar)% Zn is linked to a substantial reduction in ROS generation compared with
non-doped Mn3O4 nanoparticles in exposed BEAS-2B cells. They concluded that the way
doping by Zn shifts the Fermi energy edge far away from the valence band energy edge,
to reduce pro-oxidant activity, becomes a feasible safe-by-design approach to achieve safe
Mn3O4 nanoparticles, and more in general safe metal oxide nanoparticles. This would
include CuO nanoparticles.

In the next two sections, studies regarding safe(r)-by-design efforts based on the
modification of CuO nanoparticles will be reviewed. The central question asked is whether
these efforts have led to safe functional CuO nanoparticles, cf. Figure 1.
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Figure 1. The central question: do doping or coating lead to safe functional Cu nanoparticles?

The focus will be on two matters. The fist regards the question of whether nanoparticle
modifications have been be proven safe by the available studies. Safe is defined here as
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posing no risk. Risk is the chance that negative impacts will occur. This is the subject of
Section 2. The second matter, discussed in Section 3, is the compatibility of the modifications
studied with the functionality of CuO nanoparticles. Section 4 summarizes the conclusions
of this paper.

2. Safe(r)-By-Design CuO Nanoparticles

Safe(r)-by-design modifications of CuO nanoparticles target the release of Cu ions
and/or the generation of reactive oxygen species (ROS) [39–47]. Two strategies can be found
in safe-by-design studies. One safe-by-design strategy regarding CuO nanoparticles is
based on coating or capping (surface modification), often with organic substances. Another
safe-by-design strategy for CuO nanoparticles is based on doping. Both strategies will be
considered here: surface modification by coating or capping in Section 2.1, and doping in
Section 2.2. The focus will be on the impact of doping and coating on hazard. Toxicity will
be used as a proxy for hazard. The matter of whether these studies addressed the impact
of safe-by-design modifications on an antioxidant effect of CuO nanoparticles will also be
addressed. Section 2.3 will raise the question as to whether the modified CuO nanoparticles
discussed in Sections 2.1 and 2.2 are proven to be safe.

2.1. Surface Modification by Coating or Capping

The rationale for the surface modification of CuO nanoparticles by coating or capping
is that the coating or capping may act as a scavenger for copper ions and reactive oxygen
species [46–48]. It may be noted, though, that coating or capping may also increase
nanoparticle hazard mechanisms [23]. An example thereof is the substantial increase in
CuO nanoparticle toxicity to the green alga Chlamydomonas reinhardtii and the aquatic
macrophyte Lemna gibba by coating CuO nanoparticles with styrene-butylacrylate co-
polymer [23]. Perreault et al. [23] have suggested that this increase in toxicity is linked to
changing nanoparticle interactions with cells and toxicity mechanisms.

In a safe-by-design study by Cai at al. [47] CuO nanoparticles were coated with citrate,
polyvinylpyrrolidone (PVP) and aminomethylphosphonate. Testing was for cytotoxicity in
the (human) cell lines BEAS-2B and THP-1 and for inflammation of mouse lung tissue. The
reduction in negative impacts by CuO nanoparticles was very limited when coating was
with citrate. In the case of coating with PVP, the reduction in negative impact was moderate
and in the case of phosphonate coating was relatively large, though not complete.

In a safe-by-design study, Fiandra et al. [45] studied the impact on A549 human lung
epithelial cells and Xenopus laevis embryos of capping of CuO with polyethyleneimine (PEI)
and polyethyleneglycol (PEG). They found that modifying the surface of CuO nanoparticles
with PEG reduced hazard, but capping with PEI did not. As to the mechanism underlying
reduced hazard, Fiandra et al. [45] found in the case of exposure to CuO nanoparticles
capped with PEG, that the generation of reactive oxygen species in cells was reduced. The
presence of Cu ions in lung cells was higher in the case of PEI-capped CuO nanoparticles
than in the case of their PEG-coated counterparts. Hazard was not eliminated by capping
with PEG. Extrapolation of the findings of Fiandra et al. [45] to humans and the different
ways of intake by humans is subject to uncertainty [49–51] and the extrapolation to other
organisms that can be exposed to CuO nanoparticles is beset by uncertainties [50,52].

In a safe-by-design study, Gosens et al. [46] studied the impact of CuO nanoparticles
surface-modified with ascorbate and PEI on short-term pulmonary inflammation in rats.
These surface modifications had been tested before as to their cytotoxicity in a mouse
macrophage cell line [41]. In the latter study ascorbate-modified CuO particles scored best
in reducing cytotoxicity. However, Gosens et al. [46] found no significant differences as to
toxic effects and toxic potency in the lungs of rats between the two surface modifications.
This underlines the uncertainty in extrapolating outcomes of tests in cell lines to organisms.
Inhalation hazard to rats was not eliminated by capping.

There is a set of studies testing the hazard of CuO nanoparticles coated with polyethy-
lene glycol, carboxylate and methylaminated compounds, if compared with the hazard of
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pristine CuO nanoparticles, in a variety of biological settings [43,48,53–55]. These studies
will be briefly presented below. Table 1 compares the hazard of CuO nanoparticles coated
with polyethylene glycol (PEGylated CuO nanoparticles), with the hazard of pristine CuO
nanoparticles.

Table 1. Hazard of PEGylated CuO nanoparticles compared with pristine CuO nanoparticles.

Study Object of Test
Hazard of PEGylated CuO Nanoparticles

Compared with the Hazard of Pristine
Nanoparticles

Tatsi et al. [43] Earthworms Reduced

Conolly et al. [48] Haemocytes and lysosomes of mussels Increased

Gajda-Meissner et al. [53] Daphnia magna Increased

Kubo et al. [54] THP-1 and HACA human cell lines Reduced

Ilves et al. [55] Lungs of mice Reduced

Tatsi et al. [43] used CuO nanoparticles with polyethylene glycol, carboxylate and
methylaminated compounds in 14 days toxicity tests with earthworms. In fresh soil,
CuO nanoparticles with a carboxylate and methylaminated coating were more toxic than
pristine CuO nanoparticles, whereas PEGylated CuO nanoparticles had the lowest toxicity.
In aged soil, Cu nanoparticles that had a methylaminated organic coating were more toxic
than pristine CuO nanoparticles, whereas carboxylated and PEGylated CuO nanoparticles
had (similar) lower toxicities than pristine CuO nanoparticles. Using CuO nanoparticles
with the same coatings as used by Tatsi et al. [43], Gajda-Meissner et al. [53] concluded
that coated CuO nanoparticles were more toxic in acute tests with Daphnia magna than
pristine CuO nanoparticles. Kubo et al. [54] found that coatings of CuO nanoparticles
with PEG and carboxylate reduced the cytotoxicity in the human cell lines THP-1 and
HACAT, and that a methylaminated organic coating increased cytotoxicity. Extrapolation
of these tests to human organisms is subject to uncertainty [49–51]. Ilves et al. [55] did
show that pristine, methylaminated- and carboxylate-coated CuO nanoparticles strongly
exacerbated allergen-induced lung inflammation in mice, but that the exacerbation was
much less in the case of PEGylated CuO nanoparticles. Conolly et al. [48] studied the effect
on mussels (Mytilus spp.) of pristine CuO nanoparticles and CuO nanoparticles coated
with the same organic substances as used by Tatsi et al. [43]. The focus was on gill cells,
lysosomes and haemocytes. Genotoxicity affecting DNA in gill cells and haemocytes was
found for both pristine and coated CuO nanoparticles. Based on acute toxicity to lysosomes
and haemocytes, the hazard potential of PEG-coated CuO nanoparticles was found to be
larger than for the pristine CuO nanoparticles. Chronic exposures suggested lower levels
of oxidative stress associated with pristine CuO nanoparticles than with CuO nanoparticles
that had carboxylate coatings.

Ribeiro et al. [42] found that in an acute toxicity test coating or capping with organic
substances (citrate, ascorbate, PEI and polyvinylpyrrolidone (PVP)) of CuO nanoparticles
increased the negative impact on earthworm coelomocytes compared with pristine CuO
nanoparticles.

In a safer-by-design study, Mendes et al. [44] considered surface-modification of CuO
nanoparticles with citrate, ascorbate, PEI and PVP. These modifications were tested in a
mesocosm with six soil invertebrate species (consumers) during relatively long periods,
up to 84 days [44]. In this test, overall hazard was reported to be reduced by PEI, but
actually increased by citrate and ascorbate modifications, whereas PVP had hardly any
effect. Responses differed between species, suggesting species-specific response mecha-
nisms. Mendes et al. [44] stressed the importance of long-term testing to assess nanoparticle
hazard and stated that multispecies testing increases the relevance to ecological hazard.
Multigenerational tests would seem preferable because, as pointed out by Yu et al. [56]
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and Gomes et al. [57], there is evidence for transgenerational epigenetic effects. Extrapola-
tion of these findings to other organisms that may be exposed to surface-modified CuO
nanoparticles in a variety of environments is beset by uncertainties [50,52,58].

In proving that CuO nanoparticles with coatings or cappings are safe or safer, the
robustness of coatings or cappings under conditions encountered in their use stage and
beyond should be considered [50]. None of the studies discussed here addressed the
robustness of coatings or cappings.

In summary: In the studies discussed here, the negative impacts of CuO nanoparticles
can be decreased, increased and remain unaffected by coating or capping with organic
substances. The series of papers regarding CuO nanoparticles coated with polyethylene
glycol, carboxylate and methylaminated compounds ([43,48,53–55] did show that, for a
specific coating, toxicities can differ substantially across species and components thereof. As
indicated in Table 1, PEGylated CuO nanoparticles did in several cases show a lower toxicity
than pristine CuO nanoparticles [43,54,55] but not in studies with Daphnia magna [53]
and mussel lysosomes and haemocytes [48]. Tatsi et al. [43] also found that relative
toxicities may differ in different environments (fresh and aged soil). This underlines that in
extrapolations to all organisms of findings showing a decrease in the negative impacts for
specific organisms, parts thereof and derived cell lines are beset by uncertainties. None of
the studies discussed here showed the elimination of CuO nanoparticle hazard by coating
or capping. Furthermore, none of these studies addressed the impact of safe-by-design
modifications on an antioxidant effect of CuO nanoparticles, though changes in antioxidant
effects can be relevant to safety [33].

2.2. Doping

In the Introduction it was noted that two studies [39,40] claimed that safety-by-design
was achieved by doping. Table 2 summarizes the characteristics of CuO nanoparticles
contributing to hazard that these studies addressed and their findings regarding these
characteristics as impacted by doping.

Table 2. Characteristics of CuO nanoparticles that can contribute to hazard addressed by Naatz et al.
[39] and Feng et al. [40] and their findings regarding these characteristics as impacted by doping.

Characteristic of Nanoparticle That Can
Contribute to Hazard

Was This Addressed by Naatz et al. [39]? If
So, What Impact of Doping Was Found?

Was This Addressed by Feng et al. [40]? If
So, What Impact of Doping Was Found?

Release of metal ions Yes, reduction of copper ion release was found. No.

Generation of reactive oxygens species (ROS) No Yes, a reduced generation of ROS was found

As pointed out in the Introduction, Naatz et al. [39] studied the hatching inhibition
of zebrafish embryos by Fe-doped CuO nanoparticles and found reduced inhibition of
hatching, if compared with pristine CuO nanoparticles. Naatz et al. [39] also studied the
effect of Fe-doped CuO nanoparticles on cytotoxicity in BEAS-2B and THP-1 (human) cell
lines. In addition, Joshi et al. [59] studied exposure of (human) C6 glioma cell lines to
Fe-doped and non-doped CuO nanoparticles. Both Naatz et al. [39] and Joshi et al. [59]
found CuO nanoparticles were reduced by Fe-doping. As Joshi et al. [59] did show that the
generation of reactive oxygen species (and its associated hazard) was to be unaffected by
Fe-doping, whereas the release of Cu ions from CuO nanoparticles was slowed, reduced
cytotoxicity was ascribed to the latter effect. Pugazhandi et al. [60] tested the impact of
CuO nanoparticles doped with 3.6% Fe against three microbial species (two bacteria and
one yeast). A substantial antimicrobial activity was found. The experiments presented
by Naatz et al. [39], Pugazhandi et al. [60] and Joshi et al. [59] did not show that CuO
nanoparticle hazard was eliminated by doping with Fe. Taking into account the uncertain-
ties besetting extrapolation [49–52,58], these studies did not demonstrate that Fe-doped
CuO nanoparticles can be safely used in the environment.
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The induced generation of ROS by Mn3O4 nanoparticles as tested by Feng et al. [40]
was not eliminated by Zn doping. The aim of the doping experiments performed by
Feng et al. [40] has been to reduce the generation of ROS by keeping conduction band
energy out of the biological redox potential range and having the edge of the Fermi en-
ergy (which dominates charge transfer) far away from the valence band energy edge.
Feng et al. [40] were successful as to the latter but not regarding the former. As the con-
duction band of CuO nanoparticles has been reported in the same range as biological
redox potentials [61], it would seem that the doping strategy used by Feng et al. [40] is
also unlikely to eliminate the generation of ROS induced by doped CuO nanoparticles.
Feng et al. [40] did not address the impact of Zn-doping on the release of metal ions from
Mn3O4 nanoparticles, as they stated that these nanoparticles are insoluble. Insolubility, how-
ever, does not apply to CuO nanoparticles. In view of research presented by Ivask et al. [22],
Naatz et al. [39] and Joshi et al. [59], the release of Cu ions from CuO nanoparticles in
biologically relevant settings is well established. It might also be pointed out that Kat-
snelson et al. [62] and Illarionova et al. [63] have presented evidence for the release of Mn
ions from Mn3O4 nanoparticles in organisms and cell lines. Finally, the extrapolation of
the experiments performed by Feng et al. [40], regarding the cytotoxicity Zn-doped CuO
nanoparticles to cell lines, to all organisms that can be exposed to CuO nanoparticles, is
beset by uncertainties [49–52,58]. The experiments presented by Feng et al. [40] did not
show that metal oxide nanoparticle hazard was eliminated by doping with Zn. The impact
of doping with Zn on an antioxidant effect of metal oxide nanoparticles was not addressed
by Feng et al. [40].

2.3. Are the Modified CuO Nanoparticles Discussed in This Section Safe?

None of the studies previously discussed in this section provided evidence for the
elimination of hazard by safe(r)-by-design doped, coated or capped CuO nanoparticles.
Still, one might argue that such elimination is not necessary for the absence of risk, as there
may be exposure levels that do not give rise to negative impacts (no-negative effect levels)
and exposure may remain below these levels. However, there is as yet no proof that this
actually applies. Such proof is also complex. No-negative effect levels for modified CuO
nanoparticles have not as yet been established. Their establishment is likely to be difficult,
as Mendes et al. [44] have shown that there are substantial differences in the response to
coated nanoparticles between species, and it is also known that the toxicity of Cu ions
(central to the safety claim of Naatz et al. [39], shows large differences between species,
between varieties and even between individuals [64–66]. Furthermore, as pointed out
above, there are currently no data about the robustness of CuO nanoparticle coatings or
cappings in the real world. In the real world, no-negative effect levels in practice depend
on the presence of other substances. There may be co-exposure to other nanoparticles,
e.g., to ZnO nanoparticles, which may give rise to strong interactions [67]. Furthermore,
background-exposure data regarding other substances that induce the generation of ROS
(central to the safety claim of Feng et al. [40]) and can release Cu ions are needed to establish
no-negative effect levels for modified CuO nanoparticles in the real world. Such exposure
data are currently patchy at best. Finally, realistic fate and exposure studies are needed
to show that actual exposure remains below no-negative effect levels. Such studies are
currently lacking. It can be concluded that the safe(r)-by-design studies regarding the
modified doped, coated or capped CuO nanoparticles discussed here do not prove that
these modified nanoparticles are indeed safe. Providing such proof does not seem feasible
in the near future, due to its complexity and the present lack of data.

3. Safe(r)-By-Design and Functionality

Tavernaro et al. [68] have pointed out that safe(r)-by-design modifications may impact
functionality. This is highly relevant to the use of CuO nanoparticles as biocides. The
biocidal properties of Cu nanoparticles have been shown to involve the induce generation
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of reactive oxygen species and the release of Cu ions [69–75], and these are the properties
targeted by safe(r)-by-design modifications as discussed in Sections 2.1 and 2.2.

Only one of the safe(r)-by-design studies discussed here addressed the impact of
the safe(r)-by-design modifications on the biocidal functionality of CuO nanoparticles.
Kubo et al. [54] found that coatings of CuO with PEG and carboxylate reduced the cytotox-
icity in the human cell lines THP1 and HACAT and improved the ratio of activity against
Escherichia coli strain MG1655 versus human cell line cytotoxicity, when compared with
pristine CuO nanoparticles. The significance of the results obtained by Kubo et al. [54]
would seem to be limited. Escherichia coli strain MG1655 is not a known pathogen. Ex-
trapolation of the cytotoxicity tests performed by Kubo et al. [54] to the impact on human
organisms is subject to uncertainty [49–51]. Furthermore, extrapolations to other organisms
are problematic as tests with earthworms [43], Daphnia magna [53] and mussels [48] sug-
gested that coatings with carboxylates and PEG might also increase toxicity. Other studies
regarding the impact of coating or capping CuO nanoparticles with organic compounds on
biocidal activity have shown variable outcomes, which may be dependent on differences
in interactions with cells and impacts on toxicity mechanisms [23]. Padmavathi et al. [74]
found that capping CuO nanoparticles with cetyl trimethyl ammonium bromide reduced
the antibacterial activity against Staphylococcus lentus. Sohail et al. [76] did show that the
coating of biosynthetically produced Cu nanoparticles coated with polyamine increased
the antifungal effect against Aspergillus parasiticus.

The proposed applications of CuO nanoparticles may also have functionalities that
might be impacted by the safe(r)-by-design modifications considered here. The creation
of electron holes which underlies sensing responses [16] might, e.g., be affected by shift-
ing the edge of the Fermi energy (which dominates charge transfer) far away from the
valence band energy edge, which is instrumental in hazard reduction by doping studied
by Feng et al. [40]. As to the proposed application of CuO nanoparticles as catalysts, it
may be noted that adsorption of reactants to CuO nanoparticles is important in catalytic
activity [11,77]. This property might be impacted by coating or capping. As shown by
Wang et al. [78] electron transfer can be implicated in the catalytic activity of CuO nanopar-
ticles. It seems plausible that doping with Fe and Zn and coating or capping might affect
such electron transfer.

The CuO functionalities’ high thermal conductivity and absorbing solar radiation can
be exploited in solar stills [17]. As the doping of CuO nanoparticles may, by changing the
bandgap, impact the absorption of solar radiation [79], the functionality of doped CuO
nanoparticles for use in solar stills may be affected. Furthermore, thermal conductivity
may be negatively affected by doping by a metal [80], which may affect functionality
in solar stills and collectors. As to the application of CuO particles as fuel additives,
coating or capping with organic substances to improve safety is not a good option as
organic substances will be degraded during combustion. Bitire et al. [20] suggested that
the reduction of NOx emissions by CuO nanoparticles in diesel combustion was linked to
improved heat transfer, which, as pointed out above, might be affected by doping.

In view of the forgoing, there is a case to complement studies regarding safe-by-design
modifications of CuO nanoparticles with studies regarding the implications thereof for
functionality.

4. Conclusions

None of the studies considered here provided evidence for the elimination of hazard
by the safe(r)-by-design doping, coating or capping of CuO nanoparticles. No study
addressed the impact of these safe(r)-by-design modifications on an antioxidant effect of
CuO nanoparticles, though changes in antioxidant effects can be relevant to safety. None of
the studies regarding coatings or cappings addressed the robustness thereof. Nor has it
been proven that levels of exposure to the modified nanoparticles discussed here remain
below real world no-negative effect levels. Thus, the studies discussed here did not show
that the CuO nanoparticle modifications they considered are safe (no risk). By targeting
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the release of Cu ions and the generation of reactive oxygen species by CuO nanoparticles,
safe(r)-by-design studies target properties that underly the biocidal functionality of CuO
nanoparticles. Functionality of CuO nanoparticles in other applications, e.g., in catalysis,
solar stills and fuels, may also be impacted. Against this background there is a case for
complementing safe(r)-by-design studies by investigating the impact of the modifications
studied on CuO nanoparticle functionality. All in all, it has not been proven that the
modified CuO nanoparticles discussed in this review are safe and functional.
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